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Abstract
Reconfiguration is one of the central mechanisms in distributed systems. Due to failures and
connectivity disruptions, the very set of service replicas (or servers) and their roles in the computation
may have to be reconfigured over time. To provide the desired level of consistency and availability to
applications running on top of these servers, the clients of the service should be able to reach some
form of agreement on the system configuration. We observe that this agreement is naturally captured
via a lattice partial order on the system states. We propose an asynchronous implementation of
reconfigurable lattice agreement that implies elegant reconfigurable versions of a large class of lattice
abstract data types, such as max-registers and conflict detectors, as well as popular distributed
programming abstractions, such as atomic snapshot and commit-adopt.
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1 Introduction

A decentralized service [6,14,25,28] runs on a set of fault-prone servers that store replicas of
the system state and run a synchronization protocol to ensure consistency of concurrent data
accesses. In the context of a storage system exporting read and write operations, several
proposals [2,3,18,20,23,31] came out with a reconfiguration interface that allows the servers to
join and leave while ensuring consistency of the stored data. Early proposals of reconfigurable
storage systems [20] were based on using consensus [16,21] to ensure that replicas agree on
the evolution of the system membership. Consensus, however, is expensive and difficult to
implement, and recent solutions [2, 3, 18,23,31] replace consensus with weaker abstractions
capturing the minimal coordination required to safely modify the system configuration. These
solutions, however, lack a uniform way of deriving reconfigurable versions of static objects.

Lattice objects. In this paper, we propose a universal reconfigurable construction for a
large class of objects. Unlike a consensus-based reconfiguration proposed earlier for generic
state-machine replication [26], our construction is purely asynchronous, at the expense of
assuming a restricted object behavior. More precisely, we assume that the set L of the
object’s states can be represented as a (join semi-) lattice (L,v), where L is partially ordered
by the binary relation v such that for all elements of x, y ∈ L, there exists the least upper
bound in L, denoted x t y, where t, called the join operator, is an associative, commutative,
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31:2 Reconfigurable Lattice Agreement and Applications

and idempotent binary operator on L. Many important data types, such as sets and counters,
as well as useful concurrent abstractions, such as conflict detector [5], can be expressed this
way. Intuitively, x t y can be seen as a merge of two alternatively proposed updated states x
and y. Thus, an implementation ensuring that all “observable” states are ordered by v
cannot be distinguished from an atomic object.

Consider, for example, the max-register [4] data type with two operations: writeMax
writes a value and readMax returns the largest value written so far. Its state space can be
represented as a lattice (v,t) of its values, where v=≤ and x t y = max(x, y). Intuitively,
a linearizable implementation of max-register must ensure that every read value is a join of
previously proposed values, and all read values are totally ordered (with respect to ≤).

Reconfigurable lattice agreement. In this paper, we introduce the reconfigurable lattice
agreement [8,15]. It is natural to treat the system configuration, i.e., the set of servers available
for data replication, as an element in a lattice. A lattice-defined join of configurations,
possibly concurrently proposed by different clients, results in a new configuration. The
lattice-agreement protocol ensures that configurations evaluated by concurrent processes are
ordered. Despite processes possibly disagreeing about the precise configuration they belong
to, they can use the configurations relative ordering to maintain the system data consistency.

A configuration is defined by a set of servers, a quorum system [19], i.e., a set system
ensuring the intersection property1 and, possibly, other parameters. For example, elements
of a reconfiguration lattice can be defined as sets of configuration updates: each such update
either adds a server to the configuration or removes a server from it. The members of such a
configuration are the set of all servers that were added but not yet removed. A join of two
configurations defined this way is simply a union of their updates (this approach is implicitly
used in earlier asynchronous reconfigurable constructions [2, 18,31]).

Reconfigurable L-ADTs and applications. We show that our reconfigurable lattice agree-
ment, defined on a product of a configuration lattice and an object lattice, immediately
implies reconfigurable versions of many sequential types, such as max-register and conflict
detector. More generally, any state-based commutative abstract data (called L-ADT, for lattice
abstract data type, in this paper) has a reconfigurable interval-linearizable [12] implementation.
Intuitively, interval-linearizability [12], a generalization of the classical linearizability [22],
allows specifying the behavior of an object when multiple concurrent operations “influence”
each other. Their effects are then merged using a join operator, which turns out to be natural
in the context of reconfigurable objects.

Our transformations are straightforward. To get an (interval-linearizable) reconfigurable
implementation of an L-ADT, we simply use its state lattice, as a parameter, in our re-
configurable lattice agreement. The resulting implementations are naturally composable:
we get a reconfigurable composition of two L-ADTs by using a product of their lattices. If
operations on the object can be partitioned into updates (modifying the object state without
providing informative responses) and queries (not modifying the object state), as in the case
of max-registers, the reconfigurable implementation becomes linearizable2.

1 The most commonly used quorum system is majority-based: quorums are all majorities of servers. We
can, however, use any other quorum system, as suggested in [20,23].

2 Such “update-query” L-ADTs are known as state-based convergent replicated data types (CvRDT) [29].
These include max-register, set and abort flag (a new type introduced in this paper).
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We then use our reconfigurable implementations of max-register, conflict detector, set and
abort-flag to devise reconfigurable versions of atomic snapshot [1], commit-adopt [17] and
safe agreement [10]. Figure 1 shows how are constructions are related. Due to lack of space,
the safe agreement and its associated objects are delegated to the technical report [24].

