
Approaching MCSP from Above and Below:
Hardness for a Conditional Variant and AC0[p]
Rahul Ilango
Massachusetts Institute of Technology, Cambridge, MA, USA
rilango@mit.edu

Abstract
The Minimum Circuit Size Problem (MCSP) asks whether a given Boolean function has a circuit
of at most a given size. MCSP has been studied for over a half-century and has deep connections
throughout theoretical computer science including to cryptography, computational learning theory,
and proof complexity. For example, we know (informally) that if MCSP is easy to compute, then most
cryptography can be broken. Despite this cryptographic hardness connection and extensive research,
we still know relatively little about the hardness of MCSP unconditionally. Indeed, until very recently
it was unknown whether MCSP can be computed in AC0[2] (Golovnev et al., ICALP 2019).

Our main contribution in this paper is to formulate a new “oracle” variant of circuit complexity
and prove that this problem is NP-complete under randomized reductions. In more detail, we define
the Minimum Oracle Circuit Size Problem (MOCSP) that takes as input the truth table of a Boolean
function f , a size threshold s, and the truth table of an oracle Boolean function O, and determines
whether there is a circuit with O-oracle gates and at most s wires that computes f . We prove that
MOCSP is NP-complete under randomized polynomial-time reductions.

We also extend the recent AC0[p] lower bound against MCSP by Golovnev et al. to a lower bound
against the circuit minimization problem for depth-d formulas, (AC0

d)-MCSP. We view this result as
primarily a technical contribution. In particular, our proof takes a radically different approach from
prior MCSP-related hardness results.

2012 ACM Subject Classification Theory of computation → Circuit complexity; Theory of compu-
tation → Problems, reductions and completeness

Keywords and phrases Minimum Circuit Size Problem, reductions, NP-completeness, circuit lower
bounds

Digital Object Identifier 10.4230/LIPIcs.ITCS.2020.34

Related Version A full version of this paper is available at https://eccc.weizmann.ac.il/report/
2019/021/.

Funding This work was supported (in part) by an Akamai Presidential Fellowship.

Acknowledgements I would like to give a special thanks to Eric Allender for innumerable suggestions
and perspectives during all stages of this work. To name just a single example, one of his suggestions
led me to improve a PARITY-reduction to the presented MAJORITY-reduction for (AC0

d)-MCSP.
I would also like to thank Abhishek Bhrushundi and Aditi Dudeja for their help in results about
constant depth formulas that lead to this paper. I am grateful to Ryan Williams for asking interesting
questions and helping to improve the exposition of the paper. Finally, I thank Harry Buhrman,
Lance Fortnow, Igor Oliveira, Ján Pich, Aditya Potukuchi, Ninad Rajgopal, Michael Saks, and Rahul
Santhanam for answering my questions and engaging in many useful discussions about this work.

1 Introduction

The Minimum Circuit Size Problem (MCSP) takes as input a Boolean function f (represented
by its truth table) and a size parameter s and asks if there is a circuit of size at most s
computing f . Study of this problem began in the 1950s by complexity theorists in the
Soviet Union [31], where MCSP was of such great interest that Levin is said to have delayed

© Rahul Ilango;
licensed under Creative Commons License CC-BY

11th Innovations in Theoretical Computer Science Conference (ITCS 2020).
Editor: Thomas Vidick; Article No. 34; pp. 34:1–34:26

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/287883809?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:rilango@mit.edu
https://doi.org/10.4230/LIPIcs.ITCS.2020.34
https://eccc.weizmann.ac.il/report/2019/021/
https://eccc.weizmann.ac.il/report/2019/021/
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

34:2 Approaching MCSP from Above and Below

publishing his initial NP-completeness results in hope of showing that MCSP is NP-complete.1
Interest in MCSP was revitalized when Kabanets and Cai [19] connected the problem with
the natural proofs framework of Razborov and Rudich [28]. Since then, MCSP has been the
subject of intense research. We begin by (non-exhaustively) reviewing this work.2

1.1 Known lower bounds, hardness, and non-hardness for MCSP
It is easy to see that MCSP is in NP (the circuit of size at most s can be used as a witness),
but, despite work by numerous researchers, the exact complexity of MCSP remains unknown.

Hardness results for MCSP. We believe MCSP is not easy to compute. Kabanets and
Cai [19] show that MCSP 6∈ P conditioned on a widely-believed cryptographic hypothesis.

Thus, the most natural question about MCSP’s complexity is whether it is NP-complete.
As of yet, we have not managed to uncover even strong supporting evidence for, or against,
MCSP being NP-complete. The strongest known hardness result is by Allender and Das [3]
who show MCSP is hard for the cryptographically important class SZK under randomized
reductions.

Under less powerful types of reductions, we only know hardness for some subclasses of P.
For instance, building on the results of Oliveira and Santhanam [26], Golovnev et al. [12]
show that the class of functions computable by polynomial-sized formulas (NC1) reduces to
MCSP under AC0 reductions.

Lower Bounds for MCSP. Unconditionally, we know lower bounds against MCSP for
several restricted computational models. Cheraghchi, Kabanets, Lu, and Myrisiotis [10]
prove lower bounds for MCSP against DeMorgan formulas, branching programs, and AC0

circuits that essentially match the best known explicit lower bounds for these models.
Golovnev et al. [12] show that MCSP requires exponential-sized AC0[p] circuits by proving
MAJORITY ∈ (AC0)MCSP. The MAJORITY hardness result of [12] generalizes to the circuit
minimization problem for many circuit classes, however, the techniques fail in the case of
constant depth formulas.

Non-hardness results for MCSP. Surprisingly, we know MCSP cannot be NP-hard under
certain types of reductions. For example, Hirahara and Watanabe [16] show that “oracle-
independent polynomial reductions” cannot show that MCSP is hard for a class larger than
P. Moreover, while essentially all NP-complete problems are complete under rather weak
reductions such as uniform TIME[no(1)] reductions (which we do not define here), Murray
and Williams [23] prove that MCSP is not even NP-hard under TIME[n.49] reductions.

Conditioned on a widely-believed cryptographic hypothesis, Allender and Hirahara [4]
show that a very weak approximation of MCSP is actually neither in P nor NP-complete.

Approaching MCSP from below. Given the apparent difficulty of resolving the complexity
of MCSP, a natural approach is to progress towards MCSP “from below”: considering
restricted classes of circuits C that we understand better and determining whether the
C-circuit minimization problem, (C)-MCSP, is NP-hard.

1 [6] cites a personal communication from Levin regarding this.
2 In our review, we are sometimes slightly informal and imprecise in order to be more accessible. We

encourage the reader to look at the corresponding references for precise statements.

R. Ilango 34:3

As it stands, we know that minimizing DNF formulas and minimizing OR ◦AND ◦MODm
circuits are both NP-hard by Masek [20] and by Hirahara, Oliveira, and Santhanam [15]
respectively. It is still open whether the circuit minimization problem for, say, depth-3
formulas is NP-hard.

1.2 Implications of lower bounds and hardness for MCSP
Since the main goal of this paper is to shed light on the complexity of MCSP, it is worth
motivating why the complexity of MCSP is important.

Indeed, while researchers have not yet managed to establish the complexity of MCSP, a
series of works, beginning with Kabanets and Cai [19], connect the computational complexity
of MCSP and its variants to longstanding open questions in the field.

Separations of complexity classes. Several works ([17], [23], [3], [19]) show that MCSP
being NP-hard, under various notions of reducibility, implies unknown class separations. For
example, Hitchcock and Pavan [17] and Murray and Williams [23] show that if MCSP is
NP-hard under polynomial-time reductions, then ZPP 6= EXP, a major open problem.3

Worst-case versus average-case complexity for NP. Using tools developed by Nisan and
Wigderson [24] and Carmosino, Impagliazzo, Kabanets, and Kolokova [9], Hirahara [14] gives
a “worst-case to average-case” reduction for NP conditioned on a certain approximation to
MCSP being NP-hard. Thus, if one could show this approximation to MCSP is NP-hard, the
worst-case and average-case complexity of NP would be equivalent.

Circuit Lower Bounds. Recent work ([22], [27], [25]) explores a “hardness magnification”
phenomenon whereby even weak circuit lower bounds on certain computational problems
imply strong lower bounds on other problems. For example, Mckay, Murray, and Williams
[22] show that if MCSP (under a small size parameterization) cannot be solved by circuits of
size n · poly(logn), then NP does not have polynomial-size circuits.

1.3 Our Contributions
In this work, we focus on hardness results for natural variants of MCSP with the aim of
shedding light on the complexity of MCSP itself.

NP-Hardness of oracle MCSP (MOCSP)
As mentioned previously, some research has approached the problem of proving NP-hardness
for MCSP “from below,” that is, showing that the circuit minimization problem is NP-hard
for restricted classes of circuits like DNF circuits and OR ◦ AND ◦MODm circuits.

In this paper, we attempt to approach MCSP “from above.” That is, we study the
complexity of a problem that is at least as hard as MCSP. In particular, we define the
Minimum Oracle Circuit Size Problem (MOCSP) to take as input a truth table T , a size
parameter s ∈ N, and an oracle truth table O. The goal is to determine whether there is an
O-oracle circuit with at most s wires that computes T . It is easy to see that MOCSP ∈ NP
(the oracle circuit of size s can still act as an NP-witness).

3 [23] only shows the result under many-one reductions, but their techniques easily generalize to the truth
table case. [17] explicitly proves the truth table result using a different approach than [23].

ITCS 2020

34:4 Approaching MCSP from Above and Below

A natural way to think of MOCSP is as a “conditional” version of MCSP where we are
now measuring the complexity of computing T when we are given easy access to O.

Although our problem definition is new, this is not the first time someone has considered
an “oracle version” of MCSP. Several papers ([2, 5, 16, 18]) study the problem MCSPA of
minimizing oracle circuits for a fixed oracle language A. MOCSP differs fundamentally from
MCSPA in that the oracle circuit gets access to an arbitrary Boolean function, not a language,
and the function the oracle circuit has access to is an input to the problem.

