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Abstract
The advice model of online computation captures the setting in which the online algorithm is

given some partial information concerning the request sequence. This paradigm allows to establish
tradeoffs between the amount of this additional information and the performance of the online
algorithm. However, unlike real life in which advice is a recommendation that we can choose to
follow or to ignore based on trustworthiness, in the current advice model, the online algorithm treats
it as infallible. This means that if the advice is corrupt or, worse, if it comes from a malicious
source, the algorithm may perform poorly. In this work, we study online computation in a setting
in which the advice is provided by an untrusted source. Our objective is to quantify the impact
of untrusted advice so as to design and analyze online algorithms that are robust and perform
well even when the advice is generated in a malicious, adversarial manner. To this end, we focus
on well- studied online problems such as ski rental, online bidding, bin packing, and list update.
For ski-rental and online bidding, we show how to obtain algorithms that are Pareto-optimal with
respect to the competitive ratios achieved; this improves upon the framework of Purohit et al.
[NeurIPS 2018] in which Pareto-optimality is not necessarily guaranteed. For bin packing and list
update, we give online algorithms with worst-case tradeoffs in their competitiveness, depending on
whether the advice is trusted or not; this is motivated by work of Lykouris and Vassilvitskii [ICML
2018] on the paging problem, but in which the competitiveness depends on the reliability of the
advice. Furthermore, we demonstrate how to prove lower bounds, within this model, on the tradeoff
between the number of advice bits and the competitiveness of any online algorithm. Last, we study
the effect of randomization: here we show that for ski-rental there is a randomized algorithm that
Pareto-dominates any deterministic algorithm with advice of any size. We also show that a single
random bit is not always inferior to a single advice bit, as it happens in the standard model.
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1 Introduction

Suppose that you have an investment account with a significant amount in it, and that your
financial institution advises you periodically on investments. One day, your banker informs
you that company X will soon receive a big boost, and advises to use the entire account
to buy stocks. If you were to completely trust the banker’s advice, there are naturally two
possibilities: either the advice will prove correct (which would be great) or it will prove
wrong (which would be catastrophic). A prudent customer would take this advice with a
grain of salt, and would not be willing to risk everything. In general, our understanding of
advice is that it entails knowledge that is not foolproof.

In this work we focus on the online computation with advice. Our motivation stems from
observing that, unlike the real world, the advice under the known models is often closer
to “fiat” than “recommendation”. Our objective is to propose a model which allows the
possibility of incorrect advice, with the objective of obtaining more realistic and robust online
algorithms.

1.1 Online computation and advice complexity
In the standard model of online computation that goes back to the seminal work of Sleator
and Tarjan [26], an online algorithm receives as input a sequence of requests. For each
request in this sequence, the algorithm must make an irrevocable decision concerning the
item, without any knowledge of future requests. The performance of an online algorithm
is usually evaluated by means of the competitive ratio, which is the worst-case ratio of the
cost incurred by the algorithm (assuming a minimization problem) to the cost of an ideal
solution that knows the entire sequence in advance.

In practice, however, online algorithms are often provided with some (limited) knowledge
of the input, such as lookahead on some of the upcoming requests, or knowledge of the input
size. While competitive analysis is still applicable, especially from the point of view of the
analysis of a known, given algorithm, a new model was required to formally quantify the
power and limitations of offline information. The term advice complexity was first coined by
Dobrev et al. [12], and subsequent formal models were presented by Böckenhauer et al. [6]
and Emek et al. [13], with this goal in mind. More precisely, in the advice setting, the online
algorithm receives some bits that encode information concerning the sequence of input items.
As expected, this additional information can boost the performance of the algorithm, which
is often reflected in better competitive ratios.

Under the current models, the advice bits can encode any information about the input
sequence; indeed, defining the “right” information to be conveyed to the algorithm plays
an important role in obtaining better online algorithms. Clearly, the performance of the
online algorithm can only improve with larger number of advice bits. The objective is thus
to identify the exact trade-offs between the size of the advice and the performance of the
algorithm. This is meant to provide a smooth transition between the purely online world
(nothing is known about the input) and the purely “offline” world (everything is known about
the input). In the last decade, a substantial number of online optimization problems have
been studied in the advice model; we refer the reader to the survey of Boyar et al. [7] for an
in-depth discussion of developments in this field.

As argued in detail in [7], there are compelling reasons to study the advice complexity of
online computation. Lower bounds establish strict limitations on the power of any online
algorithm; there are strong connections between randomized online algorithms and online
algorithms with advice (see, e.g., [16]); online algorithms with advice can be of practical
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interest in settings in which it is feasible to run multiple algorithms and output the best
solution (see [17] about obtaining improved data compression algorithms by means of list
update algorithms with advice); and the first complexity classes for online computation have
been based on advice complexity [8].

Notwithstanding such interesting attributes, the known advice model has certain draw-
backs. The advice is always assumed to be some error-free information that may be used to
encode some property often explicitly connected to the optimal solution. In many settings,
one can argue that such information cannot be readily available, which implies that the
resulting algorithms are often impractical.

1.2 Online computation with untrusted advice
In this work, we address what is a significant drawback in the online advice model. Namely,
all previous works assume that advice is, in all circumstances, completely trustworthy, and
precisely as defined by the algorithm. Since the advice is infallible, no reasonable online
algorithm with advice would choose to ignore the advice.

