
Linear Time Subgraph Counting, Graph
Degeneracy, and the Chasm at Size Six
Suman K. Bera
University of California, Santa Cruz, CA 95064, USA
sbera@ucsc.edu

Noujan Pashanasangi
University of California, Santa Cruz, CA 95064, USA
npashana@ucsc.edu

C. Seshadhri
University of California, Santa Cruz, CA 95064, USA
sesh@ucsc.edu

Abstract
We consider the problem of counting all k-vertex subgraphs in an input graph, for any constant k.
This problem (denoted sub-cntk) has been studied extensively in both theory and practice. In a
classic result, Chiba and Nishizeki (SICOMP 85) gave linear time algorithms for clique and 4-cycle
counting for bounded degeneracy graphs. This is a rich class of sparse graphs that contains, for
example, all minor-free families and preferential attachment graphs. The techniques from this result
have inspired a number of recent practical algorithms for sub-cntk. Towards a better understanding
of the limits of these techniques, we ask: for what values of k can sub-cntk be solved in linear time?

We discover a chasm at k = 6. Specifically, we prove that for k < 6, sub-cntk can be solved in
linear time. Assuming a standard conjecture in fine-grained complexity, we prove that for all k > 6,
sub-cntk cannot be solved even in near-linear time.

2012 ACM Subject Classification Mathematics of computing → Graph algorithms; Theory of
computation → Graph algorithms analysis

Keywords and phrases Subgraph counting, bounded degeneracy graphs, fine-grained complexity

Digital Object Identifier 10.4230/LIPIcs.ITCS.2020.38

Funding All authors are supported by NSF TRIPODS grant CCF-1740850 NSF CCF-1813165, and
ARO Award W911NF1910294.

Acknowledgements We would like to thank David Helmbold for insightful discussions. In particular,
David pointed out that the lower bound for counting 8-cycles does not follow from our construction.

1 Introduction

The subgraph counting problem asks for the number of occurrences of a (typically connected)
“pattern” subgraph H in a connected input graph G. It is a fundamental algorithmic problem
with a rich theory [34, 51, 16, 53, 5, 24, 69, 19], and widely used in practice [32, 18, 58, 15,
60, 33, 59, 40, 68, 62, 67, 8]. With the explosion of network science, subgraph counting
is now a fundamental tool used for analyzing real-world graphs. Thus, the search for fast
algorithms for subgraph counting is not just a theoretical problem, but one that has many
applications in bioinformatics, social sciences, and computer science.

Especially for the many of the practical applications, a common version of subgraph
counting is to count the frequency of all connected subgraphs with k vertices [57, 54, 2, 25,
26, 31, 47, 61, 37, 71, 71]. We will denote this problem as sub-cntk. Even in the theory
literature, it is common to parametrize running time by n (vertices in G) and k, so it is
natural to study sub-cntk. There is a rich line of theoretical work on getting nµk time

© Suman K. Bera, Noujan Pashanasangi, and C. Seshadhri;
licensed under Creative Commons License CC-BY

11th Innovations in Theoretical Computer Science Conference (ITCS 2020).
Editor: Thomas Vidick; Article No. 38; pp. 38:1–38:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/287883813?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:sbera@ucsc.edu
mailto:npashana@ucsc.edu
mailto:sesh@ucsc.edu
https://doi.org/10.4230/LIPIcs.ITCS.2020.38
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

38:2 Linear Time Subgraph Counting, Graph Degeneracy, and the Chasm at Size Six

algorithms, for µ < 1, using matrix multiplication and tree decomposition methods [34, 53,
5, 13, 44, 70, 45, 20, 14, 19]. Unfortunately, sub-cntk is (a generalization of) the canonical
#W[1]-hard problem, and it is not believed that there exist f(k) · no(k) algorithms for
sub-cntk. From an application standpoint, these algorithms are typically not practical,
and do not provide algorithmic guidance. Real-world graphs are massive, and one typically
desires linear-time algorithms.

An alternate perspective is to look for faster algorithms for restricted graph classes, and
hope that these classes correspond to real-world graphs. A seminal result of Chiba-Nishizeki
gave O(mκk−2) algorithms for k-clique counting and an O(mκ) algorithm for 4-cycle counting,
where m is the number of edges in G and κ is the graph degeneracy [16]. We leave the
technical definitions for later; but κ can be thought of as the maximum average degree of
any subgraph of G. Chiba-Nishizeki implicitly prove linear-time algorithms for sub-cntk for
k = 3, 4 (explicitly shown in [57, 54]). The class of bounded (constant) degeneracy graphs is
immensely rich: it contains all minor-closed families, preferential attachment graphs, and
bounded expansion graphs. The graph degeneracy appears heavily in network science, and
real-world graphs have typically low degeneracy (though maybe not constant).

But most importantly for subgraph counting, the techniques from Chiba-Nishizeki have
inspired a number of recent practical subgraph counting algorithms [57, 54, 37, 35].

The problems of sub-cntk for k 6 5 have been successfully tackled in practice using
these approaches. These algorithms are often tailored for k (using, for example, specific
tricks to count individual 4-vertex subgraphs) and it is not clear how far they will extend for
larger k.

Towards a better theoretical understanding, we pose the following question.
For what values k, does the sub-cntk problem admit a linear time algorithm in bounded

degeneracy graphs?

1.1 Our Results
The question above has a surprisingly clean resolution, assuming conjectures from fine-grained
complexity. For simplicity, we assume that the input graph G is connected. We assume Las
Vegas randomized algorithms, so we talk of expected running times.

Our main theorem asserts linear time algorithms for counting (up to) 5-vertex subgraphs
in bounded degeneracy graphs. For counting 6-vertex subgraphs and beyond, it is unlikely
that even near-linear time algorithms exists.

I Theorem 1 (The chasm at size 6). For k 6 5, there is an expected O(mκk−2) time algorithm
for sub-cntk.

Assume the Triangle Detection Conjecture (Conj. 2). There exists an absolute
constant γ > 0 such that the following holds. For any k > 6 and any function f : N → N,
there is no (expected) o(m1+γf(κ)) algorithm for sub-cntk.

The Triangle Detection Conjecture was first stated by Abboud and Williams [1].
They proved many lower bounds for the dynamic version of many well known graph problems
such as bipartite perfect matching, single source reachability etc. It is actually believed that
the constant γ could be as large as 1/3.

I Conjecture 2 (Triangle Detection Conjecture [1]). There exists a constant γ > 0
such that in the word RAM model of O(logn) bits, any algorithm to detect whether an input
graph on m edges has a triangle requires Ω(m1+γ) time in expectation.

S.K. Bera, N. Pashanasangi, and C. Seshadhri 38:3

1.2 Main Ideas
Conditional Lower Bounds

It is instructive to look at the conditional lower bounds. The reduction of triangle detection
to subgraph counting in bounded degeneracy graphs is actually quite simple. Suppose we
want to detect (or even count) triangles in an input graph G. Get graph G′ by subdividing
each edge into two, so a triangle in G becomes a C6 (6-cycle) in G′. But the degeneracy of
G′ is just 2! (In any induced subgraph of G′, the minimum degree is at most 2, proving the
bound.) Thus, if there exists o(f(κ)m1+γ) time algorithms for counting 6-cycles, that would
violate the Triangle Detection Conjecture.

It is fairly straightforward to generalize this idea for larger cycles, by replacing edges in
G by short paths. Assuming Triangle Detection Conjecture, for all k > 6 and k 6= 8,
we can rule out linear time algorithms for counting Ck in bounded degeneracy graphs. Our
reduction does not work for C8; instead we consider a different subgraph for the case of k = 8
(C7 with a tail). We give the details in Section 5.

This reduction fails for counting 5-cycles and in general, it does not work for counting
any 5-vertex subgraph. For good reason, as we discovered an efficient algorithm for this
problem. This is the more technical part of our paper.

Algorithmic Framework

We present an algorithmic framework for solving the sub-cntk problem, that generalizes the
core idea of Chiba and Nishizeki [16]. It is known from past work that their ideas basically
provide an O(mκk−2) algorithm for sub-cntk, for k = 3, 4. The main challenge is to get
such an algorithm for k = 5, thereby nailing down the chasm of Theorem 1. This leads to
new results for counting various 5-vertex subgraphs. Perhaps more than these individual
results, our main contribution lies in identifying structural decompositions of the pattern
subgraphs that allows for efficient algorithms. This decomposition also sheds light on why
certain k-vertex subgraphs, for k > 6, does not seem to have any efficient algorithms in
bounded arboricity graphs. We give an outline of our framework next, and present it formally
in Section 4.