Furthermore, while MOCSP ∈ NP, the complexity of MCSPA depends on the oracle A.
For example, the reference [2] proves MCSPQBF is complete for PSPACE under randomized
reductions. Moreover, there is a trivial reduction from MCSP to MOCSP: simply provide no
oracle truth tables. Therefore, since MOCSP is still in NP and MOCSP and is at least as hard
as MCSP, MOCSP is a nice “testing ground” for hardness results we conjecture for MCSP.

Indeed, as is conjectured for MCSP, we can prove that MOCSP is NP-hard under ran-
domized reductions.

I Theorem 1.1. MOCSP is NP hard under:
randomized many-one reductions with one-sided error, and
randomized Turing reductions with zero-sided error.

These NP-hardness results are both proved by giving a reduction from approximating
set cover to MOCSP. It is worth noting that the NP-hardness results of (DNF)-MCSP [20]
and (OR ◦ AND ◦MODm)-MCSP [15] are also proved via set cover problems, although both
of these reductions are deterministic while our reduction is randomized.

Given that we can show MOCSP is NP-hard under randomized reductions, one might
even begin to hope that we can prove hardness under, say, polynomial-time reductions.
Unfortunately, this seems difficult. Essentially the same proofs Murray and Williams [23]
or Hitchcock and Pavan [17] use to show that MCSP being NP-hard under polynomial-time
truth table reductions implies EXP 6= ZPP also work for MOCSP.

I Theorem 1.2 (Essentially proven in [17] and [23]). If NP reduces to MOCSP under polynomial
time (truth table) reductions, then EXP 6= ZPP.

Thus, improving our reduction to a polynomial-time truth table reduction requires separating
EXP from ZPP, a longstanding open problem. For completeness, we give the MOCSP version
of Murray and Williams’ proof in Appendix B.

Even so, we expect that the ground truth is that MOCSP is NP-hard under, at least,
deterministic polynomial-time Turing reductions.

I Conjecture 1.3. MOCSP is NP-hard under polynomial-time Turing reductions.

A perspective on MOCSP and some questions

In light of the fact that hardness for MCSP beyond SZK under even non-uniform reductions
is unknown, we found these MOCSP hardness results to be quite surprising. Moreover, the
NP-hardness of MOCSP seems to bolster the conjecture that MCSP is in fact NP-hard. To
an optimist, NP-hardness results for MOCSP could even be a first step towards proving
NP-hardness for MCSP. Indeed, a PSPACE-hardness result was first proved by Buhrman
and Torenvliet [8] for an “oracle” version of space-bounded Kolmogorov complexity before
Allender et al. [2] showed PSPACE-hardness for the non-oracle version about four years later.4

4 The conference versions of [8] and [2] are four years apart.

R. Ilango 34:5

Even if stronger hardness results for MCSP remain out of reach, MOCSP could still yield
valuable insights about MCSP. For instance, it would be interesting to see which of the
barriers and non-hardness results known for MCSP carry over to MOCSP.

I Open Question 1.4. Can one show that other barriers or non-hardness results that hold
for MCSP also hold for MOCSP?

As an example of the insight given by answers to this question, consider Murray and
Williams’ [23] result that proving MCSP is NP-hard under polynomial-time reductions
implies EXP 6= ZPP. A natural question one might ask is whether we can improve this
theorem to show that MCSP being NP-hard under randomized reductions implies unknown
class separations. As we note in Theorem 1.2, however, Murray and Williams’ proof carries
over to MOCSP, and Theorem 1.1 shows MOCSP is indeed NP-hard under randomized
reductions. Thus, any improvement of Murray and Williams’ result to randomized reductions
likely requires a fact about MCSP that we do not know for MOCSP.

In another direction, our results seem to imply that proving hardness for MOCSP is more
tractable than proving hardness for MCSP. Since we have already noted that MOCSP can be
used as a “testing ground” for questions about MCSP (since any hardness result for MCSP
must also hold for MOCSP), one can explore whether other conjectured hardness results for
MCSP hold for MOCSP. For example, Hirahara’s [14] worst-case to average-case reduction
for NP can be based on a certain approximation of MCSP being NP-hard, which would
imply that a certain approximation of MOCSP is also NP-hard. Given that we can prove the
NP-hardness of MOCSP under randomized reductions, we ask if one can prove something
similar for the approximation version of MOCSP.

I Open Question 1.5. Can one prove that, for some ε > 0, approximating MOCSP on
n-inputs to a factor of nε is NP-hard under, say, P/poly reductions? Conversely, can one
prove that there is any barrier to showing such a hardness result?

Finally, while in this paper we concentrate on approaching MCSP from above via MOCSP,
it would be interesting to explore other problems that are harder than MCSP but still in NP.
Perhaps this could help clarify what aspects of MCSP make it difficult to prove hardness for.

MAJORITY-hardness for (AC0
d)-MCSP

As mentioned previously, Golovnev et al. [12] proves that MAJORITY ∈ (AC0)MCSP. Using
similar techniques, they also show that, for restricted classes of circuits C such as formulas
and constant depth circuits, the C-circuit minimization problem, denoted (C)-MCSP, is hard
for MAJORITY under AC0 reductions. For these MAJORITY reductions to work, [12] requires
that the size of the minimum C-circuit on truth tables of length n is roughly (n.49)-Lipschitz,
that is, flipping one bit in any truth table can change the C-circuit complexity by at most
an n.49 additive term. This Lipschitzness hypothesis is unknown (and in our estimation
probably false) in the class of depth-d formulas, which we denote AC0

d.5 As a result, until
this work, it was unknown whether, say, (AC0

d)-MCSP ∈ AC0[2].
We stress that even though AC0

d is an extremely restrictive class of formulas, (AC0
d)-MCSP

should be a very hard problem. For example, Allender et al. [1] prove that if (AC0
d)-MCSP

had polynomial-size circuits for sufficiently large d, then one could factor Blum integers using
circuits of size 2nε for all ε > 0.

5 We will always use the notation AC0
d to refer to depth-d formulas and never depth-d circuits.

ITCS 2020

34:6 Approaching MCSP from Above and Below

In this paper, we prove that (AC0
d)-MCSP is indeed hard for MAJORITY by giving a

win-win argument depending on whether the Lipschitzness hypothesis is true. Applying the
lower bounds of Razborov [28] and Smolensky [30] then gives an AC0[p] lower bound for
(AC0

d)-MCSP.

I Theorem 1.6. Let d ≥ 2. Then MAJORITY ≤AC0

tt (AC0
d)-MCSP. Consequently, for any

prime p, (AC0
d)-MCSP /∈ AC0[p] .

One can view this theorem as (small) progress towards the program of approaching MCSP
from below. The natural next step in the program is to prove that (AC0

3)-MCSP is NP-hard,
and, until this work, AC0[p] lower bounds were open for this problem (despite knowing such
AC0[p] lower bounds for less restrictive circuit classes!). Perhaps the techniques introduced
here could be useful in proving further hardness results for (AC0

3)-MCSP.
Indeed, our techniques6 may be the most interesting part of Theorem 1.6. They are

entirely different than the ones used by [12] for general MCSP and, to our knowledge, all known
MCSP hardness results. For example, a crucial step in the proof is introducing algebraic
machinery and examining the size of a function’s smallest circuits modulo a certain prime.

Indeed, all previously known MCSP-related reductions (to our knowledge) continue to
work even when the reduction is given access to close approximations of a function’s minimum
circuit size. Because of this, it was not clear if, for the purpose of reductions, there was
any difference between knowing whether a function has circuits of size exactly s or s + 1.
However, the algebraic nature of this MAJORITY reduction actually requires knowing such
exact quantities, illustrating the existence of useful techniques that can distinguish between
MCSP and approximations of MCSP.

1.4 Proof Overviews
In this section, we give fairly detailed overviews of our proofs. In doing this, we will often
state results without filling in lower-level details. To make clear to the reader when we are
doing this, we mark such sentences with an italicized we observe.

NP-hardness of Oracle MCSP (MOCSP)
Recall, the Minimum Oracle Circuit Size Problem, MOCSP, takes as input a truth table T ,
a threshold s ∈ N, and an oracle truth table O and outputs whether there is an O-oracle
circuit with at most s wires that computes T . We denote the output of MOCSP on such an
input as MOCSP(T, s;O). We denote the minimum size (measured by wires) of any O-oracle
circuit computing T as CCO(T).

We prove that MOCSP is NP-hard by giving a reduction from 6-approximating the Set
Cover Problem (6-SetCover) to MOCSP. In our notation, 6-SetCover takes as input sets
S1, . . . , St ⊆ [n] whose union is [n] as well as an integer c ∈ [n] and requires outputting YES
when c ≥ ` and NO when c < `/6 where ` is the optimal cover size, i.e.

` = min{|I| : I ⊆ [t] and
⋃
i∈I

Si = [n]}.

Approximating SetCover to an ((1− o(1)) lnn) factor is known to be NP-hard by Dinur
and Steurer [11].

6 Specifically, our techniques in the case when the Lipschitz hypothesis fails (which we expect to be the
ground truth).

R. Ilango 34:7

Informal idea. We begin by giving a high-level overview of the reduction to orient the
reader. (It will be very informal, but we are building to a more detailed description.) Say we
are given sets S1, . . . , St ⊆ [n] whose union is [n]. One can think of each of these sets Si as
“seeing” a small portion of the ground set [n]. Then, for a uniformly random truth table T
of length m ≥ (nt)5, we let each set S1, . . . , St induce truth tables TS1 , . . . , TSt respectively
where each truth table TSi has the same length at T and “sees” roughly the same part of
T as Si “sees” of [n]. We define our oracle O to be the concatenation of these truth tables.
Finally, we ask how hard it is for a circuit to compute T given oracle access to O.

The idea is that if a circuit looks at a collection of induced truth tables corresponding to
a set cover, then it can “see” all of T and thus easily compute T . If not, then a large part of
T is still random to the circuit and thus hard to compute. Indeed, we show that with high
probability the quantity CCO(T) can be used to estimate ` up to a constant factor.

We now describe the reduction in more detail. Fix sets S1, . . . , St ⊆ [n] whose union is
[n] and, let ` be the optimal cover size of [n] by S1, . . . , St. Let T be a uniformly random
truth table of length m ≥ (nt)5.

