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Abstract
The weighted vertex cover problem is concerned with selecting a subset of the vertices that covers
a target set of edges with the objective of minimizing the total cost of the selected vertices. We
consider a variant of this classic combinatorial optimization problem where the target edge set is
not fully known; rather, it is characterized by a probability distribution. Adhering to the model of
two-stage stochastic optimization, the execution is divided into two stages so that in the first stage,
the decision maker selects some of the vertices based on the probabilistic forecast of the target edge
set. Then, in the second stage, the edges in the target set are revealed and in order to cover them,
the decision maker can augment the vertex subset selected in the first stage with additional vertices.
However, in the second stage, the vertex cost increases by some inflation factor, so the second stage
selection becomes more expensive.

The current paper studies the two-stage stochastic vertex cover problem in the realm of distributed
graph algorithms, where the decision making process (in both stages) is distributed among the vertices
of the graph. By combining the stochastic optimization toolbox with recent advances in distributed
algorithms for weighted vertex cover, we develop an algorithm that runs in time O(log(∆)/ε), sends
O(m) messages in total, and guarantees to approximate the optimal solution within a (3 + ε)-ratio,
where m is the number of edges in the graph, ∆ is its maximum degree, and 0 < ε < 1 is a
performance parameter.
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1 Introduction

Distributed computing models are adversarial in nature: if the future bears any kind of
uncertainty, then we better prepare for the worst. While this approach is sensible in some
situations, e.g., when dealing with faults in critical systems, it seems to be exaggerated in
others: Should we still aim for the worst even if we hold reliable forecasts that point to
more optimistic outcomes? Is it not a little bit paranoid to assume that the future is always
determined by a malicious adversary?
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With this motivation in mind, the current paper adopts the two-stage stochastic op-
timization model, where the future uncertainty is resolved by nature’s coin tosses rather
than by a malicious adversary. This popular model is adjusted to the realm of distributed
graph algorithms and applied to the weighted vertex cover problem. The adaptation of
weighted vertex cover to the distributed stochastic setting makes it applicable to many real-
life scenarios, especially in the context of network applications. For example, a distributed
construction of a minimum vertex cover could come in handy for tasks such as monitoring
traffic over high demand links. More often than not, the set of high demand links is not fully
known in advance and decisions regarding the placement of monitors must be made based
on probabilistic forecasts.

1.1 Distributed Two-Stage Stochastic Vertex Cover
The problem considered in this paper is a distributed version of the two-stage stochastic
vertex cover (2SVC) problem. In its centralized version, the 2SVC problem is defined over an
undirected graph G = (V,E) and a vertex cost function c : V → R≥0. Given a target edge
subset T ⊆ E, the goal is to purchase a vertex subset X ⊆ V that covers T in the sense that
every edge in T has at least one endpoint in X.

The crux of the 2SVC problem is that the target T is not known explicitly; rather, it
is drawn from a probability distribution π over 2E . A 2SVC algorithm Alg constructs the
covering vertex subset X in two stages: In the first stage, Alg constructs a vertex subset
X1 ⊆ V based on π, but without knowing the realized target T . Then, in the second stage,
T is revealed and Alg augments X1 with a vertex subset X2 ⊆ V −X1 to obtain a valid
cover X = X1 ∪X2 for T , but the vertices are now costlier: each vertex v ∈ X2 costs σ · c(v),
where σ > 1 is an inflation factor specified with the problem instance (together with G,
c, and π). The objective is to minimize Alg’s total cost c(X1) + σ · c(X2) in expectation,
where c(V ′) =

∑
v∈V ′ c(v) for every V ′ ⊆ V and the expectation is taken over the probability

distribution π from which the target T is drawn and the random coin tosses of the algorithm
(if any).

In the current paper, we adapt the 2SVC problem to the distributed setting where there
is no centralized decision maker. Adhering to the standard assumptions in the domain
of distributed graph algorithms (cf. [32]), the computation in both the first and second
stages is distributed among the vertices in V that are identified with processing units
that operate in synchronous rounds and can communicate with each other by exchanging
messages of bounded size over the edges in E (referred to as the CONGEST model in
[32]). This means that at the beginning of the first stage, the vertices hold no knowledge
of the global topology of G. Moreover, we assume that π is a product distribution, so
that π(T ) = (

∏
e∈T π(e)) · (

∏
e∈E−T (1 − π(e))), and that it is provided to the vertices in

a distributed manner: at the beginning of the first stage, vertex v ∈ V is aware of the
individual edge probability π(e) if and only if e is incident on v.

The approximation ratio of a distributed 2SVC algorithm Alg is the minimum ρ such that
for every graph G = (V,E), cost function c : V → R≥0, target (product) distribution π over
2E , and inflation factor σ > 1, it is guaranteed that the expected cost paid by Alg is at most

ρ× min
X1⊆V

c(X1) +
∑
T⊆E

π(T ) · min
X2⊆V : X1∪X2 covers T

σ · c(X2)

 .

