
On Deterministic Linearizable Set Agreement
Objects
Felipe de Azevedo Piovezan
Department of Computer Science, University of Toronto, Canada
felipe@cs.toronto.edu

Vassos Hadzilacos
Department of Computer Science, University of Toronto, Canada
vassos@cs.toronto.edu

Sam Toueg
Department of Computer Science, University of Toronto, Canada
sam@cs.toronto.edu

Abstract
A recent work showed that, for all n and k, there is a linearizable (n, k)-set agreement object OL

that is equivalent to the (n, k)-set agreement task [4]: given OL, it is possible to solve the (n, k)-set
agreement task, and given any algorithm that solves the (n, k)-set agreement task (and registers), it
is possible to implement OL. This linearizable object OL, however, is not deterministic. It turns out
that there is also a deterministic (n, k)-set agreement object OD that is equivalent to the (n, k)-set
agreement task, but this deterministic object OD is not linearizable. This raises the question whether
there exists a deterministic and linearizable (n, k)-set agreement object that is equivalent to the
(n, k)-set agreement task. Here we show that in general the answer is no: specifically, we prove that
for all n ≥ 4, every deterministic linearizable (n, 2)-set agreement object is strictly stronger than
the (n, 2)-set agreement task. We prove this by showing that, for all n ≥ 4, every deterministic and
linearizable (n, 2)-set agreement object (together with registers) can be used to solve 2-consensus,
whereas it is known that the (n, 2)-set agreement task cannot do so. For a natural subset of (n, 2)-set
agreement objects, we prove that this result holds even for n = 3.

2012 ACM Subject Classification Theory of computation → Concurrency; Theory of computation
→ Parallel computing models; Theory of computation → Distributed computing models

Keywords and phrases Asynchronous shared-memory systems, consensus, set agreement, determin-
istic objects

Digital Object Identifier 10.4230/LIPIcs.OPODIS.2019.16

Funding This research was partially funded by the Natural Sciences and Engineering Research
Council of Canada.

1 Introduction

Consensus is a fundamental problem of distributed computing and set agreement [5] is
a well-known generalization of this problem. In the (n, k)-set agreement task each of n

processes has an input value and must output one of the input values so that there are at
most k distinct output values (the special case when k = 1 is the n-consensus task) [5, 7, 10].
Researchers have also considered (n, k)-set agreement objects [1, 6]. An (n, k)-set agreement
(SA) object is an object that allows up to n processes to invoke a propose operation with
some proposal value, such that the following two properties hold: (a) the value returned by
the operation has been proposed, and (b) at most k different values are returned. Obviously,
every (n, k)-SA object can be used to solve the (n, k)-SA task.

© Felipe de Azevedo Piovezan, Vassos Hadzilacos, and Sam Toueg;
licensed under Creative Commons License CC-BY

23rd International Conference on Principles of Distributed Systems (OPODIS 2019).
Editors: Pascal Felber, Roy Friedman, Seth Gilbert, and Avery Miller; Article No. 16; pp. 16:1–16:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/287883891?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:felipe@cs.toronto.edu
mailto:vassos@cs.toronto.edu
mailto:sam@cs.toronto.edu
https://doi.org/10.4230/LIPIcs.OPODIS.2019.16
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

16:2 On Deterministic Linearizable Set Agreement Objects

Until recently, it was thought that, for k ≥ 2, (n, k)-SA objects were inherently not
linearizable,1 because every linearizable (n, k)-SA object imposes constraints that are not
required by the (n, k)-SA task. For example, for k ≥ 2, with any linearizable (n, k)-SA object,
the propose operation that is linearized first must return its own proposal value; in contrast,
with the (n, k)-set agreement task two processes with distinct inputs are allowed to each
output the other’s input (i.e., they can “swap” their inputs). In fact, such differences in
allowable behaviours between tasks and objects motivated the introduction of generalizations
of linearizability [9, 3]. Despite this, it was recently shown that there does exist a linearizable
(n, k)-SA object OL that is equivalent to the (n, k)-set agreement task, in the following sense:
(a) given OL, it is possible to solve the (n, k)-SA task, and (b) given any algorithm that
solves the (n, k)-SA task (and registers), it is possible to implement OL [4].

An object is deterministic if, when accessed sequentially, the response of each operation
depends uniquely on the sequence of the preceding operations. For k ≥ 2, the linearizable
(n, k)-SA object OL is not deterministic: in a sequential execution where the first operation
proposes 1 and the second operation proposes 2, the second operation can return either 1 or 2.

Are (n, k)-SA objects inherently not deterministic? The answer is “no”. We show that
there exists a deterministic (n, k)-SA object OD that is equivalent to the (n, k)-SA task (see
Section 5). For k ≥ 2, however, OD is not linearizable.

Thus, the (n, k)-SA task has an equivalent linearizable (n, k)-SA object, and it also has an
equivalent deterministic (n, k)-SA object. This raises the following question: is the (n, k)-SA
task equivalent to some (n, k)-SA object that is both deterministic and linearizable?

In this paper we explore this question, and answer it in the negative. Specifically, we
prove that for n ≥ 4, no deterministic linearizable (n, 2)-SA object is equivalent to the
(n, 2)-SA task: we do so by showing that, for n ≥ 4, every deterministic linearizable (n, 2)-SA
object can be used to solve the 2-consensus task; in contrast, it is known that solving the
(n, 2)-SA task is not sufficient to solve 2-consensus [1]. This implies that, for n ≥ 4, every
deterministic linearizable (n, 2)-SA object is strictly stronger than the (n, 2)-SA task. For a
natural subset of deterministic linearizable (n, 2)-SA objects, we prove that this result holds
even for n = 3.