The truth tables induced by S1, . . . , St and T . We now rigorously define the truth tables
TS1 , . . . , TSt of length m induced by S1, . . . , St and T . To do this, we chose a uniformly
random partition of [m] into n parts, that is, let P : [m] → [n] be a uniformly random
function, and let P = (P1, . . . , Pn) be the partition of [m] into n parts where for j ∈ [n]

Pj = {x ∈ [m] : P (x) = j}.

We can then use this partition to “lift” any subset of [n] into a subset of [m] as follows.
For a subset S ⊆ [n], let Sm denote the subset of [m] given by Sm =

⋃
j∈S Pj .

Next, for a subset S′ ⊆ [m], we let T〈S′〉 be the truth table of length m that “sees” T on
the elements of S′ and zeroes everywhere else, that is

T〈S′〉(x) = T (x) ∧ 1x∈S′

Finally, we define the truth table TSi induced by Si to be the truth table T〈Sm
i
〉 (we are

dropping the m superscript and the bracketed subscript for concision).

Building the oracle O. We build our oracle O by concatenating the induced truth tables
TS1 , . . . , TSt . In other words, let O : {0, 1}dlog te × {0, 1}logm → {0, 1} be given by

O(i, x) =
{
TSi(x) , if i ∈ [t]
0 , otherwise

CCO(T) is at most `(3 + log(tm)). Suppose, without loss of generality, that S1∪ · · ·∪S`
is an optimal cover of [n]. We claim that

∨
i∈[`]O(i, x) is a circuit computing T . Unraveling

our definitions, we have that∨
i∈[`]

O(i, x) =
∨
i∈[`]

TSi(x) =
∨
i∈[`]

(T (x)∧1x∈Sm
i

) = T (x)∧(
∨
i∈[`]

1x∈Sm
i

) = T (x)∧1x∈Sm1 ∪···∪Sm` .

Using the fact that S1, . . . , S` is a cover of [n], we have that

T (x) ∧ 1x∈Sm1 ∪···∪Sm` = T (x) ∧ 1x∈[m] = T (x).

Thus,
∨
i∈[`]O(i, x) computes T and has at most

2`+ `(1 + log t+ logm) ≤ `(3 + log t+ logm)

wires.

ITCS 2020

34:8 Approaching MCSP from Above and Below

With high probability, CCO(T) > ` log(tm)/2. We do this by a union bound argument.
Fix any oracle circuit C with at most ` log(tm)/2 wires. We show that the probability that
CO computes T is very small.

We begin by showing that on any fixed input x that

Pr[CO(x) = T (x)] ≤ 1− 1
2n.

Fix some x. We prove the following claim: that with probability at least 1
n over the choice

of P (x), the output of CO(x) does not depend whether the value of T (x) is one or zero. If
this claim were true, then we would get the desired bound

Pr[CO(x) = T (x)] ≤ 1− 1
2n

since, assuming that CO(x) does not depend on T (x), the probability CO(x) = T (x) is
exactly 1

2 (since T (x) is chosen uniformly at random).
To prove the claim, we first note that the only way that the output of CO(x) can depend

on the value of T (x) is if during the computation of CO(x) C makes an oracle query (i′, x′)
to O such that the value of O(i′, x′) depends on the value of T (x). However, from the
definition of O, we know that the output of O(i′, x′) depends on T (x) if and only if x′ = x

and P (x) ∈ Si′ . Summarizing, CO(x) depends on T (x) only if CO makes a query of the form
(i′, x) such that P (x) ∈ Si′ . But CO has at most `/2 oracle gates, so it only has `/2 “tries”
to find a set Si′ that contains the uniformly random ground set element P (x), which is less
than the number of tries needed to cover the ground set! Hence, it is intuitive that with
probability at least 1

n , P (x) takes on a value that is not in any of the Si′ that CO queries.
We observe that this intuition can be made rigorous (with some more details), and hence,
the claim is true.

At this point, we have completed our sketch of why for any fixed x

Pr[CO(x) = T (x)] ≤ 1− 1
2n.

Unfixing x, we would like to say that we can multiply these probabilities together for
all x ∈ [m] to bound the probability that CO computes T . However, we cannot do this, as
these events might have some dependencies between each other. Luckily, since, for any x,
CO(x) makes at most `/2 ≤ n oracle calls, we observe that applying the above probability
bound can only “spoil” the bound for at most n other values of x. Hence, we can repeatedly
apply the bound to about m/n different values of x yielding

Pr[CO computes T] ≤ (1− 1
2n)m/n ≤ e−

m
2n2 ≤ e−n

3t5/2.

Finally, union bounding over the at most

2O(` log(tm)/2)2
≤ 2O(n2t)

oracle circuits with at most ` log(tm)/2 wires yields the desired result.

RP and ZPP reductions. At this point, we have shown that if S1, . . . , St admits a c-cover,
then MOCSP(T, c(3 + log(tm));O) = YES (note that this fact did not depend on our random
choice of T or P), and we have shown that if S1, . . . , St does not admit a c-cover, then
MOCSP(T, c log(tm)/2;O) = NO with high probability. It is easy to see that this yields
an RP many-one reduction (a randomized many-one reduction with one-sided error) from
6-SetCover to MOCSP.

R. Ilango 34:9

Furthermore, since this RP reduction only errs by incorrectly classifying NO instances
as YES instances, we can use the search-to-decision reduction for SetCover to check the
correctness of purported YES instances, transforming our RP reduction into a ZPP-Turing
reduction (a randomized zero-error reduction that can make multiple adaptive queries
to MOCSP).

Majority Hardness for (AC0
d)-MCSP

Recall, AC0
d is the class of depth-d formulas made up of AND and OR gate with unbounded

fan-in. We also define AND ◦ AC0
d−1 and OR ◦ AC0

d−1 be the classes of AC0
d formulas with a

top AND and top OR gate respectively. For F ∈ {AC0
d, AND ◦ AC0

d−1, OR ◦ AC0
d−1} and a

truth table T , we let CCF (T) denote the size of the minimum F -formula computing T where
the size of a formula is the number of input leaves.

Our analysis proceeds by considering each n ∈ N and splitting into cases depending on
whether CCAC0

d
is Lipschitz on truth tables of length around n. In more detail, fix some

sufficiently large n. Let q = Θ(n2) be a power of two. We divide into cases depending on
whether there exists an m ∈ {q10, q50} such that CCAC0

d
is (m.25)-Lipschitz on truth tables of

length m.

Case 1: Lipschitzness holds for some m

If there does exist an m ∈ {q10, q50} such that CCAC0
d
is (m.25)-Lipschitz on truth tables of

length m, then the techniques of Golovnev et al. [12] yield an AC0 truth table reduction
from MAJORITY on n-bits to (AC0

d)-MCSP on m-bits. For completeness, we include a
self-contained proof of this case in Appendix A.

Case 2: Lipschitzness fails

Assume that for all m ∈ {q10, q50} CCAC0
d
is not (m.25)-Lipschitz on truth tables of length m.

Let u = q10 and v = q50.

Lipschitzness failing =⇒ functions easier to compute with a top AND gate. We
observe, as a straight forward consequence of Lipschitzness failing, that there exists a truth
table of length u that has an optimal formula with large top fan-in and a truth table of
length v that is easier to compute with a top AND gate:

1. There exists a Boolean function fu that takes log u inputs and an AC0
d formula φu such

that φu is an optimal AC0
d formula for fu and φu = φu1 ∧ · · · ∧ φut for some t ≥ n and

some φu1 , . . . , φut ∈ AC0
d−1.

2. There exists a Boolean function fv that takes log v inputs such that CCOR◦AC0
d−1

(fv) >
CCAND◦AC0

d−1
(fv) + u log u.

We will make use of fu and φu to reduce MAJORITY to CCAND◦AC0
d−1

and we will use fv to
reduce CCAND◦AC0

d−1
to CCAC0

d
.

Using CCAND◦AC0
d−1

and optimal subformulas of φu to compute a dot product. The heart
of our MAJORITY reduction is a fairly elementary observation about optimal (AND ◦AC0

d−1)
formulas. Recall, φu = φu1 ∧ · · · ∧ φut is an optimal (AC0

d) formula for fu and, hence, also an
optimal (AND ◦AC0

d−1) formula for fu. We observe that for any A ⊆ [t], the (AND ◦AC0
d−1)-

optimality of φu implies that
∧
i∈A φ

u
i is also an optimal (AND ◦ AC0

d−1) formula for the
function it computes.

ITCS 2020

34:10 Approaching MCSP from Above and Below

Introducing some notation, for a string x ∈ {0, 1}n, we let fux be the function given
by

∧
i∈Ox φ

u
i where Ox ⊆ [n] are the bits in x that are one. Using the above observation

about subformulas being optimal, we have that7 CCAND◦AC0
d−1

(fux) =
∑
i∈Ox |φ

u
i |. Thus,

one can think of CCAND◦AC0
d−1

(fux) as computing the dot product between x and the vector
〈|φu1 |, . . . , |φun|〉.

Note that that the definition of fux depends on the labeling of φu1 , . . . , φut , in particular the
choice of which φui have i ≤ n. We will later choose a labeling of the φui that is convenient.

Computing MAJORITY (non-uniformly) using CCAND◦AC0
d−1

. Our goal is to compute
MAJORITY on a string x ∈ {0, 1}n using the above “dot product” observation. Before we
show how to do this, we give some intuition on how we came up with the idea.

Instead of trying to compute MAJORITY, suppose we relaxed the problem to computing
PARITY given access to the integer produced by the dot product x · 〈|φu1 |, . . . , |φun|〉. Well,
if it so happened that all the entries in the vector 〈|φu1 |, . . . , |φun|〉 were odd, then it is clear
that the integer produced by x · 〈|φu1 |, . . . , |φun|〉 is odd if and only if x has an odd number of
ones. Our approach for MAJORITY is a generalization of this.

Let p = O(n) be prime greater than n. We observe, via a pigeon-hole principle argument,
that there exist integers k ≥ 0 and 1 ≤ r ≤ p− 1 and indices i1, . . . , in ∈ [m] such that

|φui1 |/p
k ≡ · · · ≡ |φuin |/p

k ≡ r mod p.

Thus, after an appropriate relabeling of φui , we have that

|φu1 |/pk ≡ · · · ≡ |φun|/pk ≡ r mod p.

