
On Memory, Communication, and Synchronous
Schedulers When Moving and Computing
Paola Flocchini
EECS, University of Ottawa, Canada
pflocchi@uottawa.ca

Nicola Santoro
School of Computer Science, Carleton University, Canada
santoro@scs.carleton.ca

Koichi Wada
Faculty of Science and Engineering, Hosei University, Japan
wada@hosei.ac.jp

Abstract
We investigate the computational power of distributed systems whose autonomous computational
entities, called robots, move and operate in the 2-dimensional Euclidean plane in synchronous
Look-Compute-Move (LCM) cycles. Specifically, we focus on the power of persistent memory and
that of explicit communication, and on their computational relationship.

In the most common model, OBLOT , the robots are oblivious (no persistent memory) and silent
(no explicit means of communication). In contrast, in the LUMI model, each robot is equipped with
a constant-sized persistent memory (called light), visible to all the robots; hence, these luminous
robots are capable in each cycle of both remembering and communicating. Since luminous robots
are computationally more powerful than the standard oblivious one, immediate important questions
are about the individual computational power of persistent memory and of explicit communication.
In particular, which of the two capabilities, memory or communication, is more important? in other
words, is it better to remember or to communicate ?

In this paper we address these questions, focusing on two sub-models of LUMI: FST A, where
the robots have a constant-size persistent memory but are silent; and FCOM, where the robots can
communicate a constant number of bits but are oblivious. We analyze the relationship among all
these models and provide a complete exhaustive map of their computational relationship. Among
other things, we prove that communication is more powerful than persistent memory under the fully
synchronous scheduler Fsynch, while they are incomparable under the semi-synchronous scheduler
Ssynch.

2012 ACM Subject Classification Theory of computation → Distributed algorithms

Keywords and phrases Look-Compute-Move, Oblivious mobile robots, Robots with lights, Memory
versus Communication, Moving and Computing

Digital Object Identifier 10.4230/LIPIcs.OPODIS.2019.25

Acknowledgements This research was partly supported by NSERC through the Discovery Grant
program, by Prof. Flocchini’s University Research Chair, by JSPS KAKENHI No. 17K00019, and
by Japan Science and Technology Agency (JST) SICORP Grant#JPMJSC1806.

1 INTRODUCTION

1.1 Background and Motivation
The computational issues of autonomous mobile entities operating in an Euclidean space
in Look-Compute-Move (LCM) cycles have been the object of much research in distributed
computing. In the Look phase, an entity, viewed as a point and usually called robot, obtains
a snapshot of the space; in the Compute phase it executes its algorithm (the same for all

© Paola Flocchini, Nicola Santoro, and Koichi Wada;
licensed under Creative Commons License CC-BY

23rd International Conference on Principles of Distributed Systems (OPODIS 2019).
Editors: Pascal Felber, Roy Friedman, Seth Gilbert, and Avery Miller; Article No. 25; pp. 25:1–25:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:pflocchi@uottawa.ca
mailto:santoro@scs.carleton.ca
mailto:wada@hosei.ac.jp
https://doi.org/10.4230/LIPIcs.OPODIS.2019.25
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

25:2 Memory, Communication, and Synchrony

robots) using the snapshot as input; it then moves towards the computed destination in the
Move phase. Repeating these cycles, the robots are able to collectively perform some tasks
and solve some problems. The research interest has been on determining the impact that
internal capabilities (e.g., memory, communication) and external conditions (e.g. synchrony,
activation scheduler) have on the solvability of a problem.

In the most common model, OBLOT , in addition to the standard assumptions of
anonymity and uniformity (robots have no IDs and run identical algorithms), the robots
are oblivious (no persistent memory to record information of previous cycles) and silent
(without explicit means of communication). Computability in this model has been the
object of intensive research since its introduction in [27]. Extensive investigations have been
carried out to clarify the computational limitations and powers of these robots for basic
coordination tasks such as Gathering (e.g., [1, 2, 4, 6, 7, 8, 15, 21, 27]), Pattern Formation
(e.g., [16, 18, 27, 30, 31]), Flocking (e.g., [5, 19, 26]); for a recent account of the state of the
art on some of these problems, see [13] and the chapters therein. Clearly, the restrictions
created by the absence of persistent memory and the incapacity of explicit communication
severely limits what the robots can do and renders complex and difficult for them to perform
the tasks they can do.

A model where robots are provided with some (albeit limited) persistent memory and
communication means is the LUMI model, formally defined and analyzed in [9, 10], following
a suggestion in [24]. In this model, each robot is equipped with a constant-sized memory
(called light), whose value (called color) can be set during the Compute phase. The light
is visible to all the robots and is persistent in the sense that it is not automatically reset
at the end of a cycle. Hence, these luminous robots are capable in each cycle of both
remembering and communicating a constant number of bits. There is a lot of research
work on the design of algorithms and the feasibility of problems for luminous robots (e.g.,
[3, 10, 11, 17, 20, 22, 23, 25, 28, 29]); for a recent survey, see [12].

As for the computational relationship between OBLOT and LUMI, the availability
of both persistent memory and communication, however limited, clearly renders luminous
robots more powerful than oblivious robots (e.g., [10]). This immediately raises important
questions about the individual computational power of the two internal capabilities: memory
and communication. In particular,

if the robots were endowed with a constant number of bits of persistent memory but were
still unable to communicate explicitly, what problems could they solve ?
If the robots could communicate a constant number of bits in each cycle, but were
oblivious, what would be their computational power then ?
Which of the two capabilities, memory or communication, is more important? or, in
other words, is it better to remember or to communicate ?

Helpful in this regards are two sub-models of LUMI. In the first model, FST A, the
light of a robot is visible only by that robot, while in the second model, FCOM, the light
of a robot is visible only to the other robots. Thus in FST A the color merely encodes an
internal state; hence the robots are finite-state and silent. On the contrary, in FCOM, a
robot can communicate to the other robots through its colored light but forgets the content
of its transmission by the next cycle; that is, robots are finite-communication and oblivious.

