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Abstract

Given a random n× n symmetric matrix W drawn from the Gaussian orthogonal ensemble (GOE),
we consider the problem of certifying an upper bound on the maximum value of the quadratic form
x>Wx over all vectors x in a constraint set S ⊂ Rn. For a certain class of normalized constraint
sets we show that, conditional on a certain complexity-theoretic conjecture, no polynomial-time
algorithm can certify a better upper bound than the largest eigenvalue of W . A notable special
case included in our results is the hypercube S = {±1/

√
n}n, which corresponds to the problem of

certifying bounds on the Hamiltonian of the Sherrington-Kirkpatrick spin glass model from statistical
physics. Our results suggest a striking gap between optimization and certification for this problem.

Our proof proceeds in two steps. First, we give a reduction from the detection problem in the
negatively-spiked Wishart model to the above certification problem. We then give evidence that this
Wishart detection problem is computationally hard below the classical spectral threshold, by showing
that no low-degree polynomial can (in expectation) distinguish the spiked and unspiked models. This
method for predicting computational thresholds was proposed in a sequence of recent works on the
sum-of-squares hierarchy, and is conjectured to be correct for a large class of problems. Our proof
can be seen as constructing a distribution over symmetric matrices that appears computationally
indistinguishable from the GOE, yet is supported on matrices whose maximum quadratic form over
x ∈ S is much larger than that of a GOE matrix.
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1 Introduction

An important phenomenon in the study of the computational aspects of random problems
is the appearance of statistical-to-computational gaps, wherein a problem may be solved by
an inefficient algorithm – typically a brute-force search – but empirical evidence, heuristic
formal calculations, and negative results for classes of powerful algorithms all suggest that
the same problem cannot be solved by any algorithm running in polynomial time. Many
examples of this phenomenon arise from Bayesian estimation tasks, in which the goal is to
recover a planted signal from noisy observations. Bayesian problems exhibiting statistical-to-
computational gaps in certain regimes include graph problems such as community detection
[16], estimation for models of structured matrices and tensors [42, 30], statistical problems
arising from imaging and microscopy tasks [53, 10], and many others. A different family
of examples comes from random optimization problems that are signal-free, where there is
no “planted” structure to recover; rather, the task is simply to optimize a random objective
function as effectively as possible. Notable instances of problems of this kind that exhibit
statistical-to-computational gaps include finding a large clique in a random graph [33], finding
a submatrix of large entries of a random matrix [25], or finding an approximate solution to a
random constraint satisfaction problem [1].

In this paper, we study a problem from the latter class, namely the problem of maximizing
the quadratic form x>Wx over a constraint set x ∈ S ⊂ Rn, where W is a random matrix
drawn from the Gaussian orthogonal ensemble,1 W ∼ GOE(n). Unlike previous works that
have studied whether an efficient algorithm can optimize and find x = x(W ) that achieves a
large objective value, we study whether an efficient algorithm can certify an upper bound
on the objective over all x ∈ S. In the notable case of the Sherrington-Kirkpatrick (SK)
Hamiltonian [59, 49], where S = {±1/

√
n}n, while there is an efficient algorithm believed

to optimize arbitrarily close to the true maximum [46], we give evidence – based on the
low-degree likelihood ratio recently studied in the sum-of-squares literature [9, 31, 29, 28],
which we describe in Section 2.4 – that there is no efficient algorithm to certify an upper
bound that improves on a simple spectral certificate. Thus, the certification task for this
problem appears to exhibit a statistical-to-computational gap, while the optimization task
does not.

1.1 Computational tasks in random optimization problems
To formalize the above discussion, consider a generic random optimization problem:

maximize fω(x)
subject to x ∈ S
where ω ∼ P,

(1)

for P a probability distribution over some set of problem instances Ω. We will contrast
two important computational tasks in this setting. The first, most obvious task is that of
optimization, producing an algorithm that computes algopt : Ω→ S such that fω(algopt(ω))
is as large as possible (say, in expectation, or with high probability as the size of the
problem diverges).

Another task is that of certification, producing instead an algorithm that computes a
scalar algcert : Ω→ R, such that for all ω ∈ Ω and all x ∈ S we have fω(x) ≤ algcert(ω). The
main challenge specific to certification is that algcert must produce a valid upper bound on

1 Gaussian orthogonal ensemble (GOE): W is symmetric with Wij = Wji ∼ N (0, 1/n) for i 6= j and
Wii ∼ N (0, 2/n), all independent.
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fω for every possible instance ω ∈ Ω, no matter how unlikely ω is to occur under P. Subject
to this requirement, we seek to minimize algcert(ω) (again, in a suitable probabilistic sense
when ω ∼ P). Convex relaxations are a common approach to certification, where S is relaxed
to a convex superset S ′ ⊃ S over which it is possible to optimize exactly and efficiently
using convex optimization. Often, such algorithms admit an alternative interpretation of
proving a bound on fω(x) in some limited proof system (see, e.g., [27] for such discussion of
sum-of-squares algorithms).

If x? = x?(ω) is the true maximizer of fω, then for any pair of optimization and
certification algorithms as above, we have

fω(algopt(ω)) ≤ fω(x?) ≤ algcert(ω). (2)

Thus, in the case of a maximization problem, optimization algorithms approximate the true
value fω(x?) from below, while certification algorithms approximate it from above. We
are then interested in how tight either inequality can be for random problems of growing
dimension. Of course, we can achieve “perfect” optimization and certification (equality on
either side of (2)) by exhaustive search over all x ∈ S, but we are interested in whether this
is still possible when we restrict our attention to computationally-efficient algorithms.

To make these definitions concrete, we review an instance of each type of algorithm for
the problem of optimizing the Sherrington-Kirkpatrick Hamiltonian.

I Example 1.1. The “SK problem” is the random optimization problem

maximize x>Wx

subject to x ∈ {±1/
√
n}n

where W ∼ GOE(n).
(3)

Here, two related spectral algorithms give simple examples of algorithms for both optimization
and certification. For certification, writing λmax for the largest eigenvalue of W , we may use
the bound

x>Wx ≤ λmax · ‖x‖2 = λmax ≈ 2 (4)

for all x ∈ {±1/
√
n}n, whereby λmax is a certifiable upper bound on (3). From classical

random matrix theory (see, e.g., [5]), it is known that λmax ≈ 2 as n→∞.
For optimization, for vmax the eigenvector of λmax, we may take x = x(W ) :=

sgn(vmax)/
√
n where sgn denotes the {±1}-valued sign function, applied entrywise. The

vector vmax is distributed as an uniform random unit vector in Rn, so the quality of this
solution may be computed as

x>Wx = λmax · 〈x,vmax〉2 +O

(
1√
n

)
= λmax ·

‖vmax‖21
n

+O

(
1√
n

)
≈ 4
π
≈ 1.2732 (5)

with high probability as n→∞. (The error in the first equation is obtained as
∑
i λi〈vi,x〉2 ≈

1
n Tr(W )(1−〈vmax,x〉2), where the sum is over all eigenvectors vi except vmax. This analysis
appeared in [3], an early rigorous mathematical work on the SK model.)

On the other hand, deep results of statistical physics imply that the true optimal value
approaches

x?
>
Wx? ≈ 2P∗ ≈ 1.5264 (6)

as n→∞, where the constant P∗ is expressed via the celebrated Parisi formula for the free
energy of the SK model [50, 49, 62]. The approximate value we give above was estimated
with numerical experiments in previous works (see, e.g., [51, 15]).

ITCS 2020



78:4 Computational Hardness of Certifying Bounds on Constrained PCA Problems

Thus, neither for optimization nor for certification does the naive spectral algorithm achieve
the optimal value, which suggests the question: can more sophisticated algorithms improve
on the spectral algorithm for either task? For optimization, the recent result of [46] implies,
assuming a widely-believed conjecture from statistical physics, that for any ε > 0 there exists
a polynomial-time optimization algorithm achieving with high probability a value of 2P∗ − ε
on the SK problem.2 On the other hand, there are few results addressing certification in
the SK problem. The only previous work we are aware of in this direction is [48], where a
simple semidefinite programming relaxation (which coincides with degree-2 sum-of-squares)
is shown to achieve the same value as the spectral certificate (4). More recently (after the
initial appearance of this paper) the same was shown for degree-4 sum-of-squares [39, 45].

1.2 Our contributions
The main result of this paper, which we now state informally, gives formal evidence that for
the SK certification problem, the simple spectral certificate (4) is optimal among efficient
algorithms. See Corollary 3.8 for the precise statement.

I Theorem 1.2 (Informal). Conditional on the correctness of the low-degree likelihood ratio
method (see Section 2.4), for any ε > 0, there is no polynomial-time algorithm that certifies
the upper bound 2− ε on the SK problem (3) with probability 1− o(1) as n→∞.

In fact, we expect that there is not even a subexponential-time algorithm; see Remark 3.6.
Theorem 1.2 reveals a striking gap between optimization and certification: it is possible
to efficiently give a tight lower bound on the maximum objective value by exhibiting a
solution x, but it seems impossible to efficiently give a tight upper bound. In other words,
an algorithm can efficiently find a near-optimal solution, but cannot be sure that it has done
so. The same result also holds for a wide variety of constraints other than x ∈ {±1/

√
n}n

(see Corollary 3.8). Due to the high-dimensional setting of the problem, we expect the value
of an optimal certification algorithm to concentrate tightly; thus we expect Theorem 1.2 to
still hold if 1− o(1) is replaced by any positive constant.