Hence, we can determine the weight w of x (and hence compute MAJORITY of x) by
computing the value of

CCAND◦AC0
d−1

(fux)/pk =
∑
i∈Ox

|φui |/pk ≡ rw mod p

and multiplying by the inverse of r modulo p. 8

Reducing computing CCAND◦AC0
d−1

to computing CCAC0
d
. Ultimately, we want to compute

MAJORITY using CCAC0
d
not CCAND◦AC0

d−1
. By the above procedure, it suffices to show how

to compute CCAND◦AC0
d−1

(fux) using CCAC0
d
.

We can make such a computation as follows. Recall that fv is a function satisfying

CCOR◦AC0
d−1

(fv) > CCAND◦AC0
d−1

(fv) + u log u

whose existence is guaranteed by the failure of Lipschitzness. Take the direct product of fux
with fv to obtain a function gx(y, z) = fux (y)∧fv(z). Since the difference between computing
fv with a top AND gate and a top OR gate is larger than u log u (which is the maximum
complexity of fux), we observe9 any optimal AC0

d formula for gx must have a top AND gate, so

CCAC0
d
(gx) = CCAND◦AC0

d−1
(gx).

7 Recall, our notion of formula size is the number of input leaves.
8 In case the reader is unsure of whether the last parts of this procedure are implementable in AC0, realize
that the output of CCAND◦AC0

d−1
(fu

x) is a binary string of length O(log n) and that any function on a
string of length O(log n) can be computed by a polynomial-sized DNF. See the proof in Section 4 for
more details.

9 both the “we observe” statements in this paragraph are consequences of standard direct product theorems
for formulas.

R. Ilango 34:11

Then, we observe that

CCAND◦AC0
d−1

(gx) = CCAND◦AC0
d−1

(fux) + CCAND◦AC0
d−1

(fv).

Hence, if we are non-uniformly given the value of CCAND◦AC0
d−1

(fv), we can subtract
CCAND◦AC0

d−1
(fv) from CCAC0

d
(gx) to find CCAND◦AC0

d−1
(fux).

I Remark 1.7. We remark that the only time we use the failure of the Lipschitzness hypothesis
is to show the existence of functions like fu with high top fan-in and functions like fv with
a large difference between top AND gate and top OR gate complexity. Using known PARITY
lower bounds and depth-hierarchy theorems for AC0 circuits, we can unconditionally prove
the existence of fu and fv respectively but with slightly worse parameters that would yield a
quasi-polynomial reduction (at least in the d ≥ 3 case) rather than the polynomial reduction
we present.

1.5 Paper Organization
In Section 2 we fix notation and review precise definitions. In Section 3 we prove our MOCSP
results, and in Section 4 we prove that MAJORITY reduces to (AC0

d)-MCSP.

2 Preliminaries

For an integer n, we let [n] denote the set {1, . . . , n}. For a binary string x ∈ {0, 1}∗,
the weight of x, denoted wt(x), is the number ones in x. We identify a Boolean function
f : {0, 1}n → {0, 1} with its truth table T ∈ {0, 1}2n and often use them interchangeably.

We let log denote the base-2 logarithm and ln represent the base-e logarithm. For
functions f and g, we say f = Õ(g) if there exists a c such that f(x) ≤ logc(g(x))g(x) for all
sufficiently large x. We say that f = Ω̃(g) if g = Õ(f).

We say a function f : {0, 1}n → N is c-Lipschitz if for all x, y ∈ {0, 1}n that differ in
at most one bit, |f(x)− f(y)| ≤ c. (In this paper, the function f for which we care about
c-Lipschitzness is the function that maps a truth table to its circuit complexity.)

Complexity classes and reductions
We assume the reader is familiar with the standard complexity classes such as AC0,P,ZPP,RP,
NP,E and the notion of Turing machines. For background on these, we refer to Arora and
Barak’s excellent textbook [7]. For us, AC0 always refers to non-uniform AC0.

We review the types of reductions we use in case the reader is not familiar with randomized
reductions, truth table reductions, or our notation.

Many-one reductions. We will make use of the following notions of many-one reduction.
L ≤P

m L′ if there is a polynomial-time Turing machine M such that x ∈ L ⇐⇒ M(x) ∈
L′.
L ≤RP

m L′ if there is a polynomial-time probabilistic Turing machine M taking in a
“random” auxiliary input r such that

x ∈ L =⇒ ∀rM(x, r) ∈ L′, and

x 6∈ L =⇒ Pr
r

[M(x, r) 6∈ L′] ≥ 2/3,

and |r| is polynomial in the length of x.

ITCS 2020

34:12 Approaching MCSP from Above and Below

Truth table reductions. We will also make use of the following notions of truth table
reductions.

We say an oracle circuit C is a truth table oracle circuit if there is no directed path
between oracle gates in C.
L ≤AC0

tt L′ if there is a non-uniform (polynomial-sized) AC0 truth table oracle circuit C
such that C computes L when given oracle access to L′.

Turing reductions. Finally, we say L ≤ZPP
T L′ if L can be computed with zero-error by a

polynomial-time probabilistic oracle Turing machine M with oracle access to L′. On any
single input, M is allowed to output “don’t know” with probability at most 1/2.

AC0
d formulas, (AC0

d)-MCSP, and CCAC0
d

For an integer d ≥ 2, we let AC0
d denote the class of depth-d formulas that use AND and OR

gates with unbounded fan-in and fan-out 1 and that takes as “input leaves” the bits of a
binary string and the negation of each of those bits.

For an AC0
d formula φ, we define the size of φ, denoted |φ|, to be the total number of

input leaves φ uses. For a Boolean function f , we let CCAC0
d
(f) be the size of the smallest

AC0
d formula computing f .

I Definition 2.1 (Minimum Circuit Size Problem for constant depth formulas). (AC0
d)-MCSP,

is the language given by

{(T, s) ∈ {0, 1}? × N : T is the truth table of a Boolean function, and CCAC0
d
(T) ≤ s}.

We will also make use of the classes of formulas OR ◦ AC0
d−1 and AND ◦ AC0

d−1, defined
as the subclasses of AC0

d formulas with a top OR gate and a top AND gate respectively. For
C ∈ {OR ◦ AC0

d−1,AND ◦ AC0
d−1}, we define CCC and (C)-MCSP analogous to CCAC0

d
and

(AC0
d)-MCSP.
We also require the following elementary lemmas regarding AC0

d formulas.

I Lemma 2.2. Let f be a Boolean function. Then CCAC0
d
(f) = CCAC0

d
(¬f).

Proof. One can use DeMorgan’s laws to turn any AC0
d formula for f of size s into an AC0

d

formula for ¬f of size s. J

We note that our specific notion of AC0
d formula size is crucial for the next lemma.

I Lemma 2.3 (Direct product theorem for formulas). Let f : {0, 1}n → {0, 1} and g :
{0, 1}m → {0, 1} be Boolean functions that are both not the constant zero function. Define
h : {0, 1}n × {0, 1}m → {0, 1} by h(x, y) = f(x) ∧ g(y). Then

CCAND◦AC0
d−1

(h) = CCAND◦AC0
d−1

(f) + CCAND◦AC0
d−1

(g), and

CCOR◦AC0
d−1

(h) ≥ CCOR◦AC0
d−1

(f) + CCOR◦AC0
d−1

(g).

Proof. It is easy to see that

CCAND◦AC0
d−1

(h) ≤ CCAND◦AC0
d−1

(f) + CCAND◦AC0
d−1

(g).

R. Ilango 34:13

On the other hand, since f is not the constant 0 function, it has a 1-valued input x0.
Then, h(x0, y) computes g(y). Thus, if φ is an OR ◦AC0

d−1 formula for h, then φ has at least
CCAND◦AC0

d−1
(g) y-input leaves. A similar argument shows that φ has at least CCAND◦AC0

d−1
(f)

x-input leaves. Hence

CCAND◦AC0
d−1

(h) ≥ CCAND◦AC0
d−1

(f) + CCAND◦AC0
d−1

(g).

A similar argument shows that

CCOR◦AC0
d−1

(h) ≥ CCOR◦AC0
d−1

(f) + CCOR◦AC0
d−1

(g). J

Oracle Circuits and Oracle MCSP: MOCSP
An oracle circuit C is made up of NOT gates, fan-in two AND and OR gates, and oracle
gates g1, . . . , gt for some integer t ≥ 0. When given an oracle functions O, we let CO(x) be
the value obtained when evaluating C on input x by using the O function to compute the
outputs of the oracle gates g1, . . . , gt.

We define the size of an oracle circuit C, denoted |C|, to be the number of wires in C.
For Boolean functions f,O, we let CCO(f) be the size of the smallest O-oracle circuit that
computes f . Analogous to MCSP, we define the following.

I Definition 2.4 (The Minimum Oracle Circuit Size Problem). The Minimum Oracle Circuit
Size Problem, denoted MOCSP, takes as input a truth table T , a threshold s ∈ N, and an
oracle truth table O and outputs whether CCO(T) ≤ s. The output of MOCSP on such an
input is written as MOCSP(T, s;O).

Set Cover
We will make use of the following well known NP-complete problem.

I Definition 2.5 (Set Cover). Set Cover, denoted SetCover, is the problem that takes as
input a tuple (n, c, S1, . . . , St), where n ∈ N is a universe size, c ∈ N is a proposed cover size
1 ≤ c ≤ n, and S1, . . . , St ⊆ [n] are sets whose union is [n], and outputs whether c ≥ ` where
` is the optimal cover size given by

` = min{|I| : I ⊆ [t] and ∪i∈I Si = [n]}.

We will use that SetCover is NP-hard even to approximate to a roughly logn factor.

I Theorem 2.6 (Dinur and Steurer [11]). It is NP-hard to approximate SetCover to within a
factor of (1− o(1)) lnn

3 On the NP-hardness of MOCSP

First, we introduce some useful notation and definitions. For a truth table T of length m
and a set R ⊆ [m], let T〈R〉 be the truth table of length m where the jth bit of T〈R〉 equals{

the jth bit of T , if j ∈ R
0 , otherwise.

.

Equivalently,

T〈R〉(x) = T (x) ∧ 1x∈R.