This means that some answers to the above questions, as well as others, can be provided
by exploring and determining the computational power within these four models, OBLOT ,
FST A, FCOM, and LUMI and with respect to each other. This is the focus of this paper.

When studying computability within a model of LCM robots, two interrelated external
factors play a crucial role: time and activation schedule. With respect to these factors, there
are two fundamentally different settings: asynchronous and synchronous.

P. Flocchini, N. Santoro, and K. Wada 25:3

In the asynchronous setting (Asynch), first studied in [14], there is no common notion
of time, each robot is activated independently of the others, the duration of each phase is
finite but unpredictable and might be different in different cycles.

In the synchronous setting (Ssynch), also called semi-synchronous and first studied in
[27], time is divided into discrete intervals, called rounds; in each round some (possibly all)
robots are activated, perform their LCM cycle simultaneously, and terminate by the end of
the round. The selection of which robots are activated at a round is made by the adversarial
scheduler, constrained to be fair. A special synchronous setting which plays an important
role is the fully-synchronous setting (Fsynch) where every robot is activated in every round;
that is, the activation scheduler has no adversarial power.

Returning to the focus of this paper, which is to understand the computational power
within each model, the amount of available knowledge is rather limited. In particular, it
is known that, within OBLOT , robots in Fsynch are strictly more powerful than those
in Ssynch: there are problems solvable in Fsynch but unsolvable in Ssynch [27]. It is
also known that, within LUMI, robots have in Asynch the same computational power as
in Ssynch [10]. As for the relationship between different models, it has been shown that
asynchronous luminous robots are strictly more powerful than oblivious synchronous robots
[10]. The FCOM and FST A models have been studied only in the context of Rendezvous,
which cannot be solved in Ssynch in the OBLOT model, while it has been shown to be
solvable in both FCOM and FST A [17]. In this paper we investigate these questions,
focusing on synchronous schedulers.

1.2 Contributions
We analyze the relationship among all these models and provide a complete exhaustive map
of their computational relationship, summarized in Tables 1-3, where: X Y denotes model X
under scheduler Y ; F and S stand for Fsynch and Ssynch respectively, A > B indicates
that model A is computationally more powerful than model B, A ≡ B denotes that they are
computationally equivalent, A⊥B denotes that they are computationally incomparable.

We first examine the computational relationship within each scheduler. Among other
things, we prove that the answer to the question “is it better to remember or to communicate
?” depends on the type of scheduler. More precisely, communication is more powerful than
persistent memory if the scheduler is fully synchronous; on the other hand, the two models
are incomparable under the semi-synchronous scheduler.

We then focus on the relationship between Fsynch and Ssynch. In addition to the
expected dominance results, we prove some interesting orthogonality results. In fact, we
show that, on one hand, both FST AS and FCOMS are incomparable with OBLOT F , on
the other LUMIS is incomparable with FST AF , FCOMF , and even with OBLOT F . We
also close an open problem of [10].

Table 1 Relationships within Fsynch.

FCOMF FST AF OBLOT F

LUMIF ≡ > >

(Th.2) (Th.2,6) (Th.2,6,10)
FCOMF − > >

(Th.6) (Th.6,10)
FST AF − − >

(Th.10)

Table 2 Relationships within Ssynch.

FCOMS FST AS OBLOT S

LUMIS > > >

(Th.17) (Th.17) (Th.15, 17)
FCOMS − ⊥ >

(Th.14) (Th.15)
FST AS − − >

(Th.15)

OPODIS 2019

25:4 Memory, Communication, and Synchrony

Table 3 Relationship between Fsynch and Ssynch.

LUMIS FCOMS FST AS OBLOT S

LUMIF > > > >

≡ FCOMF (Th.20) (Th.20) (Th.6,20) (Th.15,20)
FST AF ⊥ ⊥ > >

(Th.26) (Th.26) (Th.20) (Th.15,20)
OBLOT F ⊥ ⊥ ⊥ >

(Th.28) (Th.25) (Th.25) (Th.20)

2 MODELS AND PRELIMINARIES

2.1 The Basics
The systems considered in this paper consist of a team R = {r0, · · · , rn−1} of computational
entities moving and operating in the Euclidean plane R2. Viewed as points and called robots,
the entities can move freely and continuously in the plane. Each robot has its own local
coordinate system and it always perceives itself at its origin; there might not be consistency
between these coordinate systems. A robot is equipped with sensorial devices that allows it
to observe the positions of the other robots in its local coordinate system.

The robots are identical: they are indistinguishable by their appearance and they execute
the same protocol. The robots are autonomous, without a central control.

At any point in time, a robot is either active or inactive. Upon becoming active, a robot
r executes a Look-Compute-Move (LCM) cycle performing the following three operations:

1. Look: The robot activates its sensors to obtain a snapshot of the positions occupied by
robots with respect to its own coordinate system1.

2. Compute: The robot executes its algorithm using the snapshot as input. The result of
the computation is a destination point.

3. Move: The robot moves to the computed destination2. If the destination is the current
location, the robot stays still.

When inactive, a robot is idle. All robots are initially idle. The amount of time to complete
a cycle is assumed to be finite, and the Look operation is assumed to be instantaneous.

Let xi(t) denote the location of robot ri at time t in a global coordinate system (unknown
to the robots), and let X(t) = {xi(t) : 0 ≤ i ≤ n− 1} = {x0(t), x1(t), . . . , xm−1(t)}; observe
that |X(t)| = m ≤ n since several robots might be at the same location at time t.

In this paper, we do not assume that the robots have a common coordinate system. If
they agree on the same circular orientation of the plane (i.e., they do agree on “clockwise”
direction), we say that there is chirality. Except when explicitly stated, we assume there is
chirality.

2.2 The Models
Different models, based on the same basic premises defined above, have been considered in
the literature and will be examined here.