Interval-linearizable

RLA

Max-registerSet Conflict detector

Atomic snapshot Commit-adoptSafe agreement

AF

Linearizable

Figure 1 Our reconfigurable implementations: reconfigurable lattice agreement (RLA) is used
to construct linearizable implementations of a set, a max-register, an abort flag, and an interval-
linearizable implementation of a conflict detector. On top of max-registers we construct an atomic
snapshot; on top of a max-register, an abort-flag, and a conflict detector, we construct a commit-adopt
abstraction; and, on top of sets and a max register, we implement a safe agreement abstraction.

Summary. Our reconfigurable construction is the first to be, at the same time:
Asynchronous, unlike consensus-based solutions [13,20,26], and not assuming an external
lattice agreement service [23];
Uniformly applicable to a large class of objects, unlike existing reconfigurable systems that
either focus on read-write storage [2,18,20,23] or require data type-specific implementations
of exported reconfiguration interfaces [31];
Allowing for a straightforward composition of reconfigurable objects;
Maintaining configurations with abstract quorum systems [19], not restricted to majority-
based quorums [2, 18];
Exhibiting optimal time complexity and message complexity comparable with the best
known implementations [2, 23,31];
Logically separating clients (external entities that use the implemented service) from
servers (entities that maintain the service and can be reconfigured).

We also believe our reconfigurable construction to be the simplest on the market, using
only twenty one lines of pseudocode and provided with a concise proof.

Roadmap. The rest of the paper is organized as follows. We give basic model definitions
in Section 2. In Section 3, we define our type of reconfigurable objects, followed by the
related notion of reconfigurable lattice agreement in Section 4. In Section 5, we describe
our implementation of reconfigurable lattice agreement, and, in Section 6, we show how to
use it to implement a reconfigurable L-ADT object. In Section 7 we describe some possible
applications. We conclude with, in Section 8, an overview of the related work, and, in
Section 9, a discussion on algorithms complexity and possible trade-offs. The full version of
this paper, with detailed proofs, is available at [24].
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31:4 Reconfigurable Lattice Agreement and Applications

2 Definitions

Replicas and clients. Let Π be a (possibly infinite) set of potentially participating processes.
A subset of the processes, called replicas, are used to maintain a replicated object. A
process can also act as a client, invoking operations on the object and proposing system
reconfigurations. Both replicas and clients are subject to crash failures: a process fails when
it prematurely stops taking steps of its algorithm. A failure model stipulates when and where
failures might occur. We present our failure model in Section 4, where we formally define
reconfigurable lattice agreement.

Abstract data types. An abstract data type (ADT) is a tuple T = (A,B,Z, z0, τ, δ). Here A
and B are countable sets called the inputs and outputs. Z is a countable set of abstract object
states, z0 ∈ Z being the initial state of the object. The map τ : Z ×A→ Z is the transition
function, specifying the effect of an input on the object state and the map δ : Z ×A→ B is
the output function, specifying the output returned for a given input and object local state.
The input represents an operation with its parameters, where (i) the operation can have a
side-effect that changes the abstract state according to transition function τ and (ii) the
operation can return values taken in the output B, which depends on the state in which it is
called and the output function δ (for simplicity, we only consider deterministic types here,
check, e.g., [27], for more details.)

Interval linearizability. We now briefly recall the notion of interval-linearizability [12], a
recent generalization of linearizability [22].

Let us consider an abstract data type T = (A,B,Z, z0, τ, δ). A history of T is a sequence
of inputs (elements of A) and outputs (elements of B), each labeled with a process identifier
and an operation identifier. An interval-sequential history is a sequence:

z0, I1, R1, z1, I2, R2, z2 . . . , Im, Rm, zm,

where each zi ∈ Z is a state, Ii ⊆ A is a set of inputs, and Ri ⊆ B is a set of outputs. An
interval-sequential specification is a set of interval-sequential histories.

We only consider well-formed histories. Informally, in a well-formed history, a process
only invokes an operation once its previous operation has returned and every response r is
preceded by a “matching” operation i.

A history H is interval-linearizable respectively to an interval-sequential specification S
if it can be completed (by adding matching responses to incomplete operations) so that the
resulting history H̄ can be associated with an interval-sequential history S such that: (1) H̄
and S are equivalent, i.e., ∀p ∈ Π, H̄|p = S|p, (2) S ∈ S, and (3) →H⊆→S , i.e., S preserves
the real-time precedence relation of H. (Check [12] for more details on the definition.)

Lattice agreement. An abstract (join semi-)lattice is a tuple (L,v), where L is a set
partially ordered by the binary relation v such that for all elements of x, y ∈ L, there
exists the least upper bound for the set {x, y}. The least upper bound is an associative,
commutative, and idempotent binary operation on L, denoted by t and called the join
operator on L. We write x @ y whenever x v y and x 6= y. With a slight abuse of notation,
for a set L ⊆ L, we also write

⊔
L for

⊔
x∈L x, i.e.,

⊔
L is the join of the elements of L.

Notice that two lattices (L1,v1) and (L2,v2) naturally imply a product lattice (L1×L2,v1
× v2) with a product join operator t = t1 × t2. Here for all (x1, x2), (y1, y2) ∈ L1 × L2,
(x1, x2)(v1 × v2)(y1, y2) if and only if x1 v1 y1 and x2 v2 y2.
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The (generalized) lattice agreement concurrent abstraction, defined on a lattice (L,v),
exports a single operation propose that takes an element of L as an argument and returns an
element of L as a response. When the operation propose(x) is invoked by process p we say
that p proposes v, and when the operation returns v′ we say that p learns v′. Assuming that
no process invokes a new operation before its previous operation returns, the abstraction
satisfies the following properties:

Validity. If a propose(v) operation returns a value v′ then v′ is a join of some proposed
values including v and all values learnt before the invocation of the operation.
Consistency. The learnt values are totally ordered by v.
Liveness. If a process invokes a propose operation and does not fail then the operation
eventually returns.