It should be fairly clear that such assumptions are very unrealistic or undesirable. Advice
bits, as all information, are prone to transmission errors. In addition, the known advice
models often require that the information encodes some information about the input, which,
realistically, cannot be known exactly (e.g., some bits of the optimal, offline solution). Last,
and perhaps more significantly, a malicious entity that takes control of the advice oracle
can have a catastrophic impact. For a very simple example, consider the well-known ski
rental problem: this is a simple, yet fundamental resource allocation, in which we have to
decide ahead of time whether to rent or buy equipment without knowing the time horizon
in advance. In the traditional advice model, one bit suffices to be optimal: 0 for renting
throughout the horizon, 1 for buying right away. However, if this bit is wrong, then the
online algorithm has unbounded competitive ratio, i.e., can perform extremely badly. In
contrast, an online algorithm that does not use advice at all has competitive ratio at most 2,
i.e., its output can be at most twice as costly as the optimal one.

The above observations were recently made in the context of online algorithms with
machine-learned predictions. Lykouris and Vassilvitskii [21] and Purohit et al. [23] show how
to use predictors to design and analyze algorithms with two properties: (i) if the predictor
is good, then the online algorithm should perform close to the best offline algorithm (what
is called consistency); and (ii) if the predictor is bad, then the online algorithm should
gracefully degrade, i.e., its performance should be close to that of the online algorithm
without predictions (what is called robustness).

Motivated by these definitions from machine learning, in this work we analyze online
algorithms based on their performance in both settings of trusted and untrusted advice.
In particular, we will characterize the performance of an online algorithm A by a pair of
competitive ratios, denoted by (rA, wA), respectively. Here, rA is the competitive ratio
achieved assuming that the advice encodes precisely what it is meant to capture; we call this
ratio the competitive ratio with trusted (thus, always correct) advice. In contrast, wA is the
competitive ratio of A when the advice is untrusted (thus, potentially wrong). More precisely,
in accordance with the worst-case nature of competitive analysis, we allow the incorrect
advice to be chosen adversarially. Namely, assuming a deterministic online algorithm A, the
incorrect advice string is generated by a malicious, adversarial entity.

To formalize the above concept, assume the standard advice model, in which a determ-
inistic online algorithm A processes a sequence of requests σ = (σ[i])i∈[1,n] using an advice
tape. At each time t, A serves request σ[t], and its output is a function of σ[1.. . . . t− 1] and
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φ ∈ {0, 1}∗. Let A(σ, φ) denote the cost incurred by A on input σ, using an advice string φ.
Denote by rA, wA as

rA = sup
σ

inf
φ

A(σ, φ)
Opt(σ) , and wA = sup

σ
sup
φ

A(σ, φ)
Opt(σ) , (1)

where Opt(σ) denotes the optimal offline cost for σ. Then we say that algorithm A is
(r, w)-competitive for every r ≥ rA and w ≥ wA. In addition, we say that A has advice
complexity s(n) if for every request sequence σ of length n, the algorithm A depends only on
the first s(n) bits of the advice string φ. To illustrate this definition, the opportunistic 1-bit
advice algorithm for ski rental that was described above is (1,∞)-competitive, whereas the
standard competitively optimal algorithm without advice is (2, 2)-competitive. In general,
every online algorithm A without advice or ignoring its advice is trivially (w,w)-competitive,
where w is the competitive ratio of A.

Hence, we can associate every algorithm A to a point in the 2-dimensional space with
coordinates (rA, wA). These points are in general incomparable, e.g., it is difficult to argue
that a (2, 10)-competitive algorithm is better than a (4, 8)-competitive algorithm. However,
one can appeal to the notion of dominance, by saying that algorithm A dominates algorithm
B if rA ≤ rB and wA ≤ wB . More precisely, we are interested in finding the Pareto frontier
in this representation of all online algorithms. For the ski rental example, the two above
mentioned algorithms belong to the Pareto set.

A natural goal is to describe this Pareto frontier, which in general, may be comprised
of several algorithms with vastly different statements. Ideally, however, one would like to
characterize it by a single family A of algorithms, with similar statements (e.g., algorithms
in A are obtained by appropriately selecting a parameter). We say that A is Pareto-optimal
if it consists of pairwise incomparable algorithms, and for every algorithm B, there exists
A ∈ A such that A dominates B. Regardless of optimality, given A, we will describe its
competitiveness by means of a function f : R≥1 → R≥1 such that for every ratio r there is
an (r, f(r))-competitive algorithm in A. This function will in general depend on parameters
of the problem, such as, for example, the buying cost B in the ski rental problem.

1.3 Contribution
We study various online problems in the setting of untrusted advice. We also demonstrate
that it is possible to establish both upper and lower bounds on the tradeoff between the
size of the advice and the competitiveness in this new advice model. We begin in Section 2
with a simple, yet illustrative online problem as a case study, namely the ski-rental problem.
Here, we give a Pareto-optimal algorithm with only one bit of advice. We also show that this
algorithm is Pareto-optimal even in the space of all (deterministic) algorithms with advice of
any size.

