
Asymmetric Distributed Trust
Christian Cachin
University of Bern, Switzerland
https://crypto.unibe.ch/cc/
cachin@inf.unibe.ch

Björn Tackmann
DFINITY Foundation, Zürich, Switzerland
bjoern@dfinity.org

Abstract
Quorum systems are a key abstraction in distributed fault-tolerant computing for capturing trust
assumptions. They can be found at the core of many algorithms for implementing reliable broadcasts,
shared memory, consensus and other problems. This paper introduces asymmetric Byzantine quorum
systems that model subjective trust. Every process is free to choose which combinations of other
processes it trusts and which ones it considers faulty. Asymmetric quorum systems strictly generalize
standard Byzantine quorum systems, which have only one global trust assumption for all processes.
This work also presents protocols that implement abstractions of shared memory and broadcast
primitives with processes prone to Byzantine faults and asymmetric trust. The model and protocols
pave the way for realizing more elaborate algorithms with asymmetric trust.

2012 ACM Subject Classification Theory of computation → Cryptographic protocols; Software and
its engineering → Distributed systems organizing principles

Keywords and phrases Quorums, consensus, distributed trust, blockchains, cryptocurrencies

Digital Object Identifier 10.4230/LIPIcs.OPODIS.2019.7

Related Version A complete version of the paper is available athttp://arxiv.org/abs/1906.09314.

Funding This work has been supported in part by the European Union’s Horizon 2020 research and
innovation programme under grant agreement No. 780477 PRIViLEDGE.

Acknowledgements The authors thank Orestis Alpos, Sabine Brunner, Marko Vukolić, and Luca
Zanolini for interesting discussions. Work done while both authors were at IBM Research - Zurich.

1 Introduction

Byzantine quorum systems [21] are a fundamental primitive for building resilient distributed
systems from untrusted components. Given a set of nodes, a quorum system captures a
trust assumption on the nodes in terms of potentially malicious protocol participants and
colluding groups of nodes. Based on quorum systems, many well-known algorithms for reliable
broadcast, shared memory, consensus and more have been implemented; these are the main
abstractions to synchronize the correct nodes with each other and to achieve consistency
despite the actions of the faulty, so-called Byzantine nodes.

Traditionally, trust in a Byzantine quorum system for a set of processes P has been
symmetric. In other words, a global assumption specifies which processes may fail, such
as the simple and prominent threshold quorum assumption, in which any subset of P of a
given maximum size may collude and act against the protocol. The most basic threshold
Byzantine quorum system, for example, allows all subsets of up to f < n/3 processes to fail.
Some classic works also model arbitrary, non-threshold symmetric quorum systems [21, 15],
but these have not actually been used in practice.

© Christian Cachin and Björn Tackmann;
licensed under Creative Commons License CC-BY

23rd International Conference on Principles of Distributed Systems (OPODIS 2019).
Editors: Pascal Felber, Roy Friedman, Seth Gilbert, and Avery Miller; Article No. 7; pp. 7:1–7:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/287883882?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://orcid.org/0000-0001-8967-9213
https://crypto.unibe.ch/cc/
mailto:cachin@inf.unibe.ch
https://orcid.org/0000-0003-2793-7541
mailto:bjoern@dfinity.org
https://doi.org/10.4230/LIPIcs.OPODIS.2019.7
http://arxiv.org/abs/1906.09314
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

7:2 Asymmetric Distributed Trust

However, trust is inherently subjective. De gustibus non est disputandum.1 Estimating
which processes will function correctly and which ones will misbehave may depend on personal
taste. A myriad of local choices influences one process’ trust in others, especially because
there are so many forms of “malicious” behavior. Some processes might not even be aware
of all others, yet a process should not depend on unknown third parties in a distributed
collaboration. How can one model asymmetric trust in distributed protocols? Can traditional
Byzantine quorum systems be extended to subjective failure assumptions? How do the
standard protocols generalize to this model?

In this paper, we answer these questions and introduce models and protocols for asymmet-
ric distributed trust. We formalize asymmetric quorum systems for asynchronous protocols,
in which every process can make its own assumptions about Byzantine faults of others.
We introduce several protocols with asymmetric trust that strictly generalize the existing
algorithms, which require common trust.

Our formalization takes up earlier work by Damgård et al. [10] and starts out with the
notion of a fail-prone system that forms the basis of a symmetric Byzantine quorum system.
A global fail-prone system for a process set P contains all maximal subsets of P that might
jointly fail during an execution. In an asymmetric quorum system, every process specifies
its own fail-prone system and a corresponding set of local quorums. These local quorum
systems satisfy a consistency condition that ranges across all processes and a local availability
condition, and generalize symmetric Byzantine quorum system according to Malkhi and
Reiter [21].

Interest in consensus protocols based on Byzantine quorum systems has surged recently
because of their application to permissioned blockchain networks [6, 1]. Typically run by
a consortium, such distributed ledgers often use Byzantine-fault tolerant (BFT) protocols
like PBFT [7] for consensus that rely on symmetric threshold quorum systems. The Bitcoin
blockchain and many other cryptocurrencies, which triggered this development, started from
different assumptions and use so-called permissionless protocols, in which everyone may
participate. Those algorithms capture the relative influence of the participants on consensus
decisions by an external factor, such as “proof-of-work” or “proof-of-stake.”

A middle ground between permissionless blockchains and BFT-based ones has been
introduced by the blockchain networks of Ripple (https://ripple.com) and Stellar (https:
//stellar.org). Their stated model for achieving network-level consensus uses subjective
trust in the sense that each process declares a local list of processes that it “trusts” in the
protocol.

Consensus in the Ripple blockchain (and for the XRP cryptocurrency on the XRP Ledger)
is executed by its validator nodes. Each validator declares a Unique Node List (UNL),
which are nodes that a given participant trusts. Questions have been raised about the kind
of decentralization offered by the Ripple protocol. Stellar was created as an evolution of
Ripple that shares much of the same design philosophy. The Stellar consensus protocol [22]
powers the Stellar Lumen (XLM) cryptocurrency and introduces federated Byzantine quorum
systems (FBQS); these bear superficial resemblance with our asymmetric quorum systems
but differ technically. However, standard Byzantine quorum systems and FBQS are not
comparable because (1) an FBQS when instantiated with the same trust assumption for all
processes does not reduce to a symmetric quorum system and (2) existing protocols do not
generalize to FBQS.