2 Sketch of the model and basic definitions

In this paper, we consider distributed systems in which asynchronous processes communicate
via shared objects. To limit the number of processes that can concurrently access an object,
we consider shared objects with ports: to apply an operation on an object, a process chooses
one of its ports, invokes the operation at that port, and waits for the response of the operation
at that port before invoking another operation. No two operations are allowed to be applied
simultaneously on the same port, otherwise the behavior of the object is arbitrary. So an
object with n ports can be accessed concurrently by at most n processes. An execution of
operations applied to an object is well formed if each operation invoked at a port of the object
returns before another operation is invoked at that port. Note that a sequential execution of
operations on an (n, k)-SA object, i.e., an execution where each operation completes before
the next operation starts, is necessarily well formed.

1 Intuitively, an object is linearizable if it behaves as if all operations, including concurrent ones, are
applied sequentially: each operation appears to take effect instantaneously at some distinct point
between its invocation and response [8].

F. de Azevedo Piovezan, V. Hadzilacos, and S. Toueg 16:3

I Definition 1. An (n, k)-set agreement object is an n-ported object that allows processes
to invoke ProposeSA operations, each with some proposal value v ∈ I (where |I| ≥ n), and
the responses of the ProposeSA operations satisfy the following two properties in every
well-formed execution:

Validity: the value returned by each operation is either its proposal value or the proposal
value of some previously invoked ProposeSA operation.
k-Agreement: at most k different values are returned by the invocations of ProposeSA
operations.

For the rest of this section, O is an (n, k)-set agreement object. As we mentioned in the
introduction, O is not necessarily linearizable, but of course it can be accessed sequentially.
A sequential execution of operations on O can be modelled by a sequence of triples as follows:

I Definition 2. A finite or infinite sequential execution (of operations) on O is a sequence
of the form (p1, v1, u1)(p2, v2, u2) . . . , where the i-th operation on O is a ProposeSA(vi) at
port pi of O that returns ui.

I Definition 3. The sequential behaviour of O is the set of all possible sequential execu-
tions of operations on O.

Thus, the sequential behaviour of O is a set of sequences of the form (p1, v1, u1)(p2, v2, u2)

I Notation 4.
If a sequence S is in the sequential behaviour of O, i.e., S is a sequential execution of
operations on O, we write S ∈ O.
If S ∈ O and the ProposeSA(v) operation applied immediately after S on port pi of O

can return the value u, we write S(pi, v, u) ∈ O.
If S ∈ O but the ProposeSA(v) operation applied immediately after S on port pi of O

can not return the value u, we write S(pi, v, 6=u) ∈ O.

Intuitively, object O is deterministic if for every finite sequential execution of operations
S on O the following holds: if S is executed on O, and then a ProposeSA(v) operation is
applied on port p of O, the response of that operation is uniquely determined by S, p, and v.
More precisely:

I Definition 5. O is deterministic if for every finite S ∈ O, every port p, and all values
v, u, u′, if S(p, v, u) ∈ O and S(p, v, u′) ∈ O, then u = u′.

Intuitively, O is linearizable if each operation on O appears to take effect instantaneously
between its invocation and its response (even in the presence of concurrent operations) [8].

I Definition 6. O is linearizable if in every well-formed execution of operations E on O,
each operation has a distinct linearization point, between its invocation and its response,
such that E appears to be one of the sequential executions of operations S ∈ O, where the
operations of S occur in the order of their linearization points in E.2

Because of the above definition, if O is linearizable we can view any well-formed execution
of operations on O as one of the sequences S ∈ O.

2 For simplicity, this definition assumes that all operations of E are complete, i.e., each one has a response.
If E contains incomplete operations, one is allowed to discard some incomplete operations and complete
the remaining ones by returning some value, before linearizing the now “complete” E.

OPODIS 2019

16:4 On Deterministic Linearizable Set Agreement Objects

I Notation 7. If an (n, k)-SA object is both deterministic and linearizable, we say that it is
an (n, k)-DLSA object.

In the 2-consensus task, each of two processes has an input value and must output one of
the inputs, such that both processes output the same value. Intuitively, we say that O can
be used to solve 2-consensus, if two processes can solve the 2-consensus task using registers
and copies of O initialized appropriately. More precisely:

I Definition 8. We say that O can be used to solve 2-consensus if two processes can
solve the 2-consensus task using copies of O (each of which may be initialized by applying
some finite sequential execution of operations on O) and registers.3

3 Oblivious (3, 2)-DLSA objects can be used to solve 2-consensus

In this section, we focus on oblivious (n, k)-DLSA objects, that is, (n, k)-DLSA objects that
behave the same regardless of the port to which operations are applied. We show that for
n ≥ 3, oblivious (n, 2)-DLSA objects can be used to solve 2-consensus, and thus they are not
equivalent to the (n, 2)-SA task.

We first define oblivious (n, k)-DLSA objects more precisely as follows:

I Definition 9. Let O be an (n, k)-DLSA object. O is oblivious if for all finite sequen-
tial executions of operations S ∈ O, ports pi, pj, and values u, v, the following holds:
If S(pi, u, v) ∈ O then S(pj , u, v) ∈ O.

Thus, henceforth we omit ports from sequential executions of operations on oblivi-
ous (n,k)-SA objects, e.g., instead of S = (p1, v1, u1)(p2, v2, u2) . . . (pk, vk, uk), we write
S = (v1, u1)(v2, u2) . . . (vk, uk).