In Section 3 we study the online bidding problem, in which the objective is to guess an
unknown, hidden value, using a sequence of bids. This problem was introduced in [11] as a
vehicle for formalizing efficient doubling, and has applications in several important online and
offline optimization problems. As with ski rental, this is another problem for which a trivial
online algorithm is (1,∞)-competitive. We first show how to find a Pareto-optimal strategy,
when the advice encodes the hidden value, and thus can have unbounded size. Moreover, we
study the competitiveness of the problem with only k bits of advice, for some fixed k, and
show both upper and lower bounds on the achieved competitive ratios. The results illustrate
that is is possible to obtain non-trivial lower bounds on the competitive ratios, in terms of
the advice size. In particular, the lower bound implies that, unlike the ski rental problem,
Pareto-optimality is not possible with a bounded number of advice bits.
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In Sections 4 and 5, we study the bin packing and list update problems; these problems
are central in the analysis of online problems and competitiveness, and have numerous
applications in practice. For these problems, an efficient advice scheme should address the
issues of “what constitutes good advice” as well as “how the advice should be used by the
algorithm”. We observe that the existing algorithms with advice perform poorly in the case
the advice is untrusted. To address this, we give algorithms that can be “tuned” based on
how much we are willing to trust the advice. This enables us to show guarantees in the
form (r, f(r))-competitiveness, where r is strictly better than the competitive ratio of all
deterministic online algorithms and f(r) smoothly decreases as r grows, while still being close
to the worst-case competitive ratio. To illustrate this, consider the bin packing problem. Our
(r, f(r))-competitive algorithm has f(r) = max{33 − 18r, 7/4} for any r ≥ 1.5. If r = 1.5,
our algorithm is (1.5, 6)-competitive, and matches the performance of a known algorithm [10].
However, with a slight increase of r, one can improve competitiveness in the event the advice
is untrusted. For instance, choosing r = 1.55, we obtain f(r) = 5.1. In other words, the
algorithm designer can hedge against untrusted advice, by a small sacrifice in the trusted
performance. Thus we can interpret r as the “risk” for trusting the advice: the smaller
the r, the bigger the risk. Likewise, for the list update problem, our (r, f(r))-competitive
algorithm has f(r) = 2 + 10−3r

9r−5 for r ∈ [5/3, 2]. If the algorithm takes maximum risk, i.e., if
r is smallest, the algorithm is equivalent to an existing (5/3, 5/2)-competitive algorithm [9].
Again, by increasing r, we better safeguard against the event of untrusted advice.

All the above results pertain to deterministic online algorithms. In Section 6, we study
the power of randomization in online computation with untrusted advice. First, we show that
the randomized algorithm of Purohit et al. [23] for the ski rental problem Pareto-dominates
any deterministic algorithm, even when the latter is allowed unbounded advice. Furthermore,
we show an interesting difference between the standard advice model and the model we
introduce: in the former, an advice bit can be at least as powerful as a random bit, since an
advice bit can effectively simulate any efficient choice of a random bit. In contrast, we show
that in our model, there are situations in which a randomized algorithm with L advice bits
and one random bit is Pareto-incomparable to the Pareto-optimal deterministic algorithm
with L+ 1 advice bits. This confirms the intuition that a random bit is considered trusted,
and thus not obviously inferior to an advice bit.

While our work addresses issues similar to [21] and [23], in that trusted advice is related
to consistency whereas untrusted advice is related to robustness, it differs in two significant
aspects: First, our ideal objective is to identify an optimal family of algorithms, and we
show that in some cases (ski rental, online bidding), this is indeed possible; when this is not
easy or possible, we can still provide approximations. Note that finding a Pareto-optimal
family of algorithms presupposes that the exact competitiveness of the online problem with
no advice is known. For problems such as bin packing, the exact optimal competitive ratios
are not known. Hence, a certain degree of approximation is unavoidable in such cases. In
contrast, [21, 23] focus on “smooth” tradeoffs between the trusted and untrusted competitive
ratios, but do not address the issues related to optimality and approximability of these
tradeoffs.

Second, our model considers the size of advice and its impact on the algorithm’s per-
formance, which is the main focus of the advice complexity field. For all problems we study,
we parameterize advice by its size, i.e., we allow advice of a certain size k. Specifically,
the advice need not necessarily encode the optimal solution or the request sequence itself.
This opens up more possibilities to the algorithm designer in regards to the choice of an
appropriate advice oracle, which may have further practical applications in machine learning.

ITCS 2020
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2 A warm-up: the ski rental problem

2.1 Background
The ski rental problem is a canonical example in online rent-or-buy problems. Here, the
request sequence can be seen as vacation days, and on each day the vacationer (that is,
the algorithm) must decide whether to continue renting skis, or buy them. Without loss
of generality we assume that renting costs a unit per day, and buying costs B ∈ N+. The
number of skiing days, which we denote by D, is unknown to the algorithm, and we observe
that the optimal offline cost is min{D,B}. Generalizations of ski rental have been applied in
many settings, such as dynamic TCP acknowledgment [19], the parking permit problem [22],
and snoopy caching [18].

Consider the single-bit advice setting. Suppose that the advice encodes whether to buy
on day 1, or always rent. An algorithm that blindly follows the advice is optimal if the advice
is trusted, but, if the advice is untrusted, the competitive ratio is as high as D/B, if D > B.
Hence, this algorithm is (1,∞)-competitive, for D →∞.

2.2 Ski rental with untrusted advice
We define the family of algorithms Ak, with parameter 0 < k ≤ B as follows. There is a
single bit of advice, which is the indicator of the event D < B. If the advice bit is 1, then
Ak rents until until day B − 1 and buys on day B. Otherwise, the algorithms buys on day k.

I Proposition 1. Algorithm Ak is (1 + k−1
B , 1 + B−1

k )-competitive.

Our algorithm Ak is slightly different from the one proposed in [23], which buys on day
dB/ke if the advice is 1 and is shown to be (1+k/B, 1+B/k)-competitive. More importantly,
we show that Ak is Pareto-optimal in the space of all deterministic online algorithms with
advice of any size. This implies that more than a single bit of advice will not improve the
tradeoff between the trusted and untrusted competitive ratios.

I Theorem 2. For any deterministic (1 + k−1
B , w)-competitive algorithm A, with 1 ≤ k ≤ B,

with advice of any size, it holds that w ≥ 1 + B−1
k .

Proof. Let A be an algorithm with trusted competitive ratio at most 1 + k−1
B . First, note

that if the advice is untrusted, the competitive ratio cannot be better than the competitive
ratio of a purely online algorithm. For ski-rental, it is known that no online algorithm can
achieve a competitive ratio better than 1 + (B − 1)/B [18]. So, in the case k = B, the claim
trivially holds. In the remainder of the proof, we assume k < B.