1 There is no disputing about taste.

https://ripple.com
https://stellar.org
https://stellar.org

C. Cachin and B. Tackmann 7:3

Understanding how such ideas of subjective trust, as manifested in the Ripple and Stellar
blockchains, relate to traditional quorum systems is the main motivation for this work. Our
protocols for asymmetric trust generalize the well-known, classic algorithms in the literature
and therefore look superficially similar. This should be seen as a feature, actually, because
simplicity and modularity are important guiding principles in science.

Our contributions are as follows:
We introduce asymmetric Byzantine quorum systems formally in Section 4 as an extension
of standard Byzantine quorum systems and discuss some of their properties.
In Section 5, we show two implementations of a shared register, with single-writer,
multi-reader regular semantics, using asymmetric Byzantine quorum systems.
We examine broadcast primitives in the Byzantine model with asymmetric trust in
Section 6. In particular, we define and implement Byzantine consistent and reliable
broadcast protocols. The latter primitive is related to a “federated voting” protocol used
by Stellar consensus [22].

The long version of the paper contains more details and all proofs [5].

2 Related work

Damgård et al. [10] introduce some basics of asymmetric trust in the context of synchronous
protocols for secure distributed computation by modeling process-specific fail-prone systems.
They state the consistency property of asymmetric Byzantine quorums but do not prove that
the B3 property is required.

The Ripple consensus protocol is run by an open set of validator nodes. The protocol uses
votes, similar to standard consensus protocols, whereby each validator only communicates
with the validators in its UNL. Each validator chooses its own UNL, which makes it possible for
anyone to participate, in principle, similar to proof-of-work blockchains. Early investigations
suggested that the intersection of the UNLs of every two validators should be at least 20% of
each list [25], assuming that also less than one fifth of the validators in the UNL of every
node might be faulty. An independent analysis by Armknecht et al. [2] later argued that
this bound must be more than 40%. A recent technical report of Chase and MacBrough [9,
Thm. 8] concludes, under the same assumption of f < n/5 faulty nodes in every UNL of
size n, that the UNL overlap should actually be at least 90%.

The Stellar consensus protocol (SCP) also features open membership and lets every node
express its own set of trusted nodes [22]. Generalizing from Ripple’s flat lists of unique nodes,
every node declares a collection of trusted sets called quorum slices, whereby a slice is “the
subset of a quorum convincing one particular node of agreement.” A quorum in Stellar is
a set of nodes “sufficient to reach agreement,” defined as a set of nodes that contains one
slice for each member node. The quorum choices of all nodes together yield a federated
Byzantine quorum systems (FBQS). The Stellar white paper states properties of FBQS and
protocols that build on them. A recent paper of García-Pérez and Gotsman [12] elaborates
on FBQS. Recent papers further describe Stellar’s FBQS [18] and a closely related notion
called personal Byzantine quorum systems [19].

However, these concepts and protocols do not map to known primitives in distributed
computing. The FBQS notion is at odds with the usual notion of a Byzantine quorum system
in the sense that it does not reduce to a symmetric quorum system for symmetric trust
choices.

In contrast to Ripple’s and Stellar’s attempts to formalize subjective trust, our asymmetric
quorum formulation extends the well-established quorum systems that underlie classic

OPODIS 2019

7:4 Asymmetric Distributed Trust

Byzantine consensus. We also introduce several protocols with asymmetric trust that strictly
generalize existing standard algorithms, which have so far required common trust and
knowledge of all nodes.

3 System model

We consider a system of n processes P = {p1, . . . , pn} that communicate with each other.
The processes interact asynchronously with each other through exchanging messages. The
system itself is asynchronous, i.e., the delivery of messages among processes may be delayed
arbitrarily and the processes have no synchronized clocks. Every process is identified by
a name, but such identifiers are not made explicit. We use standard notions of protocols,
events, functionalities, and fair executions from the literature [20, 4]. All processes are linked
by reliable and authenticated point-to-point FIFO channels [14, 4].

A process that follows its protocol during an execution is called correct. On the other
hand, a faulty process may crash or even deviate arbitrarily from its specification, e.g.,
when corrupted by an adversary; such processes are also called Byzantine. We consider only
Byzantine faults here and assume for simplicity that the faulty processes fail right at the
start of an execution.

Some protocols use digital signatures, for which we adopt an idealized implementation
with two operations, signi and verifyi. It follows the standard semantics; details appear in
the long version [5].

4 Asymmetric Byzantine quorum systems

4.1 Symmetric trust
Quorum systems are well-known in settings with symmetric trust. As demonstrated by
many applications to distributed systems, ordinary quorum systems [23] and Byzantine
quorum systems [21] play a crucial role in formulating resilient protocols that tolerate faults
through replication [8]. A quorum system typically ensures a consistency property among
the processes in an execution, despite the presence of some faulty processes.

For the model with Byzantine faults, Byzantine quorum systems have been introduced by
Malkhi and Reiter [21]. This notion is defined with respect to a fail-prone system F ⊆ 2P , a
collection of subsets of P , none of which is contained in another, such that some F ∈ F with
F ⊆ P is called a fail-prone set and contains all processes that may at most fail together in
some execution [21]. A fail-prone system is the same as the basis of an adversary structure,
which was introduced independently by Hirt and Maurer [15].

A fail-prone system captures an assumption on the possible failure patterns that may
occur. It specifies all maximal sets of faulty processes that a protocol should tolerate in an
execution; this means that a protocol designed for F achieves its properties as long as the
set F of actually faulty processes satisfies F ∈ F∗. Here and from now on, the notation A∗
for a system A ⊆ 2P , denotes the collection of all subsets of the sets in A, that is,

I Definition 1 (Byzantine quorum system [21]). A Byzantine quorum system for F is a
collection of sets of processes Q ⊆ 2P , where each Q ∈ Q is called a quorum, such that the
following properties hold:
Consistency: The intersection of any two quorums contains at least one process that is not

faulty, i.e.,

∀Q1, Q2 ∈ Q,∀F ∈ F : Q1 ∩Q2 6⊆ F.