By the validity and the k-set agreement properties, it is clear that the first ProposeSA
operation applied to an (n, k)-DLSA object must return its own proposal value and the
second must return either its own proposal value (allowed only if k ≥ 2) or the proposal
value of the first. Thus,

I Observation 10. Let O be an oblivious (n, k)-DLSA object. For all values a, a′, b, b′, if
(a, a′)(b, b′) ∈ O then a = a′ and b′ ∈ {a, b}.

Suppose an oblivious (n, k)-DLSA object O has a finite sequential execution of operations S

such that, after S has been applied to O, a process proposing a and another process proposing b

can determine the order in which their propose operations were executed. Then O can be
used to solve 2-consensus as we now explain.

I Definition 11. Let O be an oblivious (n, k)-DLSA object. Let a, b be two (not necessarily
distinct) proposal values, and let S ∈ O. Let a′, a′′, b′ be the unique values such that:{

S(b, b′)(a, a′) ∈ O

S(a, a′′) ∈ O

If a′ 6= a′′, we say “a notices b after S”, denoted a
S−→ b.

If a′ = a′′, we say “a does not notice b after S”, denoted a 6 S−→ b.

3 Note that this solution is allowed to use registers, in addition to copies of O; allowing the use of registers
in solutions and object implementations is standard.

F. de Azevedo Piovezan, V. Hadzilacos, and S. Toueg 16:5

If S is the empty sequence, we simply say that a notices b, denoted a → b, or a does
not notice b, denoted a 6→ b.

I Observation 12. Let O be an oblivious (n, k)-DLSA object. By Observation 10 and
Definition 11, we have that for all distinct proposal values a, b:

a→ b if and only if (b, b)(a, b) ∈ O

a 6→ b if and only if (b, b)(a, a) ∈ O

I Definition 13. Let O be an oblivious (n, k)-DLSA object. We say that O is good if there
exist a finite sequential execution S ∈ O and proposal values a, b such that a

S−→ b and b
S−→ a.

I Lemma 14. Let O be an oblivious (n, k)-DLSA object. If O is good, then O can be used
to solve 2-consensus.

Proof. Let O be an oblivious (n, k)-DLSA object and assume it is good. Since O is good,
there exists a finite sequential execution S ∈ O and two values a, b such that a

S−→ b and b
S−→ a.

By the definition of S−→, it follows that there exist a′, a′′, b′, b′′ such that a′ 6= a′′, b′ 6= b′′ and:

S(a, a′)(b, b′′) ∈ O (1)
S(b, b′)(a, a′′) ∈ O (2)

To solve 2-consensus, O is first initialized by applying S to it. Two processes, p and q,
can now solve 2-consensus using this initialized O and two registers, Rp (written only by p)
and Rq (written only by q), by executing the following algorithm. We assume that p and q

use different ports when accessing O, so their access to O is guaranteed to be well-formed.

Propose(vp) by process p

1 Rp := vp

2 ret := ProposeSA(a) on a port of O

3 if ret = a′

4 decide Rp

5 else // ret = a′′

6 decide Rq

Propose(vq) by process q

1 Rq := vq

2 ret := ProposeSA(b) on a port of O

3 if ret = b′

4 decide Rq

5 else // ret = b′′

6 decide Rp

Since O is linearizable (and it is accessed in a well-formed manner), we can regard the
ProposeSA operations of p and q as atomic, and thus the ProposeSA operations are totally
ordered. From the algorithm and (1), (2) it is clear that each process decides the value it reads
from the register it writes if it is the first to execute a ProposeSA operation; otherwise, it
decides the value it reads from the register written by the other process. Therefore agreement
and validity hold provided that the process that reads the register written by the other
process (in its Line 6) does so after the other process has written into that register (in its
Line 1). To see that if process p reads register Rq, p does so after process q has written into
Rq, note that process p reads Rq if and only if its ProposeSA operation does not return
a′. By (1) and (2), this means that q executed its ProposeSA operation (in Line 2) before
p executes its ProposeSA operation; and therefore q writes into Rq (in its Line 1) before p

reads Rq (in its Line 6). A similar argument applies to q. J

We will now prove that oblivious (3, 2)-DLSA objects that are not good have some other
properties that can also be exploited to solve 2-consensus.

OPODIS 2019

16:6 On Deterministic Linearizable Set Agreement Objects

I Lemma 15. Let O be an oblivious (3, 2)-DLSA object. If O is not good, the following
holds. For all distinct proposal values u, v, w, if v 6→ u then w → u.

Proof. Let O be an oblivious (3, 2)-DLSA object and assume it is not good. Suppose v 6→ u.
By Observation 12, (u, u)(v, v) ∈ O. Furthermore, if w is proposed after that, the response
of this operation cannot be w, by the 2-agreement property (see the left branch of the figure
below). So (u, u)(v, v)(w, 6=w) ∈ O.

Assume for contradiction that w 6→ u. By Observation 12 (u, u)(w, w) ∈ O. Furthermore,
if v is proposed after that, the response of this operation cannot be v, by the 2-agreement
property (right branch of the figure below). So (u, u)(w, w)(v, 6=v) ∈ O.