1 This is called the full visibility (or unlimited visibility) setting; restricted forms of visibility have also
been considered for these systems

2 This is called the rigid mobility setting; restricted forms of mobility (e.g., when the movement may be
interrupted by an adversary) have also been considered for these systems

P. Flocchini, N. Santoro, and K. Wada 25:5

In the most common model, OBLOT , the robots are silent: they have no explicit means
of communication; furthermore they are oblivious: at the start of a cycle, a robot has no
memory of observations and computations performed in previous cycles.

In the other common model, LUMI, each robot r is equipped with a persistent visible
state variable Light[r], called light, whose values are taken from a finite set C of states called
colors (including the color that represents the initial state when the light is off). The colors
of the lights can be set in each cycle by r at the end of its Compute operation. A light is
persistent from one computational cycle to the next: the color is not automatically reset at
the end of a cycle; the robot is otherwise oblivious, forgetting all other information from
previous cycles. In LUMI, the Look operation produces a colored snapshot; i.e., it returns
the set of pairs (position, color) of the other robots3. Note that if |C| = 1, then the light is
not used; thus, this case corresponds to the OBLOT model.

It is sometimes convenient to describe a robot r as having k ≥ 1 lights, denoted
r.light1, . . . , r.lightk, where the values of r.lighti are from a finite set of colors Ci, and
to consider Light[r] as a k-tuple of variables; clearly, this corresponds to r having a single
light that uses Πk

i=1|Ci| colors.
The lights provide simultaneously persistent memory and direct means of communication,

although both limited to a constant number of bits per cycle. Two sub-models of LUMI
have been defined and investigated, each offering only one of these two capabilities.

In the first model, FST A, a robot can only see the color of its own light; that is, the
light is an internal one and its color merely encodes an internal state. Hence the robots are
silent, as in OBLOT ; but are finite-state. Observe that a snapshot in FST A is the same as
in OBLOT .

In the second model, FCOM, the lights are external: a robot can communicate to the
other robots through its colored light but forgets the color of its own light by the next cycle;
that is, robots are finite-communication but oblivious. A snapshot in FCOM is like in
LUMI except that, for the position x where the robot r performing the Look is located,
Light[r] is omitted from the set of colors present at x.

In all the above models, a configuration C(t) at time t is the multi-set of the n pairs of
the (xi(t), ci(t)), where ci(t) is the color of robot ri at time t.

2.3 The Schedulers

With respect to the activation schedule of the robots, and the duration of their Look-Compute-
Move cycles, the fundamental distinction is between the asynchronous and synchronous
settings.

In the asynchronous setting (Asynch), first studied in [14], there is no common notion
of time, each robot is activated independently of the others, the duration of each phase is
finite but unpredictable and might be different in different cycles.

In the synchronous setting (Ssynch), also called semi-synchronous and first studied
in [27], time is divided into discrete intervals, called rounds; in each round some robots are
activated simultaneously, and perform their LCM cycle in perfect synchronization.

A popular synchronous setting which plays an important role is the fully-synchronous
setting (Fsynch) where every robot is activated in every round; that is, the activation
scheduler has no adversarial power.

3 If (strong) multiplicity detection is assumed, the snapshot is a multi-set.

OPODIS 2019

25:6 Memory, Communication, and Synchrony

In all two settings, the selection of which robots are activated at a round is made by an
adversarial scheduler, whose only limit is that every robot must be activated infinitely often
(i.e., it is fair scheduler). In the following, for all synchronous schedulers, we use round and
time interchangeably.

2.4 Computational Relationships
LetM = {LUMI,FCOM,FST A,OBLOT } be the set of models under investigation, and
S = {Fsynch, Ssynch} be the set of activation schedulers under consideration.

We denote by R the set of all teams of robots satisfying the core assumptions (i.e., they
are identical, autonomous, and operate in LCM cycles), and R ∈ R a team of robots having
identical capabilities (e.g., common coordinate system, persistent storage, internal identity,
rigid movements etc.). By Rn ⊂ R we denote the set of all teams of size n.

Given a model M ∈M, a scheduler S ∈ S, and a team of robots R ∈ R, let Task(M, S; R)
denote the set of problems solvable by R in M under adversarial scheduler S.

Let M1, M2 ∈M and S1, S2 ∈ S. We define the following relationships between model
M1 under scheduler S1 and model M2 under scheduler S2:

computationally not less powerful (MS1
1 ≥MS2

2), if ∀R ∈ R we have Task(M1, S1; R) ⊇
Task(M2, S2; R);
computationally more powerful (MS1

1 > MS2
2), if MS1

1 ≥ MS2
2 and ∃R ∈ R such that

Task(M1, S1; R) \ Task(M2, S2; R) 6= ∅;
computationally equivalent (MS1

1 ≡MS2
2), if MS1

1 ≥MS2
2 and MS2

2 ≥MS1
1 ;

computationally orthogonal (or incomparable), (MS1
1 ⊥MS2

2), if ∃R1 , R2 ∈ R such that
Task(M1, S1; R1) \Task(M2, S2; R1) 6= ∅ and Task(M2, S2; R2) \Task(M1, S1; R2) 6= ∅.

For simplicity of notation, for a model M ∈ M, let MF and MS denote MF synch

and MSsync, respectively; and let MF (R) and MS(R) denote Task(M,Fsynch;R) and
Task(M,Ssynch;R), respectively.

Trivially, for any M ∈ M, MF ≥ MS ; also, for any S ∈ S, LUMIS ≥ FST AS ≥
OBLOT S and LUMIS ≥ FCOMS ≥ OBLOT S .

3 COMPUTATIONAL RELATIONSHIP IN Fsynch

In this section, we consider the fully synchronous scheduler Fsynch and we prove that, in this
setting, it is better to communicate than to remember. Specifically, we prove that FCOM
has the same power as LUMI and is strictly more powerful than FST A; furthermore, they
are all strictly more powerful than OBLOT .

3.1 FCOMF ≡ LUMIF

To prove that FCOM has the same power as LUMI in Fsynch, we first need to prove the
following.

I Lemma 1. ∀R ∈ R,LUMIF (R) ⊆ FCOMF (R).