In other words, the performance of Alg is measured in comparison to an optimal (omnipotent)
centralized benchmark.
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1.2 Our Contribution
In this paper, we design a distributed algorithm, referred to as Alg, that for any 0 < ε < 1,
outputs a (3 + ε)-approximation for the 2SVC problem. Denoting the number of vertices
in G by n and its maximum degree by ∆ and assuming that the vertex costs c(v) and
performance parameter ε can be encoded using O(logn) bits, Alg completes the first stage in
O(log(∆)/ε) rounds and the second stage in O(1) rounds, sending a total of O(1) messages
per edge, each of size O(logn). We assume for simplicity that the vertices are equipped
with unique IDs (encoded using O(logn) bits), but these can be easily replaced by any local
symmetry breaking oracle (e.g., an arbitrary edge orientation). Beyond that, the vertices are
not assumed to hold any global knowledge of the graph, including the parameters n and ∆.

Two-stage (and more generally, multi-stage) stochastic optimization is an important
research domain (see Sec. 1.3) that, to the best of our knowledge, has not been studied yet
in the context of distributed graph algorithms. We hope that the first step that the current
paper makes into the interface between these fascinating research domains will ignite further
exploration of distributed algorithms for stochastic graph theoretic problems.

1.3 Related Work
The field of stochastic optimization dates back to the mid-fifties with the seminal papers
of Dantzig [12] and Beale [8] on stochastic linear programming and is studied extensively
since then. Comprehensive accounts of stochastic programming under both continuous and
discrete models can be found in [35, 27, 10].

Initiated in the paper of Dye, Stougie, and Tomasgard [14], the study of approximation
algorithms for stochastic optimization problems has recently gained a lot of attention
[21, 13, 34, 15, 19, 3]. Much of this literature deals with the finite scenario model, where
the scenarios that may occur in the second stage are listed explicitly as part of the input.
A different approach, sometimes called the black-box model, relies on sampling access to
a probability distribution that is not necessarily provided explicitly. Shmoys and Swamy
obtained approximation algorithms in this model for problems in the framework of two-
stage [36] and multi-stage [38] stochastic optimization. They also wrote a broad survey on
approximation algorithms for a large class of two-stage stochastic linear and integer programs
in both the finite scenario and black-box models [39].

Among other methods, Shmoys and Swamy [38] used the sample average approximation
approach that reduces many problems in the black-box model to their finite scenario counter-
part. This approach essentially feeds the finite scenario algorithm with samples taken from
the (implicit) probability distribution. We remark that although this approach has proven
to be very successful for centralized algorithms [36, 38, 37], it seems to be less suitable for
distributed settings.

As discussed later on, our work builds upon the (centralized) framework of Gupta et
al. [18] for general stochastic optimization problems. This is a generic framework that given
an approximation algorithm with certain desired properties for (the deterministic version) of
a combinatorial optimization problem P , yields an approximation algorithm for the two-stage
(and multi-stage) stochastic versions of P . Among other combinatorial optimization problems,
Gupta et al. applied their framework to weighted vertex cover, obtaining a (centralized)
3-approximation 2SVC algorithm. This has been improved to a (2 + ε)-approximation by
Srinivasan [37] using the sample average approximation approach.

In its deterministic version, vertex cover is a classic combinatorial optimization problem,
listed among the 21 NP-hard problems in Karp’s seminal paper [24]. The unweighted version
of this problem can be approximated within a factor of 2 simply by finding a maximal
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matching (see, e.g., [11]). A 2-approximation polynomial-time algorithm for the weighted
version of vertex cover was introduced by Nemhauser and Trotter [30]. Bar-Yehuda and
Even [5] presented the first linear-time 2-approximation algorithm using the primal-dual
technique and later on [6], repeated this result to demonstrate their local ratio technique. The
currently best known approximation for weighted vertex cover problem is (2−Θ(1/

√
logn))

due to Karakostas [23]. Assuming the unique games conjecture, this cannot be improved
much further as Khot and Regev [25] established a lower bound of 2− ε for any constant
ε > 0.

In the distributed setting, there is a long line of work on approximation algorithms for
unweighted vertex cover and on the related maximal matching problem [22, 20, 31, 1, 33, 7, 16].
For the weighted version of vertex cover, Khuller et al. [26] present a (2 + ε)-approximation
algorithm that runs in O(log ε−1 logn) rounds. The algorithm of Kuhn et al. [29] obtains
the same approximation ratio with an O(ε−4 log ∆) run-time. Åstrand and Suomela [2]
designed a 2-approximation algorithm whose run-time is O(∆ + log∗W ), where W is the
maximum weight. A randomized 2-approximation algorithm that runs in O(logn+ logW )
was presented by Grandoni et al. [17]. This has been improved to a run-time of O(logn) by
Koufogiannakis and Young [28].

Building upon the classic local ratio technique, Bar-Yehuda et al. [4] have recently
devised a deterministic (2 + ε)-approximation algorithm for weighted vertex cover with
O
(

log ∆
ε·log log ∆

)
run-time. This algorithm has been improved by Ben-Basat et el. [9] to obtain

a run-time whose dependency on 1/ε is logarithmic rather than linear. With the right choice
of the performance parameter ε, this leads to a deterministic 2-approximation algorithm for
weighted vertex cover whose run-time is O

(
log n·log ∆
log2 log ∆

)
. As discussed further in the sequel,

the approach behind the algorithms of [4, 9] inspires the main algorithmic building block of
our 2SVC approximation algorithm.