Let S = (u, u). Since S(v, v) ∈ O and S(w, w)(v, 6=v) ∈ O, v
S−→ w. Similarly, w

S−→ v,
and so O is good, a contradiction. J

I Lemma 16. Let O be an oblivious (3, 2)-DLSA object. If O is not good, the following
holds. For all distinct proposal values u, v, w, if v 6→ u then all of the relationships illustrated
in the diagram below hold:

Proof. Let O be an oblivious (3, 2)-DLSA object and assume it is not good. Suppose v 6→ u.
We prove each of the arrows in turn:

w → u: Since v 6→ u, Lemma 15 implies w → u.
u 6→ w: Because O is not good and w → u, it follows that u 6→ w.
v → w: Since u 6→ w, Lemma 15 implies v → w.
w 6→ v: Because O is not good and v → w, it follows that w 6→ v.
u→ v: Since w 6→ v, Lemma 15 implies u→ v. J

I Lemma 17. Let O be an oblivious (3, 2)-DLSA object. If O cannot be used to solve
2-consensus, the following holds. For all distinct proposal values u, v, w, if u→ v then there
exists x 6= w such that:

(v, v)(u, v)(w, x) ∈ O

(u, u)(v, v)(w, x) ∈ O

Proof. Let O be an oblivious (3, 2)-DLSA object and assume it cannot be used to solve
2-consensus. So, by Lemma 14, O is not good.

Assume u → v, thus, by Observation 12, (v, v)(u, v) ∈ O. By the definition of DLSA
objects, there exists x such that:

(v, v)(u, v)(w, x) ∈ O (3)

F. de Azevedo Piovezan, V. Hadzilacos, and S. Toueg 16:7

Since O is not good, u→ v implies v 6→ u. By Observation 12, (u, u)(v, v) ∈ O, and so
there exists x′ such that:

(u, u)(v, v)(w, x′) ∈ O (4)

The 2-agreement property implies that x′ ∈ {u, v}, thus w 6= x′.
Because v 6→ u, Lemma 16 implies w 6→ v. By Observation 12, (v, v)(w, w) ∈ O. Thus,

by the 2-agreement property:

(v, v)(w, w)(u, 6=u) ∈ O (5)

Our goal is to show that x = x′. Suppose, for contradiction, that x 6= x′.
Two processes, p and q, can solve 2-consensus using O and two registers, Rp (written

only by p) and Rq (written only by q), by executing the following algorithm. We assume
that p and q use different ports when accessing O, so their access to O is guaranteed to be
well-formed.

Propose(vp) by process p

1 Rp := vp

2 ret := ProposeSA(u) on a port of O

3 if ret = u

4 decide Rp

5 else
6 decide Rq

Propose(vq) by process q

1 Rq := vq

2 ProposeSA(v) on a port of O

3 ret := ProposeSA(w) on a port of O

4 if ret = x′

5 decide Rp

6 else
7 decide Rq

To see why this algorithm is correct, first notice that the possible interleavings of the
three ProposeSA operations by p and q are:

v, u, w (process q, then p, then q)
u, v, w (process p, then q, then q)
v, w, u (process q, then q, then p)

The values returned by O in these three cases are given in (3), (4) and (5), respectively.
We now argue that the algorithm is correct. Termination is obvious since the algorithm is
wait free.

Validity trivially holds if a process decides the value in the register it writes. So consider
the cases where each process decides the value contained in the register of the other.

Process p decides Rq iff its ProposeSA(u) operation returns a value different from u,
which only happens in (3) and (5). In both cases, q has previously proposed v, in which
case q has previously written its proposal into Rq.
Process q decides Rp iff its ProposeSA(w) operation returns x′, which only happens
in (4). In that case, p has previously proposed u, in which case p has previously written
its proposal into Rp.

In both cases, validity holds.
Agreement also follows from (3), (4) and (5). If only one process decides, then agreement

holds trivially. So suppose both processes decide.

If p decides Rp, then its ProposeSA(u) operation returned u, which only happens
in (4). So q receives x′ as the response of its ProposeSA(w) operation, and thus q also
decides Rp.

OPODIS 2019

16:8 On Deterministic Linearizable Set Agreement Objects

If p decides Rq, then its ProposeSA(u) operation returned a value different from u,
which only happens in (3) and (5). In those cases, q receives x 6= x′ (in (3)) or w 6= x′ (in
(5)) as the response of its ProposeSA(w) operation. Either way, the value q receives is
different from x′, and thus q also decides Rq.

In both cases, agreement holds.
We have shown that O can be used to solve 2-consensus, a contradiction. Therefore,

x = x′, as desired. J

I Lemma 18. Let O be an oblivious (3, 2)-DLSA object. If O cannot be used to solve
2-consensus, the following holds. For all distinct proposal values u, v, w, if u → v then
(v, v)(w, w)(u, v) ∈ O.

Proof. Let O be an oblivious (3, 2)-DLSA object and assume it cannot be used to solve
2-consensus. So, by Lemma 14, O is not good.

Assume u→ v. By Lemma 16, w 6→ v, therefore (v, v)(w, w) ∈ O (Observation 12). Also,
there exists x′ such that (v, v)(w, w)(u, x′) ∈ O. By the 2-agreement property, x′ ∈ {v, w}. If
x′ = v, we are done, so assume, for contradiction, that x′ = w, i.e., (v, v)(w, w)(u, w) ∈ O(*).

Since u→ v, by Lemma 17, there exists x 6= w such that (v, v)(u, v)(w, x) ∈ O, in other
words, (v, v)(u, v)(w, 6=w) ∈ O (**). Let S = (v, v); then (*) and (**) imply that u

S−→ w and
w

S−→ u. Thus O is good, a contradiction. So it must be that x′ = v. J

We are now ready to prove the following theorem:

I Theorem 19. Every oblivious (3, 2)-DLSA object can be used to solve 2-consensus.