Proof. The proof is constructive. Our algorithm uses the following observation: if there
is chirality, then there exists a unique circular ordering of the locations X(t) occupied by
the robots at that time [27]. Let suc and pred be the functions denoting the ordering and,
without loss of generality, let suc(xi(t)) = xi+1 mod m(t) and pred(xi)(t) = xi−1 mod m(t) for
i ∈ {0, 1, . . . , m−1}. Even in absence of chirality, a circular arrangement can still be obtained,

P. Flocchini, N. Santoro, and K. Wada 25:7

but there is no common agreement on suc and pred because the “clockwise” direction is
not common to all robots and the notion of successor and predecessor is local, and possibly
inconsistent among the robots. In this case, let neigh(xi(t)) indicate the unordered pair
of the two neighbouring locations of xi: neigh(xi(t)) = {xi+1 mod m(t), xi−1 mod m(t)} for
i ∈ {0, 1, . . . , m− 1}. When no ambiguity arises, we will omit the temporal indication.

We now describe an FCOM protocol, called LUbyFCinFSY, which, for any given LUMI
protocol A, produces a fully-synchronous execution of A. The simulation algorithm is presented
in Algorithm 1, where a robot r at location x uses three lights: r.color, indicating its own
color, initially set to c0, r.neigh.color, indicating the 2-element set of colors seen at suc(x)
and at pred(x) taken from the set 2C, where C is the set of colors used by algorithm A,
initially set to {{c0}, {c0}}, and r.step ∈ {1, 2}, indicating the step of the algorithm, initially
set to 1. It also uses variable r.color.here, initially set to {c0}, indicating the set of colors
visible by r at its own location. In the following, when no ambiguity arises, we will denote
suc(x) and pred(x) by suc(r) and pred(r).

The algorithm simulates a single round of A with two rounds (or steps):

a b s b z

{u,a,b} {s,b,z}{a,b} {s,a,z} {a,b} {s,b,z}

xi

MyColor = { {{s,a,z}, {a,b}} – {s,a,z} } – {b} = a

.. s b zu a bs a z
.

Figure 1 {pred(x).neigh.color − r′.color} − r.color.here.

1. Copy Step: (r.step = 1). In the Look phase, r determines r.step = 1 by observing the
corresponding color of one of the neighbours (e.g., pred(x).step) and sets r.step = 2. It
also observes the colors of the robots at its successor and predecessor and sets r.neigh.color

(notice that r.neigh.color is the same for all robots at the same location). Robot r does
not move.

2. Execution Step: (r.step = 2).
Color Determination. After the Look phase, by looking at one of its neighbours (pred(x))
robot r discovers r.step = 2, as well as its own color. In fact, let x′ = other(pred(x))
denote the other neighbour of r’s predecessor, and let r.color.here correspond to the
set of colors seen by r at its own location x (note that, by definition, this set does not
include r’s color); then r’s color is determined by letting cand-set be the element of
pred(x).neigh.color − {x′.color} and r’s color be the element of cand-set− r.color.here,
where “-” indicates the difference operator between sets (see Figure 1).
Execution. Robot r executes the Compute and Move phases according to Algorithm A.

The correctness of Algorithm LUbyFCinFSY(A) follows easily from the fact that we are
operating in Fsynch and that the only difference between LUMI and FCOM is that in
latter a robot does not see the color of its own light. This can however be determined as
indicated in the protocol. In other words, LUbyFCinFSY(A) correctly simulate in Fsynch
algorithm A and Lemma 1 follows. J

OPODIS 2019

25:8 Memory, Communication, and Synchrony

Algorithm 1 LUbyFCinFSY(A) - for robot r at location x.

Phase Look
Observe, in particular, pred(x).color, suc(x).color, pred(x).step, other(pred(x));
as well as r.color.here (note that, for this, r cannot see its own color).

Phase Compute
1: if (pred(x).step = 1) then //step 1- Copy //
2: r.neigh.color ← {pred(x).color, suc(x).color},

where pred(x).color={ρ.color|ρ ∈ pred(x)} and suc(x).color={ρ.color|ρ ∈ suc(x)}
3: r.step← 2
4: r.des← x

5: else //step 2- Execution //
6: x′ ← other(pred(x)) // x′ is the other neighbour of pred(x) //
7: cand-set← the element of pred(x).neigh.color − {x′.color}
8: r.color ← the element of cand-set −r.color.here // find my own color //
9: Execute the Compute of A // with my color r.color, determining destination r.des //

Phase Move
Move to r.des;

Since the reverse relation FCOMF ≤ LUMIF holds by definition, we can conclude:

I Theorem 2. FCOMF ≡ LUMIF .

3.2 FCOMF > FST AF

We now turn our attention to the relationship between FCOMF and FST AF . The following
problem is used to show that FCOMF > FST AF .

IDefinition 3. Problem ¬IL: Three robots a, b, and c, starting from the initial configuration
shown in Figure 2 (a), must form first the pattern of Figure 2 (b) and then move to form the
pattern of Figure 2 (c).

I Lemma 4. ∃R ∈ R3, ¬IL 6∈ FST AF (R),

Proof. In the initial pattern (a) of Figure 2, even if all the states of the robots are initially
identical, each of them can uniquely distinguish its position in the pattern. Therefore, the
three robots can easily form pattern (b) by having a move clockwise of 90 degrees. Assume
that in pattern (b) the state of each robot is now different and indicates the full history of
what the robot has done so far. Now the robots need to form pattern (c), which is asymmetric
and requires b to move clockwise of 45 degrees. However, in pattern (b), even in presence of
chirality, robot b cannot distinguish between the positions of a and c. This is true regardless
of the information stored in the local state of robot b; so, after forming pattern (b), the
robots cannot reach pattern (c). J

I Lemma 5. ∀R ∈ R3, ¬IL ∈ FCOMS(R).

Proof. FCOM robots can easily solve ¬IL as follows: To form (b) from (a), robot a, which
can easily distinguish its position, moves of 90 degrees clockwise and turns its light to red.
To move from (b) to (c) robot b distinguishes a from c because of the external light and
moves of 45 degrees clockwise to occupy the correct position. J

P. Flocchini, N. Santoro, and K. Wada 25:9

By Theorem 2 and Lemmas 4 and 5, we can conclude:

I Theorem 6. FCOMF > FST AF .