The key idea that comes from Chiba-Nishizeki is to perform subgraph counting on G→,
an acyclic orientation of G where the out degree of each vertex is bounded by O(κ)1. The
classic clique and 4-cycle counting algorithms enumerate directed stars and directed paths
of length 2 to count subgraphs. We note that the algorithm does not enumerate 4-cycles,
since there can be Ω(n2) 4-cycles. It requires clever indexing to solve this problem, which we
generalize in our algorithm.

The crucial generalization of this idea is to enumerate directed rooted trees. Specifically,
we count occurrences of a connected pattern H by counting occurrences of all possible acyclic
orientations (up to isomorphism) H→ of H in G→. The main idea is to find the largest
directed rooted tree in H→, with edges directed away from the root. Call this tree T . Since
outdegrees in G→ are bounded, we can efficiently enumerate all copies of T . Any copy of
H→ in G→ is formed by extending a copy of T , but H→ may contain vertices that are not in
T . Thus, the extensions could be expensive to compute. But when H has at most 5 vertices,
we can prove that H→ \ T is itself either a collection of rooted stars or paths. We can create
hash tables that store information about the occurrences of the latter. The final count of
H→ is obtained by enumerating T and carefully combining counts from the hash tables.

1 Technically, this is not the idea of Chiba-Nishizeki, who use the degree orientation. But it was somewhat
of a folklore result that it is easy to get the same result using the degeneracy orientation. Arguably the
first such reference is Schank-Wagener [63].

ITCS 2020

38:4 Linear Time Subgraph Counting, Graph Degeneracy, and the Chasm at Size Six

2 Related Work

Subgraph counting problems has a long and rich history. More than three decades ago, Itai and
Rodeh [34] gave the first non-trivial algorithm for the triangle detection and counting problems
with O(m3/2) runtime. Subsequently, Chiba and Nishizeki [16] gave an elegant algorithm
based on the degree based vertex ordering that solves triangle counting, 4-cycle counting
and `-clique counting with running times of O(mκ), O(mκ), and O(mκ`−2) respectively (κ
denotes the degeneracy). In comparison, our algorithm exploits the degeneracy ordering
of the vertices (see Section 3 for a formal definition); this enables us to create a uniform
framework for any k-vertex subgraph for k ∈ {4, 5}. In dense graphs, the best bounds for the
clique counting problem are achieved by fast matrix multiplications based algorithms [53, 24];
Vassilevska [69] gave combinatorial algorithm with significantly reduced space requirement.
For general subgraphs, there is a rich line of research based on matrix multiplication, tree
decomposition and vertex cover methods [34, 53, 5, 13, 44, 70, 45, 20, 14, 19] – these works
focus on getting nµk time algorithmis, for µ < 1.

Subgraph counting problems, specifically triangle counting, clique counting and cycle
counting problems, has also been studied extensively in various Big Data models such
as property testing model [22, 23, 6], MapReduce settings [17, 66, 42], and streaming
model [7, 38, 46, 39, 3, 36, 56, 49, 9]. Most of these work focuses on an approximate count,
rather than an exact count. In the applied world, there are many efficient algorithms that are
based on clever sampling techniques [11, 10, 33, 75, 61, 73, 72, 37, 71]. Exact counting has also
been studied extensively in the applied world [2, 57, 54, 12, 28, 50, 65, 47, 29, 31, 30, 25, 26].
In particular, Ahmed et al. [2] presented an algorithmic framework for solving the sub-cnt4
problem, called PGD (Parametrized Graphlet Decomposition), which scales to graphs with
tens of millions of edges. Pinar et al. [57] studied the sub-cnt5 problem, and gave the
current state of the art ESCAPE library based on degree ordering techniques. However, the
provable runtime of their algorithm for certain 5-vertex subgraphs is quadratic, O(n2). For a
deeper exploration of related applied work, refer to the tutorial on subgraph counting by
Seshadhri and Tirthapura [64].

The subgraph detection problem, which asks whether an input graph has a copy of the
subgraph, is a well-studied problem [34, 51, 4, 5, 41, 45, 74]. For the triangle detection
problem, the best known algorithm is based on fast matrix multiplication and it runs in time
O(min{nω,m2ω/(ω+1)}) [5]. If ω = 2, this would give us O(min{n2,m4/3}) algorithm for the
triangle detection problem. Hence, to falsify the Triangle Detection Conjecture, it
would require a major breakthrough result in the algorithmic graph theory world. For a
more detailed discussion on the Triangle Detection Conjecture and its implications,
refer to the paper by Abboud and Williams [1].

In the subgraph enumeration problem, the goal is to output each occurrences of the
target subgraph. Chiba and Nishizeki [16] showed that it is possible to enumerate all the
triangles in a graph along with counting the total number of triangles in O(mκ) time.
For enumerating all the triangles, O(mκ) time is effectively optimal assuming the 3SUM
Conjecture [55, 43]. Eppstein [27] studied the bipartite subgraph enumaration problem in
bounded arboricity graphs.

3 Preliminaries

In this paper, we study the sub-cntk problem which asks for the number of occurrences of
each k-vertex subgraph H, in an input graph G with n vertices and m edges. We consider
k to be a constant. For a fixed subgraph H, we use sub-cntH to denote the problem of

S.K. Bera, N. Pashanasangi, and C. Seshadhri 38:5

counting all occurrences of H in the input graph G. When H is the triangle subgraph, we
denote the corresponding counting problem as tri-cnt. In the context of the sub-cntk
problem, we always use G to denote the input graph and H to denote the subgraph to be
counted. Both G and H are simple, connected, undirected and unweighted.

In our algorithmic framework, directed graphs play a crucial role. We use N+
G (u) and

N−G (u) to denote the out-neighborhood and in-neighborhood of a vertex u in a directed graph
G, respectively. We define d+

G(u) = |N+
G (u)| and d−G(u) = |N−G (u)|. If the graph is clear from

the context, we drop the subscript G.
A graph G is k-degenerate if every subgraph of G has a vertex of degree at most k. The

degeneracy of a graph G (also called coloring number, refer to Sec. 5.2 of [21]), denoted as
κ(G), is the smallest integer k such that G is k-degenerate. The arboricity of a graph G,
denoted as α(G), is the smallest integer k such that the edge set E(G) can be partitioned
into k forests. When the graph G is clear from the context, we simply write κ, and α,
instead of κ(G) and α(G). A classic theorem of Nash-Williams shows that the degeneracy
and arboricity are closely related. All our results can be stated in terms of either of the
parameters.

I Theorem 3 (Nash-Williams [52]). In every graph G, α(G) 6 κ(G) 6 2α(G)− 1.

Vertex ordering is central to many subgraph counting algorithms. In this paper, we work
with the degeneracy ordering of G, which is defined as follows.

I Definition 4. Degeneracy ordering of a graph G, denoted by C, is obtained by repeatedly
removing the vertex with minimum degree. The ordering is defined by the removal time.

For example, if u C v, then u is removed before v according to the above process. Degeneracy
ordering can be found in linear time [48].

Using any vertex ordering ≺ of an undirected graph G, we construct a directed graph
G→≺ as follows: for each edge {u, v} ∈ E(G), direct the edge from u to v iff u ≺ v. We denote
this directed edge as (u, v). Observe that G→≺ is necessarily acyclic. We denote the directed
graph obtained from degeneracy ordering C as G→C . The following two are folklore results
about vertex ordering and degeneracy, and can be derived from Prop. 5.2.2 of [21].

I Lemma 5. For each vertex v ∈ G→C , d+(v) 6 κ.

I Lemma 6. If there exists a vertex ordering ≺ of G such that in the corresponding directed
graph G→≺ , d+(v) 6 k for each vertex v, then κ(G) 6 k.

Next, we formally define a match (occurrence) of the target subgraph H in the input graph
G. We also define a match in the context of directed graphs H ′ and G′.

I Definition 7. A match of H in G is a bijection π : S → V (H) where S ⊆ V (G) and for
any two vertices u and v in S, {u, v} ∈ E(G) if {π(u), π(v)} ∈ E(H).

I Definition 8. A match of H ′ in G′ is a bijection π : S → V (H ′) where S ⊆ V (G′)
and for any ordered pair of vertices (u, v) where u and v are in S, (u, v) ∈ E(G′) if
(π(u), π(v)) ∈ E(H ′).

Our algorithm counts matches of H in G by counting matches of all possible acyclic
orientations H→ of H in G→C . In general, whenever we use ‘→’ to denote a directed graph,
such as in G→C and H→, the directed graph is a DAG.