We use σD to denote the instance of the problem in which the number of skiing days
is D, and use At(σD) to denote the cost of A for σD in case of trusted advice.

Consider a situation in which the input is σB+k and the advice for A is trusted. Let j
be the day the algorithm will buy under this advice. Since the advice is trusted and thus
Opt(σB+k) = B, it must be that

At(σB+k) ≤
(

1 + k − 1
B

)
Opt(σB+k),

which implies j < B + k. In other words, A indeed buys on day j. We conclude that
At(σB+k) = j − 1 +B which further implies j ≤ k.

Let x be the trusted advice A receives on input σB+k and suppose A receives the same
advice x on input σj . Note that x can be trusted or untrusted for σj . The important point
is that A serves σj in the same way it serves σB+k, that is, it rents for j − 1 days and buys
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on day j. The cost of A for σj is then j − 1 +B, while Opt(σj) = j. The ratio between the
cost of the algorithm and Opt is therefore 1 + B−1

j , which is at least 1 + B−1
k since j ≤ k.

Note that 1 + B−1
k > 1 + k−1

B (since we assumed k < B) and therefore the advice in this
situation has to be untrusted, by the assumption on the trusted competitive ratio of A. We
conclude that the untrusted competitive ratio must be at least 1 + (B − 1)/k. J

3 Online bidding

3.1 Background
In the online bidding problem, a player wants to guess a hidden, unknown real value u ≥ 1.
To this end, the player submits a sequence X = (xi) of increasing bids, until one of them is
at least u. The strategy of the player is defined by this sequence of bids, and the cost of
guessing the hidden value u is equal to

∑j
i=1 xi, where j is such that xj−1 < u ≤ xj . Hence

the following natural definition of the competitive ratio of the bidder’s strategy.

wX = sup
u

∑j
i=1 xi
u

, where j is such that xj−1 < u ≤ xj .

The problem was introduced in [11] as a canonical problem for formalizing doubling-based
strategies in online and offline optimization problems, such as searching for a target on the
line, minimum latency, and hierarchical clustering. It is worth noting that online bidding is
identical to the problem of minimizing the acceleration ratio of interruptible algorithms [25];
the latter and its generalizations are problems with many practical applications in AI (see,
for instance [20]).

Without advice, the best competitive ratio is 4, and can be achieved using the doubling
strategy xi = 2i. If the advice encodes1 the value u, and assuming trusted advice, bidding
x1 = u is a trivial optimal strategy. The above observations imply that there are simple
strategies that are (4, 4)-competitive and (1,∞)-competitive, respectively.

3.2 Online bidding with untrusted advice
Suppose that w ≥ 4 is a fixed, given parameter. We will show a Pareto-optimal bidding
strategy X∗u, assuming that the advice encodes u, which is (w−

√
w2−4w
2 , w)-competitive

(Theorem 5).
We begin with some definitions. Since the index of the bid which reveals the value will

be important in the analysis, we define the class Sm,u, with m ∈ N+ as the set of bidding
strategies with advice u which are w-competitive, and which, if the advice is trusted, succeed
in finding the value with precisely the m-th bid. We say that a strategy X ∈ Sm,u that is
(r, w)-competitive dominates Sm,u if for every X ′ ∈ Sm,u, such that X ′ is (r′, w)-competitive,
r ≤ r′ holds.

The high-level idea is to identify, for any given m, a dominant strategy in Sm,u. Let
X∗m,u denote such a strategy, and denote by (r∗m,u, w) its competitiveness. Then X∗m,u and
r∗m,u are the solutions to an infinite linear program which we denote by Pm,u, and which is
shown below. For convenience, for any strategy X, we will always define x0 to be equal to 1.

1 We assume that the advice provides the exact value u to the algorithm. For practical considerations, it
suffices to assume an oracle that provides an (1 + ε)-approximation of the hidden value, for sufficiently
small ε > 0. This will only affect the competitive ratios by the same negligible factor.

ITCS 2020
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min rm,u (Pm,u)
s.t. xi < xi+1, i ∈ N+

xm−1 < u ≤ xm
m∑
j=1

xj ≤ rm,u · u

i∑
j=1

xj ≤ w · xi−1, i ∈ N+

xi ≥ 0, i ∈ N+.

min 1
u
·
m∑
i=1

xi (Lm,u)

s.t. xi < xi+1, i ∈ N+

xm = u

i∑
j=1

xi ≤ w · xi−1, i ∈ N+ (Ci)

xi ≥ 0, i ∈ N+.

Note that in Pm,u the constraints
∑i
j=1 xj ≤ w · xi−1 guarantee that the untrusted

competitive ratio of X is at most w, whereas the constraints
∑m
j=1 xj ≤ rm,u · u and

xm−1 < u ≤ xm guarantee that if the advice is trusted, then X succeeds in finding u precisely
with its m-th bid, and in this case the competitive ratio is rm,u.

We also observe that an optimal solution X∗m,u = (x∗i )i≥1 for Pm,u must be such that
xm = u, otherwise one could define a strategy X ′m,u in which x′i = x∗i /α, for all i ≥ 1, with
α = u/x∗m, which is still feasible for Pm,u, is such that x′m = u, and has better objective
value than X∗m,u, a contradiction. Furthermore, in an optimal solution, the constraint∑m

i=1 xi ≤ rm,u · u must hold with equality. Therefore, X∗m,u and r∗m,u are also solutions to
the linear program Lm,u.