Our result has important consequences for convex programming. A natural approach for
optimizing the SK problem (3) would be to use a convex programming relaxation such as a
semidefinite program based on the sum-of-squares hierarchy [60, 52, 41] (see [55] for a survey).
Such a method would relax the constraints of the SK problem to weaker ones for which
the associated optimization problem can be solved efficiently. One can either hope that the
relaxation is tight and gives a valid solution x ∈ {±1/

√
n}n (with high probability), or use a

rounding procedure to extract a valid solution from the relaxation. The optimal value of any
convex relaxation of (3) provides an upper bound on the optimal value of (3) and therefore
gives a certification algorithm. Thus Theorem 1.2 implies that (conditional on the correctness
of the low-degree likelihood ratio method) no polynomial-time convex relaxation of (3) can
have value ≤ 2− ε (resolving a question posed by [32]) and in particular cannot be tight.3 As
a result, we expect that natural relax-and-round approaches for optimization should fail to
find a solution of value close to 2P∗. This would suggest a fundamental weakness of convex
programs: even the most powerful convex programs (such as sum-of-squares relaxations)

2 The work [46] builds on that of [2, 61], and these works taken together formalize the heuristic idea from
statistical physics that optimization is tractable for certain optimization problems exhibiting full replica
symmetry breaking.

3 Our results suggest that Ω(n1−o(1)) rounds of sum-of-squares are required to certify a value 2− ε; see
Remark 3.6.
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seem to fail to optimize (3), even though other methods succeed (namely, the message-passing
algorithm of [46]).4 An explanation for this suboptimality is that convex relaxations are
actually solving a fundamentally harder problem: certification.

1.3 Related work
A related example of an optimization–certification gap comes from random constraint
satisfaction problems (CSPs).

I Example 1.3. In random MAX-3SAT, the decision variable is a boolean vector x ∈ {0, 1}n,
and the optimization task is to maximize the number of satisfied clauses C1, . . . , Cm, each
of which is a boolean expression of the form Ci = ai1 ∨ ai2 ∨ ai3 where each aij is chosen
uniformly among the xi and their boolean negations. Let sC(x) denote the number of clauses
satisfied by x.

If m/n→∞ as n→∞, the optimal value maxx sC(x) is (7/8 + o(1))m with probability
1− o(1) [11]. This is achieved by the trivial optimization algorithm that chooses a uniformly
random assignment x. On the other hand, sum-of-squares lower bounds suggest that it
is hard to certify even sC(x) < m unless m � n3/2 [26, 58, 38]. Along similar lines, a
well-known conjecture of Feige asserts this cannot be certified (by any certification algorithm)
in polynomial time for m/n an arbitrarily large constant [22].

As in the SK problem, there is an efficient algorithm for near-perfect optimization, while
there does not seem to be such an algorithm for near-perfect certification. However, here the
optimization algorithm is trivial (a random guess), so arguably a more natural optimization
task would be to achieve the best possible advantage over random guessing, assessing the
quality of a solution on a finer scale.

Prior work has used sum-of-squares lower bounds to argue for hardness of certification in
problems such as random CSPs [26, 58, 38], planted clique [19, 44, 9], tensor injective norm
[30, 29], graph coloring [8], community detection in hypergraphs [37], and others. These
results prove that the sum-of-squares hierarchy (at some degree) fails to certify. If sum-of-
squares fails at every constant degree (e.g., [9, 38, 29]), this suggests that all polynomial-time
algorithms should also fail. In our case, it appears difficult to prove such sum-of-squares
lower bounds for the SK problem, although recent work (appearing after the initial version
of this paper) has shown lower bounds at degree 4 [39, 45]. We instead take a new approach
based on a related heuristic for computational hardness, which we explain in Section 2.4. One
advantage of this approach over sum-of-squares is that it is substantially simpler. Perhaps
the prior work that is closest to our approach is [63], which also gives a reduction from a
hypothesis testing problem to a certification problem.

Overview of techniques

The proof of Theorem 1.2 has two parts. First, we give a reduction from hypothesis testing
in the negatively-spiked Wishart model [34, 6, 7, 54] to the SK certification problem. We then
use a method introduced in the sum-of-squares literature based on the low-degree likelihood
ratio [9, 31, 29, 28] to give formal evidence that detection in that negatively-spiked Wishart
model is computationally hard.

4 In contrast, simple rounded convex relaxations are believed to approximate many similar problems
optimally in the worst-case (rather than average-case) setting [36].

ITCS 2020
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In the spiked Wishart model, we observe either N i.i.d. samples y1, . . . ,yN ∼ N (0, In),
or N i.i.d. samples y1, . . . ,yN ∼ N (0, In + βxx>) where the “spike” x ∈ {±1/

√
n}n is a

uniformly random hypercube vector, and β ∈ [−1,∞). The goal is to distinguish between
these two cases with probability 1−o(1) as n→∞. In the negatively-spiked (β < 0) case with
β ≈ −1, this task amounts to deciding whether there is a hypercube vector x ∈ {±1/

√
n}n

that is nearly orthogonal to all of the samples yi. When N = Θ(n), a simple spectral method
succeeds when β2 > n/N [6, 7], and we expect the problem to be computationally hard when
β2 < n/N .

Let us now intuitively explain the relation between the negatively-spiked Wishart model
and the SK certification problem. Suppose we want to certify that

SK(W ) := max
x∈{±1/

√
n}n

x>Wx ≤ 2− ε

where W ∼ GOE(n), for some small constant ε > 0. Since the eigenvalues of W approx-
imately follow the semicircle distribution on [−2, 2] [64], we need to certify that the top
δn-dimensional eigenspace of W does not (approximately) contain a hypercube vector, for
a small δ > 0 depending on ε. In particular, we need to distinguish a uniformly random
δn-dimensional subspace (the distribution of the actual top eigenspace ofW ∼ GOE(n)) from
a δn-dimensional subspace that contains a hypercube vector. Equivalently, taking orthogonal
complements, we need to distinguish a uniformly random (1 − δ)n-dimensional subspace
from a (1− δ)n-dimensional subspace that is orthogonal to a hypercube vector. This is the
problem of detection in the negatively-spiked Wishart model with β ≈ −1 and N = (1− δ)n,
and these parameters lie in the “hard regime” β2 < n/N .

Formally, we construct a distribution D(n) over n×n symmetric matrices with SK(W ) ≥
2− ε/2 when W ∼ D(n). This D(n) also has the property that, conditional on the hardness
of the above detection problem, it is computationally hard to distinguish W ∼ D(n) from
W ∼ GOE(n). The existence of such D(n) implies hardness of certification for the SK
problem, because if an algorithm could certify that SK(W ) ≤ 2 − ε when W ∼ GOE(n),
then it could distinguish D(n) from GOE(n).

Borrowing terminology from [65, 66], we refer to this idea of “planting” a hidden solution
(in our case, a hypercube vector x) in such a way that it is difficult to detect, as quiet
planting5. Our quiet planting scheme D(n) draws W ∼ GOE(n) and then rotates the top
eigenspace of W to align with a random hypercube vector x, while leaving the eigenvalues
of W unchanged. (The more straightforward planting scheme, W + (2 − ε/2)xx> with
W ∼ GOE(n), is not quiet because it changes the largest eigenvalue of W [23].) The
question of how to design optimal quiet planting schemes in general remains an interesting
open problem.

The final ingredient in our proof is to give formal evidence (in the form of the low-degree
likelihood ratio) that detection in the spiked Wishart model is computationally hard below
the spectral threshold. This consists of a calculation involving the projection of the likelihood
ratio (between the “null” and “planted” distributions) onto the subspace of low-degree
polynomials. This method suggests that the correct strategy for quiet planting is to match
the low-degree moments of the distributions D(n) and GOE(n). We discuss the details of
this method further in Section 2.4.

Our results on hardness in the spiked Wishart model may be of independent interest:
our low-degree calculations suggest that, for a large class of spike priors, no polynomial-time
algorithm can successfully distinguish the spiked and unspiked models below the classical

5 However, our notion of quiet planting is not quite the same as that of [65, 66].
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spectral threshold [6, 7], both in the negatively-spiked and positively-spiked regimes. (For
positive spikes there was existing evidence for this based on failure of approximate message
passing [24]; no such evidence was known for negative spikes.)

2 Background

2.1 Probability Theory
Our asymptotic notation (e.g., O(·), o(·)) always pertains to the limit n→∞. Parameters
of the problem (e.g., β, γ,X ,S) are held fixed as n → ∞. Thus the constants hidden by
O(·) and o(·) do not depend on n but may depend on the other parameters. When An is
a sequence of events in probability spaces with measures Pn, we say An holds with high
probability if Pn[An] = 1− o(1).

I Definition 2.1. A real-valued random variable π with E[π] = 0 is subgaussian if there exists
σ2 ≥ 0 (the variance proxy) such that, for all t ∈ R, M(t) := E[exp(tπ)] ≤ exp(σ2t2/2).

The name subgaussian refers to the fact that if π ∼ N (0, σ2), then M(t) = exp(σ2t2/2).
A random variable with law N (0, σ2) is therefore subgaussian. Any bounded centered
random variable is also subgaussian: if π ∈ [a, b] almost surely, then π is subgaussian with
σ2 = 1

4 (b− a)2 (see, e.g., [56]).
We next give some background facts from random matrix theory (see, e.g., [5]).