3.3 FST AF > OBLOT F

It is very easy to show that FST A is strictly more powerful than OBLI. To do that, we
consider the Oscillating Point Problem defined in [10]

I Definition 7. Problem OSP (Oscillating Points) [10]: Two robots, a and b, initially
in distinct locations, alternately come closer and move further from each other. More precisely,
let d(t) denote the distance of the two robots at time t. The OSP problem requires the two
robots, starting from an arbitrary distance d(t0) > 0 at time t0, to move so that there exists
a monotonically increasing infinite sequence time instant t0, t1, t2, . . . such that :
1. d(t2i+1) < d(t2i), and ∀h′, h” ∈ [t2i, t2i+1], h′ < h”, d(h”) ≤ d(h′); and
2. d(t2i) > d(t2i−1), and ∀h′, h” ∈ [t2i−1, t2i], h′ < h”, d(h”) ≥ d(h′).

Impossibility in OBLOT F has been shown in [10]:

I Lemma 8. [10] ∃R ∈ R2, OSP 6∈ OBLOT F (R).

On the other hand, possibility in FST AF is trivial because a robot can store in its local
state whether in the previous round it was moving further or closer and successfully alternate
movements. That is

I Lemma 9. ∀R ∈ R2, OSP ∈ FST AF (R).

By Lemmas 8 and 9, and the fact that FST AF ≥ OBLOT F by definition, we have:

I Theorem 10. FST AF > OBLOT F .

a b

c

a

bc

a

b

c

(a) (b) (c)

Figure 2 The configurations of prob-
lem ¬IL.

a

c

b

A

C

B

a

Aʼ

b
Bʼ

c Cʼ

A

C

B

d

d

d

(a) (b)

Figure 3 Illustration of TRIANGLE-
ROTATION (TAR(d)).

4 COMPUTATIONAL RELATIONSHIP IN Ssynch

In this section, we examine the computational relationship of the models under the Semi-
Synchronous scheduler.

OPODIS 2019

25:10 Memory, Communication, and Synchrony

4.1 Orthogonality of FST AS and FCOMS

I Definition 11. Problem TAR(d) (Triangle Rotation): Let a, b, c be three robots
forming a triangle ABC, let C be the circumscribed circle, and let d be a value known to
the three robots. The TAR(d) problem requires the robots to move so to form a new triangle
A′B′C ′ with circumscribed circle C, and where dis(A, A′) = dis(B, B′) = dis(C, C ′) = d (see
Figure 3).

I Lemma 12. ∃R ∈ R3, TAR(d) 6∈ FCOMS(R).

Proof. (Sketch) By contradiction, let A be a correct solution protocol in FCOMS . Consider
an initial configuration C0 where the three robots a, b, and c, form a scalene triangle ABC

with AB 6= d, BC 6= d, CA 6= d, and with all lights off (see Figure 3(a)). Consider now
an execution E of A where all three robots are activated in each round, starting from C0,
until one or more robots move, say at round k. Let r be a robot that performed a non-null
move in that round after observing configuration Ck−1. Consider now another execution
E ′ of A where the first k − 1 rounds are exactly the same, but in round k robot r is the
only one activated. Robot r would move to a new location possibly changing color. Now the
schedule activates again only robot r. If the previous move resulted in a scalene triangle, the
robot cannot distinguish this situation from the one it observed at the previous round and
thus it would perform the same type of movement, losing any information on the original
triangle; if the previous move resulted in an equilateral or isosceles triangle, robot r would
know it has already moved (even without having access to its light), but it still would not
know from which location. In both cases the information on the original triangle cannot be
reconstructed and the problem cannot be solved, contradicting the correctness of A. J

I Lemma 13. ∀R ∈ R3, TAR(d) ∈ FST AS(R).

Proof. The problem is easily solvable with FST A robots in Ssynch. Let the robots have
color A initially. The first time a robot is activated, it moves to the desired position and
changes its light to B. Whenever a robot is activated, if its light is B, it does not move. J

By Lemmas 4-5 and 12-13, we can conclude:

I Theorem 14. FCOMS⊥FST AS.

4.2 Dominance of FST AS and FCOMS over OBLOT S

The dominance of FST AS and FCOMS over OBLOT S follows directly from existing results
on the rendezvous problem (RDV), which prescribes two robots to occupy exactly the same
location, not known in advance.

I Theorem 15. FST AS > OBLOT S and FCOMS > OBLOT S.

Proof. It is well known that RDV cannot be solved in Ssynch (see [27], whose proof uses
chirality and trivially holds when movements are rigid). On the other hand, it can be solved
in FCOM and FST A in Ssynch [17]. J

4.3 Dominance of LUMIS over FST AS and FCOMS

To conclude the study of Ssynch, we consider the OSP problem already employed in Section
3.3. also to show that LUMIS > FST AS(FCOMS).

P. Flocchini, N. Santoro, and K. Wada 25:11

I Lemma 16.
∃R ∈ R2, OSP 6∈ FCOMS(R) ∪ FST AS(R).
∀R ∈ R2, OSP ∈ LUMIS(R).

Proof. The possibility in LUMIS is proven in [10]. Let us then prove the impossibility in
FCOM and FST A. Let a and b be the two robots with initial lights off. First note that if
an activated robot performs a null move at the first round, the adversarial scheduler would
activate both (making them change lights in the same way). The scheduler continues to
activate them both until the first round t when the color of the light would make them do a
non-null move. At this point, the scheduler changes strategy.

In the case of FCOM, the scheduler activates only robot a in the two consecutive rounds
t and t + 1. At round t + 2, robot a is activated again. Robot a will repeat (incorrectly)
the same move at round t + 2, not being able to distinguish the current situation from the
previous, and regardless of the movement taken in round t.