Next, define r∗u = infm r∗m,u, and r∗ = supu r∗u. Informally, r∗u, r∗ are the optimal
competitive ratios, assuming trusted advice. More precisely, the dominant strategy in the
space of all w-competitive strategies is (r∗u, w)-competitive, and r∗ is an upper bound on r∗u,
assuming the worst-case choice of u.

We first argue how to compute r∗m,u and the corresponding strategy X∗m,u, provided that
Lm,u is feasible. This is accomplished in Lemma 3. The main idea behind the technical
proof is to show that in an optimal solution of Lm,u, all constraints Ci hold with equality.
This allows us to describe the bids of the optimal strategy by means of a linear recurrence
relation which we can solve so as to obtain an expression for the bids of X∗m,u.

Define the sequences ai and bi as follows:

ai = ai−1

w − 1− bi−1
, with a0 = 1, and bi = 1 + bi−1

w − 1− bi−1
, with b0 = 0, (2)

Moreover, for w > 4, let ρ1 = w−
√
w2−4w
2 and ρ2 = w+

√
w2−4w
2 denote the two roots of

x2 − wx+ w, the characteristic polynomial of the above linear recurrence.

I Lemma 3. For every m define Xm,u as follows:
If w > 4, then xm,u,i = α·ρi−1

1 +β·ρi−1
2 , where α = am−1ρ

m−1
2 −1

ρm−1
2 −ρm−1

1
·u, and β = am−1ρ

m−1
1 −1

ρm−1
1 −ρm−1

2
·u,

If w = 4, then xm,u,i = (α+β ·i)·2i, where α = 2m−1·m·am−1−1
2m(m−1) ·u, and β = 1−2m−1·am−1

2m(m−1) ·u.
Then, Xm,u is an optimal feasible solution if and only if am−1 · u ≤ w.

We can now give the statement of the optimal strategy X∗u. First, we can argue that
the optimal objective value of Lm,u is monotone increasing in m, thus it suffices to find the
objective value of the smallest m∗ for which Lm∗,u is feasible; This can be accomplished with
a binary search in the interval [1, dlog ue] , since we know that the doubling strategy in which
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the i-th bid equals 2i is w-competitive for all w ≥ 4; hence m∗ ≤ dlog ue. Then X∗u is derived
as in the statement of Lemma 3. The time complexity of the algorithm is O(log log u), since
we can describe each ai, bi, and hence am−1 in closed form, avoiding the recurrence which
would add a O(log u) factor. The technical details can be found in the long version of this
paper [2].

Last, the following lemma allows us to express r∗ as a function of the values of the
sequence b, which we can further exploit so as to obtain the exact value of r∗u.

I Lemma 4. It holds that r∗ = 1 +
∑∞
i=1
∏i−1
j=1 bj. Furthermore, r∗ = w−

√
w2−4w
2 .

Combining Lemmas 3 and 4 we obtain following result:

I Theorem 5. Strategy X∗u is Pareto-optimal and is (w−
√
w2−4w
2 , w)-competitive.

Strategy X∗u requires u as advice, which can be unbounded. A natural question is what
competitiveness can one achieve with k advice bits, for some fixed k. We address this question
both from the point of view of upper and lower bounds. Concerning upper bounds, we show
the following:

I Theorem 6. For every w ≥ 4, there exists a bidding strategy with k bits of advice which is
(r, w)-competitive, where

r =


(w+

√
w2−4w)1+1/K

21/K(w+
√
w2−4w−2) if w ≤ (1 +K)2/K

(1+K)1+1/K

K if w ≥ (1 +K)2/K.

and where K = 2k.

In particular, for w = 4, the strategy of Theorem 6 is (21+ 1
2k , 4)-competitive, whereas X∗u

is (2, 4)-competitive. The following theorem gives a lower bound on the competitiveness of
any bidding strategy with k bits. The result shows that one needs unbounded number of
bids to achieve (2, 4)-competitiveness.

I Theorem 7. For any bidding strategy with k advice bits that is (r, 4)-competitive it holds
that r ≥ 2 + 1

3·2k .

Proof sketch. We present only an outline. With k bits of advice, the online algorithm can
differentiate only between K = 2k online bidding sequences, denoted by X1, . . . , XK , each of
which must have (untrusted) competitive ratio at least 4. Suppose, by way of contradiction,
that the algorithm has trusted competitive ratio less than 2 + 1

3·2k . We reach a contradiction,
by applying a game between the algorithm and the adversary, which proceeds in rounds. The
adversary fixes a sufficiently large index i ≥ i0, for some i0. In the first round, u is chosen
by the adversary so as to be infinitesimally larger than xK,i−1, namely the (i − 1)-th bid
of XK . For the algorithm to guarantee the claimed r, we show that it will have to use the
advice so as to “choose” one of the sequences X1, . . . XK−1, say Xj . Then in the next round,
the adversary will choose an appropriate u that is adversarial for Xj . The crux of the proof
is to show that the algorithm’s only response is to choose a sequence of index higher than
j. Eventually, the only remaining choice for the algorithm is strategy XK ; moreover, we
can show that throughout the execution of the algorithm the adversarial u is comparable to
xK,i−1, in particular, we show that u ≤ e1/3xK,i−1. To conclude, the above argument shows
that

r ≥ sup
i≥i0

∑i
j=1 xK,j

e
1
3xK,i−1

= 1
e

1
3

sup
i=1

∑i
j=1 xK,j

xK,i−1
≥ 4
e

1
3
> 2 + 1

3K .

where we used the fact that supi=1

∑i

j=1
xK,j

xK,i−1
= 4, since XK is 4-competitive. J
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4 Online bin packing