Proof. Let O be an oblivious (3, 2)-DLSA object and let a, b, c be three distinct proposal
values of O. Suppose, for contradiction, that O cannot be used to solve 2-consensus. By
Lemma 14, O is not good.

Because O is not good, either a 6→ b or b 6→ a. Without loss of generality, assume b 6→ a.
By Lemma 16, we have:

I Observation 20. All of the relationships among a, b, and c illustrated in the diagram below
hold:

By Observation 20, c→ a. Applying Lemma 18 with c = u, a = v and b = w, it follows
that (a, a)(b, b)(c, a) ∈ O. By the 2-agreement property, if we then propose b, the return
value of this operation cannot be c. Therefore:

(a, a)(b, b)(c, a)(b, 6=c) ∈ O (6)

By Observation 20, b→ c. Applying Lemma 18 with b = u, c = v and a = w, it follows
that (c, c)(a, a)(b, c) ∈ O (*). Furthermore, since c→ a, by Lemma 17 with c = u, a = v and
b = w, there exists x 6= b such that:

(a, a)(c, a)(b, x) ∈ O

(c, c)(a, a)(b, x) ∈ O

F. de Azevedo Piovezan, V. Hadzilacos, and S. Toueg 16:9

By (*) and the fact that O is deterministic, x = c. Thus, (a, a)(c, a)(b, c) ∈ O. Now let y

be such that

(a, a)(c, a)(b, c)(b, y) ∈ O

By the 2-agreement property, y ∈ {a, c}. If y = a, for S = (a, a)(c, a), we have S(b, c)(b, a) ∈
O. Therefore b

S−→ b, contradicting the fact that O is not good. Thus y = c and

(a, a)(c, a)(b, c)(b, c) ∈ O (7)

To solve 2-consensus, O is first initialized by applying S = (a, a) to it. Two processes,
p and q, can now solve 2-consensus using this initialized O and two registers, Rp (written
only by p) and Rq (written only by q), by executing the following algorithm. We assume
that p and q use different ports when accessing O, so their access to O is guaranteed to be
well-formed.

Propose(vp) by process p

1 Rp := vp

2 ret := ProposeSA(b) on a port of O

3 if ret = b

4 decide Rp

5 else
6 decide Rq

Propose(vq) by process q

1 Rq := vq

2 ProposeSA(c) on a port of O

3 ret := ProposeSA(b) on a port of O

4 if ret 6= c

5 decide Rp

6 else
7 decide Rq

To see why this algorithm is correct, first notice that the possible interleavings of the
three ProposeSA operations by p and q are:

b, c, b (process p, then q, then q)
c, b, b (process q, then p, then q)
c, b, b (process q, then q, then p)

Notice that the second and third interleavings have the same sequence of proposal values.
The values returned by O in each of those cases is given in (6) and (7), under the assumption
that the object is initialized by applying (a, a) to it. We now argue that the algorithm is
correct; the arguments are similar to those of Lemma 17. Termination is obvious since the
algorithm is wait free.

Validity trivially holds if a process decides the value in the register it writes. So consider
the cases where each process decides the value contained in the register of the other.

Process p decides Rq iff its ProposeSA(b) operation returns a value different from b,
which only happens in (7). In that case, q has previously proposed c, in which case q has
previously written its proposal into Rq.
Process q decides Rp iff its ProposeSA(b) operation returns a value different from c,
which only happens in (6). In that case, p has previously proposed b, in which case p has
previously written its proposal into Rp.

In both cases, validity holds.
Agreement also follows from the properties of O’s specification that we derived above. If

only one process decides, then agreement holds trivially. So suppose both processes decide.

OPODIS 2019

16:10 On Deterministic Linearizable Set Agreement Objects

If p decides Rp, then its ProposeSA(b) operation returned b, which only happens in (6).
So q receives a value different from c as the response of its ProposeSA(b) operation,
and thus q also decides Rp.
If p decides Rq, then its ProposeSA(b) operation returned a value different from b, which
only happens in (7). So q receives c as the response of its ProposeSA(b) operation, and
thus q also decides Rq.

In both cases, agreement holds.
Under the assumption that O cannot be used to solve 2-consensus, we have shown that

O can be used to solve 2-consensus, a contradiction. We conclude that O can indeed be used
to solve 2-consensus. J

I Corollary 21. For all n ≥ 3, every oblivious (n, 2)-DLSA object can be used to solve
2-consensus.

I Theorem 22. For all n ≥ 3, there is no oblivious (n, 2)-DLSA object that is equivalent to
the (n, 2)-SA task.

Proof. It is known that it is impossible to solve the 2-consensus task using an arbitrary
solution to the (n, 2)-SA task (and registers) [1]. The theorem now follows immediately by
Corollary 21. J

4 (4, 2)-DLSA objects can be used to solve 2-consensus

We now prove that for n ≥ 4, (n, 2)-DLSA objects can be used to solve 2-consensus, which
implies that they are not equivalent to the (n, 2)-SA task.

Recall that (4, 2)-DLSA objects accept at least 4 different values as proposal values, and
have 4 ports to which ProposeSA operations may be applied. The proof that such objects
can be used to solve 2-consensus is simpler than the oblivious (3, 2)-DLSA case.

By the validity and the k-set agreement properties, it is clear that the first ProposeSA
operation applied to an (n, k)-DLSA object must return its own proposal value and the
second must return either its own proposal value (allowed only if k ≥ 2) or the proposal
value of the first. Thus,

I Observation 23. Let O be an (n, k)-DLSA object. For any two (not necessarily distinct)
ports p1, p2 and for all values a, a′, b, b′, if (p1, a, a′)(p2, b, b′) ∈ O then a = a′ and b′ ∈ {a, b}.