I Definition 2.2. The Gaussian orthogonal ensemble GOE(n) is a probability distribution
over symmetric matrices W ∈ Rn×n, under which Wii ∼ N (0, 2/n) and Wij ∼ N (0, 1/n)
when i 6= j, where the entries Wij are independent for distinct pairs (i, j) with i ≤ j.

Our scaling of the entries of GOE(n) ensures a spectrum of constant width.

I Proposition 2.3. Let Wn ∼ GOE(n). Then, almost surely, λmin(Wn) → −2 and
λmax(Wn) → 2 as n → ∞. In particular, for any ε > 0, ‖Wn‖ ≤ 2 + ε with high
probability. Also, the empirical distribution of eigenvalues of Wn converges weakly to a
semicircle distribution supported on [−2, 2].

2.2 Constrained PCA
I Definition 2.4. A constraint set is a sequence S = (Sn)n∈N where Sn ⊂ Rn. The
constrained principal component analysis (PCA) problem with constraint set S, denoted
PCA(S), is

maximize x>Wx

subject to x ∈ Sn
where W ∼ GOE(n).

We will work only with constraint sets supported on vectors of approximately unit norm.
General problems of this kind have been studied previously in, e.g., [20].

I Example 2.5. Problems that may be described in the constrained PCA framework include:
the Sherrington-Kirkpatrick (SK) spin glass model: Sn = {±1/

√
n}n [59, 49],

the Wigner sparse PCA null model: Sn = {x ∈ Rn : ‖x‖ = 1, ‖x‖0 ≤ ρ} [17, 43],
the spherical 2p-spin spin glass model: Spn = {x⊗p : x ∈ Rn, ‖x‖ = 1} [14, 13],
the positive PCA null model: Sn = {x ∈ Rn : xi ≥ 0, ‖x‖ = 1} [47].

ITCS 2020
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Our results apply to the first two examples: the SK model, and sparse PCA when ρ = Θ(n).

I Definition 2.6. Let f be a (randomized) algorithm6 that takes a square matrix W as input
and outputs a number f(W ) ∈ R. We say that f certifies a value B on PCA(S) if
1. for any symmetric matrix W ∈ Rn×n, maxx∈Sn x>Wx ≤ f(W ), and
2. if Wn ∼ GOE(n) then f(Wn) ≤ B + o(1) with high probability.

2.3 Spiked Wishart Models
I Definition 2.7. A normalized spike prior is a sequence X = (Xn)n∈N where Xn is a
probability distribution over Rn, such that if x ∼ Xn then ‖x‖ → 1 in probability as n→∞.

I Definition 2.8 (Spiked Wishart model). Let X be a normalized spike prior, let γ > 0, and
let β ∈ [−1,∞). Let N = dn/γe. We define two probability distributions over (Rn)N :
1. Under Q, the null model, draw yi ∼ N (0, In) independently for i ∈ [N ].
2. Under P, the planted model, draw x ∼ Xn. If β‖x‖2 ≥ −1, then draw yi ∼ N (0, In +

βxx>) independently for i ∈ [N ]. Otherwise, draw yi ∼ N (0, In) independently for
i ∈ [N ].

Taken together, P and Q form the spiked Wishart model (P,Q) =: Wishart(n, γ, β,X ). For
fixed γ and β we denote the sequence (Wishart(n, γ, β,X ))n∈N by Wishart(γ, β,X ).

Several remarks on this definition are in order. First, we make the explicit choice N = dn/γe
for concreteness, but our results apply to any choice of N = N(n) for which n/N → γ as
n → ∞. Second, often the Wishart model is described in terms of the distribution of the
sample covariance matrix 1

N

∑N
i=1 yiy

>
i . We instead work directly with the samples yi so as

not to restrict ourselves to algorithms that only use the sample covariance matrix. (This
modification only makes our results on computational hardness of detection more general.)
Finally, the definition of P has two cases to ensure that the covariance matrix In + βxx> is
positive semidefinite. We will work in the setting β > −1 where the first case (β‖x‖2 ≥ −1)
occurs with high probability.

We consider the algorithmic task of distinguishing between P and Q in the following
sense.

I Definition 2.9. For sequences of distributions P = (Pn)n∈N and Q = (Qn)n∈N over
measurable spaces (Ωn,Fn)n∈N, an algorithm fn : Ωn → {0, 1} achieves strong detection
between P and Q if

Qn[fn(y) = 0] = 1− o(1) and Pn[fn(y) = 1] = 1− o(1).

The celebrated BBP transition [6] implies a spectral algorithm for strong detection in the
spiked Wishart model whenever β2 > γ.

I Theorem 2.10 ([6, 7]). Let X be any normalized spike prior. If β2 > γ then there exists
a polynomial-time algorithm for strong detection in Wishart(γ, β,X ).

The algorithm thresholds the largest eigenvalue (if β > 0) or smallest eigenvalue (if β < 0) of
the sample covariance matrix 1

N

∑N
i=1 yiy

>
i . This eigenvalue converges almost surely to a

limiting value which is different under P and Q.

6 We allow f to be randomized; i.e., it may use randomness in its computations, but the output B must
be an upper bound almost surely. We do not expect certification algorithms to require randomness, but
it may be convenient, e.g., to randomly initialize an iterative optimization procedure.
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We will give evidence that (see Corollary 3.5) if X has i.i.d. subgaussian entries with
suitable scaling, then no polynomial-time algorithm achieves strong detection below the BBP
threshold (β2 < γ). Exponential-time strong detection is possible below the BBP threshold
for some priors, such as i.i.d. Rademacher when β < −0.84 [54]. Very sparse priors with
x supported on O(

√
n) entries give rise to the sparse PCA regime, where polynomial-time

strong detection is possible below the BBP threshold [35, 4, 18]; our results will not apply in
this setting (although see [29, 21] for some related work that addresses this regime).

2.4 The Low-Degree Likelihood Ratio
Inspired by the sum-of-squares hierarchy (e.g., [60, 52, 41]) and in particular the pseudo-
calibration approach [9], recent works [31, 29, 28] have proposed a strikingly simple method
for predicting computational hardness of Bayesian inference problems. This method recovers
widely-conjectured computational thresholds for high-dimensional inference problems such as
planted clique [9, 28], community detection [31, 28], sparse PCA [21], tensor PCA [29, 28, 40],
and the spiked Wigner matrix model [40]. We now give an overview of this method (see also
[40] for a survey).

Consider the problem of distinguishing two simple hypotheses Pn and Qn which are
probability distributions on some domain Ωn = Rd(n) (where typically the dimension d(n)
grows with n). One example is the spiked Wishart model Wishart(γ, β,X ) for some fixed
choice of the parameters β, γ,X . The idea is to take low-degree polynomials as a proxy
for polynomial-time algorithms and consider whether there are such polynomials that can
distinguish Pn from Qn.

I Definition 2.11. Let D : N → N. We say that distinguishing Pn from Qn is D(n)-low-
degree easy if there exists a sequence of nonzero polynomials fn ∈ R[y1, . . . , yd(n)] with
deg fn ≤ D(n) such that

lim
n→∞

Ey∼Pnfn(y)√
Ey∼Qnfn(y)2

= +∞, (7)

and D(n)-low-degree hard otherwise.

We view Qn as the “null” distribution, which is often i.i.d. Gaussian (as in the Wishart
model) or i.i.d. Rademacher (±1-valued). Qn induces an inner product on L2 functions
f : Ωn → R given by 〈f, g〉L2(Qn) = Ey∼Qn [f(y)g(y)], and a norm ‖f‖2L2(Qn) = 〈f, f〉L2(Qn).
For D ∈ N, let R[y]≤D denote the polynomials Ωn → R of degree at most D. For f : Ωn → R,
let f≤D denote the orthogonal projection (with respect to 〈·, ·〉L2(Qn)) of f onto R[y]≤D. The
following relates low-degree hardness to the low-degree likelihood ratio.

I Theorem 2.12 ([31]). Let Pn and Qn be probability distributions on Ωn for each n ∈ N.
Suppose Pn is absolutely continuous with respect to Qn, so that the likelihood ratio Ln = dPn

dQn
is defined. Then

max
f∈R[y]≤D\{0}

Ey∼Pnf(y)√
Ey∼Qnf(y)2

= ‖L≤Dn ‖L2(Qn). (8)

Proof. The objective can be rewritten as 〈f, Ln〉L2(Qn)/‖f‖L2(Qn), so by basic Hilbert space
theory, the maximum is attained by taking f = L≤Dn . J

I Corollary 2.13. In the setting of Theorem 2.12,
1. if ‖L≤D(n)

n ‖L2(Qn) = O(1), then distinguishing Pn from Qn is D(n)-low-degree hard;
2. if ‖L≤D(n)

n ‖L2(Qn) = ω(1), then distinguishing Pn from Qn is D(n)-low-degree easy.
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We take O(logn)-degree polynomials Ωn → R as a proxy for functions computable in
polynomial-time. One justification for this is that many polynomial-time algorithms compute
the leading eigenvalue of a matrix M whose entries are constant-degree polynomials in
the data; in fact, there is formal evidence that such low-degree spectral methods are as
powerful as the sum-of-squares hierarchy [29]. Typically, O(logn) rounds of power iteration
are sufficient to compute the leading eigenvalue accurately, which amounts to evaluating the
O(logn)-degree polynomial Tr(M2q) for some q = O(logn). This argument can be made
formal: if ‖L≤Dn ‖L2(Qn) = O(1) then all low-degree spectral methods must fail in a certain
sense [40]. This motivates the following informal conjecture, which is based on [31, 29, 28],
particularly Conjecture 2.2.4 of [28].