4.1 Background
An instance of the online bin packing problem consists of a sequence of items with different
sizes in the range (0, 1], and the objective is to pack these items into a minimum number
of bins, each with a capacity of 1. For each arriving item, the algorithm must place it in
one of the current bins or open a new bin for the item. We say that algorithm A has an
asymptotic competitive ratio r if, on every sequence σ, the number of opened bins satisfies
A(σ) ≤ r ·Opt(σ) + c, where c is a constant. As standard in the analysis of bin packing
problems, throughout this section, by “competitive ratio” we mean “asymptotic competitive
ratio”. The First Fit [15] algorithm maintains bins in the same order that they have been
opened, and places an item into the first bin with enough free space; if no such bin exists, it
opens a new bin. First Fit has a competitive ratio of 1.7 [15] while the best online algorithm
has a competitive ratio of at least 1.54278 [5] and at most 1.57829 [4]. Online bin packing
has also been studied in the advice setting [10, 24, 3]. In particular, it is possible to achieve
a competitive ratio of 1.4702 with only a constant number of (trusted) advice bits [3].

In this section, we introduce an algorithm named Robust-Reserve-Critical (Rrc) which
has a parameter α ∈ [0, 1], indicating how much the algorithm relies on the advice. Provided
with O(1) bits of advice, the algorithm is asymptotically (rRrc, wRrc)-competitive for rRrc =
1.5 + 1−α

4−3α and wRrc = 1.5 + max{ 1
4 ,

9α
8−6α}. If the advice is reliable, we set α = 1 and the

algorithm is asymptotically (1.5, 6)-competitive; otherwise, we set α to a smaller value.

4.2 The Reserve-Critical algorithm
Our solution uses an algorithm introduced by Boyar et al. [10] which achieves a competitive
ratio of 1.5 using O(logn) bits of advice [10]. We refer to this algorithm as Reserve-Critical
in this paper and describe it briefly. The algorithm classifies items according to their size.
Tiny items have their size in the range (0, 1/3], small items in (1/3, 1/2], critical items in
(1/2, 2/3], and large items in (2/3, 1]. In addition, the algorithm has four kinds of bins, called
tiny, small, critical and large bins. Large items are placed alone in large bins, which are
opened at each arrival. Small items are placed in pairs in small bins, which are opened every
other arrival. Critical bins contain a single critical item, and tiny items up to a total size of
1/3 per bin, while tiny bins contain only tiny items. The algorithm receives as advice the
number of critical items, denoted by c, and opens c critical bins at the beginning. Inside
each critical bin, a space of 2/3 is reserved for a critical item, and tiny items are placed using
First-Fit into the remaining space of these bins possibly opening new bins dedicated to tiny
items. Each critical item is placed in one of the critical bins. Note that the algorithm is
heavily dependent on the advice being trusted. Imagine that the encoded advice is strictly
larger than the real number of critical items. This results in critical bins which contain only
tiny items. The worst case is reached when all tiny items have size slightly more than 1/6
while there is no critical item. In this case, all critical bins are filled up to a level slightly
more than 1/6. Hence, untrusted advice can result in a competitive ratio as bad as 6.

4.3 The Robust-Reserve-Critical (RRC) algorithm
Let t be the number of tiny bins opened by the Reserved-Critical algorithm. Recall that c is
the number of critical bins. We call the fraction c/(c+ t) the critical ratio. The advice for
Rrc is a fraction γ, integer multiple of 1/2k, that is encoded in k bits such that if the advice
is trusted then γ ≤ c/(c+ t) ≤ γ + 1/2k. In case c/(c+ t) is a positive integer multiple of



S. Angelopoulos, C. Dürr, S. Jin, S. Kamali, and M. Renault 52:11

1/2k, we break the tie towards γ < c/(c+ t). Note that for sufficiently large, yet constant,
number of bits, γ provides a good approximation of the critical ratio. Indeed having γ as
advice is sufficient to achieve a competitive ratio that approaches 1.5 in the trusted advice
model, as shown in [3].

The Rrc algorithm has a parameter 0 ≤ α ≤ 1, which together with the advice γ can be
used to define a fraction β = min{α, γ}. The algorithm maintains a proportion close to β
of critical bins among critical and tiny bins. Formally, on the arrival of a critical item, the
algorithm places it in a critical bin, opening a new one if necessary. Each arriving tiny item
x is packed in the first critical bin which has enough space, with the restriction that the tiny
items don’t exceed a fraction 1/3 in these bins. If this fails, the algorithm tries to pack x in
a tiny bin using First-Fit strategy (this time on tiny bins). If this fails as well, a new bin B
is opened for x. Now, B should be declared as a critical or a tiny bin. Let c′ and t′ denote
the number of critical and tiny bins before opening B. If c′ + t′ > 0 and c′

c′+t′ < β, then B is
declared a critical bin; otherwise, B is declared a tiny bin. Large and small items are placed
similarly to the Reserved-Critical algorithm (one large item in each large bin and two small
items in each small bin).

4.4 Analysis
Intuitively, Rrc works similarly to Reserved-Critical except that it might not open as many
critical bins as suggested in the advice. The algorithm is more “conservative” in the sense
that it does not keep two-third of many (critical) bins open for critical items that might never
arrive. The smaller the value of α is, the more conservative the algorithm is. Our analysis
is based on two possibilities in the final packing of the algorithm. In the first case (case I),
all critical bins receive a critical item, while in the second case (case II) some of them have
their reserved space empty. In case I, we show the number of bins in the packing of Rrc is
within a factor 1.5 + 1−β

4−3β of the number of bins in the optimal packing. Note that this ratio
decreases as the value of α (and β) grows. This implies a less conservative algorithm would
be better packing in this case. Case II happens only if the advice is untrusted. In this case,
the number of bins in the Rrc packing is within a factor 1.5 + 9β

8−6β of the number of bins
in an optimal packing. This ratio increases with α (and β). This implies a more conservative
algorithm would be better in this case as it would open less critical bins and, thus, would
have fewer without critical items.