A historical remark. The original definition of long-lived lattice agreement [15] separates
“receive” events and “learn” events. Here we suggest a simpler definition that represents the
two events as the invocation and the response of a propose operation. This also allows us to
slightly strengthen the validity condition so that it accounts for the precedence relation between
propose operations. As a result, we can directly relate lattice agreement to linearizable [22] and
interval-linearizable [12] implementations, without introducing artificial “nop” operations [15].

3 Lattice Abstract Data Type

In this section, we introduce a class of types that we call lattice abstract data types or
L-ADT. In an L-ADT, the set of states forms a join semi-lattice with a partial order vZ .
A lattice object is therefore defined as a tuple L = (A,B, (Z,vZ ,tZ), z0, τ, δ).3 Moreover,
the transition function δ must comply with the partial order vZ , that is ∀z, a ∈ Z × A :
z vZ τ(z, a), and the composition of transitions must comply with the join operator, that
is ∀z ∈ Z,∀a, a′ ∈ A : τ(τ(z, a), a′) = τ(z, a) tZ τ(z, a′) = τ(τ(z, a′), a). Hence, we can say
that the transition function is “commutative”.

Update-query L-ADT. We say an L-ADT L = (A,B, (Z,vZ ,tZ), z0, τ, δ) is update-query
if A can be partitioned in updates U and queries Q such that:

there exists a special “dummy” response ⊥ (z0 may also be used) such that ∀u ∈ U, z ∈ Z,
δ(u, z) = ⊥, i.e., updates do not return informative responses;
∀q ∈ Q, z ∈ Z, τ(q, z) = z, i.e., queries do not modify the states.

This class is also known as a state-based convergent replicated data types (CvRDT) [29].
Typical examples of update-query L-ADTs are max-register [4] (see Section 1) or sets. Note
that any (L-)ADT can be transformed into an update-query (L-)ADT by “splitting its
operations” into an update and a query (see [27]).

Composition of L-ADTs. The composition of two ADTs T = (A,B,Z, z0, τ, δ) and T ′ =
(A′, B′, Z ′, z′0, τ ′, δ′) is denoted T ×T ′ and is equal to (A+A′, B∪B′, Z×Z ′, (z0, z

′
0), τ ′′, δ′′);

where A + A′ denotes the disjoint union and where τ ′′ and δ′′ apply, according to the
domain A or A′ of the input, either τ and δ or τ ′ and δ′ on their respecting half of the state
(see [27]).

Since the cartesian product of two lattices remains a lattice, the composition of L-ADTs
is naturally defined and produces an L-ADT. The composition is also closed to update-
query ADT, and thus to update-query L-ADT. Moreover, the composition is an associative
and commutative operator, and hence, can easily be used to construct elaborate L-ADT.

3 For convenience, we explicitly specify the join operator tZ here, i.e., the least upper bound of vZ .

OPODIS 2019



31:6 Reconfigurable Lattice Agreement and Applications

Configurations as L-ADTs. Let us also use the formlism of L-ADT to define a configuration
L-ADT as a tuple (AC , BC , (C,vC ,tC), C0, τ

C , δC) with C0 ∈ C the initial configuration. For
each element C of the configuration lattice C, the input set A includes the query operations
members(), such that δC(C,members()) ⊆ Π, and quorums() where δC(C, quorums()) ⊆
2δC(C,members()) is a quorum system, that is, every two subsets in δC(C, quorums()) have a
non-empty intersection. With a slight abuse of notation, we will write these operations as
members(C) and quorums(C).

For example, C can be the set of tuples (In,Out), where In ⊆ Π is a set of activated
processes, and Out ⊆ Π is a set of removed processes. Then vC can be defined as the piecewise
set inclusion on (In,Out). The set of members of (In,Out) will simply be In−Out and the
set of quorums (pairwise-intersecting subsets of In−Out), e.g., all majorities of In−Out.
Operations in AC can be add(s), s ∈ Π, that adds s to the set of activated processes and
remove(s), s ∈ Π, that adds s to the set of removed processes of a configuration. One can
easily see that updates “commute” and that the type is indeed a configuration L-ADT. Let
us note that L-ADTs allow for more expressive reconfiguration operations than simple adds
and removes, e.g., maintaining a minimal number of members in a configuration or adapting
the quorum system dynamically, as studied in detail by Jehl et al. in [23].

Interval-sequential specifications of L-ADTs. Let L = (A,B, (Z,vZ ,tZ), z0, τ, δ) be an L-
ADT. As τ “commutes”, the state reached after a sequence of transitions is order-independent.
Hence, we can define a natural, deterministic, interval-sequential specification of L, SL, as
the set of interval-sequential histories z0, I1, R1, z1, . . . , Im, Rm, zm such that:
∀i = 1, . . . ,m, zi =

⊔Z
a∈Ii−1

τ(a, zi−1), i.e., every state zi is a join of operations in Ii−1
applied to zi−1.
∀i = 1, . . . ,m, ∀r ∈ Ri, r = δ(a, zi), where a is the matching invocation operation for r,
i.e., every response in Ri is the result of the associated operation applied to state zi.