C. Cachin and B. Tackmann 7:5

Availability: For any set of processes that may fail together, there exists a disjoint quorum
in Q, i.e.,

∀F ∈ F : ∃Q ∈ Q : F ∩Q = ∅.

The above notion is also known as a Byzantine dissemination quorum system [21] and allows
a protocol to be designed despite arbitrary behavior of the potentially faulty processes. The
notion generalizes the usual threshold failure assumption for Byzantine faults [24], which
considers that any set of f processes are equally likely to fail.

We say that a set system T dominates another set system S if for each S ∈ S there is
some T ∈ T such that S ⊆ T [11]. In this sense, a quorum system for F is minimal whenever
it does not dominate any other quorum system for F .

Similarly to the threshold case, where n > 3f processes overall are needed to tolerate f

faulty ones in many Byzantine protocols, Byzantine quorum systems can only exist if not
“too many” processes fail.

I Definition 2 (Q3-condition [21, 15]). A fail-prone system F satisfies the Q3-condition,
abbreviated as Q3(F), whenever it holds

∀F1, F2, F3 ∈ F : P 6⊆ F1 ∪ F2 ∪ F3.

In other words, Q3(F) means that no three fail-prone sets together cover the whole system
of processes. A Qk-condition can be defined like this for any k ≥ 2 [15].

The following lemma considers the bijective complement of a process set S ⊆ 2P , which
is defined as S = {P \ S|S ∈ S}, and turns F into a Byzantine quorum system.

I Lemma 3 ([21, Theorem 5.4]). Given a fail-prone system F , a Byzantine quorum system
for F exists if and only if Q3(F). In particular, if Q3(F) holds, then F , the bijective
complement of F , is a Byzantine quorum system.

The quorum system Q = F is called the canonical quorum system of F . According to the
duality between Q and F , properties of F are often ascribed to Q as well; for instance, we
say Q3(Q) holds if and only if Q3(F). However, note that the canonical quorum system
is not always minimal. For instance, if F consists of all sets of f � n/3 processes, then
each quorum in the canonical quorum system has n− f members, but also the family of all
subsets of P with dn+f+1

2 e < n− f processes forms a quorum system.

Core sets. A core set C for F is a minimal set of processes that contains at least one
correct process in every execution. More precisely, C ⊆ P is a core set whenever (1) for all
F ∈ F , it holds P \F ∩C 6= ∅ (and, equivalently, C 6⊆ F) and (2) for all C ′ (C, there exists
F ∈ F such that P \ F ∩ C ′ = ∅ (and, equivalently, C ′ ⊆ F). With the threshold failure
assumption, every set of f + 1 processes is a core set. A core set system C is the minimal
collection of all core sets, in the sense that no set in C is contained in another. Core sets
can be complemented by survivor sets, as shown by Junqueira et al. [16]. This yields a dual
characterization of resilient distributed protocols, which parallels ours using fail-prone sets
and quorums.

4.2 Asymmetric trust
In our model with asymmetric trust, every process is free to make its own trust assumption
and to express this with a fail-prone system. Hence, an asymmetric fail-prone system
F = [F1, . . . ,Fn] consists of an array of fail-prone systems, where Fi denotes the trust
assumption of pi. One often assumes pi 6∈ Fi for practical reasons, but this is not necessary.
This notion has earlier been formalized by Damgård et al. [10].

OPODIS 2019

7:6 Asymmetric Distributed Trust

I Definition 4 (Asymmetric Byzantine quorum system). An asymmetric Byzantine quorum
system for F is an array of collections of sets Q = [Q1, . . . ,Qn], where Qi ⊆ 2P for i ∈ [1, n].
The set Qi ⊆ 2P is called the quorum system of pi and any set Qi ∈ Qi is called a quorum
(set) for pi. It satisfies:
Consistency: The intersection of two quorums for any two processes contains at least one

process for which either process assumes that it is not faulty, i.e.,

∀i, j ∈ [1, n],∀Qi ∈ Qi,∀Qj ∈ Qj ,∀Fij ∈ Fi
∗ ∩ Fj

∗ : Qi ∩Qj 6⊆ Fij .

Availability: For any process pi and any set of processes that may fail together according to
pi, there exists a disjoint quorum for pi in Qi, i.e.,

∀i ∈ [1, n],∀Fi ∈ Fi : ∃Qi ∈ Qi : Fi ∩Qi = ∅.

The existence of asymmetric quorum systems can be characterized with a property that
generalizes the Q3-condition for the underlying asymmetric fail-prone systems as follows.

I Definition 5 (B3-condition). An asymmetric fail-prone system F satisfies the B3-condition,
abbreviated as B3(F), whenever it holds that

∀i, j ∈ [1, n],∀Fi ∈ Fi,∀Fj ∈ Fj ,∀Fij ∈ Fi
∗ ∩ Fj

∗ : P 6⊆ Fi ∪ Fj ∪ Fij

The following result is the generalization of Lemma 3 for asymmetric quorum systems; it
was stated by Damgård et al. [10] without proof. As for symmetric quorum systems, we use
this result and say that B3(Q) holds whenever the asymmetric Q consists of the canonical
quorum systems for F and B3(F) holds. A proof of the following result appears in the long
version [5].

I Theorem 6. An asymmetric fail-prone system F satisfies B3(F) if and only if there exists
an asymmetric quorum system for F.

Kernels. Given a symmetric Byzantine quorum system Q, we define a kernel K as a set of
processes that overlaps with every quorum and that is minimal in this respect. Formally,
K ⊆ P is a kernel of Q if and only if

∀Q ∈ Q : K ∩Q 6= ∅

and

∀K ′ (K : ∃Q ∈ Q : K ∩Q = ∅.

The kernel system K of Q is the set of all kernels of Q.
For example, under a threshold failure assumption where any f processes may fail and

the quorums are all sets of
⌈

n+f+1
2

⌉
processes, every set of

⌊
n−f+1

2
⌋
processes is a kernel.

The definition of a kernel is related to that of a core set in the following sense. For a
given maximal fail-prone system F , consider its canonical quorum system Q = F ; if Q is
minimal, then the kernel system of Q is the same as the core-set system for F .