In the case of FST A, the scheduler activates only robot a for 3 consecutive rounds
t, t + 1, t + 2 and both robots at round t + 3. In the first 3 activations robot a can use its
internal light to correctly alternate a move going closer to b, one moving further and the third
moving closer again. At round t + 3, robot a will necessarily move further from b continuing
this alternating pattern (as nothing has changed in its perceived view of the universe), but
robot b is now in the same state robot a was at round t and will therefore take the same
action taken by a at that round (i.e., moving closer to a). This lack of synchronization makes
the robots incorrectly maintain their distance during round t + 3. J

We can conclude that:

I Theorem 17. LUMIS > FST AS and LUMIS > FCOMS.

5 COMPUTATIONAL RELATIONSHIP BETWEEN Fsynch AND
Ssynch

In this section we examine the computational relationship of fully synchronous and semi-
synchronous models.

5.1 Dominances of Fsynch over Ssynch
The following problem prescribes the robots to perform a sort of “expansion” of the initial
configuration with respect to their center of gravity; specifically, each robot must move away
from the center of gravity (cx, cy) to the closest integral position corresponding to doubling
its distance from it. More precisely:

I Definition 18. Problem CGE (Center of Gravity Expansion): Let R be a set of
robots. The CGE problem requires each robot ri ∈ R to move from its initial position (xi, yi)
directly to (f(xi, cx), f(yi, cy)), where f(a, b) = b2a− bc and (cx, cy) is the center of gravity
of the initial configuration.

I Lemma 19. CGE ∈ FST AF and CGE /∈ LUMIS.

Proof. (Sketch) It is easy to see that CGE ∈ FST AF since all robots can simultaneously
reach their destination in one step and change color to indicate termination. We now show
that CGE /∈ LUMIS . By contradiction. Consider an execution E of a solution algorithm
where a single robot r is activated at the first time step. The robot moves correctly to its

OPODIS 2019

25:12 Memory, Communication, and Synchrony

destination point and possibly changes its color. After this movement, regardless of the
distance traveled, the center of gravity of the new configuration is different from the one
of the initial configuration, with respect to which all the other robots must move. At the
next activation, any robot different from r must move to its target location; however, this
cannot be done because the robot cannot reconstruct the exact position of the original center
of gravity. This is due to the fact that there are infinite combinations of coordinates from
where r could have feasibly moved and the reconstruction of the original CoG cannot be
done just on the basis of a light that can carry finite information. J

As a consequence, we have that:

I Theorem 20.
1. LUMIF > LUMIS

2. FST AF > FST AS

3. FCOMF > LUMIS > FCOMS

4. OBLOT F > OBLOT S

Proof.
1. It follows from Lemma 19, Theorem 2, and Theorem 6.
2. It follows from Lemma 19 and Theorem 17.
3. It follows immediately from Theorem 2, Theorem 17, and Theorem 20.
4. The RDV problem can be trivially solved in OBLOT F but it cannot be solved in
OBLOT S [27]. J

5.2 Incomparabilities between Fsynch and Ssynch

5.2.1 Orthogonality of OBLOT F with FCOMS and FST AS

Consider the following problem:

I Definition 21. Problem SRO (Shrinking Rotation): Two robots a and b are initially
placed in arbitrary distinct points (forming the initial configuration C0), The two robots
uniquely identify a square (initially Q0) whose diagonal is given by the segment between
them4. Let a0 and b0 indicate the initial positions of the robots, d0 the segment between
them, and length(d0) its length. Let ai and bi be the positions of a and b in configuration Ci

(i ≥ 0). The problem consists of moving from configuration Ci to Ci+1 in such a way that
Condition C3 is verified and so is one of C1 and C2:
C1. di+1 is a 90 degree clockwise rotation of di and thus length(di+1) = length(di),
C2. di+1 is a “shrunken” 45 degree clockwise rotation of di such that di+1 = di√

2 ,
C3. ai+1 and bi+1 must be included in the square Qi−1, where Q−1 is the infinite square.

4 By square, we means the entire space delimited by the four sides.

P. Flocchini, N. Santoro, and K. Wada 25:13

a0 b0=b1

a1=a2

b2=b3

a3=a4

b4=b5

a5

Configurations:
C0, C1, C2, C3, C4, C5…
where Ci=(ai, bi).

Figure 4 Illustration of SHRINKING ROTA-
TION (SRO).

a0# b0#
a0#

a1#

b0# a0# b0#

a1# a2#

d#

d/2##

a)# b)# c)#

d#

d#
d#√#2###
2#

Figure 5 Proof of Lemma 23: a) Initial config-
uration; b) after the movement of robot a in Case
(1); c) after two consecutive movements of robot a
in Case (2).

I Lemma 22. ∀R ∈ R2,SRO ∈ OBLOT F (R)

Proof. The proof is by construction: Each robot rotates clockwise of 90 degrees with respect
to the midpoint between itself and the other robot. Since the schedule is Fsynch, it allows
consecutive simultaneous activation of the two robots. So, there is only one possible type of
executions under Fsynch with two robots: a perpetual activation of both robots in each
round. In this case, the problem is clearly solved by the algorithm stated above, because
the robots keep rotating of 90 degrees clockwise around their mid-point, fulfilling C1 and
C3. Note that C2 never happens under Fsynch. Then SRO can be solved with OBLOT in
Fsynch. J

I Lemma 23. ∃R ∈ R2,SRO 6∈ FCOMS(R) ∪ FST AS(R)

Proof. First note that if an activated robot performs a null move at the first round, the
schedule would activate both (making them change lights in the same way). The scheduler
continues to activate them both until the first round i when the color of the light would
make them do a non-null move. At this point, the scheduler changes strategy.