4 Reconfigurable lattice agreement: definition

We define a reconfigurable lattice (L,v) as the product of the state spaces of an ob-
ject L-ADT (AO, BO, (O,vO,tO), O0, τ

O, δO) and a configuration L-ADT (AC , BC , (C,vC
,tC), C0, τ

C , δC) (see Section 3). That is, (L,v) = (O × C,vO × vC) with the product join
operator t = tO×tC . Our main tool is the reconfigurable lattice agreement, a generalization
of lattice agreement operating on (L,v). We say that L is the set of states. For a state
u = (O,C) ∈ L, we use notations u.O = O and u.C = C.

Failure model. When a client p invokes propose((O,C)), we say that p proposes object
state O and configuration state C. We say that p learns an object state O′ and a configura-
tion C ′ if its propose invocation returns (O′, C ′).

We say that a configuration C is potential if there is a set {C1, . . . , Ck} of proposed
configurations such that C = C0 tC (

⊔C
i=1,...,k Ci) (with C0 the initial configuration). A

configuration C is said to be superseded as soon as a process learns a state (∗, C ′) with C vC C ′
and C 6= C ′. At any moment of time, a configuration is active if it is a potential but not
yet superseded configuration. Intuitively, some quorum of a configuration should remain
“reachable” as long as the configuration is active.

We say that a replica r is active when it is a member of an active configuration C, i.e.,
r ∈ member(C). A replica is correct if, from some point on, it is forever active and not failed.
A client is correct if it does not fail while executing a propose operation.
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A configuration C is available if some set of replicas in quorums(C) contains only correct
processes. In arguing liveness in this paper, we assume the following:

Configuration availability. Any potential configuration that is never superseded must
be available.

Therefore, if a configuration is superseded by a strictly larger (w.r.t. vC) one, then it does
not have to be available, i.e., we can safely remove some replicas from it for maintenance.

Liveness properties. In a constantly reconfigured system, we may not be able to ensure
liveness to all operations. A slow client can be always behind the active configurations: its
set of estimated potential configurations can always be found to constitute a superseded
configuration. Therefore, for liveness, we assume that only finitely many reconfigurations
occur. Otherwise, only lock-freedom may be provided.

Therefore, to get a reconfigurable object, we replace the liveness property of lattice
agreement with the following one:

Reconfigurable Liveness. In executions with finitely many distinct proposed configu-
rations, every propose operation invoked by a correct client eventually returns.

Thus, the desired liveness guarantees are ensured as long as only finitely many distinct
configurations are proposed. However, the clients are free to perform infinitely many object
updates without making any correct client starve.

Formally, reconfigurable lattice agreement defined on (L,v) = (O × C,vO × vC) satis-
fies the Validity and Consistency properties of lattice agreement (see Section 2) and the
Reconfigurable Liveness property above.

Furthermore, we can only guarantee liveness to clients assuming that, eventually, every
correct system participant (client or replica) is informed of the currently active configuration.
It boils down to ensuring that an eventually consistent reconfigurable memory is available to
store the greatest learnt configuration.

For simplicity, we assume that a reliable broadcast primitive [11] is available, ensuring that
(i) every broadcast message was previously broadcast, (ii) if a correct process broadcasts a
messagem, then it eventually deliversm, and (iii) every message delivered by a correct process
is eventually delivered by every correct process. Note that Configuration availability implies
that an active configuration is either available or sufficiently responsive to be superseded.

5 Reconfigurable lattice agreement: implementation

We now present our main technical result, reconfigurable (generalized) lattice agreement.
This algorithm will then be used to implement reconfigurable objects.

Overview. The algorithm for every process p (client or replica) is presented in Algorithm 1.
We assume that all procedures (including sub-calls to the updateState procedure) are executed
by p sequentially until they terminate or get interrupted by the wait condition in line 9.

Every process (client or server) p maintains a state variable vp ∈ L storing its local
estimate of the greatest committed object (vp.O) and configuration (vp.C) states, initialized
to the initial element of the lattice (O0, C0). We say that a state is committed if a process
broadcasts it in line 13. Note that all learnt states are previously committed (either directly
by the learning process or indirectly by another process). Every process p also maintains Tp,
the set of pending input configuration states, i.e., known input configuration states that are
not superseded by the committed state estimate vp. For the object lattice, processes stores
in objp the join of all known proposed objects states.

OPODIS 2019



31:8 Reconfigurable Lattice Agreement and Applications

Algorithm 1 Reconfigurable universal construction: code for process p.

Local variables:
seqp, initially 0 {The number of issued requests }
vp, initially (O0, C0) {The last learnt state }
Tp, initially ∅ {The set of proposed configuration states }
objp, initially O0 {The candidate object state }

operation propose(prop) {Propose a new state prop } {Executed by a client }
1 updateState(vp, prop.O, {prop.C})
2 learnLB := ⊥
3 while true do
4 seqp := seqp + 1
5 oldCommit := vp {Archive commit estimate }
6 oldCandidates := (objp, Tp) {Archive candidate states }
7 V := {

⊔C({vp.C} ∪ S) | S ⊆ Tp} {Queried configurations }
8 send 〈(REQ, seqp), (vp, objp, Tp)〉 to

⋃
u∈V

members(u)
9 wait until oldCommit.C 6= vp.C or ∀u ∈ V , received responses of the type

〈(RESP, seqp),_〉 from some Q ∈ quorums(u)
10 if oldCommit.C = vp.C ∧ oldCandidates = (_, Tp) then {Stable configurations }
11 if learnLB = ⊥ then learnLB = (objp,

⊔C({vp.C} ∪ Tp)
12 if oldCandidates = (objp,_) then {No greater object received }
13 broadcast 〈COMMIT, (objp,