ITCS 2020

34:14 Approaching MCSP from Above and Below

Next, we define a uniformly random partition P = (P1, . . . , Pn) of [m] into n parts to be
such that each element i ∈ [m] is put into Pj where j ∈ [n] is chosen uniformly at random.
It will be also useful to think of P as a uniformly random function P : [m]→ [n].

Next, for a partition P = (P1, . . . , Pn) of [m] and any set S ⊆ [n], we define the P-lift of
S, denoted SP , to be the subset of [m] given by

SP =
⋃
i∈S

Pi.

Our main theorem shows that MOCSP can approximate set cover.

I Theorem 3.1. Let S1, . . . , St ⊆ [n] be sets that cover [n]. Let T be a truth table of length
m ≥ (nt)5, and let P = (P1, . . . , Pn) be a uniformly random partition of [m] into n parts.
Define the oracle function the O : {0, 1}dlog te × {0, 1}logm → {0, 1} by

O(i, y) =
{
T〈SP

i
〉(y) , if i ∈ [t] (identifying i as an integer in the natural way)

0 , otherwise
.

Then
CCO(T) ≤ `(3 + logm+ log t), and
CCO(T) > `(logm+ log t)/2 with high probability

where ` is size of the optimal cover of [n] by S1, . . . , St.

Proof. First, we show the upper bound.

B Claim 3.2. CCO(T) ≤ `(3 + logm+ log t)

Proof. Without loss of generality, assume that the optimal cover size ` is witnessed by
S1 ∪ · · · ∪ S` = [n]. Then, by construction, the function computed by oracle circuit C given
by

C(x) = O(1, x) ∨ · · · ∨ O(`, x)

computes T and has at most

2`+ ` · (logm+ log t+ 1) ≤ `(3 + logm+ log t)

wires. In more detail,∨
i∈[`]

O(i, x) =
∨
i∈[`]

∨
j∈Si

T〈Pj〉(x) =
∨

j∈S1∪···∪S`

T〈Pj〉(x) =
∨
j∈[n]

TPj (x) = T (x).

Therefore CCO(T) ≤ `(3 + logm+ log t). C

Now, we show the lower bound. We do this by a union bound argument. Fix some
O-oracle circuit C such that with at most `(logm+ log t)/2 wires. Then C has at most `/2
oracle gates. We will show that

Pr
T,P

[CO computes T]

is exponentially small.
We do this by finding a long sequence of inputs x1, . . . , xd on which CO has a not too

large chance of computing T .

R. Ilango 34:15

We construct this list of inputs recursively as follows. Let x1 = 0logm, and let

Q1 = {x : CO(x1) makes a query of the form (i, x) to an oracle gate for some i}.

Now, for j ≥ 1, if {0, 1}logm \Qj is non-empty, then let xj+1 be an element of {0, 1}logm \
Qj , and let

Qj+1 = Qj∪{x : CO(xj+1) makes a query of the form (i, x) to an oracle gate for some i}.

If {0, 1}logm = Qj , then terminate the sequence.
Since C has at most `/2 ≤ n oracle gates, we know that |Qj | ≤ j · n. Thus, since

|Qd| = |{0, 1}logm| = m,

the length d of this sequence is at least m/n.
It remains to bound

Pr[CO(xj) = T (xj)∀j] =
d∏
j=1

Pr[CO(xj) = T (xj)|
∧

k∈[j−1]

CO(xk) = T (xk)].

Fix some j ∈ [d]. We will bound

Pr[CO(xj) = T (xj)|
∧

k∈[j−1]

CO(xk) = T (xk)].

For convenience, let E denote the event we are conditioning on.

B Claim 3.3.

Pr[CO(xj) = T (xj)|E] ≤ 1− 1
2n.

Proof. By construction of the sequence x1, . . . , xd, we know that on all the inputs x1, . . . , xj−1,
CO does not make an oracle call of the form (i, xj) for some i. Thus, since the only time the
value of O depends on T (xj) and P (xj) is on inputs of the form (i, xj) for some i, and T (xj)
and P (xj) are chosen at independently at random, we know that T (xj) and P (xj) are still
uniform random variables conditioned on E. In other words,

Pr[T (xj) = 1|E] = 1
2

and

Pr[P (xj) = r|E] = 1
n

for all r ∈ [n].
Now, define the alternate oracle O′ that acts the same as O except that it rejects all

queries containing xj , that is

O′(i, x) =
{

0 , if x = xj

O(i, x) , otherwise.

Now let i1, . . . , iv with v ≤ `/2 be such that, using the modified oracle O′, the only oracle
queries CO′(xj) makes that end with xj are (i1, xj), . . . , (iv, xj) (note that queries of this
form are the only ones that could reveal information about T (xj)). Since v < ` (recall `
is the size of the optimal cover) there actually exists an element r? ∈ [n] that is not in
Si1 ∪ · · · ∪ Siv .

ITCS 2020

34:16 Approaching MCSP from Above and Below

Moreover, observe that if P (x) = r?, then CO(xj) will actually make the same oracle
queries (and get the same zero responses) as the modified oracle circuit CO′(xj). In this
case, since P (x) = r? 6∈ Si1 ∪ · · · ∪ Siv , it follows from the definition of O that

O(i1, xj) = · · · = O(iv, xj) = 0

regardless of the value of T (xj). Thus, the output of CO on input x does not depend at all
on the value of T (x). Hence, the probability it correctly guesses CO(x) = T (x) is at most
one half when P (xj) = r?.

Since P (xj) is chosen uniformly at random, we have that P (xj) = r? with probability 1/n.
Therefore, the probability

Pr[CO(xj) = T (xj)|E] ≤ 1− 1
2n C

Using this claim, we now have

d∏
j=1

Pr[CO(xj) = T (xj)|
∧

k∈[j−1]

CO(xk) = T (xk)] ≤ (1− 1
2n)d ≤ e− d

2n ≤ e−
m

2n2 ≤ e−n
3t5
2 .

On the other hand the number of oracle circuits of size `(logm+ log t)/2 = O(nt logn) is
at most 2O(n2t2). Thus, by the union bound the probability that there exists an O-oracle
circuit of size at most `(logm+ log t)/2 computing T is o(1) as desired. J

As an immediate consequence of Theorem 3.1, we get that MOCSP is hard for NP under
many-one randomized reductions with one-sided error (the reduction is one-sided because
the upper bound on the oracle circuit size of T in Theorem 3.1 is independent of the random
choices of T and P).

I Corollary 3.4. NP ≤RP
m MOCSP.

Moreover, the RP-reduction in Corollary 3.4 only errs by outputting YES when the answer
should be NO. Thus, using the search-to-decision reduction for SetCover, we can check the
correctness of purported YES answers, yielding a ZPP Turing reduction.

I Corollary 3.5. NP ≤ZPP
T MOCSP.

4 MAJORITY ≤AC0

tt (AC0
d)-MCSP

Let d ≥ 2. Our goal in this section is to prove the following theorem.

I Theorem 4.1. MAJORITY ≤AC0

tt (AC0
d)-MCSP.

We will do this by showing that for all sufficiently large n ∈ N, there exists an AC0 truth
table oracle circuit that computes MAJORITY on n-bits when given access to (AC0

d)-MCSP.
Fix some n, and let q be the least power of two such that n ≤ √q/2. We will split our

analysis into cases depending on whether there exists an m ∈ {q10, q50} such that CCAC0
d
is

(m.25)-Lipschitz on inputs of length m.

R. Ilango 34:17

4.1 Case 1: Lipschitzness Holds
If Lipschitzness holds, then the desired (AC0

d)-MCSP oracle circuit C exists for computing
MAJORITY on n-inputs by the work of Golovnev et al. [12]. At a high-level, C works
by using the input string to sample a random variable whose circuit complexity spikes (in
expectation) depending on the weight of the input and using Lipschitzness to show that this
spike happens with such high probability that it can be derandomized using non-uniformity.

For completeness, we give a self-contained proof of this case in Appendix A.

4.2 Case 2: Lipschitzness fails
Assume that for all m ∈ {q10, q50}, CCAC0

d
is not (m.25)-Lipschitz on inputs of length m.

Thus, for all m ∈ {q10, q50} there exist functions fm, hm : {0, 1}logm → {0, 1} that differ
only on a single input zm ∈ {0, 1}logm such that CCAC0

d
(hm)− CCAC0

d
(fm) > m.25.

We assume, without loss of generality, that for all m ∈ {q10, q50}, fm(zm) = 0 and
hm(zm) = 1. (If this is not the case, then replace fm and hm by ¬fm and ¬hm respectively
and apply Lemma 2.2.)

First, we show that the failure of Lipschitzness implies the existence of functions that
are much easier to compute by formulas with an AND gate on top. For m ∈ {q10, q50} let
1zm : {0, 1}logm → {0, 1} denote the indicator function that accepts just the string zm.

I Proposition 4.2. Let m ∈ {q10, q50}. For sufficiently large n, CCOR◦AC0
d−1

(fm) ≥
CCAC0

d
(fm) +m.24, and so any optimal AC0

d formula for fm has an AND gate on top.

Proof. Suppose φ is an OR ◦ AC0
d−1 formula computing fm, that is, fm is computed by

φ = φ1 ∨ · · · ∨ φt for some AC0
d−1 formulas φ1, . . . , φt. Then

1zm ∨ φ1 ∨ · · · ∨ φt

computes hm. Since 1zm can be computed by a single AND gate of formula size logm,
this shows that CCAC0

d
(hm) ≤ |φ|+ logm. Combining this with the fact that CCAC0

d
(hm)−

CCAC0
d
(fm) ≥ m.25 gives the desired result. J

At this point, we will need to refer to both q10 and q50 individually, so for convenience
let u = q10 and v = q50.

Let φu be an optimal AC0
d formula for fu. By Proposition 4.2, for sufficiently large n,

we know that φu = φu1 ∧ · · · ∧ φut for some AC0
d−1 formulas φu1 , . . . , φut . Moreover, we can

assume, without loss of generality, that the top gate of φui is OR for all i ∈ [t]. (If some φui
has an AND gate on top, then this AND can be carried out by the AND gate on top of φu
without increasing the size of the formula.)

Our next Proposition shows that φu has high top fan-in.

I Proposition 4.3. For sufficiently large n,

t ≥ u.24.