ITCS 2020

38:6 Linear Time Subgraph Counting, Graph Degeneracy, and the Chasm at Size Six

We denote the number of matches of H in G by M(G,H). An incomplete match of H in
G is an injection π : S → V (H) (so |S| < |V (H)|), that has the same properties of a match
except being surjective. Consider two incomplete matches (injections) of H, π1 : S1 → V (H),
and π2 : S2 → V (H). Let Vπ1 = {π1(u) | u ∈ S1} and Vπ2 = {π2(u) | u ∈ S2}. We say that π2
completes π1 to be a match ofH, when V (H) = Vπ1∪Vπ2 (surjective), Vπ1∩Vπ2 = ∅ (injective),
and for any two vertices u ∈ S1 and v ∈ S2, {u, v} ∈ E(G) if {π1(u), π2(v)} ∈ E(H). In
case of directed graphs, it should hold that (u, v) ∈ E(G′) if (π1(u), π2(v)) ∈ E(H ′) and
(v, u) ∈ E(G′) if (π2(v), π1(u)) ∈ E(H ′).

Two matches are distinct if they are not authomorphims of a match. In other words, two
matches π1 and π2 of H are equivalent, if they map two automorphisms of the exact same
subgraph of G to H. We denote the number of distinct matches of H in G by DM(G,H). In
the sub-cntk problem, we are interested in DM(G,H) for all k-vertex subgraphs H.

4 Subgraph Counting Through Orientation and Directed Trees

In this section, we discuss our algorithmic framework for solving the sub-cntk problem.
Instead of directly counting the number of occurrences of a k-vertex subgraph H in the input
graph G, we count the occurrences of all possible DAG H→ (up to isomorphism) of H in
the graph G→C . To achieve this, our main idea is to find the largest directed tree of H→,
enumerate all matches of this tree, and then count matches of the remaining vertices using
structures we save in a hash table. In Section 4.1, we show that our framework solves the
sub-cnt5 problem in expected O(mκ3) time. In Section 4.2, we demonstrate the limitation
of our framework as it fails to solve the sub-cntC6 problem efficiently.

Algorithm 1 Counting distinct matches of all 5-vertex subgraphs in G (sub-cnt5).

1: procedure Count-All-5(G)
2: Derive G→C by orienting E(G) with respect to degeneracy ordering.
3: for all connected 5-vertex subgraphs H except 4-star do
4: Run Count-Match(G→C , H) and save the result for H.
5: Save

∑
u∈V (G)

(
d(u)

4
)
for 4-star.

Algorithm 2 Counting distinct matches of H in G (sub-cntH).

1: procedure Count-Match(G→C , H)
2: DM(G,H)← 0
3: for all possible DAGs (up to isomorphism) H→ of H do
4: M(G→C , H→)← 0
5: Find one of the largest DRTSs in H→, and call it Tmax.
6: for all match π of Tmax in G→C do
7: if π is a match of H→ then . V (Tmax) = V (H→). Lemma14
8: M(G→C , H→)← M(G→C , H→) + 1
9: else if π is an incomplete match of H→ then . Lemma14
10: k ← number of ways to complete π to a match of H→. . Lemma16
11: M(G→C , H→)← M(G→C , H→) + k

DM(G,H)← M(G→C , H→)/|Aut(H→)|
12: return DM(G,H)

S.K. Bera, N. Pashanasangi, and C. Seshadhri 38:7

4.1 5-vertex Subgraph Counting
Our main algorithmic result is given in the following theorem.

I Theorem 9. There is an algorithm that solves the sub-cnt5 problem in O(mκ3) time.

Our strategy is to count matches of all possible DAGs (up to isomorphism) H→ of H in
G→C , to obtain the number of distinct matches of H in G. Alg. 2 demonstrates this subroutine
of our algorithm for sub-cnt5, which is shown in Alg. 1. First, we find one of the largest
directed rooted tree subgraphs (DRTS), which we define as follows, in H→.

I Definition 10. Given any directed graph D, a directed rooted tree subgraph (DRTS) of D,
is a subgraph T of D, where the underlying undirected graph of T is a rooted tree, and edges
are oriented away from the root in T .

The following lemma shows that we can find all matches of any DRTS in H→ in the desired
time.

I Lemma 11. Let T be a directed tree with k vertices. All matches of T in G→C can be
enumerated in O(mκk−2).

Proof. Let t1, . . . , tk be a BFS ordering of T starting at the root t1. Fix an edge (u, v) ∈
E(G→C) and map u to t1 and v to t2. There are m possible matches for (t1, t2), which we
can find by enumerating the edges of G→C . Now, we will choose vertices to map to t3, . . . , tk,
one by one, in this order. Since the out-degree of each vertex in G→C is at most κ, if we have
already mapped vertices to t1, . . . , ti, there are at most κ vertices that could be mapped to
ti+1. Therefor M(G→C , T) = O(mκk−2), and we can enumerate all of them by first choosing
(u, v) to map to (t1, t2) and then choosing vertices to map to t3, . . . , tk, in this order and one
by one. J

I Observation 12. Call a vertex v of a directed graph a source vertex, if d−(v) = 0. Consider
T to be one of the largest DRTSs of a DAG D. T has to have a source vertex of D as the
root, otherwise the root has an in-neighbor v, which is not in T as it would create a cycle.
Adding v to T creates a new DRTS which has one more vertex than T . This contradicts the
fact that T is one of the largest DRTSs of D. Hence, the root of T has to be a source vertex
of D.

Given a 5-vertex DAG H→, we can find a DRTS that has the most number of vertices
among all DRTSs of H→ in constant time. First, find all source vertices, and then apply a
Breath First Search (BFS) starting from each of these vertices and pick a BFS tree with the
most number of vertices among all. The following lemma shows that the largest DRTS has
at least 3 vertices for a 5-vertex connected subgraphs, except 4-star. Notice that, the largest
DRTS of a 4-star with all the edges oriented towards the center has two vertices.

I Lemma 13. Let H be a connected undirected 5-vertex graph that is not a 4-star. Each
largest DRTS of any DAG H→, which is an acyclic orientation of H, has at least three
vertices.

Proof. We prove this lemma by contradiction. Assume that any DRTS of H→ has at most
two vertices. A directed 2-path, or any vertex with at least two outgoing edges result in a
DRTS with three vertices. Therefore,
(a) H→ does not have a 2-path,
(b) each vertex in H→ has at most one outgoing edges.

ITCS 2020

38:8 Linear Time Subgraph Counting, Graph Degeneracy, and the Chasm at Size Six

Notice that, since H→ is a DAG, it has at least one source vertex. Consider a source vertex
u. Since H is connected, u has at least one neighbor, and by (b) it should have exactly
one neighbor. Let N+(u) = {v}, then N+(v) = ∅, by (a). So, v should have at least one
incoming neighbor w. By (a), w has no incoming edges, and it has no outgoing edges by
(b). Call the other two vertices x and y. As H is connected, there should be a connection
between {u, v, w} and {x, y}. u and w cannot have any neighbor other than v, so x and y
could only be connected to v. Since H is not a star, there should be an edge between x and
y. Without loss of generality, let (x, y) be that edge. By (a), (y, v) /∈ E(H→) and by (b)
(x, v) /∈ E(H→). So, {u, v, w} is not connected to {x, y}, and H is disconnected, which is
a contradiction. Thus, the assumption that any DRTS of H→ has at most two vertices is
wrong, and each largest DRTS of H→ has at least three vertices. J

So far, we know that we can find one of the largest DRTSs of H, which has at least 3
vertices. We use Tmax to denote this DRTS. By Lemma11, we can enumerate all matches
of Tmax in G→C in O(mκ3) time. For each such match, we need to validate whether it is a
(incomplete) match of H→ or not. If it is not, then it could not be completed to a match
of H→. The following lemma shows that we can perform this validation efficiently. In the
remaining part of this section, “constanct expected time”, refers to constant amortized time
access to hash maps that we use.

I Lemma 14. Let T be a DRTS of a DAG H→ of a connected k-vertex graph H. Assume
edges of G→C are saved in a hash table. For each match π of T in G→C , it takes O(|E(H→)|)
expected time to validate whether π is a (incomplete) match of H→ or not.