Consider first the case of FCOMS and consider an execution where a robot, say a, is
activated (alone) twice consecutively starting from configuration Ci. In the following, we
show that, under this activation schedule, either Ci+1 or Ci+2 would violate C3 (which states
that ai+1 and bi+1 must be included in the square Qi−1) (see Figure 4).
In fact, let robot a located at ai be activated from a configuration Ci. Since b is not activated
in Ci, the light of b at bi and at bi+1 are the same. Then a at ai and at ai+1 observe the
same light on b. Since the coordinate systems of the robot can be chosen so that they have
the same view of the universe, a at ai+1 performs the same action as it would perform at ai,
and this action must either fulfill C1 or C2 (as well as C3 in either case).
Case (1). Let us consider first the situation when C1 is fulfilled with a single movement of a:
the only possibility would be for a to rotate clockwise of 90 degree with respect to b; this
movement, however, would immediately violate C3 because the new position ai+1 would be
outside of the square Qi (and thus also outside Qi−1) (see Figure 5 from a) to b)).
Case (2). Let us consider now the case when C2 is fulfilled with a single movement of a: the
only possibility would be for a to move clockwise of 90 degrees with respect to the midpoint
between a and b reaching a feasible configuration Ci+1. When robot a is activated again at
the next round, it will perform the same action on Ci+1, now violating C3 (see Figure 5
from a) to c)).

OPODIS 2019

25:14 Memory, Communication, and Synchrony

Therefore, this problem cannot be solved with FCOM in Ssynch. The case of FST AS

can be shown in a similar way, because the availability of internal lights cannot prevent - in
Ssynch - the consecutive activation of the same single robot and the impossibility argument
described above would still hold. J

Moreover, we have:

I Lemma 24. ∀R ∈ R2,SRO ∈ LUMIS(R)

Proof. It is rather straightforward to see that in LUMIS the two robots can be synchronized
with 3 colors so to enforce a fully synchronous execution. J

We have seen that SRO can be solved in OBLOT F but cannot be solved in FCOMS

and FST AS . On the other hand, ¬IL and TAR(d) can be solved in FCOMS and FST AS ,
respectively, but cannot be solved in OBLOT F . We can conclude that:

I Theorem 25. OBLOT F⊥FCOMS and OBLOT F⊥FST AS.

5.2.2 Orthogonality of LUMIS with FST AF and OBLOT F

I Theorem 26. LUMIS⊥FST AF and FCOMS⊥FST AF .

Proof. Problem ¬IL can be solved in FCOMS (and thus in LUMIS) but not in FST AF

(Lemmas 4 and 5). Problem CGE can be solved in FST AF , but not in LUMIS (Lemma 19).
J

I Definition 27. Problem CGE* (Perpetual Center of Gravity Expansion). This
is the same as CGE, where however after each expansion, the robots have to repeat the same
process from the new configuration.

I Theorem 28. LUMIS⊥OBLOT F .

Proof. Problem OSP can be solved in LUMIS (Lemma 16), but not in OBLOT F (Lemma
8). Problem CoG* can be trivially solved in OBLOT F , but not in LUMIS (Lemma 19). J

Let us remark that, since LUMIs ≡ LUMIA, the result of Theorem 28 answers the
open question on the relationship between LUMIA and OBLOT F posed in [10].

6 CONCLUDING REMARKS

In this paper, we have investigated the computational power of communication versus
persistent memory in mobile robots by studying the relationship among LUMI, FCOM,
FST A and OBLOT models, and we have shown that their relationship depends of the
scheduler under which the robots operate. We considered the two classical synchronous
schedulers, Fsynch and Ssynch, establishing several results. In particular, we proved that
communication is more powerful than persistent memory if the scheduler is fully synchronous;
on the other hand, the two models are incomparable under the semi-synchronous scheduler.
For an overall panorama of the established relationship among the models, see Figure 6.

Several problems are still open. An outstanding open problem is the study of the
relationship among these models in Asynch, where there is no notion of rounds and the
cycles of the robots are executed independently.

P. Flocchini, N. Santoro, and K. Wada 25:15

OBLOTS

FSTASFCOMS

LUMIS

OSPSRO

RDV

￢IL TAR(d)

FCOMF=LUMIF

FSTAF

OBLOTF

Chirality, Rigidity

CGECGE*

Figure 6 Relationship among LUMI, FCOM, FST A and OBLOT in Fsynch, and Ssynch
assuming chirality and rigidity.

Another open problem is whether there exists a scheduler S′ (“weaker” than Fsynch but
stronger than Ssynch) such that each model under S′ would be computationally equivalent
to the same model under Fsynch.

Finally, most of the results of this paper hold assuming chirality and rigidity (exceptions
are the RDV-algorithms, the OSP-algorithms, and the simulation algorithm, Algorithm 1,
which do not require either). It is an open question to characterize the inclusions among all
the various models in the case of disoriented robots with non-rigid movement.

References
1 N. Agmon and D. Peleg. Fault-tolerant gathering algorithms for autonomous mobile robots.

SIAM Journal on Computing, 36(1):56–82, 2006.
2 H. Ando, Y. Osawa, I. Suzuki, and M. Yamashita. A distributed memoryless point concergence

algorithm for mobile robots with limited visivility. IEEE Transactions on Robotics and
Automation, 15(5):818–828, 1999.

3 S. Bhagat and K. Mukhopadhyaya. Optimum algorithm for mutual visibility among asyn-
chronous robots with lights. In Proc. of the 19th International Symposium on Stabilization,
Safety, and Security of Distributed Systems (SSS), pages 341–355, 2017.

4 Z. Bouzid, S. Das, and S. Tixeuil. Gathering of mobile robots tolerating multiple crash Faults.
In the 33rd Int. Conf. on Distributed Computing Systems (ICDCS), pages 334–346, 2013.

5 D. Canepa and M. Gradinariu Potop-Butucaru. Stabilizing flocking via leader election in
robot networks. In Proc. of the 10th International Symposium on Stabilization, Safety, and
Security of Distributed Systems (SSS), pages 52–66, 2007.

6 S. Cicerone, Di Stefano, and A. Navarra. Gathering of robots on meeting-points. Distributed
Computing, 31(1):1–50, 2018.

OPODIS 2019

25:16 Memory, Communication, and Synchrony

7 M. Cieliebak, P. Flocchini, G. Prencipe, and N. Santoro. Distributed computing by mobile
robots: Gathering. sicomp, 41(4):829–879, 2012.