Proof. We divide into cases depending on d.
Case 1: d ≥ 3. Realize that

(φu1 ∨ 1zu) ∧ · · · ∧ (φut ∨ 1zu)

computes hu. Since 1zu can be computed by a single AND gate of formula size log u and
the top gate of each φui is an OR gate and d ≥ 3, this yields a depth-d formula for hu
of size CCAC0

d
(fu) + t log u. Since CCAC0

d
(hu)− CCAC0

d
(fu) ≥ u.25, the desired bound on t

follows.

ITCS 2020

34:18 Approaching MCSP from Above and Below

Case 2: d = 2. Let 1zu, j : {0, 1}logu → {0, 1} be the function that accepts a string x if and
only if the jth bit of x equals the jth bit of zu. Observe that, since

∧
i∈[t] φ

u
i computes

fu, we have that∧
i∈[t]

∧
j∈[logu]

(φui ∨ 1zu, j)

computes hu. Since 1zu, j is computed by a single input leaf and φui has an OR gate on
top, this yields a depth-2 formula for hu of size (|φu|+ 1) log u. Since φu is an optimal
CNF, each clause φui of φu is the OR of at most log u input leaves. In other words,
|φui | ≤ log u. Therefore, we have that

CCAC0
d
(hu) ≤ (|φu|+1) log u ≤ (

∑
i∈[t]

|φui |+1) log u ≤ (t log u+1) log u = t log2 u+log u.

On the other hand, we know by assumption that

CCAC0
d
(hu) > CCAC0

d
(fu) + u.25 ≥ u.25.

Combining these two inequalities gives us the desired bound on t. J

Let p be smallest prime greater than n. (Note that p ≤ 2n by Betrand’s postulate,
also known as Chebyshev’s theorem. See [13] for a proof.) We say that an integer j is
(k, r)-good for integers k ≥ 0 and 1 ≤ r ≤ p− 1 if pk divides j and j/pk ≡ r mod p. In other
words, an integer j is (k, r)-good for k ≥ 0 and r ∈ [p − 1] if the kth largest entry of the
base-p representation of the integer j equals r and all previous entries equal zero. From this
“base-p” perspective, it is clear that all positive integers j are (k, r)-good for some k ≥ 0 and
r ∈ [p− 1].

We show that, for some k and r, a large subset of the |φui | are (k, r)-good.

I Proposition 4.4. For all sufficiently large n, there exist integers k ≥ 0 and 1 ≤ r ≤ p− 1
and a set S ⊆ [t] of cardinality n such that, for all i ∈ S, the integer |φui | is (k, r)-good.

Proof. We do this by an averaging argument. First, we show that each |φui | is (k, r)-good
for a k not too large.

B Claim 4.5. For all i ∈ [t], |φui | is (k, r)-good for some 0 ≤ k ≤ log(u log u) + 1 and some
r ∈ [p− 1].

Proof. Fix some i ∈ [t]. |φui | is a positive integer, so |φui | is (k, r)-good for some k ≥ 0 and
some r ∈ [p− 1]. We still need to upper bound this k. Note that the size of |φui | is at most
u log u since φu is optimal for fu and fu can be computed by a DNF of size u log u. Thus,
for pk to divide |φui |, we must have that k ≤ logp(u log u) + 1 ≤ log(u log u) + 1. C

Since for all i ∈ [t] we have shown that |φui | is (k, r) good for some 0 ≤ k ≤ log(u log u) + 1
and some r ∈ [p− 1], a standard averaging argument implies that there exists a set S ⊆ [t]
of cardinality at least

t

(log(u log u) + 1)(p− 1)

such that for all i ∈ S, |φui | is (k, r)-good for some fixed k ≥ 0 and 1 ≤ r ≤ p − 1. For
sufficiently large n, we have that

t

(log(u log u) + 1)(p− 1) ≥
u.24

4n log u ≥ n

using that u = q10 ≥ n10. We then can truncate S so that it has only n elements as
desired. J

R. Ilango 34:19

Assume that n is large enough that all the sufficiently large hypotheses in Propositions
4.2, 4.3, and 4.4 apply. For convenience, relabel φ1, . . . , φt so that the set S guaranteed by
Proposition 4.4 is just S = [n]. Fix k ≥ 0 and r ∈ [p− 1] to be the values such that for all
i ∈ S = [n], |φui | is (k, r)-good.

Introducing notation, for a set A ⊆ [n], let fuA be the function computed by
∧
i∈A φ

u
i .

I Lemma 4.6. Let A ⊆ [n]. Then CCAND◦AC0
d−1

(fuA) =
∑
i∈A |φui |.

Proof. By construction, we have that CCAND◦AC0
d−1

(fuA) ≤
∑
i∈A |φi|. Suppose for contradic-

tion that CCAND◦AC0
d−1

(fuA) <
∑
i∈A |φui |.

Let θ1 ∧ · · · ∧ θ` be a minimum-sized (AND ◦ AC0
d−1) formula for fuA. By assumption, we

have that
∑`
j=1 |θj | <

∑
i∈A |φui |. We can thus replace the

∧
i∈A φ

u
i in the optimal formula

for fu with θ1 ∧ · · · ∧ θ` and get a smaller formula. In more detail, we have that

fu = fuA ∧ (
∧

i∈[t]\A

φui) = (θ1 ∧ · · · ∧ θ`) ∧ (
∧

i∈[t]\A

φui)

which is a formula of size∑̀
j=1
|θj |+

∑
i∈[t]\A

|φui | <
∑
i∈A
|φui |+

∑
i∈[t]\A

|φui | =
t∑
i=1
|φui | = |φu|

which contradicts the optimality of φu for fu. J

For a string x ∈ {0, 1}n, let fux be shorthand for fuAx where Ax ⊆ [n] is the set of indices
where x is one.

I Proposition 4.7. Let x ∈ {0, 1}n. Then x has weight w if and only if the integer
CCAND◦AC0

d−1
(fux) is (k, rw)-good.

Proof. By Lemma 4.6 and the fact that |φui | is (k, r)-good for all i ∈ [n], we have that

CCAND◦AC0
d−1

(fux)
pk

=
∑
i∈Ax |φ

u
i |

pk
≡ w · r mod p

where Ax ⊆ [n] are bits of x that are ones. The “only if” part of the statement is guaranteed
by the fact that 1 ≤ r ≤ p− 1 has a multiplicative inverse modulo p since p is prime. J

I Theorem 4.8. Assume n is sufficiently large. Then there is a depth-8 AC0 truth table
oracle circuit C with O(n250) wires such that C(AC0

d)-MCSP computes MAJORITY on n-bits.

Proof. It suffices to show that for every w ∈ [n], there exists a depth-7 AC0 oracle circuit Cw
with O(n249) wires such that C(AC0

d)-MCSP
w (x) = 1 ⇐⇒ wt(x) = w. Then MAJORITY(x) =∨

w≥n/2 Cw(x).
Fix some w ∈ [n]. The circuit Cw works as follows. On input x ∈ {0, 1}n, first check

if x is the all zeroes string. If so, then reject. Otherwise, compute the truth table of the
direct product function gx : {0, 1}logu×{0, 1}log v → {0, 1} given by gx(y, z) = fux (y)∧ fv(z).
Compute s = CCAC0

d
(gx) in binary using oracle access to (AC0

d)-MCSP. Finally accept if the
integer s has the property that s− CCAC0

d
(fv) is (k, rw)-good. Reject otherwise.

We now verify this yields a (non-uniform) AC0 truth table oracle circuit. We can check if
x is the all zeroes string with a single OR gate. This requires one level of depth and O(n)
wires. Next, realize the jth bit in the truth table of gx is either zero for all x or equal to

fux (j) =
∨

i∈[n]:φu
i

(j)=1

xi

ITCS 2020

34:20 Approaching MCSP from Above and Below

where xi denotes the ith bit of x. Thus, using non-uniformity, we can compute the truth table
of gx with O(nuv) = O(nq60) = O(n121) wires and depth-one. Next, we can compute s =
CCAC0

d
(gx) in binary with O(uv log(uv)) calls to (AC0

d)-MCSP using the fact that CCAC0
d
(gx) ≤

uv log(uv) by the DNF bound and the fact that

CCAC0
d
(gx) = s ⇐⇒ (AC0

d)-MCSP(gx, s) = 1 and (AC0
d)-MCSP(gx, s− 1) = 0.

This takes at most Õ((uv)2) = O(n241) wires, an additional three layers of depth, and
2uv log(uv) oracle calls that all do not depend on each other. Finally, the DNF upper bound
guarantees that CCAC0

d
(gx) ≤ uv log(uv) ≤ n61, so the length of the integer s = CCAC0

d
(gx) in

binary is at most 61 logn. Therefore we can check if s has the property that s− CCAC0
d
(fv)

is (k, rw)-good using a DNF with at most n62 wires and at most an additional two layers of
depth. Combining all this yields a AC0 circuit of depth-7 with at most O(n241) wires and no
directed path between oracle gates.

Next, we argue for correctness. Clearly, Cw rejects the all zero string, so assume x 6= 0n.
By Proposition 4.7, it suffices to show that, for s = CCAC0

d
(gx),

s− CCAC0
d
(fv) = CCAND◦AC0

d−1
(fux).

We confirm that neither fux nor fv is the constant zero function, so that we can use the
direct product theorems in Lemma 2.3.

B Claim 4.9. Neither fux nor fv is the constant zero function.

Proof. If fv were the constant zero function, then CCAC0
d
(hv) ≤ log v by DNF computation

which contradicts that

CCAC0
d
(hv)− CCAC0

d
(fv) ≥ v.25.

Next, let i ∈ [n] be a bit of x that is not zero. (Recall, we assumed that x 6= 0n.) Then
fux has accepts every input that that φui accepts. For contradiction, suppose that φui had no
ones. Then we can remove φui from the optimal formula φu = φu1 ∧ . . . φut for fu and get a
smaller formula for fu which contradicts the optimality of φu. C

Next we show that the optimal AC0
d formula for gx has an AND gate on top.

B Claim 4.10. CCOR◦AC0
d−1

(gx) > CCAND◦AC0
d−1

(gx). Consequently,

CCAC0
d
(gx) = CCAND◦AC0

d−1
(gx).