Proof. Since π is a bijection, it has an inverse which we denote by π−1. Let H→[V (T)] denote
the subgraph of H→ induced on V (T). Observe that, there could be edges in H→[V (T)] not
present in T . For π to be a match (if V (T) = V (H→)) or incomplete match of H→, these
edges have to be present between corresponding vertices in G→C mapped to T by π. Formally,
consider all ordered pairs of vertices (a, b) ∈ V (T) × V (T) such that (a, b) ∈ E(H→) and
(a, b) /∈ E(T), π is a match or incomplete match of H→ iff (π−1(a), π−1(b)) ∈ E(G→C) for all
such pairs of vertices. To validate this, we enumerate all edges (a, b) of H→[V (T)] which
are not present in T , and search for (π−1(a), π−1(b)) in hashed edges of G→C in expected
constant time. So this only requires O(|E(H→)|) expected time. J

If V (Tmax) = V (H→), then a match of Tmax could be a match of H→ too, which could
be verified as explained. If there is a vertex in H→ which is not present in Tmax, then after
validating that a match of Tmax is an incomplete match of H→, we need to find the number
of ways to complete it to a match of H→. For this we need to count matches of each possible
structures that Tmax does not cover in H→. We save the count of these structures in G→C , in
hash tables. The following lemma shows that this can be done efficiently.

I Lemma 15. In O(mκ3) time and space, we can save all the following key and value pairs
in hash maps HM1, HM2, and HM3.
1. HM1 : ((u, v), 1) where (u, v) ∈ E(G→C)
2. HM2 : (S, k) ∀S ⊆ V (G→C) where 1 6 |S| 6 4, and k is the number of vertices u such

that S ⊆ N+(u)
3. HM3 : ((S1, S2), `) ∀S1, S2 ⊆ V (G→C), where 1 6 |S1 ∪ S2| 6 3, and ` is the number of

edges e = (u, v) ∈ E(G→C) such that S1 ⊆ N+(u) and S2 ⊆ N+(v).

S.K. Bera, N. Pashanasangi, and C. Seshadhri 38:9

Proof. We show how to enumerate and save all these structures in HM1, HM2, and HM3.
1. HM1: We can easily do this in O(m) by enumerating the out-neighbors of each vertex
2. HM2: For each edge e = (u, v), we can enumerate all subsets T of the set {w ∈ N+(u) |

v C w}, where |T | 6 3, in O(κ3) time, and increment the value for the key T ∪ {v} in
the hash map by one.

3. HM3: For each edge e = (u, v) (v ∈ N+(u)), we enumerate all possible subset S1 ⊆
N+(u)\{v} where |S1| 6 3. And, for each S1 we enumerate all possible S2 \S1 in subsets
of N+(v), such that 1 6 |S1 ∪ S2| 6 3. This takes O(κ3) as the out-degree of each vertex
is at most κ, and we choose up to three vertices. All possible S1 ∩ S2 can be determined
by checking the connection between v and each vertex in S1 using the hashed edges of
G→ in HM1. J

The following lemma shows that we can count the number of ways to complete a match
of Tmax, which is also an incomplete match of H→, to a match of H→ efficiently.

I Lemma 16. Let H be a 5-vertex connected graph, H→ be a DAG of H, and Tmax be one
of the largest DRTSs in H→. Assume HM1, HM2, and HM3 are given. For each match π
of Tmax in G→C which is an incomplete match of H→, we can count the number of ways to
complete π to a match of H→ in expected constant time.

Proof. By Lemma13, Tmax has at least 3 vertices, and since π is an incomplete match (not
a match) of H→, we can assume that |V (Tmax)| < 5. Observe that, Tmax is a maximal
DRTS. Any vertex in H→ which is not in Tmax can only be connected to vertices of Tmax
by outgoing edges, otherwise they could be added to Tmax to create a larger DRTS of H→,
which contradicts the maximality of Tmax. We consider two cases where Tmax has three or
four vertices.

Let |V (Tmax)| = 4, and i be the only vertex in H→ that is not in Tmax. To complete π
to a match of H→, we need to choose a vertex in G→C , that is connected by outgoing edges
to vertices mapped to the out-neighborhood of i in H→. Let Si = {π−1(t) | t ∈ N+

H→(i)}.
HM2(Si) is the number of vertices that could be mapped to i, but some of them may
be already mapped to a vertex in Tmax, by π. Let ri denote the number of vertices
v ∈ {π−1(t) | t ∈ V (Tmax)}, where Si ⊆ N+

G→C
(v). We can obtain ri in expected constant

time, by enumerating vertices mapped to V (Tmax), and counting vertices that are connected
to all vertices in Si. For any vertex, we can check the connection to each vertex of Si using
HM1 in expected constant time. The number of ways to complete π to a match of H→ in
this case is HM2(Si)− ri.

Now we consider the case where |V (Tmax)| = 3. Let V (H→) \ V (Tmax) = {i, j}. To
complete π to a match of H→, we only need to choose two vertices of G→C to map to i and
j. Let Si = {π−1(t) | t ∈ V (Tmax) ∩N+

H→(i)} and Sj = {π−1(t) | t ∈ V (Tmax) ∩N+
H→(j)}.

We consider two cases, where i and j are connected or not. If they are connected, without
loss of generality, assume (i, j) ∈ E(H→). If (i, j) ∈ E(H→), then we can use HM3 in
Lemma15, to find the number of edges (u, v) where u and v could be mapped to i and
j, respectively. Let r(i,j) be the number of edges e = (w, x) ∈ E(G→C), where w and x

are mapped to vertices in Tmax by π, such that, Si ⊆ N+
G→C

(w), and Sj ⊆ N+
G→C

(x). We
can obtain r(i,j) in expected constant time using HM1. Then the number of edges (u, v)
that could be mapped to (i, j) is HM3((Si, Sj))− r(i,j). Next case is when (i, j) /∈ E(H→).
In this case, we use HM2 to find the number of pair of vertices of G→C which could be
mapped to i and j. Let ri (rj resp.) denote the number of vertices v ∈ V (G→C) where v
is mapped to a vertex in Tmax and Si ⊆ N+

G→C
(v) (Sj ⊆ N+

G→C
(v) resp.). Also, we use ri,j

to denote the number of vertices v ∈ V (G→C) that are counted in both ri and rj , meaning

ITCS 2020

38:10 Linear Time Subgraph Counting, Graph Degeneracy, and the Chasm at Size Six

Si ∪ Sj ⊆ N+
G→C

(v). We can obtain ri, rj , and ri,j easily in expected constant time using
HM1. The number of pairs of vertices which could be mapped to i and j is equal to
(HM2(Si)− ri) · (HM2(Sj)− rj)− (HM2(Si ∪ Sj)− ri,j). J

Now, we have all the tools to efficiently count distinct matches of a DAG of H→ in G→C .
The following lemma shows that we can do this in O(mκ3) expected time.

I Lemma 17. There is an algorithm which counts distinct matches for each possible DAG
(up to isomorphism) H→ of a 5-vertex connected subgraphs H, in O(mκ3) expected time.

Proof. Fix a DAG H→ of H. If H is a 4-star and H→ has ` incoming neighbors, then the
number of distinct matches of H→ is

∑
u∈V (G→C)

(
d−(u)
`

)(
d+(u)
4−`

)
. Assume that H is not a

4-star. Find a DRTS of H→ with the most number of vertices among all its DRTSs, and
call it Tmax. This can be done in constant time for H→. By Lemma13, Tmax has at least
three vertices. We will now enumerate all matches of Tmax in G→C . By Lemma11, this step
requires O(mκ3) expected time. For each match π of Tmax in G→C , we can verify whether π
is a match (if (|V (Tmax)| = 5) or incomplete match of H→ in expected constant time, by
Lemma14. If |V (Tmax)| = 5, while enumerating all matches of Tmax, we only count them
if they are a match of H→. So in this case we can count M(G→C , H→) in O(mκ3) expected
time.

Otherwise, Tmax has 3 or 4 vertices. In this case, for each match π of Tmax, we first verify
that it is also an incomplete match of H→. Then, we count the number of ways to complete
π to a match of H→, which we can do in expected constant time, by Lemma16. To obtain
M(G→C , H→), we simply sum the ways to complete each incomplete match we have found, to
a match of H→.

This approach gives us the number of all (not necessarily distinct) matches of H→ in
G→C . Let H→π be a subgraph of G→C that π maps to H→. Each automorphism of H→, gives
a new match π′ which is not distinct from π, as it is still mapping Hπ (the same copy of H)
to H→ (example in Fig. 1b). As each match of H→, also maps vertices to Tmax, resulting
in a match of Tmax and an (incomplete) match of H→, we will find all distinct matches of
H→ and count each one exactly |Aut(H→)| times. We want the number of distinct matches,
which we can obtain by dividing the count of all matches by |Aut(H→)|.

Thus, it requires O(mκ3) expected time to create HM1, HM2, and HM3 by Lemma 15,
O(mκ3) time for enumerating matches of Tmax, expected constant time to validate these
matches, and expected constant time for counting ways to complete each such match, that
is verified to be an incomplete match of H→, to a match of H→. So overall, we can find
DM(G→C , H→) in O(mκ3) expected time.