Assume the advice is trusted. Then either γ ≤ α or γ > α. In the former case, the
algorithm maintains the same ratio as suggested by advice, and a result from [3] indicates
that the competitive ratio is at most 1.5+ 15

2k/2+1 . In the former case, the algorithm maintains
a smaller number of critical items than what the advice suggested; all these bins receive
critical items and the final packing will be in Case I. Consequently, when the advice is trusted,
the competitive ratio is at most 1.5 + max{ 1−α

4−3α ,
15

2k/2+1 }. If the advice is untrusted, both
case I and case II can be realized for the final packing. The competitive ratio will be at most
1.5 + max{ 1

4 ,
9α

8−6α}. We can conclude with the following theorem:

I Theorem 8. Algorithm Robust-Reserve-Critical with parameter α ∈ [0, 1] and k bits of
advice achieves a competitive ratio of rRrc ≤ 1.5 + max{ 1−α

4−3α ,
15

2k/2+1 } when the advice is
trusted and a competitive ratio of wRrc ≤ 1.5 + max{ 1

4 ,
9α

8−6α} when the advice is untrusted.

Assuming the size k of the advice is a sufficiently large constant, we conclude the following.

I Corollary 9. For bin packing with untrusted advice, there is a (r, f(r))-competitive algorithm
where r ≥ 1.5 and f(r) = max{33− 18r, 7/4}.
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5 List update

5.1 Background
The list update problem consists of a list of items of length m, and a sequence of n requests
that should be served with minimum total cost. Every request corresponds to an “access”
to an item in the list. If the item is at position i of the list then its access cost is i. After
accessing the item, the algorithm can move it closer to the front of the list with no cost using
a “free exchange”. In addition, at any point, the algorithm can swap the position of any two
consecutive items in the list using a “paid exchange” which has a cost of 1. Throughout this
section, we adopt the standard assumption that m is a large integer but still a constant with
respect to n.

Move-to-Front (Mtf) is an algorithm that moves every accessed item to the front of the
list using a free exchange. Mtf has a competitive ratio of at most 2 [27], which is the best
that a deterministic algorithm can achieve [14]. Timestamp [1] is another algorithm that
achieves the optimal competitive ratio of 2. This algorithm uses a free exchange to move an
accessed item x to the front of the first item that has been accessed at most once since the
last access to x. Move-To-Front-Every-Other-Access (Mtf2) is a class of algorithms which
maintain a bit for each item in the list. Upon accessing an item x, the bit of x is flipped,
and x is moved to front if its bit is 0 after the flip (otherwise the list is not updated). If
all bits are 0 at the beginning, Mtf2 is called called Move-To-Front-Even (Mtfe), and if
all bits are 1 at the beginning, Mtf2 is called Move-To-Front-Odd (Mtfo). Both Mtfe
and Mtfo algorithms have a competitive ratio of 5/2 [9]. In [9] it is shown that, for any
request sequence, at least one of Timestamp, Mtfo, and Mtfe has a competitive ratio of at
most 5/3. For a given request sequence, the best option among the three algorithms can be
indicated with two bits of advice, giving a 5/3-competitive algorithm. However, if the advice
is untrusted, the competitive ratio can be as bad as 5/2.

To address this issue, we introduce an algorithm named Toggle (Tog) that has a parameter
β ∈ [0, 1/2], and uses 2 advice bits to select one of the algorithms Timestamp, Mtfe or
Mtfo. This algorithm achieves a competitive ratio of rTog = 5/3 + 5β

6+3β when the advice
is trusted and a competitive ratio of at most wTog = 2 + 2/(4 + 5β) when the advice is
untrusted. The parameter β can be tuned and should be smaller when the advice is more
reliable. In particular, when β = 0, we get a (5/3, 2.5)-competitive algorithm.

5.2 The Toggle algorithm
Given the parameter β, the Toggle algorithm (Tog) works as follows. If the advice indicates
Timestamp, the algorithm runs Timestamp. If the advice indicates either Mtfo or Mtfe,
the algorithm will proceed in phases (the length of which partially depend on β) alternating
(“toggling”) between running Mtfe or Mtfo, and Mtf. In what follows, we use Mtf2 to
represent the algorithm indicated by the advice. The algorithm Tog will initially begin
with Mtf2 until the cost of the accesses of the phase reaches a certain threshold, then a
new phase begins and Tog switches to Mtf. This new phase ends when the access cost of
the phase reaches a certain threshold, and Tog switches back to Mtf2. This alternating
pattern continues as Tog serves the requests. As such, Tog will use Mtf2 for the odd
phases which we will call trusting phases, and Mtf for the even phases which we will call
ignoring phases. The actions during each phase are formally defined below.

Trusting phase: In a trusting phase, Tog will use Mtf2 to serve the requests. Let σi be
the first request of some trusting phase j for 1 ≤ i ≤ n and an odd j ≥ 1. Before serving σi,
Tog modifies the list with paid exchanges to match the list configuration that would result
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from running Mtf2 on the request sequence σ1, . . . , σi. The number of paid exchanges will
be less than m2. In addition, Tog will set the bits of items in the list to the same value
as at the end of this hypothetical run. As such, during a trusting phase, Tog incurs the
same access cost as Mtf2. The trusting phase continues until the cost to access a request
σ`, i < ` ≤ n, for Tog would cause the total access cost for the phase to become at least m3

(or the request sequence ends). The next phase, which will be an ignoring phase, begins with
request σ`+1.