I Conjecture 2.14 (Informal). For “nice” distributions Pn and Qn, if distinguishing Pn and
Qn is log1+Ω(1)(n)-low-degree hard, then there is no randomized polynomial-time algorithm
for strong detection between P and Q.

This conjecture is useful because the norm of the low-degree likelihood ratio, ‖L≤Dn ‖L2(Qn),
can be computed (or at least bounded) for various distributions such as the stochastic block
model [31] and the spiked tensor model [29, 28]. More generally, Hypothesis 2.1.5 of [28]
conjectures that degree-D polynomials are a proxy for time-nΘ̃(D) algorithms.

I Remark 2.15. We do not expect the converse of Conjecture 2.14 to hold. If detection is
O(logn)-low-degree easy then we expect an nO(logn)-time algorithm but not necessarily a
polynomial-time algorithm, because not every O(logn)-degree polynomial can be evaluated
in polynomial time.

Conjecture 2.14 is informal in that we do not specify what is meant by “nice” distributions.
See Conjecture 2.2.4 of [28] for a precise variant of Conjecture 2.14; however, this variant
uses the more refined notion of coordinate degree and so does not apply to the calculations
we will perform. Roughly speaking, “nice” distributions P and Q should satisfy the following:
1. Q should be a product distribution, e.g., i.i.d. Gaussian or i.i.d. Rademacher;
2. P should be sufficiently symmetric with respect to permutations of its coordinates; and
3. we should be able to add a small amount of noise to P, ruling out distributions with

brittle algebraic structure (such as random satisfiable instances of XOR-SAT, which can
be identified using Gaussian elimination [12]).

We refer the reader to [31, 28, 40] for further details and evidence in favor of Conjecture 2.14.

3 Main Results

3.1 Spiked Wishart Models
We now study the low-degree hardness of the spiked Wishart model. The following technical
definitions will be important to specify the priors to which our results apply.

I Definition 3.1. Let β ∈ (−1,∞) and let X be a normalized spike prior. We say that X is
β-good if when x ∼ Xn then β‖x‖2 > −1 almost surely.

We consider spike priors having i.i.d. entries, and will sometimes need to slightly modify the
spike prior to ensure that it is β-good and has bounded norm.

I Definition 3.2. Let π be a probability distribution over R such that E[π] = 0 and E[π2] = 1.
Let iid(π/

√
n) denote the normalized spike prior X = (Xn) that draws each entry of x

independently from 1√
n
π. (We do not allow π to depend on n.)
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I Definition 3.3. For a normalized spike prior X , let the β-truncation truncβ(X ) of X
denote the following normalized spike prior. To sample x from (truncβ(X ))n, first sample
x′ ∼ Xn. Then, let x = x′ if β‖x′‖2 > −1 and ‖x′‖2 ≤ 2, and let x = 0 otherwise.

If β > −1 then since X is normalized (‖x′‖ → 1 in probability), the first case of Definition 3.3
occurs with high probability. The upper bound ‖x′‖ ≤ 2 is for technical convenience, and the
constant 2 is not essential. Note also that the β-truncation of an i.i.d. prior is no longer i.i.d.

I Theorem 3.4. Fix constants γ > 0 and β > −1.
1. Suppose β2 < γ. Let X = truncβ(iid(π/

√
n)) where π is subgaussian with E[π] = 0 and

E[π2] = 1. For any D = o(n/ logn), distinguishing Pn from Qn is D(n)-low-degree hard.
2. Suppose β2 > γ. Let X = iid(π/

√
n) be β-good with π symmetric about zero, E[π] = 0,

and E[π2] = 1. For any D = ω(1), distinguishing Pn from Qn is D(n)-low-degree easy.
We prove Theorem 3.4 in Section 5. Part 1 of Theorem 3.4, combined with Conjecture 2.14,
suggests that for i.i.d. subgaussian priors, strong detection is hard below the BBP threshold.

I Corollary 3.5. Suppose Conjecture 2.14 holds for the spiked Wishart model. Fix constants
γ > 0 and β > −1. Let π be subgaussian with E[π] = 0 and E[π2] = 1. Let X be either
iid(π/

√
n) or truncβ(iid(π/

√
n)). If β2 < γ, then there is no randomized polynomial-time

algorithm for strong detection in Wishart(γ, β,X ).

Proof. The case X = truncβ(iid(π/
√
n)) follows immediately from Part 1 of Theorem 3.4.

If strong detection is impossible for X = truncβ(iid(π/
√
n)), then strong detection is also

impossible for X = iid(π/
√
n), as these two spike priors differ with probability o(1) (under

the natural coupling). J

I Remark 3.6. We make some technical remarks regarding Theorem 3.4 and Corollary 3.5.
1. Even if Conjecture 2.14 does not hold, note that Theorem 3.4 still implies unconditional

lower bounds against low-degree polynomials in the sense of Definition 2.11.
2. Part 2 of Theorem 3.4 serves only to check that we do not predict computational

hardness when β2 > γ (as polynomial-time strong detection is possible in this regime; see
Theorem 2.10). The assumption that π is symmetric about zero should not be essential.

3. In Part 1 of Theorem 3.4 and in Corollary 3.5, the requirement that X be a β-truncated
i.i.d. prior can be relaxed. We only require that X is the β-truncation of a normalized
prior admitting a local Chernoff bound (see Definition 5.11).

4. Part 1 of Theorem 3.4 holds for any D = o(n/ logn), much larger than the D =
log1+Ω(1)(n) required by Conjecture 2.14. Since Hypothesis 2.1.5 of [28] conjectures that
degree-D polynomials are a proxy for nΘ̃(D)-time algorithms [28], this suggests that the
conclusion of Corollary 3.5 also holds for 2n1−δ -time algorithms, for any δ > 0. In other
words, strong detection requires nearly-exponential time.

3.2 Constrained PCA
The following result gives a reduction from strong detection in the spiked Wishart model to
certification in the constrained PCA problem.

I Theorem 3.7. Let S be a constraint set and let X be a normalized spike prior such that
if x ∼ Xn then x ∈ Sn with high probability. Suppose there exists ε > 0 and a randomized
polynomial-time algorithm that certifies the value 2− ε on PCA(S). Then there exist γ > 1
and β ∈ (−1, 0) such that there is a randomized polynomial-time algorithm for strong detection
in Wishart(γ, β,X ).
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We give the proof in Section 4. Note for the parameters γ, β above, β2 < γ (the “hard
regime”).

I Corollary 3.8. Suppose Conjecture 2.14 holds for the spiked Wishart model. Let π be
subgaussian with E[π] = 0 and E[π2] = 1. Let S be a constraint set such that, if x ∼ iid(π/

√
n),

then x ∈ Sn with high probability. Then, for any ε > 0, there is no randomized polynomial-
time algorithm to certify the value 2− ε on PCA(S).

Proof. The result is immediate from Theorem 3.4 and Theorem 3.7. J

In particular, we obtain the hardness of improving on the spectral certificate in the SK
model.

I Corollary 3.9. If Conjecture 2.14 holds for the spiked Wishart model, then for any ε > 0,
there is no randomized polynomial-time algorithm to certify the value 2 − ε on the SK
problem (3).

Proof. Apply Corollary 3.8 with π having the Rademacher distribution and Sn = {±1/
√
n}n.
J

4 Proof of Reduction from Spiked Wishart to Constrained PCA

Our proof will rely on the following crucial invariance property of GOE(n).

I Proposition 4.1. For any orthogonal matrix Q ∈ O(n), if W ∼ GOE(n), then the law of
QWQ> is also GOE(n).

Proof of Theorem 3.7. Let S be a constraint set and let X be a normalized spike prior such
that, if x ∼ Xn, then x ∈ Sn with high probability. Suppose that for some ε > 0 there is
a randomized polynomial-time algorithm f that certifies the value 2 − ε on PCA(S). We
will show that this implies that there is a polynomial-time algorithm for strong detection in
Wishart(γ, β,X ) with certain parameters γ > 1 and β ∈ (−1, 0) (depending on ε). Note that
these parameters lie in the “hard” regime β2 < γ.

Our algorithm for detection in the Wishart model is as follows. Fix γ > 1, to be
chosen later. Since n/N → γ we have n > N (for sufficiently large n). Given samples
y1, . . . ,yN ∼ N (0, In+βxx>), let V = span{y1, . . . ,yN} ⊆ Rn and let V ⊥ be its orthogonal
complement. We sampleW ∈ Rn×n having the distribution GOE(n) conditioned on the event
that the span of the top n−N eigenvectors ofW is V ⊥. Concretely, we can obtain a sample
in the following way. Let v1, . . . ,vN be a uniformly random orthonormal basis for V and
let vN+1, . . . ,vn be a uniformly random orthonormal basis for V ⊥. Sample W ′ ∼ GOE(n)
and let λ1 < · · · < λn be the eigenvalues of W ′. Then, let W :=

∑n
i=1 λiviv

>
i . Finally, run

the certification algorithm f for PCA(S) on W . The detection algorithm f̃ : (Rn)N → {0, 1}
then thresholds f(W ):

f̃(y1, . . . ,yN ) =
{

0 (report Qn) if f(W ) ≤ 2− ε/2,
1 (report Pn) if f(W ) > 2− ε/2. (9)

We now prove that f̃ indeed achieves strong detection in Wishart(γ, β,X ). First, if the
samples yi are drawn from the null model Qn, then V is a uniformly random N -dimensional
subspace of Rn, so by Proposition 4.1 the law of W constructed above is GOE(n). Thus
f(W ) ≤ 2− ε/2 with high probability by assumption, and therefore f̃(y1, . . . ,yN ) = 0 with
high probability, i.e., our algorithm correctly reports that the samples were drawn from the
null model.
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Next, suppose the samples yi are drawn from the planted model Pn with planted spike
x ∼ Xn. We will choose γ > 1 and β ∈ (−1, 0) so that x>Wx ≥ 2−ε/3 with high probability.
Since x ∈ Sn with high probability, this would imply f(W ) ≥ 2 − ε/3, so we will have
f̃(y1, . . . ,yN ) = 1 with high probability, i.e., our algorithm will correctly report that the
samples were drawn from the planted model.