This completes the proof of this lemma. J

Lastly, we can prove Theorem9 as follows.

Proof of Theorem 9. Given a 5-vertex connected subgraph H, we can count all distinct
matches of each possible DAG H→ of H, in G→C in O(mκ3) expected time, by Lemma17.
To count all distinct matches of H in G, we just need to sum the number of distinct matches
of all possible DAGs (up to isomorphism) of H. The number of such DAGs is constant for
H. There are 21 different connected 5-vertex subgraphs (illustrated in [57]), and we perform
this process on all of them. This completes the proof of the theorem. J

S.K. Bera, N. Pashanasangi, and C. Seshadhri 38:11

e

a b c

d

H
e

a b c

d

H→

(a) H is 5-vertex connected subgraph and H→ is one possible acyclic orientation of it. Tmax (largest
DRTS of H→) is shown in green and contains three vertices.

y : e

u : a v : b w : c

x : d

π1

y : e

u : b v : a w : c

x : d

π2

y : e

u : a v : c w : b

x : d

π3

y : e

u : b v : c w : a

x : d

π4

y : e

u : c v : a w : b

x : d

π5

y : e

u : c v : b w : a

x : d

π6

(b) All six figures show exactly the same subgraph in G→
C . π1, . . . , π6 are six equivalent matches of H→

in G→
C , one for each automorphism of H→. Notice (u, v, w) being mapped to all permutations of (a, b, c).

Figure 1 Application of Alg. 2 on a DAG H→ of an example 5-vertex connected subgraph H.

4.2 Limitations of Our Framework for a Six Vertex Subgraph
Consider C6, shown as H in Fig. 2. Then H→, shown in the right side of Fig. 2, is a possible
DAG of H. In H→, s1, s2, and s3 are the source vertices, and t1, t2, and t3 are the sink
vertices. Any DRTS of H→ has at most three vertices, and there are three such DRTS, T1,
T2, and T3 rooted at s1, s2 and s3, respectively. T1 is shown by red in Fig. 2. For each of
T1, T2, and T3, the remaining vertices include a vertex, with two incoming edges, which we
call an in-in wedge. For example, t2 is such a vertex for T1. Even graphs with bounded
degeneracy can have Ω(n2) in-in wedges. We cannot hash the count of such structures in
expected time bounded by m and κ. So, Alg. 2 fails to count occurrences of C6 in the desired
time. In the next section, we discuss why such limitations are natural to any framework for
the sub-cntk problem at and beyond k = 6.

5 A Chasm at Six

At the end of the previous section, we showed the limitations of our framework in counting
certain 6-vertex subgraphs. In this section, we show that perhaps such limitations are
fundamental to any subgraph counting algorithms. In particular, the landscape of sub-cntk
problem in the bounded degeneracy graphs changes dramatically as we move beyond k = 5.

ITCS 2020

38:12 Linear Time Subgraph Counting, Graph Degeneracy, and the Chasm at Size Six

s1

t1

s2

t2

s3

t3

H H→

Figure 2 Let H→ be a DAG of H (C6). Considering any largest DRTS of H→, the remaining
vertices include a vertex with two incoming edges (in-in wedge). Even graphs with bounded
degeneracy can have Ω(n2) in-in wedges. So hashing in Alg. 2 will not be bounded by m and κ
for H.

We prove that for every integer k > 6, there exists a k-vertex subgraph H such that, the
running time of any algorithm for the sub-cntH problem does not depend on the degeneracy
of the input graph, assuming the Triangle Detection Conjecture. In contrast, for
k 6 5, O(mκk−2) algorithms exists for sub-cntk (see Section 4). The following theorem
captures the main result of this section.

I Theorem 18. Assume the Triangle Detection Conjecture (Conj. 2). There exists
an absolute constant γ > 0 such that the following holds. For any k > 6 and any function
f : N→ N, there exists a k-vertex subgraph H such that there is no (expected) o(m1+γf(κ))
algorithm for sub-cntH .

Outline of the Proof. For each k > 6 and k 6= 8, the subgraph of interest will be the
k-cycle graph, Ck. For k = 8, the subgraph of interest will be the C7 with a tail (see Figure 3).
We first give a proof outline. Fix some k > 6 and let Hk denote the target subgraph of size
k. Recall the tri-cnt problem — count the number of triangles in a graph with m edges.
Conjecture 2 asserts that for any algorithm A for the tri-cnt problem, T (A) = ω(m) where
T (A) denotes the worst case time complexity of the algorithm A. Our strategy is to reduce
from the tri-cnt problem to the sub-cntHk

problem. To this end, we construct a new
graph Gk from the input instance G of the tri-cnt problem such that Gk has O(m) edges,
and has degeneracy at most 2. More importantly, the number of triangles in G is a simple
linear function of the number of Hk in Gk. Hence, we can derive the number of triangles
in G by counting the number of Hk in Gk. As κ(Gk) 6 2, any O(mf(κ)) algorithm for the
sub-cntHk

problem translates to a O(m) algorithm for the tri-cnt problem, contradicting
the Triangle Detection Conjecture. We remark that, for k = 8, our proof strategy
will be slightly different — instead of reducing from the tri-cnt problem, we shall reduce
from the triangle detection problem itself. However, the gadget construction will follow the
same basic principle.

The construction of Gk from G is rather simple. The details of the construction depends
on whether k is a multiple of 3 or not. We take two examples to describe the construction.

First, we take k = 6, and the target subgraph H6 = C6. For each edge e in E(G), we
replace e with a length two path {e1, e2} in E(G6). To accomplish this, we add a new vertex
ve for each edge: V (G6) = V (G) ∪ {ve}e∈E(G). This is shown in Figure 4a. Each triangle in
G creates a C6 in G6. We formally prove in Lemma 20 that the number of triangles in G is
same as the number of C6 in G6. In Lemma 19, we bound the degeneracy of G6 by 2. This
construction can be generalized for any k = 3` where ` > 2, by replacing each edge in E(G)
with `-length path.

S.K. Bera, N. Pashanasangi, and C. Seshadhri 38:13

Next consider the case k = 7. For each edge e ∈ E(G), we first create two parallel copies
of e, and then replace the first one with a length two path {e1,1, e1,2}, and the second one
with a length three path {e2,1, e2,2, e2,3}. So in E(G7), we have 5 edges for each edge in
E(G). We create 3 new vertices per edge to accomplish this, and denote them as ve, ue1 , ue2 .
See Figure 4b for a pictorial demonstration. In Lemma 20, we argue that the number of C7 is
exactly 3 times the number of triangles in G. In Lemma 19, we bound the degeneracy of G7
by 2. This construction generalizes to any k = 3`+ i where ` > 2 and i ∈ {1, 2} (except for
the case when k = 8, that is ` = 2 and i = 2) by splitting each edge into ` and `+ 1 many
parts respectively.

Finally, we consider the case of k = 8. Note that the target subgraph H8 is the 7-cycle
with a tail in this case (see Figure 3). It is natural to wonder why do we not simply take
H8 = C8? After all, for all other values of k, taking Hk = Ck suffices. At a first glance,
it seems like if we consider the same graph G7 as described above (and in Figure 4b) the
number of C8 would be a simple linear function of the number of triangles in G — for each
triangle in G, there will be exactly three C8 in G7. However, each C4 in G would also lead
to a C8 in G8. Observe that for k > 8, we do not run into this problem. A more formal
treatment of this issue appear in Section 5.

So instead, we take H8 to be the subgraph C7 with a tail to prove our conditional lower
bound for sub-cnt8. The construction of the graph G8 remains exactly the same as that of
G7. We show in Lemma 21 that, there exists a C7 with a tail in G8 if and only if there exist
a triangle in G.

Figure 3 Target subgraph for proving conditional lower bounds for sub-cnt8: the C7 with a tail

We now present the proof of Theorem 18 in full details.

Proof of Theorem 18. Fix some k > 6. Let the subgraph Hk denote the target subgraph of
size k. For k 6= 8, Hk is Ck, and for k = 8, Hk is C7 with a tail (see Figure 3). We reduce
from the tri-cnt problem to the sub-cntHk

. Let G = (V,E) be the input instance for the
tri-cnt problem with |V | = n and |E| = m. We construct an input instance Gk = (Vk, Ek)
for the sub-cntHk

problem from G. The construction of Gk differs based on whether k is
divisible by 3 or not. We next consider these two cases separately.