Asymmetric core sets and kernels. Let F = [F1, . . . ,Fn] be an asymmetric fail-prone
system. An asymmetric core set system C is an array of collections of sets [C1, . . . , Cn] such
that each Ci is a core set system for the fail-prone system Fi. We call a set Ci ∈ Ci a core
set for pi.

Given an asymmetric quorum system Q for F, an asymmetric kernel system for Q is
defined analogously as the array K = [K1, . . . ,Kn] that consists of the kernel systems for all
processes in P with respect to Q; a set Ki ∈ Ki is called a kernel for pi.

C. Cachin and B. Tackmann 7:7

Naïve and wise processes. The faults or corruptions occurring in a protocol execution
with an underlying quorum system imply a set F of actually faulty processes. However, no
process knows F and this information is only available to an observer outside the system.
With a traditional quorum system Q designed for a fail-prone set F , the guarantees of a
protocol usually hold as long as F ∈ F . Recall that such protocol properties apply to correct
processes only but not to faulty ones.

With asymmetric quorums, we further distinguish between two kinds of correct processes,
depending on whether they considered F in their trust assumption or not. Given a protocol
execution, the processes are therefore partitioned into three types:
Faulty: A process pi ∈ F is faulty.
Naïve: A correct process pi for which F 6∈ Fi

∗ is called naïve.
Wise: A correct process pi for which F ∈ Fi

∗ is called wise.

The naïve processes are new for the asymmetric case, as all processes are wise under a
symmetric trust assumption. Protocols for asymmetric quorums cannot guarantee the same
properties for naïve processes as for wise ones, since the naïve processes may have the “wrong
friends.”

Guilds. If too many processes are naïve or even fail during a protocol run with asymmetric
quorums, then protocol properties cannot be ensured. A guild is a set of wise processes that
contains at least one quorum for each member; by definition this quorum consists only of wise
processes. A guild ensures liveness and consistency for typical protocols. This generalizes
from protocols for symmetric quorum systems, where the correct processes in every execution
form a quorum by definition. (A guild represents a group of influential and well-connected
wise processes, like in the real world.)

I Definition 7 (Guild). Given a fail-prone system F, an asymmetric quorum system Q for
F, and a protocol execution with faulty processes F , a guild G for F satisfies two properties:
Wisdom: G is a set of wise processes:

∀pi ∈ G : F ∈ Fi
∗.

Closure: G contains a quorum for each of its members:

∀pi ∈ G : ∃Qi ∈ Qi : Qi ⊆ G.

Superficially a guild seems similar to a “quorum” in the Stellar consensus protocol [22],
but the two notions actually differ because a guild contains only wise processes and Stellar’s
quorums do not distinguish between naïve and wise processes.

Observe that for a specific execution, the union of two guilds is again a guild, since the
union consists only of wise processes and contains again a quorum for each member. Hence,
every execution with a guild contains a unique maximal guild Gmax.

Example. We define an example asymmetric fail-prone system FA on P = {p1, p2, p3, p4, p5}.
The notation Θn

k (S) for a set S with n elements denotes the “threshold” combination operator
and enumerates all subsets of S of cardinality k. W.l.o.g. every process trusts itself. The
diagram below shows fail-prone sets as shaded areas and the notation n

k in front of a fail-prone
set stands for k out of the n processes in the set.

OPODIS 2019

7:8 Asymmetric Distributed Trust

FA:

F1 = Θ4
1({p2, p3, p4, p5})

F2 = Θ4
1({p1, p3, p4, p5})

F3 = Θ2
1({p1, p2}) ∗Θ2

1({p4, p5})
F4 = Θ4

1({p1, p2, p3, p5})
F5 = {{p2, p4}}

2
1

4
1

4
1

2
1

4
1

F1

F2

F3

F4

F5

p2 p3 p4 p5p1

The operator ∗ for two sets satisfies A ∗ B = {A ∪B|A ∈ A, B ∈ B}. As one can verify
in a straightforward way, B3(FA) holds. Let QA be the canonical asymmetric quorum
system for FA. Note that since FA contains the fail-prone systems of p3 and p5 that permit
two faulty processes each, this fail-prone system cannot be obtained as a special case of
Θ5

1({p1, p2, p3, p4, p5}). When F = {p2, p4}, for example, then processes p3 and p5 are wise
and p1 is naïve.

5 Shared memory

This section illustrates a first application of asymmetric quorum systems: how to emulate
shared memory, represented by a register. Maintaining a shared register reliably in a
distributed system subject to faults is perhaps the most fundamental task for which ordinary,
symmetric quorum systems have been introduced, in the models with crashes [13] and with
Byzantine faults [21]. We present definitions and one protocol for implementing a register
with asymmetric quorums in this section.

The long version [5] also presents a second protocol without digital signatures and explains
why federated Byzantine quorum systems according to Stellar [22] fail to directly emulate
shared memory. This protocol also illustrates the role of an asymmetric core set system that
generalizes the notion of an (f + 1)-process subset in the threshold model.

5.1 Definitions
We use the standard notions for operations and their precedence to formalize a register as a
shared object. More precisely, a register with domain X provides two operations: write(x),
which is parameterized by a value x ∈ X and outputs a token ack when it completes; and
read, which takes no parameter for invocation but outputs a value x ∈ X upon completion.

We consider a single-writer (or SW) register, where only a designated process pw may
invoke write, and permit multiple readers (or MR), that is, every process may execute a
read operation. The register is initialized with a special value x0, which is written by an
imaginary write operation that occurs before any process invokes operations. We consider
regular semantics under concurrent access [17]; the extension to other forms of concurrent
memory, including an atomic register, proceeds analogously.

It is customary in the literature to assume that the writer and reader processes are
correct; with asymmetric quorums we assume explicitly that readers and writers are wise.
We illustrate below why one cannot extend the guarantees of the register to naïve processes.

I Definition 8 (Asymmetric Byzantine SWMR regular register). A protocol emulating an
asymmetric SWMR regular register satisfies:
Liveness: If a wise process p invokes an operation on the register, p eventually completes the

operation.

