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Abstract
Influence maximization (IM) is the problem of finding for a given s ≥ 1 a set S of |S| = s nodes in
a network with maximum influence. With stochastic diffusion models, the influence of a set S of
seed nodes is defined as the expectation of its reachability over simulations, where each simulation
specifies a deterministic reachability function. Two well-studied special cases are the Independent
Cascade (IC) and the Linear Threshold (LT) models of Kempe, Kleinberg, and Tardos [31]. The
influence function in stochastic diffusion is unbiasedly estimated by averaging reachability values
over i.i.d. simulations. We study the IM sample complexity: the number of simulations needed to
determine a (1− ε)-approximate maximizer with confidence 1− δ. Our main result is a surprising
upper bound of O(sτε−2 ln n

δ
) for a broad class of models that includes IC and LT models and their

mixtures, where n is the number of nodes and τ is the number of diffusion steps. Generally τ � n,
so this significantly improves over the generic upper bound of O(snε−2 ln n

δ
). Our sample complexity

bounds are derived from novel upper bounds on the variance of the reachability that allow for small
relative error for influential sets and additive error when influence is small. Moreover, we provide
a data-adaptive method that can detect and utilize fewer simulations on models where it suffices.
Finally, we provide an efficient greedy design that computes an (1− 1/e− ε)-approximate maximizer
from simulations and applies to any submodular stochastic diffusion model that satisfies the variance
bounds.
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1 Introduction

Models for the spread of information among networked entities were studied for decades
in sociology and economics [26, 20, 29]. A diffusion process is initiated from a seed set of
nodes (entities) and progresses in steps: Initially, only the seed nodes are activated. In each
step additional nodes may become active based on the current set of active nodes. The
progression can be deterministic or stochastic. The t-stepped influence of a seed set S of
nodes is then defined as its expected reachability (total number of active nodes) in t steps.
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Figure 1 A 2-step diffusion from two seed nodes in a live-edge model.

Influence maximization (IM) is the problem of finding a set S of nodes of specified
cardinality |S| = s and maximum influence. The IM problem was formulated nearly two
decades ago by Richardson and Domingos [17, 40] and inspired by the application of viral
marketing. In a seminal paper, Kempe, Klienberg, and Tardos [31] studied stochastic
diffusion models and introduced two elegant special cases, the Independent Cascade (IC) and
Generalized Threshold (GT) diffusion models. Their work sparked extensive followup research
and large scale implementations [35, 7, 30, 39]. Currently IM is applied in multiple domains
with linked entities for tasks as varied as diversity-maximization (the most representative
subset of the population) and sensor placement that maximize coverage [32, 4, 34].

We consider stochastic diffusion models (SDM) G(V ) over |V | = n nodes that are specified
by a distribution φ ∼ G over sets φ := {φv}v∈V of monotone non-decreasing boolean
activation functions

φv : 2V \{v} → {0, 1}.

A diffusion process starts with a seed set S ⊂ V of nodes and φ ∼ G. At step 0 we
activate the seed nodes Reach0(φ, S) := S. The diffusion then proceeds deterministically:
At step t > 0 all active nodes remain active and we activate any inactive node v where
φv(Reacht−1(φ, S)) = 1:

Reacht+1(φ, S) := {v ∈ V | φv(Reacht(φ, S)) = 1}.

The τ -steps reachability set of a seed set S is the random variable Reachτ (φ, S) for φ ∼ G
and respectively the τ -steps reachability, Rτ (S), is the random variable that is the number of
active nodes |Reachτ (φ, S)| for φ ∼ G. Finally, the influence value of S is defined to be the
expectation

Iτ (S) := E[Rτ (S)] = Eφ∼G [|Reachτ (φ, S)|].

We refer to the case where the diffusion is allowed to progress until there is no growth as
unrestricted diffusion and this corresponds to τ = n− 1. The influence Iτ (S) is a monotone
set function. We say that an SDM is submodular when the influence function is submodular
and that it is independent if the activation functions φv of different nodes are independent
random variables. The IM problem for seed set size s and τ steps is to find

arg max
S:|S|≤k

Iτ (S).

The reader might be more familiar with well-studied special cases of this general formula-
tion. Live-edge diffusion models G(V, E) are specified by a graph (V, E) with |V | = n nodes
and |E| = m directed edges and a distribution E ∼ G over subsets E ⊂ E of “live” edges.
When expressed as an SDM, the activation functions that correspond to E have φv(T ) = 1 if
and only if there is an edge from a node in T to v in the graph (V,E). Live-edge models are
always submodular: This because |Reachτ (E,S)|, which is the number of nodes reachable
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from S in (V,E) by paths of length at most τ , is a coverage function and hence monotone
and submodular. Therefore, so is the influence function Iτ (S), which is an expectation of
a distribution over coverage functions. A live-edge model is independent if we only have
dependencies between incoming edges to the same node. The Independent Cascade (IC)
model is the special case of an independent live-edge model where all edges e ∈ E are
independent Bernoulli random variables selected with probabilities pe (e ∈ E).