Details of the Reduction. First assume k = 3` for some integer ` > 2. We first define the
vertex set Vk. For each vertex in V , we add a vertex in Vk. For each edge e ∈ E, we add a
set of `− 1 many vertices, denoted as Ve = {ve,1, ve,2, . . . , ve,`−1}. We collect all these second
type of vertices into the set VE . Formally, we have

Vk = V ∪ VE ,

where VE =
⋃
e∈E

Ve ,

for Ve = {ve,1, ve,2, . . . , ve,`−1} .

ITCS 2020

38:14 Linear Time Subgraph Counting, Graph Degeneracy, and the Chasm at Size Six

u v

e

u

ve

v

e1 e2

e ∈ E(G) e1, e2 ∈ E(G6)
(a) Construction of the edge set E(G6) from the
edge set E(G). The red colored nodes are only
present in V (G6), and not in V (G).

u v

e
u

ve

v

ue1 ue2

e1,1 e1,2

e2,1

e2,2

e2,3

e ∈ E(G) ei,j ∈ E(G7)

(b) Construction of the edge set E(G7) from the
edge set E(G). The red colored nodes are only
present in V (G7), and not in V (G).

Figure 4 Reduction from the tri-cnt problem to the sub-cntCk problem for k = 6 (left) and
k = 7 (right).

We now describe the edge set Ek. We treat each edge e = {u, v} ∈ E as an ordered pair
(u, v) where the ordering can be arbitrary of the vertices (for example, assume lexicographical
ordering). Now for each edge e = (u, v) construct an `-length path between u and v in Vk
by connecting the vertices in {u} ∪ Ve ∪ {v} sequentially. More precisely, we define Ek as
follows.

Ek =
⋃
e∈E

Ee ,

where Ee = {{u, ve,1}, {ve,1, ve,2}, . . . , {ve,`−2, ve,`−1}, {ve,`−1, v}} for e = (u, v) .

This completes the construction of the graph Gk = (Vk, Ek). We give an example in Figure 4a
for k = 6.

Now assume k = 3` + i for some some integer ` > 2 and i ∈ {1, 2}. In the previous
case, we added a set of ` − 1 many vertices for each edge in E. But now, for each edge
e ∈ E, we add two sets of vertices, one with ` − 1 many vertices and the other with `

many vertices. We denote the first set as Ve = {ve,1, ve,2, . . . , ve,`−1}, and the second set as
Ue = {ue,1, ue,2, . . . , ue,`}. We also add the set of vertices in V to Vk. Formally, we have

Vk = V ∪ VE ,

where VE =
⋃
e∈E

Ve ∪ Ue ,

for Ve = {ve,1, ve,2, . . . , ve,`−1} ,
and Ue = {ue,1, ue,2, . . . , ue,`} .

To construct the edge set Ek, as before we treat each edge in e = {u, v} ∈ E as an ordered
pair (u, v) according to some arbitrary ordering of the vertices. Now, for each edge e = (u, v),
construct an 2` + 1-length cycle between u and v in Vk by creating a `-length path via
the vertices in Ve and another ` + 1-length path via the vertices in Ue. We denote the
corresponding edge sets as EV,e and EU,e respectively. Formally, we define Ek as follows.

Ek =
⋃
e∈E

(EV,e ∪ EU,e) ,

where EV,e = {{u, ve,1}, {ve,1, ve,2}, . . . , {ve,`−2, ve,`−1}, {ve,`−1, v}} ,
and EU,e = {{u, ue,1}, {ue,1, ue,2}, . . . , {ue,`−1, ue,`}, {ue,`, v}} for e = (u, v) .

S.K. Bera, N. Pashanasangi, and C. Seshadhri 38:15

This completes the construction of the graph Gk = (Vk, Ek). Note that the construction is
independent of the value of i. Hence, we produce the same graph Gk for k = 3` + 1 and
k = 3`+ 2. We give an example in Figure 4b for k = 7.

Note that although our target subgraph for the case k = 8 is a 7-cycle with a tail instead
of 8-cycle, our construction is still the same.

Correctness of the Reduction. In Lemma 19, we prove that Gk has degeneracy at most 2.
In Lemma 20, we show that, for k 6= 8, the number of Ck in the graph Gk is a linear function
of the number of triangles in G. In Lemma 21, we show that G8 is H8 free if and only if G is
triangle free.

I Lemma 19. κ(Gk) 6 2.

Proof. To prove the lemma it is sufficient to exhibit a vertex ordering ≺ such that in the
corresponding directed graph G→≺ , d+(v) 6 2 for all v ∈ Vk (application of Lemma 6). We
use an ordering ≺ where VE ≺ V and the ordering within each set is arbitrary. Observe that
each vertex v ∈ VE has degree exactly 2 and no two vertices in V are connected to each
other. Hence, d+(v) 6 2 for all v ∈ Vk. J

I Lemma 20. Let ` > 2 be some integer. For k = 3`, DM(Gk, Ck) = DM(G, C3). For
k = 3`+ i with i ∈ {1, 2} and k 6= 8, DM(Gk, Ck) = 3 ·DM(G, C3).

Proof. Let T be the set of triangles in G and C be the set of Ck in Gk. Note that a triangle
in T and a k-cycle in C can be uniquely identified by a set of three and k edges, respectively.

We first take up case of k = 3` for some ` > 2. Let g be the mapping between the sets T
and C, g : T → C, defined as follows: g({e1, e2, e3}) = Ee1 ∪ Ee2 ∪ Ee3 . To prove the lemma,
it is sufficient to exhibit that g is a bijection. To this end, note that if g(τ1) = g(τ2), then
τ1 = τ2. This follows immediately from the definition of g, since Ee1 ∩Ee2 = ∅ for all e1 6= e2.
We now show that every k-cycle in C has an inverse mapping in g. Let ξ be a k-cycle in C.
Fix some edge e ∈ E. By construction, either all the edges from the set Ee are present in ξ,
or none of them are. Hence, ξ must be of the form Ee1 ∪Ee2 ∪Ee3 for some three distinct
edges e1, e2, and e3. Clearly, {e1, e2, e3} forms a triangle in G.

Now assume k = 3` + i for some ` > 2 and i ∈ {1, 2}, and k 6= 8. It is not difficult to
see that each triangle in T leads to exactly three k-cycles in C. The non-trivial direction is
to show that for each k-cycles in C there is an unique triangle in T . Let ξ be a k-cycle in
C. Fix some edge e ∈ E. By construction, exactly one of the following must be true: (i) all
the ` edges from the set EV,e are present in ξ, (ii) all the `+ 1 edges from the set EU,e are
present in ξ, (iii) none of the edges from the set EV,e ∪ EU,e are present in ξ. First assume
i = 1. Since ξ has 3`+ 1 many edges, and ` > 2, it must consist of one EU,e set of size `+ 1,
and two EV,e sets of size `. When i = 2 and ` > 2, ξ must consist of two EU,e set of size
`+ 1, and one EV,e sets of size `. Clearly, the three edges corresponding to these sets form a
unique triangle in G. (When k = 8, that is ` = 2 and i = 2, taking four distinct sets EV,e
creates a copy of C8, and hence the argument does not work.) J

I Lemma 21. The input graph G is triangle free if and only if G8 does not have any C7
with a tail.

Proof. Observe that, if there exists a triangle τ in G, then in G8, there would be at least
one C7 with a tail (in fact, the exact number would depend on the degree of the involved
vertices). In the proof of Lemma 20, we argued that each 7-cycle in G7 (which is isomorphic
to G8) corresponds to a triangle in G. Also, by our construction, if G8 has a C7, then that
7-cycle necessarily has a tail. Therefore, existence of C7 with a tail in G8 implies existence of
a triangle in G. This completes the proof of the lemma. J

ITCS 2020

38:16 Linear Time Subgraph Counting, Graph Degeneracy, and the Chasm at Size Six

Lemmas 19 to 21 together prove the theorem: if there exists an algorithm A for the sub-cntCk

problem with T (A) = O(mf(κ)), then A is an algorithm for the tri-cnt problem (or the
triangle detection problem in the case of k = 8) with T (A) = O(m), where T (A) denotes the
worst case time complexity of the algorithm A. J

6 Future Directions

Although our algorithmic framework fails to produce a linear time algorithm for sub-cntC6

in bounded degeneracy graphs, there are certain other 6-vertex subgraphs where it indeed
succeeds. An easy example is sub-cntK6 . In fact, our framework gives a linear time
algorithm for counting any constant size clique in bounded degeneracy graphs – for each
acyclic orientation of a clique, the source vertex construct a DRTS covering all the remaining
vertices. There exists other non-clique 6-vertex subgraphs as well, where Alg. 2 succeeds.
Consider the subgraph H shown in Fig. 5. It is easy to see that, any acyclic orientation of
H such as H→ has at least one source vertex s that is a root of a DRTS with four vertices.
Thus, we can solve sub-cntH in O(mκ3) expected time.

s

H H→

Figure 5 Alg. 2 succeeds to count the number of distinct matches of H in linear time for bounded
(constant) degeneracy graphs. Each acyclic orientation of H has a source vertex s, which is connected
to exactly three vertices, as in H→. So, the largest DRTS has at least four vertices (shown in green).
Number of matches of the remaining vertices (shown in blue) could be counted using HM2.