1.4 Organization of the Paper
The remainder of this paper is organized as follows. Following some preliminary definitions
presented in Sec. 2, we discuss in Sec. 3 the technical challenges that had to be overcome
en route to developing our distributed 2SVC approximation algorithm. The algorithm is
then developed in Sec. 4 and analyzed in Sec. 5. We conclude in Sec. 6 with some further
discussion and open questions.

2 Preliminaries

Relaxed Vertex Cover. We now define a slightly different version of the 2SVC problem,
called relaxed 2SVC (r2SVC). In this version we are allowed to make partial payments for
the vertices in each of the two stages based on the notion of a payment function p : V → R≥0.
We say that a payment function p covers the edge subset F ⊆ E if the vertex subset
Xp = {v ∈ V | p(v) ≥ c(v)} is a cover for F .

An algorithm Algrel for the r2SVC problem constructs the payment functions p1 : V →
R≥0 and p2 : V → R≥0 in the first and second stages, respectively, with the requirement
that the function p1 + p2, defined so that (p1 + p2)(v) = p1(v) + p2(v), covers the target
edge subset T . The cost paid by Algrel is c(p1) + σ · c(p2), where the cost c(p) of a payment
function p : V → R≥0 is defined to be c(p) =

∑
v∈V p(v).

By definition, any 2SVC algorithm can be transformed into a r2SVC algorithm with the
same cost by setting pi(v) = c(v) if v ∈ Xi and pi(v) = 0 otherwise for i = 1, 2. Gupta et
al. [18] established the converse direction: any r2SVC algorithm can be transformed into
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a 2SVC algorithm with the same expected cost. Although their proof aims at centralized
algorithms, it is straightforward to see that it holds also for the distributed version of the
(r)2SVC problem, yielding the following lemma (a proof is added for completeness).

I Lemma 2.1. Any distributed r2SVC algorithm Algrel can be transformed into a distributed
2SVC algorithm Alg with the same expected cost.

Proof. Let p1 and p2 be the payment functions constructed by Algrel in the first and second
stages, respectively. We construct the 2SVC algorithm Alg as follows. In the first stage Alg
includes vertex v ∈ V in the vertex subset X1 with probability min {1, p1(v)/c(v)}. In the
second stage, Alg includes v in the vertex subset X2 if v ∈ Xp1+p2 and it was not already
selected in the first stage. By the linearity of expectation, the expected payment made by
Alg in each stage is up-bounded by the payment made by Algrel in the same stage. J

Following Lem. 2.1, we focus hereafter on designing a distributed algorithm for the r2SVC
problem.

The Framework of [18]. Our distributed algorithm for the r2SVC problem is based on
the (centralized) boosted-sampling algorithm of Gupta et al. [18] for that problem.1 This is
a randomized algorithm that is compiled from two algorithmic building blocks. The first
building block is a covering payment algorithm, referred to as Algpay, that given an edge
subset F ⊆ E, constructs a payment function p : V → R≥0 that covers F .2 We say that
Algpay is an α-approximation covering payment algorithm if the cost of the payment function
p constructed by Algpay is guaranteed to satisfy c(p) ≤ α · c(Opt(F )), where Opt(F) is an
optimal cover for F .

The second building block of the boosted-sampling algorithm is an augmentation algorithm,
referred to as Algaug, that given two edge subsets F, F ′ ⊆ E and a payment function
p : V → R≥0 that covers F , constructs a payment function p′ so that p+ p′ covers F ′.

In the first stage, the boosted-sampling algorithm creates a random edge subset S by
sampling each edge e ∈ E with probability min{1, σπ(e)}. Following that, it invokes Algpay

on S to obtain a payment function p1 that covers S. In the second stage, when the actual
edge subset T is revealed, the boosted-sampling algorithm invokes Algaug on (S, T, p1) to
construct the payment function p2 so that p1 + p2 covers T .

An essential ingredient in the analysis of the boosted-sampling algorithm is the notion of
cost-sharing functions. These functions provide a useful way to bound the overall cost by
allocating it to the edges that need to be covered. Formally, a function ξ : 2E × E → R≥0
is said to be a cost-sharing function if it satisfies the following two properties for any edge
subset F ⊆ E:
P1. ξ(F, e) = 0 for any edge e ∈ E − F ; and
P2.

∑
e∈F

ξ(F, e) ≤ c(Opt(F )).

The cost-sharing function ξ is said to be β-unistrict with respect to Algpay and Algaug

if it satisfies the following property for any edge subset F ⊂ E and edge e ∈ E − F :
P3. β · ξ(F ∪ {e}, e) ≥ c(Algaug(F, {e}, Algpay(F ))).

1 As mentioned in Sec. 1.3, Gupta et al. develop a generic framework and the boosted-sampling algorithm
is actually suitable for many different combinatorial optimization problems. Since our focus in the
current paper is restricted to weighted vertex cover, we present an adaptation of this algorithm to that
specific problem.