C. Cachin and B. Tackmann 7:9

Safety: Every read operation of a wise process that is not concurrent with a write returns
the value written by the most recent, preceding write of a wise process; furthermore, a
read operation of a wise process concurrent with a write of a wise process may also return
the value that is written concurrently.

5.2 Protocol with authenticated data
In Algorithm 1, we describe a protocol for emulating a regular SWMR register with an
asymmetric Byzantine quorum system, for a designated writer pw and a reader pr ∈ P.
The protocol uses data authentication implemented with digital signatures. This protocol is
the same as the classic one of Malkhi and Reiter [21] that uses a Byzantine dissemination
quorum system and where processes send messages to each other over point-to-point links.
The difference lies in the individual choices of quorums by the processes and that it ensures
safety and liveness for wise processes.

In the register emulation, the writer pw obtains ack messages from all processes in a
quorum Qw ∈ Qw; likewise, the reader pr waits for a value message carrying a value/-
timestamp pair from every process in a quorum Qr ∈ Qr of the reader.

Algorithm 1 Emulation of an asymmetric SWMR regular register (process pi).

State
wts: sequence number of write operations, stored only by writer pw

rid: identifier of read operations, used only by reader
ts, v, σ: current state stored by pi: timestamp, value, signature

upon invocation write(v) do // only if pi is writer pw

wts← wts + 1
σ ← signw(write‖w‖wts‖v)
send message [write,wts, v, σ] to all pj ∈ P
wait for receiving a message [ack] from all processes in some quorum Qw ∈ Qw

upon invocation read do // only if pi is reader pr

rid← rid + 1
send message [read, rid] to all pj ∈ P
wait for receiving messages [value, rj , tsj , vj , σj] from all processes in some Qr ∈ Qr such that

rj = rid and verifyw(σj ,write‖w‖ts‖vj)
return highestval({(tsj , vj)|j ∈ Qr})

upon receiving a message [write, ts′, v′, σ′] from pw do // every process
if ts′ > ts then

(ts, v, σ)← (ts′, v′, σ′)
send message [ack] to pw

upon receiving a message [read, r] from pr do // every process
send message [value, r, ts, v, σ] to pr

The function highestval(S) takes a set of timestamp/value pairs S as input and outputs
the value in the pair with the largest timestamp, i.e., v such that (ts, v) ∈ S and ∀(ts′, v′) ∈
S : ts′ < ts∨ (ts′, v′) = (ts, v). Note that this v is unique in Algorithm 1 because pw is correct.
The protocol uses digital signatures, modeled by operations signi and verifyi, as introduced
earlier.

I Theorem 9. Algorithm 1 emulates an asymmetric Byzantine SWMR regular register.

OPODIS 2019

7:10 Asymmetric Distributed Trust

Example. We show why the guarantees of this protocol with asymmetric quorums hold
only for wise readers and writers. Consider QA from the last section and an execution in
which p2 and p4 are faulty, and therefore p1 is naïve and p3 and p5 are wise. A quorum for p1
consists of p1 and three processes in {p2, . . . , p5}; moreover, every process set that contains
p3, one of {p1, p2} and one of {p4, p5} is a quorum for p3.

We illustrate that if naïve p1 writes, then a wise reader p3 may violate safety. Suppose
that all correct processes, especially p3, store timestamp/value/signature triples from an
operation that has terminated and that wrote x. When p1 invokes write(u), it obtains [ack]
messages from all processes except p3. This is a quorum for p1. Then p3 runs a read operation
and receives the outdated values representing x from itself (p3 is correct but has not been
involved in writing u) and also from the faulty p2 and p4. Hence, p3 outputs x instead of u.

Analogously, with the same setup of every process initially storing a representation of x

but with wise p3 as writer, suppose p3 executes write(u). It obtains [ack] messages from
p2, p3, and p4 and terminates. When p1 subsequently invokes read and receives values
representing x, from correct p1 and p5 and from faulty p2 and p4, then p1 outputs x instead
of y and violates safety as a naïve reader.

Since the sample operations are not concurrent, the implication actually holds also for
registers with only safe semantics.

6 Broadcast

This section shows how to implement two broadcast primitives tolerating Byzantine faults with
asymmetric quorums. Recall from the standard literature [14, 8, 4] that reliable broadcasts
offer basic forms of reliable message delivery and consistency, but they do not impose a total
order on delivered messages (as this is equivalent to consensus). The Byzantine broadcast
primitives described here, consistent broadcast and reliable broadcast, are prominent building
blocks for many more advanced protocols.

With both primitives, the sender process may broadcast a message m by invoking
broadcast(m); the broadcast abstraction outputs m to the local application on the process
through a deliver(m) event. Moreover, the notions of broadcast considered in this section are
intended to deliver only one message per instance. Every instance has a distinct (implicit)
label and a designated sender ps. With standard multiplexing techniques one can extend
this to a protocol in which all processes may broadcast messages repeatedly [4].

Byzantine consistent broadcast. The simplest such primitive, which has been called (Byz-
antine) consistent broadcast [4], ensures only that those correct processes which deliver a
message agree on the content of the message, but they may not agree on termination. In
other words, the primitive does not enforce “reliability” such that a correct process outputs
a message if and only if all other correct processes produce an output. The events in its
interface are denoted by c-broadcast and c-deliver.

The change of the definition towards asymmetric quorums affects most of its guarantees,
which hold only for wise processes but not for all correct ones. This is similar to the definition
of a register in Section 5.

I Definition 11 (Asymmetric Byzantine consistent broadcast). A protocol for asymmetric
(Byzantine) consistent broadcast satisfies:

Validity: If a correct process ps c-broadcasts a message m, then all wise processes eventually
c-deliver m.

C. Cachin and B. Tackmann 7:11

Algorithm 2 Asymmetric Byzantine consistent broadcast protocol with sender ps (process pi).

State
sentecho← false: indicates whether pi has sent echo
echos← [⊥]N : collects the received echo messages from other processes
delivered← false: indicates whether pi has delivered a message

upon invocation c-broadcast(m) do
send message [send,m] to all pj ∈ P

upon receiving a message [send,m] from ps such that ¬sentecho do
sentecho← true
send message [echo,m] to all pj ∈ P

upon receiving a message [echo,m] from pj do
if echos[j] = ⊥ then

echos[j]← m

upon exists m 6= ⊥ such that {pj ∈ P|echos[j] = m} ∈ Qi and ¬delivered do
delivered← true
output c-deliver(m)

Consistency: If some wise process c-delivers m and another wise process c-delivers m′, then
m = m′.