It remains to show that x>Wx ≥ 2− ε/3. Let λ1 < · · · < λn be the eigenvalues of W
and let v1, . . . ,vn be the corresponding (unit-norm) eigenvectors. By Proposition 2.3, with
high probability, for all i ∈ [n], λi ∈ [−2− o(1), 2 + o(1)]. Furthermore, by the semicircle law
[64], with high probability, λN+1 ≥ 2− g(γ) where g(γ) > 0 is a function satisfying g(γ)→ 0
as γ → 1+ (recalling that n/N → γ). Letting ‖x‖V denote the norm of the orthogonal
projection of x onto V , we have, with high probability,

x>Wx = x>

(
n∑
i=1

λiviv
>
i

)
x

=
n∑
i=1

λi〈x,vi〉2

≥ λ1‖x‖2V + λN+1‖x‖2V ⊥
≥ (−2− o(1))‖x‖2V + (2− g(γ))(‖x‖2 − ‖x‖2V )
= (2− g(γ))‖x‖2 + (−4 + g(γ)− o(1))‖x‖2V
≥ 2− g(γ)− 4‖x‖2V − o(1). (10)

Thus we need to upper bound ‖x‖2V . Let PV denote the orthogonal projection matrix onto
V . Since V is the span of {y1, . . . ,yN}, we have PV � 1

µY where

Y = 1
N

N∑
i=1

yiy
>
i

and µ is the smallest nonzero eigenvalue of Y . (Here � denotes Loewner order.) Since Y is a
spiked Wishart matrix, it follows from Theorem 1.2 of [7] that its smallest nonzero eigenvalue
converges almost surely to (1 − √γ)2 as n → ∞. Thus we have µ = (1 − √γ)2 + o(1).
Therefore,

‖x‖2V = ‖PV x‖2 = x>PV x ≤
1
µ
x>Y x = 1

µN

N∑
i=1
〈x,yi〉2.

We have yi ∼ N (0, In + βxx>) and so 〈x,yi〉 ∼ N (0,x>(In + βxx>)x) = N (0, ‖x‖2 +
β‖x‖4). Therefore, letting a2

N =
∑N
i=1 g

2
i for gi i.i.d. standard gaussian random variables, so

that a2
N has the χ2 distribution with N degrees of freedom, we have conditional on x the

distributional equality

x>Y x
(d)= (‖x‖2 + β‖x‖4)a

2
N

N
.

Standard concentration inequalities imply a2
N/N ∈ [1− o(1), 1 + o(1)] with high probability,

and therefore x>Y x = 1 + β + o(1) with high probability. Thus, with high probability, we
find

‖x‖2V = 1 + β

(1−√γ)2 + o(1). (11)
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Finally, we choose γ > 1 close enough to 1 so that g(γ) ≤ ε/8. By (11), we can also choose
β ∈ (−1, 0) close enough to −1 so that ‖x‖2V ≤ ε/32 with high probability. Combining these,
from (10) it follows that x>Wx ≥ 2− ε/4−o(1) ≥ 2− ε/3 with high probability, completing
the proof. J

I Remark 4.2. We remark that we have ignored issues of numerical precision by assuming
a model of computation where eigendecomposition computations can be done exactly in
polynomial time. However, we believe all the operations we have used are stable, so that our
reduction should also hold for weaker models of computation. (In particular, if we want to
compute polynomially-many bits of precision of the PCA(S) instance, this should require
only polynomially-many bits of precision in the eigendecomposition computation.)

5 Proofs for Spiked Wishart Models

5.1 Preliminaries
Spiked Wishart model statistics

The following formulae pertaining to the spiked Wishart model are derived in [54]. (Recall
that in the spiked Wishart model, the parameter N is determined by n and γ as N = dn/γe.)

I Proposition 5.1. Suppose γ > 0, β ∈ [−1,∞), and X is a β-good normalized spike prior.
Then, the likelihood ratio of the null and planted probability distributions of Definition 2.8 is

Ln,γ,β,X (y1, . . . ,yN ) := dPn
dQn

(y1, . . . ,yN )

= E
x∼Xn

[(
1 + β‖x‖2

)−N/2 N∏
i=1

exp
(

1
2

β

1 + β‖x‖2
〈x,yi〉2

)]
. (12)

If furthermore ‖x‖2 < 1/|β| almost surely when x ∼ Xn, then the second moment of the
likelihood ratio is given by

E
y∼Qn

(Ln,γ,β,X (y1, . . . ,yN ))2 = E
x1,x2∼Xn

[
(1− β2〈x1,x2〉2)−N/2

]
(13)

where x1,x2 are drawn independently from Xn.

Hermite polynomials

We recall the classical one-dimensional Hermite polynomials.

I Definition 5.2. The polynomials hk ∈ R[x] for k ≥ 0 are defined by the recursion

h0(x) = 1,
hk+1(x) = xhk(x)− h′k(x),

and we define normalized versions

ĥk(x) = 1√
k!
hk(x).

I Proposition 5.3. The ĥk are an orthonormal polynomial system for the standard Gaussian
measure:

E
g∼N (0,1)

[
ĥk(g)ĥ`(g)

]
= δk`.
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Similarly, we define the product Hermite polynomials. It is helpful to first define some
notations for vectors of indices, which will also be used in the later derivations.

I Definition 5.4. Let N = {n ∈ Z : n ≥ 0}. For α ∈ Nn and x ∈ Rn, let

|α| :=
n∑
i=1

αi,

α! :=
n∏
i=1

αi!,

xα :=
n∏
i=1

xαii .

I Definition 5.5. For α ∈ Nn and x ∈ Rn,

Hα(x) :=
n∏
i=1

hαi(xi),

Ĥα(x) :=
n∏
i=1

ĥαi(xi) = 1√
α!
Hα(x).

I Proposition 5.6. The Ĥα are an orthonormal polynomial system for the product measure
of n standard Gaussian measures:

E
g∼N (0,In)

[
Ĥα(g)Ĥβ(g)

]
= δαβ.

Combinatorics

We will also need the (ordinary) generating function of the central binomial coefficients.

I Proposition 5.7. For any x ∈ R with |x| < 1
4 ,

(1− 4x)−1/2 =
∑
k≥0

(
2k
k

)
xk.

5.2 Norm of the Low-Degree Projection
In this section, we describe the formulas for the norm of the low-degree likelihood ratio in
the spiked Wishart model, ‖L≤Dn,γ,β,X ‖L2(Qn). The full calculations are given in Appendix A.

The following result, the main technical one of this portion of the argument, computes
the norm of the projection of the likelihood ratio onto a single Hermite polynomial.

I Lemma 5.8. Let α ∈ (Nn)N , and let αi ∈ Nn denote the ith component. Let |α| =∑N
i=1 |αi|. Suppose γ > 0, β ∈ [−1,∞), and X is a β-good normalized spike prior. Then,

〈Ln,γ,β,X , Ĥα〉2L2(Qn)

=

 β|α| ·
∏N
i=1

(|αi|−1)!!2
αi! ·

(
Ex∼Xn x

∑N

i=1
αi

)2
if |αi| even for all i ∈ [N ],

0 otherwise,
(14)

where when β = 0 and α = 0 we interpret 00 = 1.
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Note in particular that the quantity in question does not depend on the sign of β; thus the
calculation of the norm of the low-degree projection of the likelihood ratio will not distinguish
between the positively and negatively spiked Wishart models. Interestingly, in our proof,
which involves generalized Hermite polynomials that form families of orthogonal polynomials
with respect to Gaussian measures of different variances, this corresponds to the fact that
an “umbral” analogue of the Hermite polynomials corresponding to a fictitious Gaussian
measure with negative variance satisfies many of the same identities as the ordinary Hermite
polynomials.

Combining these quantities, we may give a simple description of the norm of the low-degree
projection of the likelihood ratio.

I Lemma 5.9. Suppose γ > 0, β ∈ [−1,∞), and X is a β-good normalized spike prior.
Define

ϕN (x) := (1− 4x)−N/2, (15)

ϕN,k(x) :=
k∑
d=0

xd
∑

d1,...,dN∑
di=d

N∏
i=1

(
2di
di

)
, (16)

so that ϕN,k(x) is the Taylor series of ϕN around x = 0 truncated to degree k (as may be
justified by Proposition 5.7). Then,

‖L≤Dn,γ,β,X ‖
2
L2(Qn) = E

x1,x2∼Xn

[
ϕN,bD/2c

(
β2〈x1,x2〉2

4

)]
(17)

where x1,x2 are drawn independently from X .