Suppose an (n, k)-DLSA object O has a finite sequential execution of operations S such
that, after S has been applied to O, a process proposing a to some port pi and another
process proposing b to some port pj can determine the order in which their propose operations
were executed. Then O can be used to solve 2-consensus as we now explain.

I Definition 24. Let O be an (n, k)-DLSA object. Let a, b be two (not necessarily distinct)
proposal values, let pi, pj be two (not necessarily distinct) ports, and let S ∈ O. Let a′, a′′, b′

be the unique values such that:{
S(pj , b, b′)(pi, a, a′) ∈ O

S(pi, a, a′′) ∈ O

If a′ 6= a′′, we say that (pi, a) notices (pj , b) after S, denoted (pi, a) S−→ (pj , b).
If a′ = a′′, we say that (pi, a) does not notice (pj , b) after S, denoted (pi, a) 6 S−→ (pj , b).

F. de Azevedo Piovezan, V. Hadzilacos, and S. Toueg 16:11

If S is the empty sequence, we simply say (pi, a) notices (pj , b), denoted (pi, a)→ (pj , b),
or (pi, a) does not notice (pj , b), denoted (pi, a) 6→ (pj , b).

I Observation 25. Let O be an (n, k)-DLSA object. By Observation 23 and Definition 24, we
have that for all (not necessarily distinct) ports pi, pj and for all distinct proposal values a, b:

(pi, a)→ (pj , b) if and only if (pj , b, b)(pi, a, b) ∈ O

(pi, a) 6→ (pj , b) if and only if (pj , b, b)(pi, a, a) ∈ O

I Definition 26. Let O be an (n, k)-DLSA object. We say that O is good if there exist
a finite sequential execution S ∈ O, two proposal values a, b, and two distinct ports pi, pj

such that (pi, a) S−→ (pj , b) and (pj , b) S−→ (pi, a).

I Lemma 27. Let O be an (n, k)-DLSA object. If O is good, then O can be used to solve
2-consensus.

Proof. Let O be a (n, k)-DLSA object and assume it is good. Since O is good, there exists
a finite sequential execution S ∈ O two values a, b and two distinct ports pi, pj such that
(pi, a) S−→ (pj , b) and (pj , b) S−→ (pi, a).

By the definition of S−→, it follows that there exist a′, a′′, b′, b′′ such that a′ 6= a′′, b′ 6= b′′

and:

S(pi, a, a′)(pj , b, b′′) ∈ O (8)
S(pj , b, b′)(pi, a, a′′) ∈ O (9)

To solve 2-consensus, O is first initialized by applying S to it. Two processes, p and q,
can now solve 2-consensus using this initialized O and two registers, Rp (written only by p)
and Rq (written only by q), by executing the following algorithm. Recall that pi and pj are
distinct, so the two processes apply their ProposeSA operations to different ports, ensuring
that there are no concurrent operations applied to any port.

Propose(vp) by process p

1 Rp := vp

2 ret := ProposeSA(a) on port pi of O

3 if ret = a′

4 decide Rp

5 else // ret = a′′

6 decide Rq

Propose(vq) by process q

1 Rq := vq

2 ret := ProposeSA(b) on port pj of O

3 if ret = b′

4 decide Rq

5 else // ret = b′′

6 decide Rp

From the algorithm and (8), (9) it is clear that each process decides the value it reads
from the register it writes if it is the first to execute a ProposeSA operation; otherwise, it
decides the value it reads from the register written by the other process. Therefore agreement
and validity hold provided that the process that reads the register written by the other
process (in its Line 6) does so after the other process has written into that register (in its
Line 1). To see that if process p reads register Rq, p does so after process q has written into
Rq, note that process p reads Rq if and only if its ProposeSA operation does not return
a′. By (8) and (9), this means that q executed its ProposeSA operation (in Line 2) before
p executes its ProposeSA operation; and therefore q writes into Rq (in its Line 1) before p

reads Rq (in its Line 6). A similar argument applies to q. J

OPODIS 2019

16:12 On Deterministic Linearizable Set Agreement Objects

We will now prove that (4, 2)-DLSA objects that are not good have some other properties
that can also be exploited to solve 2-consensus.

I Lemma 28. Let O be a (4, 2)-DLSA object. If O is not good, the following holds. For all
distinct proposal values u, v, w and all ports pi, pj , pk such that pj 6= pk, if (pj , v) 6→ (pi, u)
then (pk, w)→ (pi, u).

Proof. Let O be a (4, 2)-DLSA object and assume that it is not good. Suppose (pj , v) 6→ (pi, u).
By Observation 25, (pi, u, u)(pj , v, v) ∈ O. Furthermore, if w is proposed after that on port
pk, the response of this operation cannot be w, by the 2-agreement property (see the left
branch of the figure below). So (pi, u, u)(pj , v, v)(pk, w, 6=w) ∈ O.

Now assume, for contradiction, that (pk, w) 6→ (pi, u). Then, by Observation 25,
(pi, u, u)(pk, w, w) ∈ O. Furthermore, if v is proposed after that on port pj , the response of
this operation cannot be v, by the 2-agreement property (right branch of the figure below).
So (pi, u, u)(pk, w, w)(pj , v, 6=v) ∈ O.