2 We assume that the underlying graph G = (V, E) and the vertex cost function c are fixed and do not
explicitly pass them as arguments to the various algorithms described hereafter.
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(P) min
∑
v∈V

xvc(v) (D) max
∑
e∈E

ye

s.t. xu + xv ≥ 1 ∀(u, v) ∈ E s.t.
∑

e:v∈e

ye ≤ c(v) ∀v ∈ V

xu ≥ 0 ∀v ∈ V ye ≥ 0, ∀e ∈ E

Figure 1 The linear program relaxation of weighted vertex cover (P) and its dual program (D),
which is actually the linear program relaxation of the b-matching problem.

In other words, the cost of augmenting the payment function p constructed by Algpay for
covering F to a payment function p+ p′ that covers e as well, is at most β · ξ(F ∪ {e}, e).

I Theorem 2.2 ([18]). Given an α-approximation covering payment algorithm Algpay, an
augmentation algorithm Algaug and a cost-sharing function that is β-unistrict with respect
to Algpay and Algaug, the boosted-sampling algorithm provides an (α + β)-approximation
algorithm for the r2SVC problem.

Additional Notation. Throughout, we denote the number of vertices and the number of
edges in the underlying graph G = (V,E) by n = |V | and m = |E|, respectively. Let deg(v)
be the degree of vertex v in G and let ∆ = maxv∈V deg(v) be the maximum degree.

3 Technical Challenges

In their centralized 2SVC algorithm, Gupta et al. [18] construct the first-stage solution using
the following classic (centralized) primal-dual algorithm for weighted vertex cover (refer to
Fig. 1 for the weighted vertex cover linear program relaxation and its dual program): The
algorithm continuously raises the dual variables associated with the edges, concurrently for
all of them, until a dual constraint associated with some vertex v becomes tight; at this point,
v joins the vertex cover and the edges incident on v are frozen so that their dual variables
will not be raised any further. The algorithm terminates when all edges are frozen.

A key ingredient in the analysis of Gupta et al. is that the dual variables can serve as
a 1-unistrict cost-sharing function. This powerful observation utilizes the identical runs
property stating that for any F ⊂ E and e ∈ E − F , the runs of the algorithm on F and on
F ∪ {e} are identical (with respect to the dual variables of the edges in F ) up to the point
when the dual variable of e becomes frozen.

The recent weighted vertex cover algorithm of Bar-Yehuda et al. [4] (see also the algorithm
of Ben-Basat et al. [9]) can be viewed as a distributed implementation of this primal-dual
approach.3 They cleverly replace the centralized method of continuously (and concurrently)
increasing the dual variables by a stepwise increase based on a request-response iterative
process. An inherent property of the algorithms of [4, 9] is that in each step of the iterative
process, the amount requested by vertex v from an adjacent vertex u, and hence also the
amount responded by u to v’s request, depend on the number of edges incident on v that
have not been frozen yet. Consequently, the runs of the algorithm on F ⊂ E and on F ∪ {e},

3 The authors of [4, 9] present their algorithms using the equivalent local ratio approach.
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for some e ∈ E − F , may differ from each other already at the early stages of the execution.
As the amounts of responses sent over edge e = (u, v) determine the value of the dual variable
associated with e, this distributed algorithm does not satisfy the aforementioned identical
runs property.

To overcome this obstacle, we develop a variant of [4]’s algorithm that does satisfy the
identical runs property. This is done by grouping the iterative process’ steps into phases
so that vertex v requests the same amount throughout all steps of the phase. The crucial
point here is that this amount is now fixed in advance and in particular, does not depend on
the number of unfrozen edges incident on v. At the same time, our algorithm preserves the
primal-dual structure in a way that allows us to efficiently combine it with an augmentation
(second stage) algorithm. The main challenge is then to show that the dual variables serve
as a (1 + ε)-unistrict cost-sharing function. We prove that our algorithm is only O(log log ∆)
factor slower than the original algorithm of [4] (whose run-time is optimal as a function of
∆). Moreover, our algorithm has a message complexity of O(m), an improvement over the
algorithm of [4] that sends O

(
m log ∆

ε·log log ∆

)
messages.

4 A Distributed Algorithm for 2SVC

In this section, we present our distributed 2SVC algorithm Alg. As mentioned in Sec. 2,
we actually present an algorithm for the r2SVC problem (Lem. 2.1 ensures that it can be
transformed into a 2SVC algorithm) that can be viewed as a distributed implementation of
the boosted-sampling algorithm of [18].

Similarly to the centralized version of the boosted-sampling algorithm, our distributed
algorithm also constructs the random edge subset S by sampling each edge e ∈ E with
probability min{1, σπ(e)}, only that now this sampling is done in a decentralized manner by
one of e’s endpoints (say, the one with the smaller ID). Following this sampling process, the
vertices know which of their incident edges are included in S.

The first stage is then completed by running the distributed covering payment algorithm
Algpay presented in Sec. 4.1 on S, generating a payment function p1 that covers S. In the
second stage when the target edge subset T ⊆ E is revealed, the vertices run the distributed
augmentation algorithm Algaug presented in Sec. 4.2 on S, T , and p1 to obtain a payment
function p2 so that p1 + p2 covers T . For clarity of the exposition, we first implement our
algorithms so that they may send messages over each edge in every round without taking
the message size into account. Then, in Sec. 4.3, we explain how Algpay and Algaug can be
modified to send O(m) messages in total, each of size O(logn).