Proof. Let ∆ = CCOR◦AC0
d−1

(gx)− CCAND◦AC0
d−1

(gx). We need to show ∆ > 0.

∆ ≥ CCOR◦AC0
d−1

(fv)− CCAND◦AC0
d−1

(fv) + CCOR◦AC0
d−1

(fux) (by Lemma 2.3)

− CCAND◦AC0
d−1

(fux)

≥ (v).24 + CCOR◦AC0
d−1

(fux)− CCAND◦AC0
d−1

(fux) ≥ (by Proposition 4.2)

≥ (v).24 − u log u (by DNF bound on fux)
≥ n50·.24 − n10 log(n10) (by definition of u and v)
> 0 (for sufficiently large n) C

R. Ilango 34:21

Using the claim we have that

s− CCAC0
d
(fv)

= CCAC0
d
(gx)− CCAC0

d
(fv) (definition)

= CCAND◦AC0
d−1

(gx)− CCAC0
d
(fv) (Claim 4.10)

= CCAND◦AC0
d−1

(fux) + CCAND◦AC0
d−1

(fv)− CCAC0
d
(fv) (Lemma 2.3)

= CCAND◦AC0
d−1

(fux) + CCAND◦AC0
d−1

(fv)− CCAND◦AC0
d−1

(fv) (Prop 4.2)

= CCAND◦AC0
d−1

(fux)

as desired. J

References
1 E. Allender, L. Hellerstein, P. McCabe, T. Pitassi, and M. Saks. Minimizing DNF formulas

and AC0d circuits given a truth table. In 21st Annual IEEE Conference on Computational
Complexity (CCC’06), pages 15 pp.–251, July 2006.

2 Eric Allender, Harry Buhrman, Michal Koucký, Dieter van Melkebeek, and Detlef Ronneburger.
Power from Random Strings. SIAM J. Comput., 35(6):1467–1493, 2006.

3 Eric Allender and Bireswar Das. Zero Knowledge and Circuit Minimization. Information and
Computation, 256:2–8, 2017.

4 Eric Allender and Shuichi Hirahara. New Insights on the (Non-)Hardness of Circuit Minimiza-
tion and Related Problems. In Symposium on Mathematical Foundations of Computer Science
(MFCS), pages 54:1–54:14, 2017.

5 Eric Allender, Dhiraj Holden, and Valentine Kabanets. The Minimum Oracle Circuit Size
Problem. Computational Complexity, 26(2):469–496, 2017.

6 Eric Allender, Michal Koucký, Detlef Ronneburger, and Sambuddha Roy. The pervasive reach
of resource-bounded Kolmogorov complexity in computational complexity theory. Journal of
Computer and System Sciences, 77(1):14–40, 2011.

7 Sanjeev Arora and Boaz Barak. Computational Complexity: A Modern Approach. Cambridge
University Press, 2009.

8 Harry Buhrman and Leen Torenvliet. Randomness is Hard. SIAM Journal on Computing,
30:200–1, 2000.

9 Marco L. Carmosino, Russell Impagliazzo, Valentine Kabanets, and Antonina Kolokolova.
Learning Algorithms from Natural Proofs. In Computational Complexity Conference (CCC),
pages 10:1–10:24, 2016.

10 Mahdi Cheraghchi, Valentine Kabanets, Zhenjian Lu, and Dimitrios Myrisiotis. Circuit Lower
Bounds for MCSP from Local Pseudorandom Generators. In 46th International Colloquium
on Automata, Languages, and Programming, ICALP, pages 39:1–39:14, 2019.

11 Irit Dinur and David Steurer. Analytical Approach to Parallel Repetition. In Proceedings of
the Forty-sixth Annual ACM Symposium on Theory of Computing, STOC ’14, pages 624–633,
2014.

12 Alexander Golovnev, Rahul Ilango, Russell Impagliazzo, Valentine Kabanets, Antonina Koloko-
lova, and Avishay Tal. AC0[p] lower bounds against MCSP via the coin problem. Electronic
Colloquium on Computational Complexity, TR19-018, 2019.

13 G.H. Hardy and E. M. Wright. An Introduction to the Theory of Numbers. Clarendon Press,
Oxford, England, 5th edition, 1979.

14 Shuichi Hirahara. Non-black-box Worst-case to Average-case Reductions within NP. In
Symposium on Foundations of Computer Science (FOCS), pages 247–258, 2018.

15 Shuichi Hirahara, Igor C. Oliveira, and Rahul Santhanam. NP-hardness of minimum circuit
size problem for OR-AND-MOD circuits. In Computational Complexity Conference (CCC),
pages 5:1–5:31, 2018.

ITCS 2020

34:22 Approaching MCSP from Above and Below

16 Shuichi Hirahara and Osamu Watanabe. Limits of minimum circuit size problem as oracle. In
Computational Complexity Conference (CCC), pages 18:1–18:20, 2016.

17 John Hitchcock and Aduri Pavan. On the NP-Completeness of the Minimum Circuit Size
Problem. In Conference on Foundation of Software Technology and Theoretical Computer
Science (FSTTCS), 2015.

18 Russell Impagliazzo, Valentine Kabanets, and Ilya Volkovich. The Power of Natural Properties
As Oracles. In Proceedings of the 33rd Computational Complexity Conference, CCC ’18, pages
7:1–7:20, 2018.

19 Valentine Kabanets and Jin-Yi Cai. Circuit Minimization Problem. In Proceedings of ACM
Symposium on Theory of Computing (STOC), pages 73–79, 2000.

20 William J. Masek. Some NP-complete Set Covering Problems. Unpublished Manuscript, 1979.
21 Colin McDiarmid. On the method of bounded differences. In Surveys in Combinatorics,

(Norwich, 1989), London Math. Soc. Lecture Note Ser. 141 . Cambridge Univ. Press, Cambridge,
(1989), pp. 48–188.

22 Dylan M. McKay, Cody D. Murray, and R. Ryan Williams. Weak lower bounds on resource-
bounded compression imply strong separations of complexity classes. In Proceedings of the
51st Annual ACM SIGACT Symposium on Theory of Computing, STOC 2019, Phoenix, AZ,
USA, June 23-26, 2019., pages 1215–1225, 2019.

23 Cody D. Murray and R. Ryan Williams. On the (Non) NP-hardness of Computing Circuit
Complexity. In Computational Complexity Conference (CCC), pages 365–380, 2015.

24 Noam Nisan and Avi Wigderson. Hardness vs Randomness. J. Comput. Syst. Sci., 49(2):149–
167, 1994.

25 Igor C. Oliveira, Ján Pich, and Rahul Santhanam. Hardness magnification near state-of-the-art
lower bounds. Electronic Colloquium on Computational Complexity, TR18-158, 2018.

26 Igor C. Oliveira and Rahul Santhanam. Conspiracies Between Learning Algorithms, Circuit
Lower Bounds, and Pseudorandomness. In Computational Complexity Conference (CCC),
pages 18:1–18:49, 2017.

27 Igor C. Oliveira and Rahul Santhanam. Hardness Magnification for Natural Problems. In
Symposium on Foundations of Computer Science (FOCS), pages 65–76, 2018.

28 A. A. Razborov. Lower bounds on the size of constant-depth networks over a complete basis
with logical addition. Mathematicheskie Zametki, 41(4):598–607, 1987.

29 Ronen Shaltiel and Emanuele Viola. Hardness Amplification Proofs Require Majority. SIAM
J. Comput., 39(7):3122–3154, 2010.

30 R. Smolensky. On representations by low-degree polynomials. In FOCS, pages 130–138, 1993.
31 Boris Trakhtenbrot. A Survey of Russian Approaches to Perebor (Brute-Force Searches)

Algorithms. IEEE Ann. Hist. Comput., 6(4):384–400, October 1984.
32 Stanislav Žák. A Turing machine time hierarchy. Theoretical Computer Science, 26(3):327–333,

1983.

A MAJORITY reduces to (AC0
d)-MCSP when Lipschitzness holds

Our goal in this section is to find a small (AC0
d)-MCSP-oracle circuit that computes MAJORITY

on n-bits for sufficiently large n. We can do this using the techniques of Golovnev et al. [12].
In order to make our proof relatively self-contained, we differ slightly from the presentation
in [12]. In particular, our presentation follows a method for computing MAJORITY that is
described in Shaltiel and Viola [29].

At a high-level, this procedure works by using the input string to sample a random
variable whose circuit complexity spikes depending on the weight of the input and then
using Lipschitzness to prove that this spike occurs with high enough probability that we can
derandomize using non-uniformity.

R. Ilango 34:23

Continuing the notation from Section 4, assume that there is an m ∈ {q10, q50} such that
CCAC0

d
is (m.25)-Lipschitz on inputs of length m.

We define the random variable Tp,m ∈ {0, 1}m where each bit in Tp,m is independently
chosen to be one with probability p and zero with probability 1− p.

I Lemma A.1. E[CCAC0
d
(Tp,m)] = Õ(pm) if p ≥ m−1/3

Proof. By Hoeffding’s inequality we have that the probability that Tp,m has greater than
k ones is at most exp(−2ε2m). Via computation by DNF, if a truth table T ∈ {0, 1}m has
at most k ones, CCAC0

d
(T) = k logm = Õ(k). Similarly, we have that max{C(T) : T ∈

{0, 1}m} = Õ(m). Hence, we get that

E[CCAC0
d
(Tp,m)] = Õ(k) + Õ(exp(−2ε2m)m) = Õ(pm+ pmε+ exp(−2ε2m)m).

If we set ε =
√

lnm
2m , then we have

E[CCAC0
d
(Tp,m)] ≤ Õ(pm+ p

√
m lnm+ 1) ≤ Õ(pm+

√
m lnm)

Finally, if p ≥ 1/m1/3, we have E[Tp,m] = Õ(pm) as desired J

We will make use of the following concentration inequality.

I Theorem A.2 (McDiarmid’s “bounded differences inequality” [21]). Let f : {0, 1}n → R
be c-Lipschitz. Let X1, . . . , Xn be independent random variables with values in {0, 1}. Let
µ = EX1,...,Xn [f(X1, . . . , Xn)]. Then

Pr[|f(X1, . . . , Xn)− µ| ≥ ε] ≤ 2exp(− ε2

nc2).