Ignoring phase: In an ignoring phase, Tog will use the Mtf rule to serve the request.
Unlike the trusting phase, Tog does not use paid exchanges to match another list configura-
tion. Let σi be the first request of some ignoring phase j for 1 ≤ i ≤ n and an even j ≥ 1.
The ignoring phase continues until the cost to access a request σ`, i < ` ≤ n, for Tog would
cause the total access cost for the phase to exceed β ·m3 (or the request sequence ends). The
next phase, which will be a trusting phase, begins with request σ`+1.

5.3 Analysis
The access cost in each phase of Tog is Θ(m3), while the cost that it might pay at the
beginning of each phase is O(m2). Consequently, the cost of the algorithm in a trusting
phase is roughly m3 + o(m3) and βm3 + o(m3) for an ignoring phase. Moreover, the optimal
algorithm incurs a cost of at least m3/2.5−m2 in a trusting phase and at least βm3/2−m2

in an ignoring phase; these results follow from the upper bounds of respectively 2.5 and 2 for
the competitive ratios of Mtf and Mtf2, and the fact that the discrepancy in the initial
configuration of each phase changes the cost of Opt in that phase by at most m2. We can
extend these results to show that, for sufficiently long lists, the competitive ratio of Tog
(regardless of the advice being trusted or not) converges to at most 2 + 2

4+5β . We conclude
that, when the advice is untrusted, the competitive ratio of Tog is at most 2 + 2

4+5β .
Now, assume the advice is trusted. If the advice indicates Timestamp as the best

algorithm among Mtfe, Mtfo, and Timestamp, the algorithm uses Timestamp to serve the
entire sequence, and since the advice is right, the competitive ratio will be at most 5/3 [9]. If
the advice indicates Mtf2 (either Mtfe or Mtfo), we compare the cost of Tog with that
of Mtf2 in each phase. A careful phase analysis, similar to the one for the competitive ratio,
shows that the ratio between the costs of the two algorithms converges to at most 2 + 2

4+5β .
We conclude that, when the advice is trusted, the competitive ratio of the Tog algorithm
converges to 5/3 + 5β

6+3β for sufficiently long lists. We can state the following theorem:

I Theorem 10. Algorithm Tog with parameter β ∈ [0, 1/2] and k bits of advice achieves a
competitive ratio of at most 5/3 + 5β

6+3β when the advice is trusted and a competitive ratio of
at most 2 + 2

4+5β when the advice is untrusted.

I Corollary 11. For list update with untrusted advice, there is a (r, f(r))-competitive algorithm
where r ∈ [5/3, 2] and f(r) = 2 + 10−3r

9r−5 .

6 Randomized online algorithms with untrusted advice

The discussion in all previous sections pertains to deterministic online algorithms. In this
section we focus on randomization and its impact on online computation with untrusted
advice. We will assume, as standard in the analysis of randomized algorithms, that the
source of randomness is trusted (unlike the advice). Given a randomized algorithm A, its
trusted and untrusted competitive ratios are defined as in (1), with the difference that the
cost A(σ, φ) is now replaced by the expected cost E(A(σ, φ)).
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First, we will argue that randomization can improve the competitiveness of the ski
rental problem. For this, we note that [23] gave a randomized algorithm with a single
advice bit for this problem which is

(
λ

1−e−λ ,
1

1−e−(λ−1/B)

)
-competitive, where λ ∈ (1/B, 1)

is a parameter of the algorithm. For simplicity, we may assume that B is large, hence
this algorithm is

(
λ

1−e−λ ,
1

1−e−λ
)
-competitive, which we can write in the equivalent form

(w ln w
w−1 , w). In contrast, Theorem 2 shows that any deterministic Pareto-optimal algorithm

with advice of any size is (1 + λ, 1 + 1/λ)-competitive, or equivalently ( w
w−1 , w)-competitive.

Standard calculus shows that w ln w
w−1 <

w
w−1 ; therefore we conclude that the randomized

algorithm Pareto-dominates any deterministic algorithm, even when the latter is allowed
unbounded advice.

A second issue we address in this section is related to the comparison of random bits and
advice bits as resource. More specifically, in the standard model in which advice is always
trustworthy, an advice bit can be at least as powerful as a random bit since the former can
simulate the efficient choice of the latter, and thus provide a “no-loss” derandomization.
However, in the setting of untrusted advice, the interplay between advice and randomization
is much more intricate. This is because random bits, unlike advice bits, are assumed to be
trusted.

We show, using online bidding as an example, that there are situations in which a
deterministic algorithm with L + 1 advice bits is Pareto-incomparable to a randomized
algorithm with 1 random bit and L advice bits. In particular we focus on the bounded online
bidding problem, in which u ≤ B, for some given B.

I Theorem 12. For every ε > 0 there exist sufficiently large B and L such that there is a
randomized algorithm for bounded online bidding with L advice bits and 1 random bit, and
which is ( 1+ρ1

2 ρ1 + ε, 1+ρ1
2ρ1

w + ε)-competitive for all w > 4, where ρ1 = w−
√
w2−4w
2 .

Note that when B,L→∞, the competitiveness of the best deterministic algorithm with
L advice bits approaches the one of X∗u, as expressed in Theorem 5, namely (ρ1, w). Thus,
Theorem 12 shows that randomization improves upon the deterministic untrusted ratio w
by a factor 1+ρ1

2ρ1
> 1, at the expense of a degradation of the trusted competitive ratio by a

factor 1+ρ1
2 > 1. For instance, if w is close to 4, then the randomized algorithm has untrusted

competitive ratio less than 4, and thus better than any deterministic strategy.
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