I Remark 5.10. The squared norm of the low-degree likelihood ratio (17) is closely related
via Taylor expansion to the squared norm (or second moment) of the full likelihood ratio
(13), which is recovered by taking D →∞ while n and N remain fixed.

5.3 Asymptotics as n → ∞

In this section, we use the formula from Lemma 5.9 to prove Part 1 of Theorem 3.4 (the case
β2 < γ). The proof of Part 2 (β2 > γ) is deferred to Appendix B.4.

The following concentration result is the key property that we require from the spike
prior X .

I Definition 5.11. A normalized spike prior X admits a local Chernoff bound if for every
η > 0 there exist δ > 0 and C > 0 such that, for all n,

Pr
{
|〈x1,x2〉| ≥ t

}
≤ C exp

(
−1

2(1− η)nt2
)

for all t ∈ [0, δ] (18)

where x1,x2 are drawn independently from Xn.

I Proposition 5.12. If π is subgaussian with E[π] = 0 and E[π2] = 1 then iid(π/
√
n) and

truncβ(iid(π/
√
n)) (for any β > −1) each admit a local Chernoff bound.

We defer the proof to Appendix B.1.
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Proof of Theorem 3.4 (Part 1). Let β2 < γ. We decompose the norm of the low-degree
likelihood ratio into two parts, which we will bound separately:

‖L≤Dn,γ,β,X ‖
2
L2(Qn) = E

x1,x2∼Xn

[
ϕN,bD/2c

(
β2

4 〈x
1,x2〉2

)]
= R1 +R2

where

R1 := E
x1,x2∼Xn

[
1|〈x1,x2〉|≤ε ϕN,bD/2c

(
β2

4 〈x
1,x2〉2

)]
,

R2 := E
x1,x2∼Xn

[
1|〈x1,x2〉|>ε ϕN,bD/2c

(
β2

4 〈x
1,x2〉2

)]
.

Here ε > 0 is a small constant to be chosen later. We call R1 the small deviations and call
R2 the large deviations.

The following two lemmas bound these two terms, respectively. First, we bound the large
deviations.

I Lemma 5.13 (Large Deviations). Let β2 < γ. Suppose X is a β-good normalized spike
prior that admits a local Chernoff bound. Suppose that for any n, x ∼ Xn satisfies ‖x‖2 ≤ 2
almost surely. If D = o(n/ logn) and ε > 0 is any constant, then R2 = o(1).

We give a proof summary, with the full proof deferred to Appendix B.2. Since ‖x1‖2 ≤ 2
and ‖x2‖2 ≤ 2,

R2 ≤ Pr
{
|〈x1,x2〉| > ε

}
ϕN,bD/2c(β2).

By the local Chernoff bound, Pr
{
|〈x1,x2〉| > ε

}
decays exponentially in n. To complete

the proof, we use elementary combinatorial bounds to control the polynomial expression
(16) for ϕN,bD/2c(β2). Its growth is roughly of order O(nD), which is counteracted by the
exponential decay of Pr

{
|〈x1,x2〉| > ε

}
so long as D = o(n/ logn).

Next, we bound the small deviations. For this part of the argument, it is irrelevant that
the likelihood ratio is truncated to its low-degree component, and we essentially reuse an
existing argument for the full likelihood ratio from [54].

I Lemma 5.14 (Small Deviations). Let β2 < γ. Suppose X is a β-good normalized spike
prior that admits a local Chernoff bound. Let D = D(n) be any function of n. If ε > 0 is a
sufficiently small constant then R1 = O(1).

We again give a proof summary, with the full proof deferred to Appendix B.3. As mentioned
above, unlike in the proof of Lemma 5.13, here we simply bound ϕN,bD/2c ≤ ϕN in the
expression for R1. To bound the resulting expression, we borrow an argument from [54]. This
step crucially uses the local Chernoff bound, and amounts to showing that the exponential
decay from the Chernoff bound sufficiently counteracts the exponential growth of the likelihood
ratio term ϕN (β

2

4 〈x
1,x2〉2) when 〈x1,x2〉 is small.

Combining Proposition 5.12 with Lemmas 5.13 and 5.14 completes the proof of Part 1 of
Theorem 3.4. (The proof of Part 2 is deferred to Appendix B.4.) J
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A Proofs for Computing the Low-Degree Likelihood Ratio

A.1 Generalized and Umbral Hermite Polynomials
We introduce some calculations with a useful generalization of the Hermite polynomials.
While the usual Hermite polynomials are a family of orthogonal polynomials for the Gaussian
measure with variance 1, and a straightforward generalization yields orthogonal polynomials
for the Gaussian measure with any positive variance, we will use the surprising further
generalization to fictitious Gaussian measures with negative variance, as described by the
so-called umbral calculus. We follow the presentation of [57] (specifically, Section 2.1 of
Chapter 4).

I Definition A.1. For any v ∈ R, the Hermite polynomials with variance v are defined by
the recursion

h0(x; v) = 1, (19)
hk+1(x; v) = xhk(x; v)− v∂x[hk](x; v). (20)

The next facts are useful for translating between different versions of the basic recursion and
other properties of the Hermite polynomials.

I Proposition A.2 (Differentiation Identity). For any v, x ∈ R,

∂x[hk](x; v) = khk−1(x; v). (21)

I Proposition A.3 (Alternate Recursion). For any v ∈ R, the Hermite polynomials are
equivalently defined by the recursion

h0(x; v) = 1, (22)
hk+1(x; v) = xhk(x; v)− vkhk−1(x; v). (23)

The following is yet another common way of defining the Hermite polynomials, in terms of
the derivatives of the corresponding Gaussian density (or, in the negative variance case, a
suitable generalization thereof).

I Proposition A.4 (Rodrigues Formula). Let v ∈ R with v 6= 0. Then,

dk

dxk

[
exp

(
− 1

2vx
2
)]

= (−v)−khk(x; v) exp
(
− 1

2vx
2
)
. (24)

The next fact shows how the generalized Hermite polynomials transform under scaling.

I Proposition A.5 (Scaling Identity). Let v, w, x ∈ R, then

hk(wx; v) = wkhk

(
x; v

w2

)
. (25)

Finally, the following is a generalized version of Gaussian integration by parts. We only
provide the version of this identity for the standard Hermite polynomials, which is the only
one we will use, but analogous statements hold for the generalized and umbral Hermite
polynomials.

I Proposition A.6 (Integration by Parts). Let f ∈ Ck(R) have |f (i)(x)| ≤ eCx for all
i ∈ {0, 1, . . . , k} and some C > 0. Then,

E
g∼N (0,1)

[hk(g; 1)f(g)] = E
g∼N (0,1)

[
f (k)(g)

]
. (26)
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While the above results are standard, we now give two results we will use in our calcu-
lation that do not seem to appear explicitly in the previous literature, although they are
straightforward to obtain from the preceding facts. First, we will use the following slightly
more general version of the Rodgrigues formula (Proposition A.4) in our calculations.

I Proposition A.7 (Multidimensional Rodrigues Formula). Let x ∈ Rn, α ∈ Nn, and v ∈ R
with v 6= 0. Then,

∂αy

[
exp

(
− 1

2v 〈x,y〉
2
)]

= (−v)−|α|xαh|α|(〈x,y〉; v) exp
(
− 1

2v 〈x,y〉
2
)
. (27)

Proof. We proceed by induction on |α|. Clearly the result holds for α = 0. Suppose the
result holds for all |α′| ≤ k, and |α| = k + 1 > 0. Let α′ having |α′| = k differ from α only
in coordinate i, so that α′i = αi − 1 and α′j = αj for all j 6= i. Then,

∂αy

[
exp

(
− 1

2v 〈x,y〉
2
)]

= ∂yi

[
∂α
′

y

[
exp

(
− 1

2v 〈x,y〉
2
)]]

= (−v)−kxα
′
∂yi

[
hk(〈x,y〉; v) exp

(
− 1

2v 〈x,y〉
2
)]

= (−v)−kxα
′
(
xi∂x[hk](〈x,y〉; v)− v−1〈x,y〉xihk(〈x,y〉; v)

)
exp

(
− 1

2v 〈x,y〉
2
)

= (−v)−(k+1)xα
(
〈x,y〉hk(〈x,y〉; v)− v∂x[hk](〈x,y〉; v)

)
exp

(
− 1

2v 〈x,y〉
2
)

= (−v)−(k+1)xαhk+1(〈x,y〉; v) exp
(
− 1

2v 〈x,y〉
2
)
,

completing the proof. J

Second, we will need the following calculation evaluating the expectation of any Hermite
polynomial under any centered Gaussian measure.

I Proposition A.8 (Expectation Under Mismatched Variance). Let v ∈ R and k ≥ 0. Then,

Eg∼N (0,σ2) [hk(g; v)] =
{

0 if k odd,
(k − 1)!!(σ2 − v)k/2 if k even.