⊔C({vp.C} ∪ Tp))〉
14 return (objp,

⊔C({vp.C} ∪ Tp))
15 if learnLB 6= ⊥ ∧ learnLB v vp then return vp {Adopt learnt state }

upon receive 〈msgType,msgContent〉 from process q
16 updateState(msgContent) {Update tracked states }
17 if msgType = (REQ, seq) then send 〈(RESP, seq), (vp, objp, Tp)〉 to q

upon deliver 〈COMMIT, state〉
18 updateState(state, state.O, ∅) {Adopt the committed state }

procedure updateState(v, sO, SC) {Merge tracked states }
19 vp := vp t v {Update the commit estimate }
20 objp := objp tO sO {Update the object candidate }
21 Tp := {u ∈ (Tp ∪ SC) | u 6vC vp.C} {Update and trim input candidates }

To propose a new state, prop, client p updates its local variables through the updateState
procedure using its input object and configuration states, prop.O and prop.C (line 1). The
client p then enters a while loop where it sends a request containing (vp, objp, Tp) and
equipped with its current sequence number seqp to all replicas from every possible join of
pending input configurations with the commit estimate configuration state (line 7). Then p
waits until either (1) a greater committed configuration is discovered from the quorum
responses or the underlying reliable broadcast (line 18), or (2) a quorum of members of
every reached configuration responds with messages of the type 〈(RESP, seqp), (v, sO, SC)〉,
where (v, sO, SC) corresponds to the replica updated triple (vp, objp, Tp) (lines 8–9).

When a process (client or replica) p receives a new request or response of the type
〈msgType, (v, sO, SC)〉 or delivers a new committed state (line 18), it updates its commit
estimate and its object candidate by joining its current values with the one received or
delivered. The process also merges its set of pending input configurations Tp with the
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received pending input configurations, except for those superseded by the updated com-
mit estimate (lines 19–21). Every replica also sends a response containing the updated
triple (vp, objp, Tp) to the sender of the request (line 17).

If responses from quorums of all accessed configurations are received and no response
contains a new (not yet known) pending input configuration or a greater object state, then
the couple formed by objp and the join of the commit estimate configuration with all pending
input configurations, i.e.,

⊔C({v.C}∪Tp), is broadcasted and then returned as the new learnt
state (lines 12-14). Otherwise, the client proceeds to a new round of the while loop.

To ensure wait-freedom, we integrate a helping mechanism consisting of having the clients
adopt their committed state estimate (line 15). But, to know when a committed state can
be returned, the client must first complete a communication round without interference from
reconfigurations (line 11). After such a round, a committed state greater than the join of all
known states, stored in learnLB, can safely be returned.

Correctness. We give here a short intuition of why our algorithm indeed implements
reconfigurable lattice agreement (we refer the reader to [24] for a complete proof). We show
first that the updateState function is actually a join operator on a lattice defined on the
triples (vp, objp, Tp), and that the join operator is consistent with the lattice partial order
on L for the projection (objp,

⊔C({vp.C} ∪ Tp)). This way we can see our algorithm as the
classical (generalized) lattice agreement [15] where the proposed elements are joined until no
incompatibles values are received. However, there are some additional subtleties here.

First, for the validity property, we require that every learnt state includes all states that
were learnt before the corresponding propose operation started. Proving this property is
similar to proving the consistency property, i.e., that all learnt states are totally ordered
by v. In both cases, we need to show that all committed states are transitively related to
each other by v and the real-time partial order (precedence ordering). Intuitively, we get
this by showing that two clients proposing operations either went through quorums of the
same configuration or that one client was already aware of a committed state greater than
the other client’s committed state. This transitive property is the base of the safety proof.

Finally, to argue reconfigurable liveness, we show first that the algorithm is “lock-free”,
i.e., at least one correct client is making progress, and then show that this client helps
other clients to complete their operations. Lock-freedom relies on the underlying broadcast
mechanism and the property of configuration availability (Section 4): no correct client may
be indefinitely blocked waiting for responses to a request. The broadcast mechanism ensures
that correct clients are eventually aware of the greatest state committed so far. Hence, as
finitely many distinct configurations are proposed, eventually all correct clients will query
the same configurations, which must be available. Hence, all states proposed by a correct
process will eventually be included in all learnt states and thus a non-committing correct
process cannot starve as it will eventually adopt a committed state.

I Theorem 1. Algorithm 1 implements reconfigurable lattice agreement.

6 Reconfigurable objects

In this section, we use our reconfigurable lattice agreement (RLA) abstraction to construct
an interval-linearizable reconfigurable implementation of any L-ADT L. The proofs of this
section are relatively straightforward and can be found in the technical report [24].
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6.1 Defining and implementing reconfigurable L-ADTs
Let us consider two L-ADTs, an object L-ADT LO = (AO, BO, (O,vO,tO), O0, τ

O, δO) and
a configuration L-ADT LC = (AC , BC , (C,vC ,tC), C0, τ

C , δC) (Section 2).
The corresponding reconfigurable L-ADT implementation, defined on the composition

L = LO × LC , exports operations in AO ×AC . It must be interval-linearizable (respectively
to SL) and ensure Reconfigurable Liveness (under the configuration availability assumption).

In the reconfigurable implementation of L, presented in Algorithm 2, whenever a process
invokes an operation a ∈ AO, it proposes a state, τO(Op, a) – the result from applying a to the
last learnt state (initially, C0) – to RLA, updates (Op, Cp) and returns the response δO(Op, a)
corresponding to the new learnt state. Similarly, to update the configuration, the process
applies its operation to the last learnt configuration and proposes the resulting state to RLA.