4.1 A Distributed Covering Payment Algorithm
Our distributed covering payment algorithm Algpay gets as input an edge set F and constructs
a payment function p that covers F . Fix some sufficiently small performance parameter ε > 0
(the relation of the performance parameter ε fixed here to the guaranteed approximation
ratio is revealed later on). Algpay works in phases, each consisting of 3 · d2/εe rounds that
are divided into d2/εe contiguous round triples referred to as steps. Each step begins with a
request round followed by a response round, in which the vertices exchange messages referred
to as requests and responses, respectively. The last (third) round in the step is a status round
in which the vertices report whether they remain active (initially, all vertices are active).
Every active vertex v ∈ V maintains a weight variable w(v) which is initialized with c(v) and
is monotonically non-increasing throughout the steps of the algorithm. In addition, vertex v
maintains a set A(v) of active neighbors.

OPODIS 2019



32:8 Towards Distributed Two-Stage Stochastic Optimization

Consider some active vertex v ∈ V . We use (j, i) to denote step i = 0, 1, . . . , d2/εe − 1 of
phase j. In the request round of step (j, i), vertex v sends to each active neighbor u ∈ A(v)
the message

requestj,i(v, u) = 2j · εc(v)
deg(v) ,

where recall that deg(v) denotes the degree of v in the underlying graph G. In the following
response round, v processes the request messages received from its active neighbors one-by-
one (in an arbitrary order). For each request message requestj,i(u, v), v sends a response
message

responsej,i(v, u) = min
{

requestj,i(u, v), w(v)− εc(v)
}

and subtracts responsej,i(v, u) from w(v). We say that the request requestj,i(u, v) is fully
responded if responsej,i(v, u) = requestj,i(u, v). Notice that this update rule ensures that
w(v) ≥ εc(v) throughout the response round.

In the status round, v updates the weight variable w(v) by subtracting responsej,i(u, v)
from w(v) for each response message received from an active neighbor u ∈ A(v). Upon
completion of this update process, if w(v) ≤ εc(v), then v becomes inactive, sends a designated
inactive message to its active neighbors, and marks itself as a covering vertex (the role of
the covering vertices is revealed soon). A vertex whose active neighbor set is empty also
becomes inactive. We use winact(v) to denote the remaining weight of v when it becomes
inactive.

The payment function p : V → R≥0 constructed by Algpay is defined by setting

p(v) = min
{
c(v)− winact(v)

1− ε , c(v)
}
. (1)

This means that p(v) is always up-bounded by c(v) and that p(v) = c(v) if and only if v ends
up as a covering vertex. Refer to Pseudocode 1 for a pseudocode description of Algpay.

4.2 A Distributed Augmentation Algorithm
Our distributed augmentation algorithm Algaug gets as input two edge subsets F, F ′ ⊆ E

and a payment function p : V → R≥0 that covers F , and constructs a payment function
p′ : V → R≥0 so that p+p′ covers F ′ as follows. Define the reduced cost of each vertex v ∈ V
to be c(v)− p(v). For each edge (va, vb) ∈ F ′, Algaug selects the endpoint vi, i ∈ {a, b}, with
the smaller reduced cost c(vi)− p(vi), breaking ties arbitrarily (say, by the vertex IDs). The
payment function p′ is then defined by setting

p′(v) =
{
c(v)− p(v), if v is selected by Algaug

0, otherwise
.

This means that

c (Algaug (F, F ′, p)) ≤
∑

(va,vb)∈F ′

min {c(va)− p(va), c(vb)− p(vb)} . (2)
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Algorithm 1 A covering payment algorithm, code for vertex v.

1: for j = 0, 1, ... do
2: for i = 0 to d2/εe − 1 do

Request Round
3: for each u ∈ A(v) do
4: requestj,i(v, u)← 2j · εc(v)

deg(v)
5: Send requestj,i(v, u) to u

Response Round
6: for each u ∈ A(v) do
7: responsej,i(v, u)← min

{
requestj,i(u, v), w(v)− εc(v)

}
8: w(v)← w(v)− responsej,i(v, u)
9: Send responsej,i(v, u) to u

Status Round
10: for each u ∈ A(v) do
11: w(v)← w(v)− responsej,i(u, v)
12: if w(v) ≤ εc(v) then
13: Send inactive to all neighbors
14: return p(v)← c(v) . v is marked as a covering vertex
15: for each inactive message received from u ∈ A(v) do
16: A(v)← A(v)− {u}
17: if A(v) = ∅ then
18: return p(v)← 1

1−ε (c(v)− w(v))

4.3 Fewer and Smaller Messages

While Algaug requires a single round of communication and hence, does not send more
than O(m) messages in total, the aforementioned implementation of Algpay dictates sending
messages over each edge in every step which sums up to Ω(m log(∆)/ε) messages. Here we
show that Algpay can be modified to send O(1) messages over each edge throughout the
execution, which accounts for a total of O(m) messages as well. We then explain how the
message size (of both Algpay and Algaug) can be bounded by O(logn).