Integrity: For any message m, every correct process c-delivers m at most once. Moreover, if
the sender ps is correct and the receiver is wise, then m was previously c-broadcast by ps.

The following protocol is an extension of “authenticated echo broadcast” [4], which
goes back to Srikanth and Toueg [26]. It is a building block found in many Byzantine
fault-tolerant protocols with greater complexity. The adaptation for asymmetric quorums is
straightforward: Every process considers its own quorums before c-delivering the message.

I Theorem 12. Algorithm 2 implements asymmetric Byzantine consistent broadcast.

Example. We illustrate the broadcast protocols using a six-process asymmetric quorum
system QB , defined through its fail-prone system FB . In FB , as shown below, for p1, p2, and
p3, each process always trusts itself, some other process of {p1, p2, p3} and one further process
in {p1, . . . , p5}. Process p4 and p5 each assumes that at most one other process of {p1, . . . , p5}
may fail (excluding itself). Moreover, none of the processes p1, . . . , p5 ever trusts p6. For p6
itself, the fail-prone set is {p1, p3}, i.e., it trusts p2, p4, and p5 unconditionally.

FB:

F1 = Θ3
2({p2, p4, p5}) ∗ {{p6}}

F2 = Θ3
2({p3, p4, p5}) ∗ {{p6}}

F3 = Θ3
2({p1, p4, p5}) ∗ {{p6}}

F4 = Θ4
1({p1, p2, p3, p5}) ∗ {{p6}}

F5 = Θ4
1({p1, p2, p3, p4}) ∗ {{p6}}

F6 = {{p1, p3}}

3
2

3
2

3
2

4
1

F1

F2

F3

F4

F6

p2 p3 p4 p6p1 p5

F5

4
1

OPODIS 2019

7:12 Asymmetric Distributed Trust

One can verify that B3(FB) holds; hence, let QB be the canonical quorum system of
FB . Again, there is no reliable process that could be trusted by all and QB is not a special
case of a symmetric threshold Byzantine quorum system. With F = {p1, p5}, for instance,
process p3 is wise, p2, p4, and p6 are naïve, and there is no guild.

Consider now an execution of Algorithm 2 with sender p∗4 and F = {p∗4, p∗5} (we write p∗4
and p∗5 to denote that they are faulty). This means processes p1, p2, p3 are wise and form a
guild because {p1, p2, p3} is a quorum for all three; furthermore, p6 is naïve. The protocol
execution proceeds as follows.

p1 : [echo, x]→ P p1 : c-deliver(x)
p2 : [echo, u]→ P p2 : no quorum of [echo] in Q2

p3 : [echo, x]→ P p3 : no quorum of [echo] in Q3

p∗4 :

{
[send, x]→ p1, p3

[send, u]→ p2, p6
p∗4 :

{
[echo, x]→ p1

[echo, u]→ p6

p∗5 :

{
[echo, x]→ p1

[echo, u]→ p6

p6 : [echo, u]→ P p6 : c-deliver(u)

Hence, p1 receives [echo, x] from, say, {p1, p3, p∗4} ∈ Q1 and c-delivers x, but the other
wise processes do not terminate. The naïve p6 gets [echo, u] from {p2, p∗4, p∗5, p6} ∈ Q6 and
c-delivers u 6= x.

Byzantine reliable broadcast. In the symmetric setting, consistent broadcast has been
extended to (Byzantine) reliable broadcast in a well-known way to address the disagreement
about termination among the correct processes [4]. This primitive has the same interface as
consistent broadcast, except that its events are called r-broadcast and r-deliver instead of
c-broadcast and c-deliver, respectively.

A reliable broadcast protocol also has all properties of consistent broadcast, but satisfies
the additional totality property stated next. Taken together, consistency and totality imply
a notion of agreement, similar to what is also ensured by many crash-tolerant broadcast
primitives. Analogously to the earlier primitives with asymmetric trust, our notion of an
asymmetric reliable broadcast, defined next, ensures agreement on termination only for the
wise processes, and moreover only for executions with a guild. Also the validity of Definition 11
is extended by the assumption of a guild. Intuitively, one needs a guild because the wise
processes that make up the guild are self-sufficient, in the sense that the guild contains a
quorum of wise processes for each of its members; without that, there may not be enough
wise processes.

I Definition 13 (Asymmetric Byzantine reliable broadcast). A protocol for asymmetric (Byz-
antine) reliable broadcast is a protocol for asymmetric Byzantine consistent broadcast with
the revised validity condition and the additional totality condition stated next:
Validity: In all executions with a guild, if a correct process ps c-broadcasts a message m,

then all processes in the maximal guild eventually c-deliver m.
Totality: In all executions with a guild, if a wise process r-delivers some message, then all

processes in the maximal guild eventually r-deliver a message.

The protocol of Bracha [3] implements reliable broadcast subject to Byzantine faults
with symmetric trust. It augments the authenticated echo broadcast from Algorithm 2
with a second all-to-all exchange, where each process is supposed to send ready with the

C. Cachin and B. Tackmann 7:13

payload message that will be r-delivered. When a process receives the same m in 2f + 1
ready messages, in the symmetric model with a threshold Byzantine quorum system, then
it r-delivers m. Also, a process that receives [ready, m] from f + 1 distinct processes and
that has not yet sent a ready chimes in and also sends [ready, m]. These two steps ensure
totality.

For asymmetric quorums, the conditions of a process pi receiving f + 1 and 2f + 1 equal
ready messages, respectively, generalize to receiving the same message from a kernel for pi

and from a quorum for pi. Intuitively, the change in the first condition ensures that when a
wise process pi receives the same [ready, m] message from a kernel for itself, then this kernel
intersects with some quorum of wise processes. Therefore, at least one wise process has sent
[ready, m] and pi can safely adopt m. Furthermore, the change in the second condition relies
on the properties of asymmetric quorums to guarantee that whenever some wise process has
r-delivered m, then enough correct processes have sent a [ready, m] message such that all
wise processes eventually receive a kernel of [ready, m] messages and also send [ready, m].