Algorithm 2 Interval-linearizable implementation of L-ADT L = LO × LC: code for
process p.

Shared: RLA, reconfigurable lattice agreement
Local variables:

Op, initially O0 {The last learnt object state }
Cp, initially C0 {The last learnt configuration state }

upon invocation of a ∈ AO {Object operation }
1 (Op, Cp) := RLA.propose((τO(Op, a), Cp))
2 return δO(Op, a)
upon invocation of a ∈ AC {Reconfiguration }
3 (Op, Cp) := RLA.propose((Op, τ

C(Cp, a)))
4 return δC(Cp, a)

I Theorem 2. Algorithm 2 is a reconfigurable implementation of an L-ADT.

In the special case, when the L-ADT is update-query, the construction above produces a
linearizable implementation:

I Theorem 3. Algorithm 2 is a reconfigurable linearizable implementation of an update-query
L-ADT.

6.2 L-ADT examples
We provide four examples of L-ADTs that allow for interval-linearizable (Theorem 2) and
linearizable (Theorem 3) reconfigurable implementations.

Max-register. The max-register sequential object defined on a totally ordered set (V,≤V )
provides operations writeMax(v), v ∈ V , returning a default value ⊥, and readMax returning
the largest value written so far (or ⊥ if there are no preceding writes). We can define the
type as an update-query L-ADT as follows:

MRV = (writeMax(v)v∈V ∪ {readMax}, V ∪ {⊥}, (V ∪ {⊥},≤V ,maxV ),⊥, τMRV
, δMRV

).

where ≤V is extended to ⊥ with ∀v ∈ V : ⊥ ≤V v, δMRV
(z, a) = z if a = readMax and ⊥

otherwise, and τMRV
(z, a) = maxV (z, v) if a = writeMax(v) and z otherwise.

It is easy to see that (V ∪ {⊥},≤V ,maxV ) is a join semi-lattice and the L-ADT MRV
satisfies the sequential max-register specification.
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Set. The (add-only) set sequential object defined using a countable set V provides operations
addSet(v), v ∈ V , returning a default value ⊥, and readSet returning the set of all values
added so far (or ∅ if there are no preceding add operation). We can define the type as an
update-query L-ADT as follows:

SetV = (addSet(v)v∈V ∪ {readSet}, 2V ∪ {⊥}, (2V ,⊆,∪), ∅, τSet, δSet).

where ⊆ and ∪ are the usual operators on sets, δSet(z, a) = z if a = readSet and ⊥ otherwise,
and τSet(z, a) = z ∪ {v} if a = addSet(v) and z otherwise.

It is easy to see that (2V ,⊆,∪) is a join semi-lattice and the L-ADT SetV satisfies the
sequential (add-only) set specification.

Abort flag. An abort-flag object stores a boolean flag that can only be raised from ⊥ to >.
Formally, the LADT AF is defined as follows:

AF =
(
{abort, check}, {⊥,>}, ({⊥,>},vAF,tAF),⊥, τAF, δAF

)
where ⊥ vAF >, τAF(z, abort) = δAF(z, abort) = >, and τAF(z, check) = δAF(z, check) = z.

Conflict detector. The conflict-detector abstraction [5] exports operation check(v), v ∈ V ,
that may return true (“conflict”), or false (“no conflict”). The abstraction respects the
following properties:

If no two check operations have different inputs, then no operation can return true.
If two check operations have different inputs, then they cannot both return false.

A conflict detector can be specified as an L-ADT defined as follows:

CD =
(
check(v)v∈V , {true, false}, (V × {>,⊥},vCD,tCD),⊥, τCD, δCD

)
where
⊥ vCD >; ∀v ∈ V , ⊥ vCD v and v vCD >; ∀v, v′ ∈ V , v 6= v′ ⇒ v 6vCD v′;
τCD(z, check(v)) = v if z = ⊥ or z = v, and τCD(z, check(v)) = > otherwise;
δCD(z, check(v)) = true if z = > and false otherwise.

Also, we can see that v tCD v′ = v′ if v = v′ or v = ⊥, and > otherwise.

I Theorem 4. Any interval-linearizable implementation of CD is a conflict detector.

7 Applications

Many ADTs do not have commutative operations and, thus, do not belong to L-ADT.
Moreover, many distributed programming abstractions do not have a sequential specification
at all and, thus, cannot be defined as ADTs, needless to say as L-ADTs.

However, as we show, certain such objects can be implemented from L-ADT objects. As
L-ADTs are naturally composable, the resulting implementations can be seen as using a
single (composed) L-ADT object. By using a reconfigurable version of this L-ADT object,
we obtain a reconfigurable implementation. In our constructions we omit talking about
reconfigurations explicitly: to perform an operation on the configuration component of the
system state, a process simply proposes it to the underlying RLA (see, e.g., Algorithm 2).

Our examples here are atomic snapshots [1] and commit-adopt [17]. The proofs of this
section and a discussion of safe agreement [10] are delegated to the technical report [24].
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Atomic snapshots

An m-position atomic-snapshot memory maintains an array of m positions and exports two
operations, update(i, v), where i ∈ {1, . . . ,m} is a location in the array and v ∈ V – the value
to be written, that returns a predefined value ok and snapshot() that returns an m-vector of
elements in V . Its sequential specification stipulates that every snapshot() operation returns
a vector that contains, in each index i ∈ {1, . . . ,m}, the value of the last preceding update
operation on the ith position (or a predefined initial value, if there is no such update).