The modified Algpay starts with a handshake round in which each vertex v ∈ V sends its
cost c(v) and degree deg(v) to all its neighbors. The next messages that v is certain to send
are the inactive messages sent when v becomes inactive. Consider some neighbor u of v
and suppose that it still did not receive an inactive message from v. Using the handshake
information, vertex u can compute the value of each request message requestj,i(v, u) =
2j · εc(v)/ deg(v) without actually receiving it from v. Moreover, as long as u does not
hear otherwise from v, it infers that v fully responds to its own requests, namely, that
responsej,i(v, u) = requestj,i(u, v), again, without actually receiving v’s response. If v
cannot fully respond to u’s request in some step (j, i), then v sends the partial response
responsej,i(v, u) as in the original implementation of Algpay, but notice that this will happen
at most once as v must become inactive in step (j, i).

With this modification, a vertex v ∈ V sends messages over an incident edge (v, u) in
three occasions: (1) a message encoding c(v) and deg(v) during the designated handshake
round of Algpay; (2) a message encoding a partial response to requestj,i(u, v) during the
(single) step (j, i) in which v becomes inactive; and (3) a message encoding the reduced cost
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of v during the execution of Algaug in the second stage. The message sent in occasion (1) is
of size O(logn) by the assumption on the vertex costs. To ensure that the messages sent
during occasions (2) and (3) are also of size O(logn), we round down their numeric content
to the next power of 1 + ε. This affects the approximation ratio analyzed in Sec. 5 by a
factor of at most 1 + ε.

5 Analysis

In this section, we analyze the distributed implementation Alg of the boosted-sampling
algorithm presented in Sec. 4, establishing the following theorem.

I Theorem 5.1. For any sufficiently small ε > 0, Alg completes the first stage in O(log(∆)/ε)
rounds and the second stage in O(1) rounds and guarantees to return a (3 +O(ε))-approxi-
mation for the r2SVC problem.

To obtain an approximation ratio of (3 + ε′) for some 0 < ε′ < 1 (as promised in Sec. 1),
one merely has to set the performance parameter ε used by Alg so that ε ← ε′/κ for the
appropriate constant κ hidden in the O-notation in the statement of Thm. 5.1. We start the
analysis by proving that Algpay constructs a covering payment function.

I Lemma 5.2. When invoked on an edge subset F ⊆ E, Algpay constructs a payment
function p that covers F .

Proof. When a vertex v ∈ V becomes inactive, either (1) its active neighbor set is empty; or
(2) its weight variable w(v) satisfies w(v) ≤ εc(v). In the latter case, v is a covering vertex
with p(v) = c(v). The assertion follows by the design of Algpay ensuring that if (u, v) ∈ F ,
then it cannot be the case that both u and v become inactive due to the former reason. J

Let wj(v) and Aj(v) denote the weight and active neighbor set of v at the beginning of
phase j, respectively, and let degA

j (v) denote the size of Aj(v). The following two lemmas
play a crucial role in proving that Algpay is a (2 +O(ε))-approximation covering payment
algorithm.

I Lemma 5.3. For every phase j in the run of Algpay and for every vertex v ∈ V that is
active at the beginning of phase j, it holds that degA

j (v) ≤ deg(v)/2j.

Proof. Consider some vertex v ∈ V and recall that degA
0 (v) is the degree of v in (V, F ).

Since degA
0 (v) is up-bounded by deg(v), the assertion holds for phase j = 0. Assume by

contradiction that degA
j (v) > deg(v)/2j for some phase j > 0 where v is still active. This

means that v had more than deg(v)/2j active neighbors throughout phase j−1 and in each of
the d2/εe steps of that phase, more than deg(v)/2j requests of v were fully responded. Since
requestj−1,i(v, u) = 2j−1 · εc(v)/ deg(v) for every u ∈ Aj−1(v) and i = 0, 1, . . . , d2/εe − 1,
it follows that

wj(v) < wj−1(v)− d2/εe · deg(v)
2j

· 2j−1 · εc(v)
deg(v) ≤ wj−1(v)− c(v) ≤ 0 .

Ergo, v must become inactive by the beginning of phase j, in contradiction to the assumption.
J

I Lemma 5.4. For every vertex v ∈ V , the weight variable w(v) remains non-negative
throughout the run of Algpay.
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Proof. Since the weight of v does not decrease once v becomes inactive, it suffices to show
that w(v) remains non-negative as long as v is active. In each step the weight of v can
decrease only during the response round and the status round. Recall that w(v) ≥ εc(v)
throughout every response round, therefore we are left to show that in every status round,
the amount decreased from w(v) is not larger than εc(v).

Consider some step (j, i). Each response message responsej,i(u, v) that v processes
during this step is not larger than requestj,i(v, u) = 2j · εc(v)/deg(v). Therefore, it remains
to show that v receives at most deg(v)/2j response messages in this step. As the number of
active neighbors is monotonically non-increasing, this follows from Lem. 5.3 ensuring that v
has at most deg(v)/2j active neighbors at the beginning of phase j. J

For the purpose of further analysis, we define the functions yj,i : 2E × E → R≥0 and
y : 2E×E → R≥0 as follows. Consider a run of Algpay on an edge subset F ⊆ E. For each step
(j, i) in this run and edge e = (u, v) ∈ E, let yj,i(F, e) = responsej,i(u, v) + responsej,i(v, u)
and let

y(F, e) =
∑

j=0,1,..., i=0,1,...,d2/εe−1

yj,i(F, e) .