Despite the chasm at six, there exist subgraphs H with 6-vertices (or more) such that
sub-cntH admits a linear time algorithm in bounded degeneracy graph. We end this
exposition with the following natural problem:

Characterize all subgraphs H such that sub-cntH has a linear time algorithm in bounded
degeneracy graphs.

References
1 Amir Abboud and Virginia Vassilevska Williams. Popular conjectures imply strong lower

bounds for dynamic problems. In Proc. 55th Annual IEEE Symposium on Foundations of
Computer Science, 2014.

2 Nesreen K. Ahmed, Jennifer Neville, Ryan A. Rossi, and Nick Duffield. Efficient Graphlet
Counting for Large Networks. In International Conference on Data Mining, 2015.

3 Kook Jin Ahn, Sudipto Guha, and Andrew McGregor. Graph sketches: sparsification, spanners,
and subgraphs. In Proc. 31st ACM Symposium on Principles of Database Systems, pages 5–14.
ACM, 2012.

4 Noga Alon, Raphael Yuster, and Uri Zwick. Color-coding. J. ACM, 42(4):844–856, 1995.
5 Noga Alon, Raphael Yuster, and Uri Zwick. Finding and counting given length cycles.

Algorithmica, 17(3):209–223, 1997.

S.K. Bera, N. Pashanasangi, and C. Seshadhri 38:17

6 Sepehr Assadi, Michael Kapralov, and Sanjeev Khanna. A Simple Sublinear-Time Algorithm
for Counting Arbitrary Subgraphs via Edge Sampling. In Proc. 10th Conference on Innovations
in Theoretical Computer Science, 2018.

7 Ziv Bar-Yossef, Ravi Kumar, and D. Sivakumar. Reductions in Streaming Algorithms, with an
Application to Counting Triangles in Graphs. In Proc. 13th Annual ACM-SIAM Symposium
on Discrete Algorithms, 2002.

8 A. Benson, D. F. Gleich, and J. Leskovec. Higher-order organization of complex networks.
Science, 353(6295):163–166, 2016.

9 Suman K Bera and Amit Chakrabarti. Towards tighter space bounds for counting triangles and
other substructures in graph streams. In Proc. 34th International Symposium on Theoretical
Aspects of Computer Science, 2017.

10 Nadja Betzler, Rene Van Bevern, Michael R Fellows, Christian Komusiewicz, and Rolf
Niedermeier. Parameterized algorithmics for finding connected motifs in biological networks.
IEEE/ACM Transactions on Computational Biology and Bioinformatics (TCBB), 8(5):1296–
1308, 2011.

11 M. Bhuiyan, M. Rahman, M. Rahman, and M. Al Hasan. GUISE: Uniform Sampling of
Graphlets for Large Graph Analysis. In International Conference on Data Mining, pages
91–100, 2012.

12 Etienne Birmele et al. Detecting local network motifs. Electronic Journal of Statistics,
6:908–933, 2012.

13 Andreas Björklund, Thore Husfeldt, Petteri Kaski, and Mikko Koivisto. Counting paths and
packings in halves. In Proc. 17th Annual European Symposium on Algorithms, pages 578–586,
2009.

14 Andreas Björklund, Petteri Kaski, and Łukasz Kowalik. Counting thin subgraphs via packings
faster than meet-in-the-middle time. ACM Transactions on Algorithms (TALG), 13(4):48,
2017.

15 R. Burt. Structural Holes and Good Ideas. American Journal of Sociology, 110(2):349–399,
2004.

16 Norishige Chiba and Takao Nishizeki. Arboricity and subgraph listing algorithms. SIAM
Journal on computing, 14(1):210–223, 1985.

17 Jonathan Cohen. Graph twiddling in a mapreduce world. Computing in Science & Engineering,
11(4):29, 2009.

18 J. Coleman. Social Capital in the Creation of Human Capital. American Journal of Sociology,
94:S95–S120, 1988. URL: http://www.jstor.org/stable/2780243.

19 Radu Curticapean, Holger Dell, and Dániel Marx. Homomorphisms are a good basis for
counting small subgraphs. In Proceedings of the 49th Annual ACM SIGACT Symposium on
Theory of Computing, pages 210–223, 2017.

20 Radu Curticapean and Dániel Marx. Complexity of counting subgraphs: Only the boundedness
of the vertex-cover number counts. In Proc. 55th Annual IEEE Symposium on Foundations of
Computer Science, pages 130–139, 2014.

21 Reinhard Diestel. Graph Theory, Fourth Edition. Springer, 2010.
22 Talya Eden, Amit Levi, Dana Ron, and C Seshadhri. Approximately counting triangles in

sublinear time. SIAM Journal on Computing, 46(5):1603–1646, 2017.
23 Talya Eden, Dana Ron, and C Seshadhri. On approximating the number of k-cliques in

sublinear time. In Proc. 50th Annual ACM Symposium on the Theory of Computing, pages
722–734, 2018.

24 Friedrich Eisenbrand and Fabrizio Grandoni. On the complexity of fixed parameter clique and
dominating set. Theoretical Computer Science, 326(1-3):57–67, 2004.

25 Ethan R Elenberg, Karthikeyan Shanmugam, Michael Borokhovich, and Alexandros G Dimakis.
Beyond triangles: A distributed framework for estimating 3-profiles of large graphs. In Proc.
12th Annual SIGKDD International Conference on Knowledge Discovery and Data Mining,
pages 229–238. ACM, 2015.

ITCS 2020

http://www.jstor.org/stable/2780243

38:18 Linear Time Subgraph Counting, Graph Degeneracy, and the Chasm at Size Six

26 Ethan R Elenberg, Karthikeyan Shanmugam, Michael Borokhovich, and Alexandros G Dimakis.
Distributed estimation of graph 4-profiles. In Proc. 25th Proceedings, International World
Wide Web Conference (WWW), pages 483–493. International World Wide Web Conferences
Steering Committee, 2016.

27 David Eppstein. Arboricity and bipartite subgraph listing algorithms. Information processing
letters, 51(4):207–211, 1994.

28 Mira Gonen and Yuval Shavitt. Approximating the number of network motifs. Internet
Mathematics, 6(3):349–372, 2009.

29 Tomaž Hočevar and Janez Demšar. A combinatorial approach to graphlet counting. Bioinfor-
matics, 30(4):559–565, 2014.

30 Tomaž Hočevar and Janez Demšar. Combinatorial algorithm for counting small induced graphs
and orbits. PloS ONE, 12(2):e0171428, 2017.

31 Tomaž Hočevar, Janez Demšar, et al. Computation of graphlet orbits for nodes and edges in
sparse graphs. Journ. Stat. Soft, 71, 2016.

32 P. Holland and S. Leinhardt. A method for detecting structure in sociometric data. American
Journal of Sociology, 76:492–513, 1970.

33 F. Hormozdiari, P. Berenbrink, N. Prulj, and S. Cenk Sahinalp. Not All Scale-Free Networks
Are Born Equal: The Role of the Seed Graph in PPI Network Evolution. PLoS Computational
Biology, 118, 2007.

34 Alon Itai and Michael Rodeh. Finding a minimum circuit in a graph. SIAM Journal on
Computing, 7(4):413–423, 1978.

35 Shweta Jain and C Seshadhri. A Fast and Provable Method for Estimating Clique Counts
Using Turán’s Theorem. In Proc. 26th Proceedings, International World Wide Web Conference
(WWW), pages 441–449. International World Wide Web Conferences Steering Committee,
2017.

36 Madhav Jha, C Seshadhri, and Ali Pinar. A space efficient streaming algorithm for triangle
counting using the birthday paradox. In Proc. 19th Annual SIGKDD International Conference
on Knowledge Discovery and Data Mining, pages 589–597, 2013.

37 Madhav Jha, C Seshadhri, and Ali Pinar. Path sampling: A fast and provable method for
estimating 4-vertex subgraph counts. In Proc. 24th Proceedings, International World Wide
Web Conference (WWW), pages 495–505. International World Wide Web Conferences Steering
Committee, 2015.