Registers using MRN×V . We first consider the special case of a single register (1-position
atomic snapshot). We describe its implementation from a max-register, assuming that the set
of values V is totally-ordered with relation ≤V . Let ≤reg be a total order on N× V (defined
lexicographically, first on ≤ and then, in case of equality, on ≤V ). Let MR be a max-register
defined on (N× V,≤reg).

The idea is to associate each written value val with a sequence number seq and to
store them in MR as a tuple (seq, val). To execute an operation update(v), the process
first reads MR to get the “maximal” sequence number s written to MR so far. Then it
writes (s+ 1, v) back to MR. Notice that multiple processes may use s+ 1 in their update
operations, but only for concurrent operations. Ties are then broken by choosing the maximal
value in the second component in the tuple. A snapshot operation simply reads MR and
returns the value in the tuple.

Using any reconfigurable linearizable implementation of MR (Theorem 3), we obtain a
reconfigurable implementation of an atomic (linearizable) register. Intuitively, all values
returned by snapshot (read) operations on MR can be totally ordered based on the corre-
sponding sequence numbers (ties broken using ≤V ), which gives the order of reads in the
corresponding sequential history S.

Atomic snapshots. Our implementation of an m-position atomic snapshot (depicted in
Algorithm 3) is a straightforward generalization of the register implementation described
above. Consider the L-ADT defined as the product of m max-register L-ADTs. In particular,
the partial order of the L-ADT is the product of m (total) orders ≤snap: ≤reg1 × · · ·× ≤regm .

We also enrich the interface of the type with a new query operation readAll that returns
the vector of m values found in the m max-register components. Note that the resulting
type is still an update-query L-ADT, and thus, by Theorem 3, we can use a reconfigurable
linearizable implementation of this type, let us denote it by MRset.

To execute update(v, i) on the implemented atomic snapshot, a process performs a read
on the ith component of MRset to get sequence number s of the returned tuple and perfroms
writeMax((s + 1, v)) on the ith component. To execute a snapshot, the process performs
readAll on MRset and returns the vector of the second element of each item of the array.

Similarly to the case of a single register, the results of all snapshot operations can be
totally ordered using the ≤snap total order on the returned vectors. Placing the matching
update operation accordingly, we get an equivalent sequential execution that respects the
atomic snapshot specification.

I Theorem 5. Algorithm 3 implements an m-component MWMR atomic snapshot.
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Algorithm 3 Simulation of an m-component atomic snapshot using an L-ADT.

operation update(i, v) {update register i with v }
1 (s,−) := MRset[i].readMax
2 MRset[i].writeMax((s+ 1, v))

operation snapshot()
3 r := MRset.readAll
4 return snap with ∀i ∈ {1, . . . ,m}, r[i] = (−, snap[i])

The Commit-Adopt Abstraction

Let us take a more elaborated example, the commit-adopt abstraction [17]. It is defined
through a single operation propose(v), where v belongs to some input domain V . The
operation returns a couple (flag, v) with v ∈ V and flag ∈ {commit, adopt}, so that the
following conditions are satisfied:

Validity: If a process returns (_, v), then v is the input of some process.
Convergence: If all inputs are v, then all outputs are (commit, v).
Agreement: If a process returns (commit, v), then all outputs must be of type (_, v).

We assume here that V , the set of values that can be proposed to the commit-adopt
abstraction, is totally ordered. The assumption can be relaxed at the cost of a slightly more
complicated algorithm (by replacing the max register with a set object for example).

Our implementation of (reconfigurable) commit-adopt uses a conflict-detector object CD
(used to detect distinct proposals), a max-register MRV (used to write non-conflicting
proposals), and an abort flag object AF.

Our commit-adopt implementation is presented in Algorithm 4. In its propose operation,
a process first accesses the conflict-detector object CD (line 1). Intuitively, the conflict
detector makes sure that committing processes share a common proposal.

If the object returns false (no conflict detected), the process writes its proposal in the
max-register MRV (line 2) and then checks the abort flag AF. If the check operation
returns ⊥, then the proposed value is returned with the commit flag (line 4). Otherwise, the
same value is returned with the adopt flag (line 3).

If a conflict is detected (CD returns true), then the process executes the abort operation
on AF (line 6). Then the process reads the max-register. If a non-⊥ value is read (some
value has been previously written to MR), the process adopts that value (line 9). Otherwise,
the process adopts its own proposed value (line 8).

I Theorem 6. Algorithm 4 implements commit-abort.

8 Related Work

Lattice agreement. Attiya et al. [8] introduced the (one-shot) lattice agreement abstraction
and, in the shared-memory context, described a wait-free reduction of lattice agreement to
atomic snapshot. Falerio et al. [15] introduced the long-lived version of lattice agreement
(adopted in this paper) and described an asynchronous message-passing implementation of
lattice agreement assuming a majority of correct processes, with O(n) time complexity (in
terms of message delays) in a system of n processes. Our RLA implementation in Section 5
builds upon this algorithm.
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Algorithm 4 Commit-adopt implementation using L-ADTs.

operation propose(v)
1 if CD.check(v) = false then {check conflicts }
2 MRV .writeMax(v)
3 if AF.check = > then return (adopt, v) {adopt the input }
4 else return (commit, v) {commit proposal }
5 else {Try to abort in case of conflict }
6 AF.abort {raise abort flag }
7 val := MRV .readMax
8 if val = ⊥ then return (adopt, v) {adopt the input }
9 else return (adopt, val) {adopt the possibly committed value }

CRDT. Conflict-free replicated data types (CRDT) were introduced by Shapiro et al. [29]
for eventually synchronous replicated services. The types are defined using the language of
join semi-lattices and assume that type operations are partitioned in updates and queries.
Falerio et al. [15] describe a “universal” construction of a linearizable CRDT from lattice
agreement. Skrzypczak et al. [30] argue that avoiding consensus in such constructions
may bring performance gains. In this paper, we consider a more general class of types
(L-ADT) that are “state-commutative” but not necessarily “update-query” and leverage the
recently introduced criterion of interval-linearizability [12] for reconfigurable implementations
of L-ADTs using RLA.