Proof. The result for odd k holds since hk(· ; v) is an odd function for any v ∈ R in this case.
For even k, we argue by induction on k. The result clearly holds for k = 0. If the result
holds for a given k, then we may compute

Eg∼N (0,σ2)[hk+2(g; v)] = Eg∼N (0,1)[hk+2(σg)]
= σEg∼N (0,1)[ghk+1(σg; v)]− v(k + 1)Eg∼N (0,1)[hk(σg)]
= σ2Eg∼N (0,1)[∂x[hk+1](σg; v)]− v(k + 1)Eg∼N (0,1)[hk(σg)]
= (k + 1)σ2Eg∼N (0,1)[hk(σg; v)]− v(k + 1)Eg∼N (0,1)[hk(σg)]
= (k + 1)(σ2 − v)Eg∼N (0,1)[hk(σg)]
= (k + 1)(σ2 − v)Eg∼N (0,σ2)[hk(g)]

completing the proof. J
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We note two interesting features of this result. First, it generalizes two simple cases, on the one
hand v = σ2 where the expectation is zero unless k = 0, as may be seen from the orthogonality
relations, and on the other v = 0 where it recovers the moments of a Gaussian measure.
Second, the quantities appearing on the right-hand side formally resemble the moments of a
Gaussian measure of suitable variance, but the formula in fact still holds for σ2 < v, in which
case case these quantities may be viewed as the moments of a fictitious Gaussian measure of
negative variance (the same as inspired the umbral Hermite polynomials).

A.2 Individual Hermite Components of the Likelihood Ratio

Proof of Lemma 5.8. By Proposition A.6, we find

〈Ln,γ,β,X , Ĥα〉2

= 1
α!

(
E

y∼Qn
∂αy Ln,γ,β,X (y1, . . . ,yN )

)2

= 1
α!

(
E

x∼Xn,y∼Qn

(
1 + β‖x‖2

)−N/2
∂αy

N∏
i=1

exp
(

1
2

β

1 + β‖x‖2
〈x,yi〉2

))2

= 1∏N
i=1αi!

(
E

x∼Xn

(
1 + β‖x‖2

)−N/2 N∏
i=1

E
y∼N (0,In)

[
∂αiy exp

(
1
2

β

1 + β‖x‖2
〈x,y〉2

)])2

(28)

where the αi ∈ Nn are the components of α corresponding to yi, for each i ∈ [N ]. When
β = 0, our result follows from the above, giving 〈Ln,γ,β,X , Ĥα〉2 = δ0,|α|. (Indeed, in this case
the null and planted models are identical, so Ln,γ,β,X = 1 is a constant, which is compatible
with the above.) Let us suppose β 6= 0 below.

In this case, using Proposition A.7, we have

∂αiy exp
(

1
2

β

1 + β‖x‖2
〈x,y〉2

)
=
(

1 + β‖x‖2

β

)−|αi|
xαih|αi|

(
〈x,y〉;−1 + β‖x‖2

β

)
exp

(
1
2

β

1 + β‖x‖2
〈x,y〉2

)
.

(29)

(Note that the sign of the spike, or equivalently the sign of β, is the opposite of the sign of
the variance of the Hermite polynomials that appear; thus, it is the negatively spiked case
that corresponds to the more natural positive variance Hermite polynomials.) Since when
y ∼ N (0, In) then 〈x,y〉 ∼ N (0, ‖x‖2), we find

〈Ln,γ,β,X , Ĥα〉2 = β2|α|∏N
i=1αi!

(
E

x∼Xn

x
∑N

i=1
αi

(1 + β‖x‖2)|α|+N/2

N∏
i=1

E
g∼N (0,‖x‖2)

h|αi|

(
g;−1 + β‖x‖2

β

)
exp

(
1
2

β

1 + β‖x‖2
g2
))2

. (30)
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We next focus on the innermost expectation. We may rewrite:

E
g∼N (0,‖x‖2)

h|αi|

(
g;−1 + β‖x‖2

β

)
exp

(
1
2

β

1 + β‖x‖2
g2
)

= 1√
2π‖x‖2

∫ ∞
−∞

h|αi|

(
g;−1 + β‖x‖2

β

)
exp

(
−1

2

(
1
‖x‖2

− β

1 + β‖x‖2

)
g2
)
dg

= (1 + β‖x‖2)1/2√
2π‖x‖2(1 + β‖x‖2)

∫ ∞
−∞

h|αi|

(
g;−1 + β‖x‖2

β

)
exp

(
− 1

2‖x‖2(1 + β‖x‖2)g
2
)
dg

= (1 + β‖x‖2)1/2 E
g∼N (0,‖x‖2(1+β‖x‖2))

h|αi|

(
g;−1 + β‖x‖2

β

)
. (31)

By Proposition A.8, this quantity will be zero unless |αi| is even, and thus 〈Ln,γ,β,X , Ĥα〉2
will be zero unless |αi| is even for all i. In this case, by Proposition A.8,

E
g∼N (0,‖x‖2)

h|αi|

(
g;−1 + β‖x‖2

β

)
exp

(
1
2

β

1 + β‖x‖2
g2
)

= (|αi|−1)!! (1 + β‖x‖2)|αi|+1/2

β|αi|/2
.

(32)

Substituting into (30), we find many cancellations after which we are left with

〈Ln,γ,β,X , Ĥα〉2 =
∏N
i=1(|αi| − 1)!!2∏N

i=1αi!
β|α|

(
E

x∼Xn
x
∑N

i=1
αi

)2
, (33)

the final result. J

A.3 Norm of the Low-Degree Likelihood Ratio
Proof of Lemma 5.9. Recall that

‖L≤Dn,γ,β,X ‖
2
L2(Qn) =

∑
α∈(Nn)N
|α|≤D

〈Ln,γ,β,X , Ĥα〉2. (34)

We substitute in the result of Lemma 5.8, which, after introducing independent replicas
x1,x2 ∼ Xn, may be rewritten as

‖L≤Dn,γ,β,X ‖
2
L2(Qn) = E

x1,x2∼Xn

∑
αi∈Nn,i∈[N ]
|αi|even∑N

i=1
|αi|≤D

N∏
i=1

(|αi| − 1)!!2

αi!
β|αi|(x1)αi(x2)αi

= E
x1,x2∼Xn

D∑
d=0

βd
∑

d1,...,dN even∑
di=d

(
N∏
i=1

(di − 1)!!2

di!

) ∑
αi∈Nn,i∈[N ]
|αi|=di

N∏
i=1

(
di
αi

) n∏
j=1

(x1
jx

2
j )αi(j).

By the multinomial theorem,

〈x1,x2〉di =
∑
α∈Nn
|α|=di

(
di
α

) n∏
j=1

(x1
jx

2
j )α(j),
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and therefore

〈x1,x2〉
∑N

i=1
di =

N∏
i=1
〈x1,x2〉di

=
N∏
i=1

∑
α∈Nn
|α|=di

(
di
α

) n∏
j=1

(x1
jx

2
j )α(j)

=
∑

αi∈Nn,i∈[N ]
|αi|=di

N∏
i=1

(
di
αi

) n∏
j=1

(x1
jx

2
j )αi(j).

In our case, this shows

‖L≤Dn,γ,β,X ‖
2
L2(Qn) = E

x1,x2∼Xn

∑
0≤d≤D
d even

βd
∑

d1,...,dN even∑
di=d

(
N∏
i=1

(di − 1)!!2

di!

)(
N∏
i=1
〈x1,x2〉di

)

= E
x1,x2∼Xn

∑
0≤d≤D
d even

βd〈x1,x2〉d
∑

d1,...,dN even∑
di=d

N∏
i=1

di!
di!!2

= E
x1,x2∼Xn

∑
0≤d≤D
d even

2−dβd〈x1,x2〉d
∑

d1,...,dN even∑
di=d

N∏
i=1

(
di
di/2

)

where we have used the identities n! = n!! · (n− 1)!! and (2n)!! = 2n · n!. We now pass to a
notation making the restriction to even degrees clearer:

‖L≤Dn,γ,β,X ‖
2
L2(Qn) = E

x1,x2∼Xn

∑
0≤d≤bD/2c

(
β2〈x1,x2〉2

4

)d ∑
d1,...,dN∑

di=d

N∏
i=1

(
2di
di

)
.

The remaining function may be understood in terms of the generating function of the central
binomial coefficients: using Proposition 5.7, we have that for any x ∈ (− 1

4 ,
1
4 ),

ϕN (x) := (1− 4x)−N/2 =

∑
d≥0

(
2d
d

)
xd

N

=
∑
d≥0

xd
∑

d1,...,dN∑
di=d

N∏
i=1

(
2di
di

)
.

Writing ϕN,k(x) for the truncation of this Taylor series to degree k, we see that

‖L≤Dn,γ,β,X ‖
2
L2(Qn) = E

x1,x2∼Xn

[
ϕN,bD/2c

(
β2〈x1,x2〉2

4

)]
,

the final result. J

B Proofs for Bounding the Low-Degree Likelihood Ratio

B.1 Local Chernoff Bound
Proof of Proposition 5.12. It is sufficient to show that iid(π/

√
n) admits a local Chernoff

bound. Since π is subgaussian, π2−E[π2] is subexponential (see, e.g., [56]), i.e., the moment-
generating function M(t) = E[exp(t(π2 − E[π2]))] satisfies M(t) ≤ exp( t2

2s2 ) for all |t| ≤ s for
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a suitable choice of a constant s > 0. In particular, E[exp(tπ2)] <∞ for all |t| ≤ s for this
choice of s > 0.