For t ∈ N and w1 6= w2 ∈ [t], we say a Boolean function f : {0, 1}t → {0, 1} computes
WTDISt[w1, w2] if wt(x) = w1 implies f(x) = 1 and wt(x) = w2 implies f(x) = 0. (WTDIS
is short for weight distinguishing.)

I Theorem A.3. If n is sufficiently large, then for all 1 ≤ b ≤ √q/2, there exists a (non-
uniform) NC0 oracle circuit C with at most O(n100) wires such that C(AC0

d)-MCSP computes
WTDISq[w1, w1 + b] for some w1 ≥

√
q/2. Moreover, C has a single gate.

Proof. For w ∈ [q], let pw = w
2q . Let w0 be the largest integer less than √q such that q −w0

is a multiple of b. (Note that w0 ≥
√
q − b ≥ √q/2).

By Lemma A.1, we have that

E[CCAC0
d
(Tpw0 ,m

)] = Õ(
√
q

q
m) = Õ(m/√q).

On the other hand, since pq = 1/2, Tpq,m is just a binary string of length m picked uniformly
at random, so the formula size lower bounds of Shannon and Riordan imply

E[CCAC0
d
(Tpq,m)] = E

x∈{0,1}m
[C(x)] = Ω̃(m)

(note that an AC0
d formula of size s implies an unrestricted formula of size s). Hence, by an

averaging argument there exists a w1 ≥ w0 ≥
√
q/2 such that

ITCS 2020

34:24 Approaching MCSP from Above and Below

E[CCAC0
d
(Tpw1+b,m)]− E[CC(Tpw1 ,m

)] ≥
Ω̃(m)− Õ(m/√q)

q
= Ω̃(m/q).

Let t =
E[Tpw1+b,m]+E[Tpw1 ,m]

2 . Then we have that E[Tpw1+b,m] − t = Ω̃(m/q) and t −
E[Tpw1 ,m

] = Ω̃(m/q).
We now outline a probabilistic oracle circuit D that we will later make into a deterministic

NC0 circuit. D takes as input a string x ∈ {0, 1}n and takes as its random “inputs” strings
u1, . . . , um ∈ {0, 1}log q and v1, . . . , vm ∈ {0, 1}. The reduction then computes the string
y := y1 . . . ym where yi is zero if vi is zero and yi is the uith bit of x if vi is one (recall, q is a
power of two). D then outputs (AC0

d)-MCSP(y, t).
We now argue for correctness with high probability. Realize each yi is independent with

probability wt(x)
2n of being 1. Hence, y is just the random variable Tpw,m where w = wt(x).

Hence, if wt(x) = w1, then

Pr[R(x) 6= 1] = Pr[C(Tpw1 ,m
) > t]

Recall that t − E[Tpw1 ,m
] = Ω̃(m/q) and, by assumption, CCAC0

d
on inputs of length m is

(m.25)-Lipschitz, so by Theorem A.2, we have that this probability is bounded by

2exp(−2 Ω̃(m2)
Õ(q2m1.5)

) ≤ exp(−2Ω̃(q.5·10)
Õ(q2)

) = O(exp(−q3))

using the fact that m ≥ q10. A similar analysis shows that the probability D errs if
wt(x) = w1 + b is at most O(exp(−q3)). This completes the analysis of D.

We now argue that this reduction can be derandomized using non-uniformity. For each
input of weight either w1 or w1 + b, we have shown the fraction of random strings which err
on that input is O(exp(−q3)). Hence, the fraction of random seeds which err on at least one
input of weight w1 or w1 + b is at most

2qO(exp(−q3)) < 1

for large enough n. Thus, there exists some fixed u1, . . . , um and v1, . . . , vm which work on all
inputs of length q. Once we are (non-uniformly) given these u1, . . . , um and v1, . . . , vm which
work on all inputs, we can turn D into an NC0 oracle circuit C which has just a single gate
(an oracle gate) whose inputs are the fixed number t and the string y where each bit of y is
either a fixed bit of x or zero. This yields a NC0 oracle circuit with O(m) = O(q50) = O(n100)
wires. J

I Corollary A.4. If n is sufficiently large, then for all distinct w1, w2 ∈ [n] there is an NC0

oracle circuit C with at most two gates and O(n100) wires such that C(AC0
d)-MCSP computes

WTDISn[w1, w2].

Proof. Fix some w1 6= w2. Without loss of generality assume w1 < w2 (if this is not the case,
then swap the names of w1 and w2 in this proof and add a NOT gate to the top of C). Let
b = w2 − w1. Recall q is the least power of two such that n ≤ √q/2. Note that q = Θ(n2)
and b ≤ n ≤ √q/2. Theorem A.3 guarantees there exists an NC0 oracle circuit D of size
O(n20) such that DMCSP computes WTDISq[w3, w3 + b] for some w3 ≥

√
q/2 ≥ n. Finally, let

C be the oracle circuit that on input x outputs D(y) where y = 1w3−w10q−n−w3+w1x. The
correctness of this output is guaranteed by the fact that wt(y) = w3 if and only if wt(x) = w1
and wt(y) = w3 + b if and only if wt(x) = w2. J

R. Ilango 34:25

I Corollary A.5. If n is sufficiently large, then there exists a depth-4 AC0 truth table oracle
circuit C with O(n102) wires such that C(AC0

d)-MCSP computes MAJORITY on strings on
length n.

Proof. It suffices to show that, for all w ∈ [n], one can check if a string x ∈ {0, 1}n has
weight w using a depth-3 AC0 truth-table oracle circuit Cw of size O(n101). If one is able to
do this, then MAJORITY is computed by

∨
w≥n/2 Cw(x).

For w ∈ [n], let wtw : {0, 1}n → {0, 1} be the Boolean function that outputs one if and
only if its input is a string of weight w. Now fix some w ∈ [n]. We claim that

wtw(x) =
∧

w′∈[n]:w 6=w′
WTDISn[w,w′]

If x has weight w, then WTDISn[w,w′](x) = 1 for all w′ 6= w, so

wtw′(x) = 1 =
∧

w′∈[n]:w 6=w′
WTDISn[w,w′].

On the other hand, if x has weight w′ 6= w,then WTDISn[w,w′](x) = 0, so

wtw(x) = 0 =
∧

w′∈[n]:w 6=w′
WTDISn[w,w′].

Finally, by Corollary A.4 we have that
∧
w∈[n]:w 6=w′ WTDISn[w′, w] is computable by a

depth-3 AC0 truth table oracle circuit with O(n101) wires. J

B NP ≤P
tt MOCSP implies EXP 6= ZPP

The proof of this result follows essentially exactly from Murray and Williams’s [23] proof for
MCSP. For completeness, we replicate the proof here (even using their words and structure).

I Proposition B.1. If NP ≤P
tt MOCSP, then EXP ⊆ P/poly implies EXP = NEXP.

Proof. Assume NP ≤P
tt MOCSP and EXP ⊆ P/poly. Let L ∈ NTIME(2nc) for some c ≥ 1. It

suffices to show that L ∈ EXP.
We pad L into the L′ = {x012|x|

c

: x ∈ L}. Note that L′ ∈ NP. Hence there is a
polynomial-time truth table reduction from L′ to MOCSP. Composing the reduction from L

to L′ with the reduction from L′ to MOCSP, we get a 2c′nc-time truth table reduction R
from n-bit instances of L to 2c′nc -bit instances of MOCSP for some constant c′.

Let Q(x) denote the concatenated string of all MOCSP queries produced by R in order
on input x. Define the language

BITSQ := {(x, i) : the ith bit of Q(x) is 1}

BITSQ is clearly in EXP. Since EXP ⊆ P/poly, for some d ≥ 1 there is a circuit family Cn
of size at most nd + d computing BITSQ on n-bit inputs.

Thus, on a given instance x, we have CC(Q(x)) ≤ s(|x|) where s(|x|) := (|x|+2c′|x|c)d+d.
Therefore, every MOCSP query (T, s′,O) produced by the reduction R on input x satisfies

CCO(T) ≤ CC(T) ≤ e · CC(Q(x)) ≤ e · s(|x|)

for some constant e since T is a substring of Q(x) (see Lemma 2.2 in [23] for a proof of this
substring fact). This leads to the following exponential time algorithm for L:

ITCS 2020

34:26 Approaching MCSP from Above and Below

On input x, run the exponential-time reduction R(x) by using the following procedure
for answering each MOCSP oracle query (T, s′;O). If s′ > e · s(|x|), then respond YES
to the query. Otherwise, cycle through every oracle circuit E of size at most s′. If
EO computes T , then respond YES. If no such E is found, then respond NO.

It suffices to show the procedure for answering MOCSP oracle queries runs in exponential time.
Let n = |x|. First, we need to count the number of oracle circuits E on (log |T | ≤ c′nc)-inputs
with size at most s(n). The logarithm of the number of oracle circuit of size at most s(|x|)
on (c′nc)-inputs with t oracle functions is at most

O(s(n) log(4 + t) + s(|x|) log(c′nc) log(s(|x|) + log(c′nc))).

Since t ≤ 2c′nc and s is polynomial in n, it is easy to see that the number of such circuits E
is at most exponential. Second, one can check if an oracle circuit E satisfies EO computes T
in time polynomial in (|E|+ |T |+ |O|) and hence exponential in n. As a result, L ∈ EXP,
completing the proof. J

I Theorem B.2. If NP ≤P
tt MOCSP, then EXP 6= NP ∩ P/poly. Consequently, EXP 6= ZPP.

Proof. For contradiction, suppose NP ≤P
tt MOCSP and EXP = NP ∩ P/poly. Then by

Proposition B.1 NEXP ⊆ EXP ⊆ NP contradicting the nondeterministic time hierarchy
theorem [32]. J

	Introduction
	Known lower bounds, hardness, and non-hardness for MCSP
	Implications of lower bounds and hardness for MCSP
	Our Contributions
	Proof Overviews
	Paper Organization

	Preliminaries
	On the NP-hardness of MOCSP
	(AC0d)-MCSP is hard for MAJORITY
	Case 1: Lipschitzness Holds
	Case 2: Lipschitzness fails

	MAJORITY reduces to (AC0)-MCSP when Lipschitzness holds
	MOCSP is hard for NP implies ZPP is different from EXP