Applying these changes to Bracha’s protocol results in the asymmetric reliable broadcast
protocol shown in Algorithm 3. Note that it strictly extends Algorithm 2 by the additional
round of ready messages, in the same way as for symmetric trust. For instance, when
instantiated with the symmetric threshold quorum system of n = 3f + 1 processes, of which
f may fail, then every set of f + 1 processes is a kernel.

In Algorithm 3, there are two conditions that let a correct pi send [ready, m]: either re-
ceiving a quorum of [echo, m] messages for itself or obtaining a kernel for itself of [ready, m]
messages. For the first case, we say pi sends ready after echo; for the second case, we say
pi sends ready after ready.

I Lemma 14. In any execution with a guild, there exists a unique m such that whenever a
wise process sends a ready message, it contains m.

This lemma follows from the fact that Algorithm 3 extends Algorithm 2 for consistent
broadcast, combined with the consistency property in Definition 11. This shows why the
lemma holds for ready messages sent by wise processes after echo. For ready messages
sent after ready, a new argument is needed, which relies on the properties of kernels and
appears in the long version [5].

I Theorem 15. Algorithm 3 implements asymmetric Byzantine reliable broadcast.

Example. Consider again the protocol execution with QB introduced earlier for illustrating
asymmetric consistent broadcast. Recall that F = {p∗4, p∗5}, the set {p1, p2, p3} is a guild,
and p6 is naïve. The start of the execution is the same as shown previously and omitted.
Instead of c-delivering x and u, respectively, p1 and p6 send [ready, x] and [ready, u] to all
processes:

. . . p1 : [ready, x]→ P p1 : r-deliver(x)

. . . p2 : no quorum p2 : [ready, x]→ P p2 : r-deliver(x)

. . . p3 : no quorum p3 : [ready, x]→ P p3 : r-deliver(x)

. . . p∗4 : −

. . . p∗5 : −

. . . p6 : [ready, u]→ P p6 : no quorum

OPODIS 2019

7:14 Asymmetric Distributed Trust

Algorithm 3 Asymmetric Byzantine reliable broadcast protocol with sender ps (process pi).

State
sentecho← false: indicates whether pi has sent echo
echos← [⊥]N : collects the received echo messages from other processes
sentready← false: indicates whether pi has sent ready
readys← [⊥]N : collects the received ready messages from other processes
delivered← false: indicates whether pi has delivered a message

upon invocation r-broadcast(m) do
send message [send,m] to all pj ∈ P

upon receiving a message [send,m] from ps such that ¬sentecho do
sentecho← true
send message [echo,m] to all pj ∈ P

upon receiving a message [echo,m] from pj do
if echos[j] = ⊥ then

echos[j]← m

upon exists m 6= ⊥ such that {pj ∈ P|echos[j] = m} ∈ Qi and ¬sentready do
// a quorum for pi

sentready← true
send message [ready,m] to all pj ∈ P

upon exists m 6= ⊥ such that {pj ∈ P|readys[j] = m} ∈ Ki and ¬sentready do
// a kernel for pi

sentready← true
send message [ready,m] to all pj ∈ P

upon receiving a message [ready,m] from pj do
if readys[j] = ⊥ then

readys[j]← m

upon exists m 6= ⊥ such that {pj ∈ P|readys[j] = m} ∈ Qi and ¬delivered do
delivered← true
output r-deliver(m)

Note that the kernel systems of processes p1, p2, and p3 are, respectively, K1 =
{{p1}, {p3}}, K2 = {{p1}, {p2}}, and K3 = {{p2}, {p3}}. Hence, when p2 receives [ready, x]
from p1, it sends [ready, x] in turn because {p1} is a kernel for p2, and when p3 receives
this message, then it sends [ready, x] because {p2} is a kernel for p3.

Furthermore, since {p1, p2, p3} is the maximal guild and contains a quorum for each of
its members, all three wise processes r-deliver x as implied by consistency and totality. The
naïve p6 does not r-deliver anything, however.

Remarks. Asymmetric reliable broadcast (Definition 13) ensures validity and totality only
for processes in the maximal guild. On the other hand, an asymmetric consistent broadcast
(Definition 11) ensures validity also for all wise processes. We leave it as an open problem to
determine whether these guarantees can also be extended to wise processes for asymmetric
reliable broadcast and the Bracha protocol. This question is equivalent to determining
whether there exist any wise processes outside the maximal guild.

C. Cachin and B. Tackmann 7:15

Another open problem concerns the conditions for reacting to ready messages in the
asymmetric reliable broadcast protocol. Already in Bracha’s protocol for the threshold
model [3], a process (1) sends its own ready message upon receiving f + 1 ready messages
and (2) r-delivers an output upon receiving 2f + 1 ready messages. These conditions
generalize for arbitrary, non-threshold quorum systems to receiving messages (1) from any
set that is guaranteed to contain at least one correct process and (2) from any set that still
contains at least one process even when any two fail-prone process sets are subtracted. In
Algorithm 3, in contrast, a process delivers the payload only after receiving ready messages
from one of its quorums. But such a quorum (e.g.,

⌈
n+f+1

2
⌉
processes) may be larger than a

set in the second case (e.g., 2f + 1 processes). It remains interesting to find out whether this
discrepancy is necessary.

References
1 Elli Androulaki, Artem Barger, Vita Bortnikov, Christian Cachin, Konstantinos Christidis,

Angelo De Caro, David Enyeart, Christopher Ferris, Gennady Laventman, Yacov Manevich,
Srinivasan Muralidharan, Chet Murthy, Binh Nguyen, Manish Sethi, Gari Singh, Keith Smith,
Alessandro Sorniotti, Chrysoula Stathakopoulou, Marko Vukolić, Sharon Weed, and Jason
Yellick. Hyperledger Fabric: A distributed operating system for permissioned blockchains. In
Proc. 13th European Conference on Computer Systems (EuroSys), pages 30:1–30:15, April
2018. doi:10.1145/3190508.3190538.