Reconfiguration. Passive reconfiguration [7, 9] assumes that replicas enter and leave the
system under an explicit churn model: if the churn assumptions are violated, consistency is
not guaranteed. In the active reconfiguration model, processes explicitly propose configuration
updates, e.g., sets of new process members. Early proposals, such as RAMBO [20] focused
on read-write storage services and used consensus to ensure that the clients agree on the
evolution of configurations.

Recent solutions [2, 3, 18, 23, 31] propose an asynchronous reconfiguration by replacing
consensus with weaker abstractions capturing the minimal coordination required to safely
modify the system configuration. Moreover, Freestore [3] proposes a modular solution to
derive interchangeable consensus-based and asynchronous reconfiguration.

Asynchronous reconfiguration. Dynastore [2] was the first solution emulating a reconfig-
urable atomic read/write register without consensus: clients can asynchronously propose
incremental additions or removals to the system configuration. Since proposals commute,
concurrent proposals are collected together without the need of deciding on a total order.
Assuming n proposals, a Dynastore client might, in the worst case, go through 2n−1 candidate
configurations before converging to a final one. Assuming a run with a total number of
configurations m, complexity is O(min(mn, 2n)).

SmartMerge [23] allows for reconfiguring not only the system membership but also
its quorum system, excluding possible undesirable configurations. SmartMerge brings an
interesting idea of using an external reconfiguration service based on lattice agreement [15],
which allows us to reduce the number of traversed configurations to O(n). However, this
solution assumes that this “reconfiguration lattice” is always available and non-reconfigurable
(as we showed in this paper, lattice agreement is a powerful tool that can itself be used to
implement a large variety of objects).
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Gafni and Malkhi [18] proposed the parsimonious speculative snapshot task based on the
commit-adopt abstraction [17]. Reconfiguration, built on top of the proposed abstraction,
has complexity O(n2): n for the traversal and n for the complexity of the parsimonious
speculative snapshot implementation. Spiegelman, Keidar and Malkhi [31] improved this
work by proposing an optimal solution with time complexity O(n) by obtaining an amortized
(per process) time complexity O(1) for speculative snapshots operations.

9 Concluding Remarks

To conclude, let us briefly discuss the complexity of our solution to the reconfiguration
problem and give an overview of how our solution could be further extended.

Round-trip complexity. The main complexity metric considered in the literature is the
maximal number of communication round-trips needed to complete a reconfiguration when c
operations are concurrently proposed. In the worst case, each time a round of requests is
completed in our algorithm, a new state is affecting Tp or objp, and hence we have at most c
round-trips. Note that a round might be interrupted by receiving a greater committed state
at most c times as committed states are totally ordered joins of proposed states. We are aware
of only one other optimal solution with linear round-trip complexity, proposed Spiegelman et
al. [31]. In their solution, the maximal number of round-trips is at least 4c, twice more than
ours. This has to do with the use of a shared memory simulation preventing to read and
write at the same time and preventing from sending requests to distinct configurations in
parallel. Moreover, they also use a similar interruption mechanism.

Querying multiple configurations at the same time might increase the round-trip delay as
we need to wait for more responses. Still, we believe that when the number of requests scales
with a constant factor, this impact is negligible.

Message complexity. As in earlier solutions, messages are of linear size in the number of
distinct proposed configurations or collect operations on the implemented object.

The number of exchanged messages depends on the configuration lattice. With at most k
members per configuration, each client may send at most k ∗ 2n messages per round as there
are, in the worst case, exponentially many configurations to query. But this upper bound
may be reached only if joins of proposed configurations do not share replicas. We expect,
however, that in most cases the concurrently proposed configurations have large overlaps:
configuration updates are typically gradual. For example, when a configuration is defined as
a set of updates (added and removed replicas), clients may send at most k + ∆ ∗ n requests
per round, where ∆ the number of replicas added per proposal. For small ∆, the total
number of messages is of order k.

An interesting question is whether we can construct a composite complexity metric that
combines the number of messages a process sends and the time it takes to complete a propose
operation. Indeed, one may try to find dependencies between accessing few configurations
sequentially versus accessing many configurations in parallel.

Complexity trade-offs. If the cost of querying many configurations in parallel outweigh
the cost of contacting fewer configurations sequentially, we can use the approach from [31].
Intuitively, it boils down to solving an instance of generalized lattice agreement on the
configurations and then querying the produced configurations, there can be O(c) of them,
where c is the number of concurrently proposed configurations.
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Objects with “well-structured” its lattices can be implemented very efficiently. Take, for
example, the totally ordered lattice of a max-register. In this case, processes can directly
return the state stored in LearnLB in line 11. Indeed, not returning a committed state
might only violate the consistency property. But if states are already totally ordered, then
the consistency property always holds. Therefore, in the absence of reconfiguration calls,
operations can return in a single round trip. It is in general interesting to investigate how
the lattice structure might be leveraged.
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