We generalize the last definition from single edges e to edge subsets J ⊆ E, defining
y(F, J) =

∑
e∈J y(J, e). In addition, let F (v) = {e ∈ F : v ∈ e} denote the set of edges

in F incident on vertex v ∈ V . Notice that for every vertex v ∈ V , the sum of response
messages sent over edges in F (v) equals the total amount decreased from w(v) throughout
the execution, which yields the following observation.

I Observation 5.5. For every vertex v ∈ V , the function y satisfies y(F, F (v)) = c(v) −
winact(v).

This facilitates approximating p(v) by y(F, F (v)).

I Lemma 5.6. When invoked on an edge subset F ⊆ E, Algpay constructs a payment
function p that satisfies

(1− ε) · p(v) ≤ y(F, F (v)) ≤ p(v)

for every vertex v ∈ V .

Proof. Recall that p(v) = min
{

1
1−ε

(c(v)− winact(v)), c(v)
}
(see (1)). If 1

1−ε (c(v)−winact(v)) ≤
c(v), then the assertion holds by Obs. 5.5 implying that p(v) = 1

1−ε · y(F, F (v)). So,
consider the case where 1

1−ε (c(v)− winact(v)) > c(v) which means that winact(v) < ε · c(v).
Lem. 5.4 ensures that winact(v) ≥ 0, thus by combining it with Obs. 5.5 we conclude that
(1− ε) · c(v) < y(F, F (v)) ≤ c(v). The assertion follows as p(v) = c(v) in this case. J

Employing Obs. 5.5 we can establish also the following lemma.

I Lemma 5.7. The function y : 2E × E → R≥0 satisfies y(F, F ) ≤ c(Opt(F )).

Proof. For every vertex v ∈ V , Lem. 5.4 guarantees that winact(v) ≥ 0, hence, in conjunction
with Obs. 5.5, we get that y(F, F (v)) ≤ c(v). It follows then that the variables y(F, e),
e ∈ F , constitute a feasible solution for the dual program of the linear program relaxation
of weighted vertex cover on graph (V, F ) with cost function c(·) (refer to Fig. 1 for that
program). The assertion follows as a consequence of weak duality. J

We are now ready to establish the approximation ratio of Algpay.
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I Lemma 5.8. Algpay is a (2 +O(ε))-approximation covering payment algorithm.

Proof. The payment function p constructed by Algpay satisfies∑
v∈V

p(v) ≤ (1 +O(ε))
∑
v∈V

y(F, F (v)) = 2 · (1 +O(ε)) · y(F, F ) ≤ (2 +O(ε)) · c(Opt(F )) ,

where the first transition is due to Lem. 5.6 and the last transition follows from Lem. 5.7. J

It follows directly from the design of Algaug that given two edge subsets F, F ′ ⊆ E and
a payment function p : V → R≥0 that covers F , the payment function p′ constructed by
Algaug when invoked on (F, F ′, p) augments p so that p+ p′ covers F ′. So, Algaug is a valid
augmentation algorithm (that runs in O(1) rounds). The desired bound on the approximation
ratio of Alg can now be established by identifying a proper cost-sharing function.

I Lemma 5.9. The function y : 2E×E → R≥0 is a (1+O(ε))-unistrict cost-sharing function
with respect to Algpay and Algaug.

Proof. We need to show that y satisfies properties P1–P3 (see Sec. 2) with respect to Algpay

and Algaug. When Algpay is invoked on an edge subset F ⊆ E, no messages are sent over
edges that are not in F , so property P1 clearly holds. Moreover, Lem. 5.7 ensures that∑

e∈F y(F, e) ≤ c(Opt(F )), thus property P2 holds as well.
For property P3, we fix some F ⊂ E and e ∈ E − F and show that

c (Algaug(F, {e}, Algpay(F ))) ≤ (1 +O(ε)) · y(F ∪ {e}, e) .

To that end, we define the following additional notation: Given an edge subset J ⊆ F and a
step (j, i), let

y<(j,i)(F, J) =
∑

(j′,i′)<(j,i)

∑
e∈J

yj′,i′(F, e) ,

where we use the relation < to denote the lexicographic order, and let

y≤(j,i)(F, J) = y<(j,i)(F, J) +
∑
e∈J

yj,i(F, e) .