8 R. Cohen and D. Peleg. Convergence properties of the gravitational algorithms in asynchronous
robot systems. sicomp, 34(15):1516–1528, 2005.

9 S. Das, P. Flocchini, G. Prencipe, N. Santoro, and M. Yamashita. The power of lights:
synchronizing asynchronous robots using visible bits. In Proc. of the 32nd International
Conference on Distributed Computing Systems (ICDCS), pages 506–515, 2012.

10 S. Das, P. Flocchini, G. Prencipe, N. Santoro, and M. Yamashita. Autonomous mobile robots
with lights. Theoretical Computer Science, 609:171–184, 2016.

11 G.A. Di Luna, P. Flocchini, S.G. Chaudhuri, F. Poloni, N. Santoro, and G. Viglietta. Mutual
visibility by luminous robots without collisions. Information and Computation, 254(3):392–418,
2017.

12 G.A. Di Luna and G. Viglietta. Robots with Lights. Chapter 11 of [13], pages 252–277, 2019.
13 P. Flocchini, G. Prencipe, and N. Santoro (Eds). Distributed Computing by Mobile Entities.

Springer, 2019.
14 P. Flocchini, G. Prencipe, N. Santoro, and P. Widmayer. Hard tasks for weak robots: the role

of common knowledge in pattern formation by autonomous mobile robots. In Proc. of 10th
International Symposium on Algorithms and Computation (ISAAC), pages 93–102, 1999.

15 P. Flocchini, G. Prencipe, N. Santoro, and P. Widmayer. Gathering of asynchronous robots
with limited visibility. tcs, 337(1–3):147–169, 2005.

16 P. Flocchini, G. Prencipe, N. Santoro, and P. Widmayer. Arbitrary pattern formation by
asynchronous oblivious robots. tcs, 407:412–447, 2008.

17 P. Flocchini, N. Santoro, G. Viglietta, and M. Yamashita. Rendezvous with Constant Memory.
tcs, 621:57–72, 2016.

18 N. Fujinaga, Y. Yamauchi, H. Ono, S. Kijima, and M. Yamashita. Pattern formation by
oblivious asynchronous mobile robots. sicomp, 44(3):740–785, 2015.

19 V. Gervasi and G. Prencipe. Coordination without communication: The case of the flocking
problem. Discrete Applied Mathematics, 144(3):324–344, 2004.

20 A. Hériban, X. Défago, and S. Tixeuil. Optimally gathering two robots. In Proc. of the 19th
Int. Conference on Distributed Computing and Networking (ICDCN), pages 1–10, 2018.

21 T. Izumi, S. Souissi, Y. Katayama, N. Inuzuka, X. Défago, K. Wada, and M. Yamashita. The
gathering problem for two oblivious robots with unreliable compasses. sicomp, 41(1):26–46,
2012.

22 T. Okumura, K. Wada, and X. Défago. Optimal Rendezvous L-Algorithms for Asynchronous
Mobile Robots with External-Lights. In Proc. of the 22nd Int. Conference on Principles of
Distributed Systems (OPODIS), pages 24:1–24:16, 2018.

23 T. Okumura, K. Wada, and Y. Katayama. Brief Announcement: Optimal asynchronous
Rendezvous for mobile robots with lights. In Proc. of the 19th Int. Symposium on Stabilization,
Safety, and Security of Distributed Systems (SSS), pages 484–488, 2017.

24 D. Peleg. Distributed coordination algorithms for mobile robot swarms: New directions and
challenges. In Proc. of 7th International Workshop on Distributed Computing (IWDC), pages
1–12, 2005.

25 G. Sharma, R. Alsaedi, C. Bush, and S. Mukhopadyay. The complete visibility problem for fat
robots with lights. In Proc. of the 19th International Conference on Distributed Computing
and Networking (ICDCN), pages 21:1–21:4, 2018.

26 S. Souissi, T. Izumi, and K. Wada. Oracle-based flocking of mobile robots in crash-recovery
model. In Proc. of the 11th International Symposium on Stabilization, Safety, and Security of
Distributed Systems (SSS), pages 683–697, 2009.

27 I. Suzuki and M. Yamashita. Distributed anonymous mobile robots: Formation of geometric
patterns. sicomp, 28:1347–1363, 1999.

28 S. Terai, K. Wada, and Y. Katayama. Gathering problems for autonomous mobile robots with
lights. arXiv.org, cs(ArXiv:1811.12068), 2018.

P. Flocchini, N. Santoro, and K. Wada 25:17

29 G. Viglietta. Rendezvous of two robots with visible bits. In 10th International Symposium on
Algorithms and Experiments for Sensor Systems, Wireless Networks and Distributed Robotics
(ALGOSENSORS), pages 291–306, 2013.

30 M. Yamashita and I. Suzuki. Characterizing geometric patterns formable by oblivious an-
onymous mobile robots. tcs, 411(26–28):2433–2453, 2010.

31 Y. Yamauchi, T. Uehara, S. Kijima, and M. Yamashita. Plane formation by synchronous mobile
robots in the three-dimensional euclidean space. Journal of the ACM (JACM), 64:3(16):16:1–
16:43, 2017.

OPODIS 2019

	INTRODUCTION
	Background and Motivation
	Contributions

	MODELS AND PRELIMINARIES
	The Basics
	The Models
	The Schedulers
	Computational Relationships

	COMPUTATIONAL RELATIONSHIP IN Fsynch
	FCOMF = LUMIF
	FCOMF > FSTAF
	FSTAF > OBLOTF

	COMPUTATIONAL RELATIONSHIP IN Ssynch
	Orthogonality of FSTAS and FCOMS
	FSTAS and FCOMS over OBLOTS
	Dominance of LUMIS over FSTAS and FCOMS

	COMPUTATIONAL RELATIONSHIP BETWEEN Fsynch AND Ssynch
	Dominances of
	Incomparabilities between
	Orthogonality of OBLOTF with FCOMS and FSTAS
	Orthogonality of LUMIS with FSTASF and OBLOTF

	CONCLUDING REMARKS