2 Frederik Armknecht, Ghassan O. Karame, Avikarsha Mandal, Franck Youssef, and Erik Zenner.
Ripple: Overview and outlook. In Mauro Conti, Matthias Schunter, and Ioannis G. Askoxylakis,
editors, Proc. Trust and Trustworthy Computing (TRUST), volume 9229 of Lecture Notes in
Computer Science, pages 163–180. Springer, 2015.

3 Gabriel Bracha. Asynchronous Byzantine agreement protocols. Information and Computation,
75:130–143, 1987.

4 Christian Cachin, Rachid Guerraoui, and Luís Rodrigues. Introduction to Reliable and Secure
Distributed Programming (Second Edition). Springer, 2011.

5 Christian Cachin and Björn Tackmann. Asymmetric distributed trust. e-print, arXiv:1906.09314
[cs.DC], 2019. URL: http://arxiv.org/abs/1906.09314.

6 Christian Cachin and Marko Vukolić. Blockchain consensus protocols in the wild. In Andréa W.
Richa, editor, Proc. 31st Intl. Symposium on Distributed Computing (DISC 2017), volume 91
of Leibniz International Proceedings in Informatics (LIPIcs), pages 1:1–1:16, 2017. doi:
10.4230/LIPIcs.DISC.2017.1.

7 Miguel Castro and Barbara Liskov. Practical Byzantine fault tolerance and proactive recovery.
ACM Transactions on Computer Systems, 20(4):398–461, 2002.

8 Bernadette Charron-Bost, Fernando Pedone, and André Schiper, editors. Replication: Theory
and Practice, volume 5959 of Lecture Notes in Computer Science. Springer, 2010.

9 Brad Chase and Ethan MacBrough. Analysis of the XRP ledger consensus protocol. e-print,
arXiv:1802.07242 [cs.DC], 2018.

10 Ivan Damgård, Yvo Desmedt, Matthias Fitzi, and Jesper Buus Nielsen. Secure protocols with
asymmetric trust. In Kaoru Kurosawa, editor, Advances in Cryptology: ASIACRYPT 2007,
volume 4833 of Lecture Notes in Computer Science. Springer, 2007.

11 Hector Garcia-Molina and Daniel Barbara. How to assign votes in a distributed system. jacm,
32(4):841–860, 1985.

12 Álvaro García-Pérez and Alexey Gotsman. Federated Byzantine quorum systems. In Proc.
22nd Conference on Principles of Distributed Systems (OPODIS), volume 125 of Leibniz
International Proceedings in Informatics (LIPIcs), pages 17:1–17:16, 2018. doi:10.4230/
LIPIcs.OPODIS.2018.17.

13 David K. Gifford. Weighted voting for replicated data. In Proc. 7th ACM Symposium on
Operating System Principles (SOSP), pages 150–162, 1979.

OPODIS 2019

https://doi.org/10.1145/3190508.3190538
http://arxiv.org/abs/1906.09314
https://doi.org/10.4230/LIPIcs.DISC.2017.1
https://doi.org/10.4230/LIPIcs.DISC.2017.1
https://doi.org/10.4230/LIPIcs.OPODIS.2018.17
https://doi.org/10.4230/LIPIcs.OPODIS.2018.17

7:16 Asymmetric Distributed Trust

14 Vassos Hadzilacos and Sam Toueg. Fault-tolerant broadcasts and related problems. In Sape J.
Mullender, editor, Distributed Systems (2nd Ed.). ACM Press & Addison-Wesley, New York,
1993.

15 Martin Hirt and Ueli Maurer. Player simulation and general adversary structures in perfect
multi-party computation. Journal of Cryptology, 13(1):31–60, 2000.

16 Flavio P. Junqueira, Keith Marzullo, Maurice Herlihy, and Lucia Draque Penso. Threshold
protocols in survivor set systems. Distributed Computing, 23:135–149, 2010.

17 Leslie Lamport. On interprocess communication. Distributed Computing, 1(2):77–85, 86–101,
1986.

18 Marta Lokhava, Giuliano Losa, David Mazières, Graydon Hoare, Nicolas Barry, Eli Gafni,
Jonathan Jove, Rafal Malinowsky, and Jed McCaleb. Fast and secure global payments with
stellar. In Proc. 27th ACM Symposium on Operating Systems Principles (SOSP), pages 80–96,
2019.

19 Giuliano Losa, Eli Gafni, and David Mazières. Stellar consensus by instantiation. In Jukka
Suomela, editor, Proc. 33rd International Symposium on Distributed Computing (DISC 2019),
volume 146 of LIPIcs, pages 27:1–27:15, 2019. doi:10.4230/LIPIcs.DISC.2019.27.

20 Nancy A. Lynch. Distributed Algorithms. Morgan Kaufmann, San Francisco, 1996.
21 Dahlia Malkhi and Michael K. Reiter. Byzantine quorum systems. Distributed Computing,

11(4):203–213, 1998.
22 David Mazières. The Stellar consensus protocol: A federated model for Internet-level consensus.

Stellar, available online, https://www.stellar.org/papers/stellar-consensus-protocol.
pdf, 2016.

23 Moni Naor and Avishai Wool. The load, capacity and availability of quorum systems. SIAM
Journal on Computing, 27(2):423–447, 1998.

24 M. Pease, R. Shostak, and L. Lamport. Reaching agreement in the presence of faults. Journal
of the ACM, 27(2):228–234, 1980.

25 David Schwartz, Noah Youngs, and Arthur Britto. The Ripple protocol consensus algorithm.
Ripple Labs, available online, https://ripple.com/files/ripple_consensus_whitepaper.
pdf, 2014.

26 T. K. Srikanth and Sam Toueg. Simulating authenticated broadcasts to derive simple fault-
tolerant algorithms. Distributed Computing, 2:80–94, 1987.

https://doi.org/10.4230/LIPIcs.DISC.2019.27
https://www.stellar.org/papers/stellar-consensus-protocol.pdf
https://www.stellar.org/papers/stellar-consensus-protocol.pdf
https://ripple.com/files/ripple_consensus_whitepaper.pdf
https://ripple.com/files/ripple_consensus_whitepaper.pdf

	Introduction
	Related work
	System model
	Asymmetric Byzantine quorum systems
	Symmetric trust
	Asymmetric trust

	Shared memory
	Definitions
	Protocol with authenticated data

	Broadcast