Let S = (pi, u, u). Since S(pj , v, v) ∈ O and S(pk, w, w)(pj , v, 6=v) ∈ O, (pj , v) S−→ (pk, w).
Similarly, (pk, w) S−→ (pj , v), and so O is good, a contradiction. J

We are now ready to prove the following theorem:

I Theorem 29. Every (4, 2)-DLSA object can be used to solve 2-consensus.

Proof. Let O be a (4, 2)-DLSA object, let p1, p2, p3, p4 be distinct ports and let a, b, c, d

be distinct proposal values. Suppose, for contradiction, that O cannot be used to solve
2-consensus. By Lemma 27, O is not good.

Because O is not good, either (p2, b) 6→ (p1, a) or (p1, a) 6→ (p2, b). Without loss of
generality, assume that (p2, b) 6→ (p1, a) (*).

I Claim 29.1. All of the relationships among (p1, a), (p2, b), and (p3, c) illustrated in the
diagram below hold:

Proof. We prove each of the relationships in turn:

(p2, b) 6→ (p1, a): this is (*).
(p3, c)→ (p1, a): since (p2, b) 6→ (p1, a), Lemma 28 implies (p3, c)→ (p1, a).
(p1, a) 6→ (p3, c): since O is not good and (p3, c)→ (p1, a), we have (p1, a) 6→ (p3, c).
(p2, b)→ (p3, c): since (p1, a) 6→ (p3, c), Lemma 28 implies (p2, b)→ (p3, c).

F. de Azevedo Piovezan, V. Hadzilacos, and S. Toueg 16:13

(p3, c) 6→ (p2, b): since O is not good and (p2, b)→ (p3, c), we have (p3, c) 6→ (p2, b).
(p1, a)→ (p2, b): since (p3, c) 6→ (p2, b), Lemma 28 implies (p1, a)→ (p2, b). J

Now consider what happens to port p4 and value d:

(p4, d)→ (p2, b): by Claim 29.1, (p3, c) 6→ (p2, b). Then, by Lemma 28, (p4, d)→ (p2, b).
(p2, b) 6→ (p4, d): because (p4, d)→ (p2, b) and because O is not good, it must be the case
that (p2, b) 6→ (p4, d).
(p1, a)→ (p4, d): because (p2, b) 6→ (p4, d), by Lemma 28 it follows that (p1, a)→ (p4, d).
(p4, d)→ (p1, a): by Claim 29.1, (p2, b) 6→ (p1, a). Then, by Lemma 28, (p4, d)→ (p1, a).

Since (p1, a)→ (p4, d) and (p4, d)→ (p1, a), O is good, a contradiction. Therefore O can
be used to solve 2-consensus, as desired. J

I Corollary 30. For all n ≥ 4, every (n, 2)-DLSA object can be used to solve 2-consensus.

I Theorem 31. For all n ≥ 4, there is no (n, 2)-DLSA object that is equivalent to the
(n, 2)-SA task.

Proof. It is known that it is impossible to solve the 2-consensus task using an arbitrary
solution to the (n, 2)-SA task (and registers) [1]. The theorem now follows immediately by
Corollary 30. J

5 Existence of a deterministic (n, k)-SA object equivalent to the
(n, k)-SA task

In this section we prove that for all n and k, there is a deterministic (n, k)-set agreement
object OD that is equivalent to the (n, k)-set agreement task. This object is not linearizable,
but its behaviour is deterministic when it is accessed sequentially (so concurrency is its only
source of non-determinism).

Fix any (n, k)-SA object that is equivalent to the (n, k)-SA task. As we mentioned in
the introduction, such objects exist [1, 6]; for concreteness we choose here the linearizable
(n, k)-SA object OL defined in [4]. Since OL is equivalent to the (n, k)-SA task: (a) given
OL, it is possible to solve the (n, k)-SA task, and (b) given any algorithm that solves the
(n, k)-SA task (and registers), it is possible to implement OL. The simple algorithm of
Figure 1 shows how to use OL and a shared register R (initialized to ⊥) to implement a
deterministic (n, k)-set agreement object OD:

It is easy to see that OD behaves as follows:
When accessed sequentially, OD behaves deterministically: every ProposeSA operation
on OD returns the proposal value of the first ProposeSA operation on OD. In other
words, in sequential executions, OD behaves like a consensus object.
In all executions, OD respects validity and k-agreement.

Thus, OD is indeed a deterministic (n, k)-set agreement object.

OPODIS 2019

16:14 On Deterministic Linearizable Set Agreement Objects

ProposeSA(v) on port pi of OD

1 temp := R

2 if temp = ⊥
3 temp := ProposeSA(v) on port pi of OL

4 R := temp
5 decide temp

Figure 1 Implementation of OD using OL and registers.

I Theorem 32. For all n ≥ k ≥ 1, the deterministic (n, k)-SA object OD is equivalent to
the (n, k)-SA task.

Proof. Clearly OD can be used to solve the (n, k)-SA task. It remains to show that given any
algorithm An,k that solves the (n, k)-SA task (and registers), it is possible to implement OD.
Since OL is equivalent to the (n, k)-SA task, it can be implemented using An,k (and registers).
Plugging this implementation of OL in the algorithm of Figure 1, gives an implementation of
OD that uses An,k (and registers). J

Note that for k ≥ 2, the deterministic object OD is not linearizable, even though the
object OL is: a concurrent execution of two ProposeSA operations on OD with different
proposal values may result in each operation returning its own proposal, but this behaviour
is not possible in any sequential execution of these operations on OD.