Let Π = ππ′, the product of two independent copies of π. Let σ2 be the variance proxy
of π (see Definition 2.1). The moment-generating function of Π is

M(t) = E[exp(tΠ)] = EπEπ′ [exp(tππ′)] ≤ Eπ
[
exp

(
σ2t2π2/2

)]
<∞

provided 1
2σ

2t2 < s, i.e., |t| <
√

2s/σ2. Thus M(t) exists in an open interval containing
t = 0, which implies M ′(0) = E[Π] = 0 and M ′′(0) = E[Π2] = 1 (this is the defining property
of the moment-generating function: its derivatives at t = 0 are the moments of Π).

Let η > 0 and f(t) = exp
(

t2

2(1−η)

)
. Since M(0) = 1,M ′(0) = 0,M ′′(0) = 1 and

f(0) = 1, f ′(0) = 0, f ′′(0) = 1
1−η > 1, there exists δ > 0 such that for all t ∈ [−δ, δ], M(t)

exists and M(t) ≤ f(t).
We now apply the standard Chernoff bound argument to 〈x1,x2〉 = 1

n

∑n
i=1 Πi, where

Π1, . . . ,Πn are i.i.d. copies of Π. For any λ > 0,

Pr
{
〈x1,x2〉 ≥ t

}
= Pr

{
exp(λ〈x1,x2〉) ≥ exp(λt)

}
≤ exp(−λt)E[exp(λ〈x1,x2〉)] (by Markov’s inequality)

= exp(−λt)E[exp(λn−1
n∑
i=1

Πi)]

= exp(−λt)[M(λ/n)]n

≤ exp(−λt)[f(λ/n)]n (provided λ/n ≤ δ)

≤ exp(−λt) exp
(

λ2

2(1− η)n

)
.

Taking λ = (1− η)nt,

Pr
{
〈x1,x2〉 ≥ t

}
≤ exp

(
−(1− η)nt2 + 1

2(1− η)nt2
)

= exp
(
−1

2(1− η)nt2
)

as desired. This holds provided λ/n ≤ δ, i.e., t ≤ δ/(1− η). The same argument (with −Π
instead of Π) holds for the other tail bound Pr

{
〈x1,x2〉 ≤ −t

}
. J

B.2 Bounding the Large Deviations
Proof of Lemma 5.13. Recall that

ϕN,bD/2c(x) =
bD/2c∑
d=0

xd
∑

d1,...,dN∑
di=d

N∏
i=1

(
2di
di

)
.

Note that the first sum above has bD/2c + 1 terms and the second sum has at most
Nd ≤ NbD/2c ≤ ND/2 terms. It is combinatorially clear that

(2di
di

)(2dj
dj

)
≤
(2(di+dj)
di+dj

)
, and

therefore
N∏
i=1

(
2di
di

)
≤
(2
∑N
i=1 di∑N
i=1 di

)
=
(

2d
d

)
≤ (2d)d ≤ DD/2.

Since ‖x1‖2 ≤ 2 and ‖x2‖2 ≤ 2 we have 1
4β

2〈x1,x2〉2 ≤ β2. Since d ≤ D/2 we have
(β2)d ≤ (1 + β2)D/2, and therefore

ϕN,bD/2c

(
β2

4 〈x
1,x2〉2

)
≤ (D/2 + 1)(1 + β2)D/2ND/2DD/2 ≤ (1 + β2)D/2DND/2DD/2.
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Combining these bounds,

R2 = E
x1,x2∼Xn

[
1|〈x1,x2〉|>ε ϕN,bD/2c

(
β2

4 〈x
1,x2〉2

)]
≤ Pr

{
|〈x1,x2〉| > ε

}
(1 + β2)D/2DND/2DD/2.

Since R2 increases as ε decreases, we can assume without loss of generality that ε is small
enough that we may apply the local Chernoff bound (18):

≤ exp
(
−1

3nε
2
)

(1 + β2)D/2DND/2DD/2

= exp
(
−1

3nε
2 + D

2 log(1 + β2) + logD + D

2 logN + D

2 logD
)

= o(1)

provided D = o(n/ logn), completing the proof. J

B.3 Bounding the Small Deviations
Proof of Lemma 5.14. We use the argument from Appendix K of [54]. Since the Taylor
series for ϕN (x) has nonnegative coefficients, we have ϕN,bD/2c(x) ≤ ϕN (x) for all x ∈ [0, 1/4).
Taking ε < 1/|β|, we have

R1 = E
x1,x2∼Xn

[
1|〈x1,x2〉|≤ε ϕN,bD/2c

(
β2

4 〈x
1,x2〉2

)]
≤ E
x1,x2∼Xn

[
1|〈x1,x2〉|≤ε ϕN

(
β2

4 〈x
1,x2〉2

)]
= E
x1,x2∼Xn

[
1|〈x1,x2〉|≤ε

(
1− β2〈x1,x2〉2

)−N/2]
= E
x1,x2∼Xn

[
1|〈x1,x2〉|≤ε exp

(
−N2 log

(
1− β2〈x1,x2〉2

))]
.

By the convexity of t 7→ − log(1 − β2t), we have − log(1 − β2t) ≤ − t
ε2 (1 − β2ε2) for all

t ∈ [0, ε2]. Letting c := − N
2ε2 log(1− β2ε2) > 0, we proceed bounding

≤ E
x1,x2∼Xn

[
1|〈x1,x2〉|≤ε exp

(
c〈x1,x2〉2

)]
=
∫ ∞

0
Pr
{
1|〈x1,x2〉|≤ε exp

(
c〈x1,x2〉2

)
> u

}
du

=
∫ ∞

0
Pr
{
|〈x1,x2〉| ≤ ε and exp

(
c〈x1,x2〉2

)
> u

}
du

≤ 1 +
∫ ∞

1
Pr
{
|〈x1,x2〉| ≤ ε and exp

(
c〈x1,x2〉2

)
> u

}
du.

Applying the change of variables u = exp (ct),

= 1 +
∫ ∞

0
Pr
{
|〈x1,x2〉| ≤ ε and 〈x1,x2〉2 > t

}
c exp (ct) dt

≤ 1 +
∫ ε2

0
Pr
{
〈x1,x2〉2 > t

}
c exp (ct) dt.
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Provided ε is sufficiently small, we can apply the local Chernoff bound (18):

≤ 1 + Cc

∫ ε2

0
exp

(
−1

2(1− η)nt+ ct

)
dt.

Let γ̂ := n/N , so that γ̂ → γ as n→∞. Letting c =: ĉn where ĉ = − log(1− β2ε2)/(2ε2γ̂),

≤ 1 + C · ĉn
∫ ε2

0
exp

[(
−1

2(1− η) + ĉ

)
nt

]
dt.

We have limε→0+ ĉ = β2

2γ̂
. Since β2 < γ, we have that for sufficiently large n, β

2

2γ̂
< 1

2 . Thus
we can choose ε and η small enough so that for sufficiently large n, − 1

2 (1− η) + ĉ ≤ −α for
some α > 0. Now

≤ 1 + C · ĉn
∫ ∞

0
exp (−αnt) dt

= 1 + C · ĉ
α

= O(1),

completing the proof. J

B.4 Above the BBP Threshold
Proof of Theorem 3.4 (Part 2). Let β2 > γ. Recall

‖L≤Dn,γ,β,X ‖
2
L2(Qn) = E

x1,x2∼Xn

[
ϕN,bD/2c

(
β2

4 〈x
1,x2〉2

)]

=
bD/2c∑
d=0

E
x1,x2∼Xn

(
β2

4 〈x
1,x2〉2

)d ∑
d1,...,dN∑

di=d

N∏
i=1

(
2di
di

)
. (35)

Since each term in the outer summation of (35) is nonnegative, it sufficies to fix a single
d ≤ D/2 and show that the corresponding term is ω(1). We can write 〈x1,x2〉 = 1

n

∑n
i=1 Πi

where Π1, . . . ,Πn are i.i.d. with distribution of the product Π = ππ′ of two independent
copies of π. This means

E
x1,x2∼Xn

〈x1,x2〉2d = E

(
1
n

n∑
i=1

Πi

)2d

= n−2d
∑

i1,...,i2d∈[n]

E[Πi1Πi2 · · ·Πid2 ].

Since π is symmetric about zero, Π is also symmetric about zero, so all moments E[Πk] are
nonnegative. This means each term in the remaining sum is nonnegative, so we can obtain
a lower bound by only considering terms where each index occurring among the i1, . . . , i2d
occurs exactly twice:

E
x1,x2∼Xn

〈x1,x2〉2d ≥ n−2d
(
n

d

)
(2d)!
2d

(
E[Π2]

)d = n−2d
(
n

d

)
(2d)!
2d .
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Next, we bound the inner summation of (35) below by taking only the terms with di ∈ {0, 1}
for all i ∈ [N ]:

∑
d1,...,dN∑

di=d

N∏
i=1

(
2di
di

)
≥
(
N

d

)
2d.

Combining these bounds, we find that for any fixed 0 ≤ d ≤ bD/2c,

‖L≤Dn,γ,β,X ‖
2
L2(Qn) ≥

β2d

4d n
−2d
(
n

d

)
(2d)!
2d

(
N

d

)
2d

=
(
β2

4n2

)d (2d)!n!N !
(d!)2 (n− d)! (N − d)!

≥
(
β2(n− d)(N − d)

4n2

)d(2d
d

)
.

Using the standard bound
(2d
d

)
≥ 4d/(2

√
d),

‖L≤Dn,γ,β,X ‖
2
L2(Qn) ≥

1
2
√
d

(
β2(n− d)(N − d)

n2

)d
.

This final expression will be ω(1) provided that 1� d� n, since n/N → γ and β2 > γ. J
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