Consider two runs of Algpay: run R1 on F and run R2 on F ∪ {e}. Let (j, i) be the first step
in which an endpoint of e becomes inactive during R2. Let R1

j,i and R2
j,i denote the runs R1

and R2 up to the beginning of step (j, i), respectively.
Observe that R1

j,i and R2
j,i are identical in the sense that y<(j,i)(F, J) = y<(j,i)(F ∪{e}, J)

for any J ⊆ F . In other words, the same response messages are sent over every edge e′ ∈ F
throughout R1

j,i and R2
j,i. This is due to the fact that the request messages that (an active)

vertex v ∈ V sends in every step (j′, i′) do not depend on the input of Algpay, but only on
deg(v) and j′. Since both endpoints of edge e′ are active throughout R2

j,i, it follows that the
request messages sent over every edge in F are the same in R1

j,i and R2
j,i, hence so are the

response messages.
Let u be the endpoint of e that becomes inactive in step (j, i) of run R2 (if both

endpoints of e become inactive in this step, then take u to be one of them) and recall that
u is marked as a covering vertex. We argue that for each edge e′ ∈ F (u), it holds that
yj,i(F ∪ {e}, e′) ≤ yj,i(F, e′). This follows from the fact that in step (j, i) of run R2, once
w(u) reaches the ε · c(u) threshold, it starts sending response messages with 0 amount over
the edges in F (u), while in step (j, i) of R1, u may still send response messages with positive
amounts over these edges. Therefore, y≤(j,i)(F ∪ {e}, F (u)) ≤ y≤(j,i)(F, F (u)).
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At the end of step (j, i) of R2 we know that u is inactive and w(u) ≤ εc(u), so the total
amount decreased from w(u) throughout this run is at least (1 − ε) · c(u). Therefore, the
amount decreased from w(u) throughout R2 due to messages sent over edges other than e is
at least (1− ε) · c(u)− y(F ∪ {e}, e), hence

y≤(j,i)(F, F (u)) ≥ y≤(j,i)(F ∪ {e}, F (u)) ≥ (1− ε) · c(u)− y(F ∪ {e}, e) .

Consequently, the total amount decreased from w(u) throughout R1 is at least (1− ε) · c(u)−
y(F ∪ {e}, e), thus, at the end of R1

winact(u) ≤ c(u)− ((1− ε) · c(u)− y(F ∪ {e}, e)) = εc(u) + y(F ∪ {e}, e) . (3)

Let p be the payment function constructed by Algpay(F ) and let p′ be the payment
function constructed by Algaug(F, {e = (u, v)}, p). As p is a covering payment function
for F , the bound in (2) implies that c(p′) ≤ min{c(u) − p(u), c(v) − p(v)} ≤ c(u) − p(u).
Recalling the definition of p (1), if p(u) = c(u), then c(p′) = 0 and the assertion trivially
holds. Otherwise, p(u) = c(u)−winact(u)

1−ε which means that

c(p′) ≤ c(u)− p(u) = c(u)− c(u)− winact(u)
1− ε = winact(u)− εc(u)

1− ε .

Combined with (3), we conclude that

c(p′) ≤ y(F ∪ {e}, e)
1− ε = (1 +O(ε)) · y(F ∪ {e}, e) ,

thus establishing the assertion. J

Combining Lem. 5.8 and 5.9 with Thm. 2.2, we conclude that Alg returns a (3 +O(ε))-
approximation for the r2SVC problem, as promised in Thm. 5.1. It remains to analyze Alg’s
run-time.

I Lemma 5.10. Alg completes the first stage in O(log(∆)/ε) rounds.

Proof. The edge sampling performed at the beginning of the first stage takes O(1) rounds,
so it is left to bound the run-time of Algpay. For every vertex v ∈ V , Lem. 5.3 ensures that
after O(log degA

0 (v)) = O(log deg(v)) phases, the neighbor set of v must be empty which
means that v must become inactive. Since each phase consists of 3 · d2/εe rounds, vertex v
completes the execution in O(log(deg(v))/ε) = O(log(∆)/ε) rounds. J

The second stage includes only the execution of Algaug, that requires a single round
of communication. By that we complete the run-time analysis of Alg, thus establishing
Thm. 5.1.

6 Discussion and Open Questions

In this paper, we restrict our attention to the case where the target edge set T is drawn from a
product distribution, which means that the edge sampling events are independent. The more
general case, that allows the edges to exhibit complicated dependencies, is studied extensively
in the centralized two-stage stochastic optimization literature and it will be interesting to
come up with a distributed method that supports it. This requires overcoming the following
obstacle though: it is not clear how to sample the target edge set T in a distributed fashion
if the events e ∈ T and e′ ∈ T depend on each other for edges e and e′ that are far away in
the graph.

OPODIS 2019



32:14 Towards Distributed Two-Stage Stochastic Optimization

A related open question is concerned with developing a meaningful notion of a finite
scenario model for distributed two-stage stochastic optimization. Here too it is not clear how
the vertices can select a target edge set in a correlated manner. Overcoming this obstacle
may also be the first step towards a distributed sample average approximation approach.

It would be interesting to extend our results to the k-stage stochastic optimization model
as well. In this model, the vertex cover is constructed in k (that may be larger than 2) stages
so that in each stage, the probability distribution gets refined, but the inflation factor is
increased. Another interesting extension would be a model where the revelation of the target
edge set is not necessarily done for all vertices at once, but rather, different vertices may
receive their local image of the target edge set’s realization in different rounds.

Besides that, we would like to examine whether the run-time complexity of our algorithm
can be improved. Specifically, reducing the dependency on ε from linear to logarithmic
would yield a distributed 3-approximation algorithm for the 2SVC problem whose run-time
is polylogarithmic (cf. [9]), although we have yet to find a way to do so. Finally, we believe
that there are great opportunities in adapting other graph theoretic optimization problems
to the distributed stochastic setting.
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