38 Hossein Jowhari and Mohammad Ghodsi. New streaming algorithms for counting triangles in
graphs. In Computing and Combinatorics, pages 710–716, 2005.

39 Daniel M Kane, Kurt Mehlhorn, Thomas Sauerwald, and He Sun. Counting arbitrary
subgraphs in data streams. In Proc. 39th International Colloquium on Automata, Languages
and Programming, pages 598–609, 2012.

40 Arijit Khan, Nan Li, Xifeng Yan, Ziyu Guan, Supriyo Chakraborty, and Shu Tao. Neighborhood
based fast graph search in large networks. In Proceedings of the 2011 ACM SIGMOD
International Conference on Management of data, 2011.

41 Ton Kloks, Dieter Kratsch, and Haiko Müller. Finding and counting small induced subgraphs
efficiently. Information Processing Letters, 74(3-4):115–121, 2000.

42 Tamara G Kolda, Ali Pinar, Todd Plantenga, C Seshadhri, and Christine Task. Counting
triangles in massive graphs with MapReduce. SIAM Journal on Scientific Computing, 36(5):S48–
S77, 2014.

43 Tsvi Kopelowitz, Seth Pettie, and Ely Porat. Higher lower bounds from the 3SUM conjecture.
In Proc. 27th Annual ACM-SIAM Symposium on Discrete Algorithms, 2016.

44 Ioannis Koutis and Ryan Williams. Limits and applications of group algebras for parameterized
problems. In International Colloquium on Automata, Languages and Programming, pages
653–664, 2009.

45 Mirosław Kowaluk, Andrzej Lingas, and Eva-Marta Lundell. Counting and detecting small
subgraphs via equations. SIAM Journal on Discrete Mathematics, 27(2):892–909, 2013.

S.K. Bera, N. Pashanasangi, and C. Seshadhri 38:19

46 Madhusudan Manjunath, Kurt Mehlhorn, Konstantinos Panagiotou, and He Sun. Approximate
Counting of Cycles in Streams. In Proc. 19th Annual European Symposium on Algorithms,
pages 677–688, 2011.

47 Dror Marcus and Yuval Shavitt. Efficient counting of network motifs. In IEEE 30th In-
ternational Conference on Distributed Computing Systems Workshops, pages 92–98. IEEE,
2010.

48 David W Matula and Leland L Beck. Smallest-last ordering and clustering and graph coloring
algorithms. Journal of the ACM (JACM), 30(3):417–427, 1983.

49 Andrew McGregor, Sofya Vorotnikova, and Hoa T. Vu. Better Algorithms for Counting
Triangles in Data Streams. In Proceedings of the 35th ACM SIGMOD-SIGACT-SIGAI
Symposium on Principles of Database Systems, pages 401–411, 2016.

50 Tijana Milenković and Nataša Pržulj. Uncovering biological network function via graphlet
degree signatures. Cancer informatics, 6:CIN–S680, 2008.

51 Burkhard Monien. How to find long paths efficiently. In North-Holland Mathematics Studies,
volume 109, pages 239–254. Elsevier, 1985.

52 C. St. J. A. Nash-Williams. Decomposition of finite graphs into forests. Journal of the London
Mathematical Society, 39(1):12, 1964.

53 Jaroslav Nešetřil and Svatopluk Poljak. On the complexity of the subgraph problem. Com-
mentationes Mathematicae Universitatis Carolinae, 26(2):415–419, 1985.

54 Mark Ortmann and Ulrik Brandes. Efficient orbit-aware triad and quad census in directed
and undirected graphs. Applied network science, 2(1), 2017.

55 Mihai Patrascu. Towards polynomial lower bounds for dynamic problems. In Proc. 42nd
Annual ACM Symposium on the Theory of Computing, 2010.

56 Aduri Pavan, Kanat Tangwongsan, Srikanta Tirthapura, and Kun-Lung Wu. Counting and
sampling triangles from a graph stream. Proceedings of the VLDB Endowment, 6(14):1870–1881,
2013.

57 Ali Pinar, C Seshadhri, and Vaidyanathan Vishal. Escape: Efficiently counting all 5-vertex
subgraphs. In Proceedings, International World Wide Web Conference (WWW), pages 1431–
1440. International World Wide Web Conferences Steering Committee, 2017.

58 Alejandro Portes. Social Capital: Its Origins and Applications in Modern Sociology. Annual
Review of Sociology, 24(1):1–24, 1998. doi:10.1146/annurev.soc.24.1.1.

59 Natasa Przulj. Biological network comparison using graphlet degree distribution. Bioinfor-
matics, 23(2):177–183, 2007.

60 Natasa Przulj, Derek G. Corneil, and Igor Jurisica. Modeling interactome: scale-free or
geometric? Bioinformatics, 20(18):3508–3515, 2004.

61 M. Rahman, M. A. Bhuiyan, and M. Al Hasan. GRAFT: An Efficient Graphlet Counting
Method for Large Graph Analysis. IEEE Transactions on Knowledge and Data Engineering,
PP(99), 2014.

62 Ahmet Erdem Sariyuce, C. Seshadhri, Ali Pinar, and Umit V. Catalyurek. Finding the
Hierarchy of Dense Subgraphs Using Nucleus Decompositions. In Proceedings, International
World Wide Web Conference (WWW), pages 927–937, 2015.

63 T. Schank and D. Wagner. Finding, Counting and Listing All Triangles in Large Graphs, an
Experimental Study. In Experimental and Efficient Algorithms, pages 606–609. Springer, 2005.

64 C. Seshadhri and Srikanta Tirthapura. Scalable Subgraph Counting: The Methods Behind The
Madness: WWW 2019 Tutorial. In Proceedings, International World Wide Web Conference
(WWW), 2019.

65 Alina Stoica and Christophe Prieur. Structure of neighborhoods in a large social network. In
International Conference on Computational Science and Engineering, volume 4, pages 26–33.
IEEE, 2009.

66 Siddharth Suri and Sergei Vassilvitskii. Counting triangles and the curse of the last reducer.
In Proceedings of the 20th international conference on World wide web, pages 607–614, 2011.

ITCS 2020

https://doi.org/10.1146/annurev.soc.24.1.1

38:20 Linear Time Subgraph Counting, Graph Degeneracy, and the Chasm at Size Six

67 Charalampos E. Tsourakakis. The K-clique Densest Subgraph Problem. In Proceedings,
International World Wide Web Conference (WWW), pages 1122–1132, 2015.

68 Johan Ugander, Lars Backstrom, and Jon M. Kleinberg. Subgraph frequencies: mapping the
empirical and extremal geography of large graph collections. In Proceedings, International
World Wide Web Conference (WWW), pages 1307–1318, 2013.

69 Virginia Vassilevska. Efficient algorithms for clique problems. Information Processing Letters,
109(4):254–257, 2009.

70 Virginia Vassilevska and RyanWilliams. Finding, minimizing, and counting weighted subgraphs.
In Proc. 41st Annual ACM Symposium on the Theory of Computing, pages 455–464, 2009.

71 Pinghui Wang, Junzhou Zhao, Xiangliang Zhang, Zhenguo Li, Jiefeng Cheng, John CS Lui,
Don Towsley, Jing Tao, and Xiaohong Guan. MOSS-5: A fast method of approximating counts
of 5-node graphlets in large graphs. IEEE Transactions on Knowledge and Data Engineering,
30(1):73–86, 2017.

72 S. Wernicke and F. Rasche. FANMOD: a tool for fast network motif detection. Bioinformatics,
22(9):1152–1153, 2006.

73 Sebastian Wernicke. Efficient detection of network motifs. IEEE/ACM Transactions on
Computational Biology and Bioinformatics (TCBB), 3(4):347–359, 2006.

74 Virginia Vassilevska Williams, Joshua R Wang, Ryan Williams, and Huacheng Yu. Finding
four-node subgraphs in triangle time. In Proc. 26th Annual ACM-SIAM Symposium on Discrete
Algorithms, pages 1671–1680, 2014.

75 Zhao Zhao, Guanying Wang, Ali R Butt, Maleq Khan, VS Anil Kumar, and Madhav V Marathe.
Sahad: Subgraph analysis in massive networks using hadoop. In IEEE 26th International
Parallel and Distributed Processing Symposium, pages 390–401. IEEE, 2012.

	Introduction
	Our Results
	Main Ideas

	Related Work
	Preliminaries
	Subgraph Counting Through Orientation and Directed Trees
	5-vertex Subgraph Counting
	Limitations of Our Framework for a Six Vertex Subgraph

	A Chasm at Six
	Future Directions