6 Remark on object initialization

To obtain our results, we gave several algorithms that solve 2-consensus using (a single copy
of) some (n, k)-DLSA object O that was initialized by applying some sequence of operations.
The reader may ask whether these results still apply if algorithms solving 2-consensus are
required to use only uninitialized copies of O. The answer is yes. This is because, by a result
of [2], the ability to solve 2-consensus using an object does not depend on whether this object
can be initialized to a specific state or not.

7 Conclusion and open problems

In this paper, we proved that for all n ≥ 4 there is no deterministic and linearizable (n, 2)-set
agreement object that is equivalent to the (n, 2)-set agreement task, and this is because
any such object can be used to solve 2-consensus. We conjecture that for all n > k > 2
there is no deterministic linearizable (n, k)-set agreement object that is equivalent to the
(n, k)-set agreement task, and this is because any such object can be used to solve some
(n′, k′)-set agreement task that is strictly stronger than the (n, k)-set agreement task according
to the partial order of set agreement tasks shown by Chaudhuri and Reiners [6]. The techniques
we used in this paper to prove Theorems 19 and 29, however, do not seem appropriate to
approach this conjecture: As n and k increase, the number of sequential behaviours for the
first k accesses of an (n, k)-DLSA object increases exponentially with k, and this would be
overwhelming for k ≥ 3.

We also proved that there is no oblivious deterministic and linearizable (3, 2)-set agreement
object that is equivalent to the (3, 2)-set agreement task; the case of (not necessarily oblivious)
(3, 2)-set agreement objects is still open.

F. de Azevedo Piovezan, V. Hadzilacos, and S. Toueg 16:15

References
1 Elizabeth Borowsky and Eli Gafni. The implication of the Borowsky-Gafni simulation on the

set-consensus hierarchy. CSD (Series). UCLA Computer Science Department, 1993. URL:
https://books.google.ca/books?id=gpNeGwAACAAJ.

2 Elizabeth Borowsky, Eli Gafni, and Yehuda Afek. Consensus Power Makes (Some) Sense!
(Extended Abstract). In Proceedings of the Thirteenth Annual ACM Symposium on Principles
of Distributed Computing, PODC ’94, pages 363–372, New York, NY, USA, 1994. ACM.
doi:10.1145/197917.198126.

3 Armando Castañeda, Michel Raynal, and Sergio Rajsbaum. Specifying Concurrent Problems:
Beyond Linearizability. CoRR, abs/1507.00073, 2015. arXiv:1507.00073.

4 David Yu Cheng Chan, Vassos Hadzilacos, and Sam Toueg. On the Number of Objects with
Distinct Power and the Linearizability of Set Agreement Objects. In Andréa W. Richa, editor,
31st International Symposium on Distributed Computing (DISC 2017), volume 91 of Leibniz
International Proceedings in Informatics (LIPIcs), pages 12:1–12:14, Dagstuhl, Germany, 2017.
Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik. doi:10.4230/LIPIcs.DISC.2017.12.

5 Soma Chaudhuri. More Choices Allow More Faults: Set Consensus Problems in Totally
Asynchronous Systems. Inf. Comput., 105(1):132–158, July 1993. doi:10.1006/inco.1993.
1043.

6 Soma Chaudhuri and Paul Reiners. Understanding the Set Consensus Partial Order Using the
Borowsky-Gafni Simulation (Extended Abstract). In Proceedings of the 10th International
Workshop on Distributed Algorithms, WDAG ’96, pages 362–379, London, UK, UK, 1996.
Springer-Verlag. URL: http://dl.acm.org/citation.cfm?id=645953.675630.

7 Maurice Herlihy and Nir Shavit. The Topological Structure of Asynchronous Computability.
J. ACM, 46(6):858–923, November 1999. doi:10.1145/331524.331529.

8 Maurice Herlihy and Jeannette Wing. Linearizability: A Correctness Condition for Concurrent
Objects. ACM Trans. Program. Lang. Syst., 12(3):463–492, July 1990. doi:10.1145/78969.
78972.

9 Gil Neiger. Set-Linearizability. In Proceedings of the Thirteenth Annual ACM Symposium
on Principles of Distributed Computing, PODC ’94, pages 396–, New York, NY, USA, 1994.
ACM. doi:10.1145/197917.198176.

10 Michael Saks and Fotios Zaharoglou. Wait-free K-set Agreement is Impossible: The Topology
of Public Knowledge. In Proceedings of the Twenty-fifth Annual ACM Symposium on Theory
of Computing, STOC ’93, pages 101–110, New York, NY, USA, 1993. ACM. doi:10.1145/
167088.167122.

OPODIS 2019

https://books.google.ca/books?id=gpNeGwAACAAJ
https://doi.org/10.1145/197917.198126
http://arxiv.org/abs/1507.00073
https://doi.org/10.4230/LIPIcs.DISC.2017.12
https://doi.org/10.1006/inco.1993.1043
https://doi.org/10.1006/inco.1993.1043
http://dl.acm.org/citation.cfm?id=645953.675630
https://doi.org/10.1145/331524.331529
https://doi.org/10.1145/78969.78972
https://doi.org/10.1145/78969.78972
https://doi.org/10.1145/197917.198176
https://doi.org/10.1145/167088.167122
https://doi.org/10.1145/167088.167122

	Introduction
	Sketch of the model and basic definitions
	Oblivious (3,2)-DLSA objects can be used to solve 2-consensus
	(4,2)-DLSA objects can be used to solve 2-consensus
	Existence of a deterministic (n,k)-SA object equivalent to the (n,k)-SA task
	Remark on object initialization
	Conclusion and open problems