Another well-studied class are generalized threshold (GT) models [31, 35]. A GT model
G(V,f) is specified by a set f := {fv}v∈V of monotone functions fv : 2V → [0, 1]. The
randomization is specified by a set of threshold values θ ∼ G where θ := {θv}v∈V . The
corresponding activation functions to θ are

φv(T ) := Indicator(θv ≤ fv(T )).

An important subclass are Independent GT (IGT) where we require that f are submodular and
nodes v ∈ V have independent threshold values θv ∼ U [0, 1]. Mossel and Roch [35, 36] proved
that IGT models are submodular, which is surprising because the functions |Reachτ (φ, S)|
are generally not submodular. Their proof was provided for unrestricted diffusion but extends
to the case where we stop the process after τ steps. Finally, Linear threshold (LT) models
[26, 31] are a special case of IGT where we have an underlying directed graph and each edge
(u, v) is associated with a fixed weight value buv ≥ 0 so that for all v ∈ V

∑
u buv ≤ 1 and

the functions are defined as the sums fv(A) :=
∑
u∈A∩N(v) buv. Kempe et al showed [31]

that each LT model is equivalent to an independent live-edge model.
One of the challenges brought on by the IM formulation is computational efficiency. Kempe

et al [31] noted that the IM problem generalizes the classic Max Cover problem even with
τ = 1 and a live-edge model with a fixed set of live edges (pe = 1 for all e ∈ E). Therefore, IM
inherits Max Cover’s hardness of approximation for ratio better than 1− (1− 1/s)s ≥ 1− 1/e
[21] for a cover with s sets. On the positive, with submodular models, an approximation
ratio of 1− (1− 1/s)s can be achieved by the first s nodes of a greedy sequence generated
by sequentially adding a node with maximum marginal value [37]. A challenge of applying
Greedy with stochastic models, however, is that even point-wise evaluation of the influence
function can be computationally intensive. Exact evaluation even for IC models [6] and LT
models [8] is #P hard . As for approximation, Kempe et al proposed to work with averaging
oracles

Â
τ
(T ) := 1

`

∑̀
i=1
|Reachτ (φi, T )|

that average the reachability values obtained from a set {φi}`i=1 of i.i.d. simulations. Recall
that in the general SDM formulation, a simulation is specified by a set φ of node activation
functions. For live-edge models, a simulation is simply a set of concurrently live edges E. In
GT models, a simulation is specified by a set of thresholds θ.

Averaging oracles, which we focus on here, have several appealing properties: First, it
is robust compared to estimators tailored to models that satisfy specific assumptions (see
related work section) in that for any diffusion model G, also with complex and unknown
dependencies (between activation functions of different nodes or between edges in live-edge
models), for any set S, Â(S) is an unbiased estimate of the exact influence value Iτ (S) and
estimates are accurate as long as the variance of Rτ (S) is “sufficiently” small. Second, the
oracle is constructed directly from simulations and does not require learning or inferring the
underlying diffusion model that generated the data [41, 24, 23, 18]. Therefore, the results are
not sensitive to modeling assumptions and learning accuracy [9, 27]. Moreover, estimation of
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Figure 2 Example live-edge models.

model parameters even for IC models can require a large number of simulations: Consider
the family of IC models depicted in the example in Figure 2b where tiny edge probabilities
that require many simulations to estimate are critical for IM accuracy. Finally, when the
reachability functions Reachτ (φ, T ) are monotone and submodular (as is the case with
live-edge models), so is their average Â, and hence the oracle optimum can be approximated
by the greedy algorithm. Prior work addressed the efficiency of working with averaging
oracles by improving the efficiency of greedy maximization [32, 25] and applied sketches [10]
to efficiently estimate Â(S) values [7, 14].

The fundamental question we study here is the sample complexity of IM, that is, the
number of i.i.d. simulations needed to recover an approximate maximizer of the influ-
ence function Iτ . Formally, for parameters (ε, δ), identify a seed set T of size s so that
Pr [Iτ (T ) ≥ (1− ε)OPTτ

s ] ≥ 1− δ, where OPTτ
s := maxS||S|≤s Iτ (S) is the exact maximum.

Note that the recovery itself is generally computationally hard and the sample complexity
only considers the information we can glean from a set of simulations.

Kempe et al provided an upper bound of

O
(
ε−2sn log n

δ

)
(1)

on the sample complexity of the harder Uniform Relative-Error Estimation (UREE) problem
where for a given (ε, δ) we bound the number of simulations so that with probability 1− δ,
for all subsets S such that |S| ≤ s, Â(S) approximates Iτ (S) within relative error of ε.
The sample complexity of UREE upper bounds that of IM because the oracle maximizer
arg maxS||S|≤s Â(S) must be an approximate maximizer. We provide the argument for
the bound (1) here because it is basic and broadly applies to all SDMs: The reachability
values Reachτ (φ, S), and hence their expectation, Iτ (S) have values in [1, n]. Using the
multiplicative Chernoff bound (with values divided by n) we obtain that O(ε−2n ln δ−1)
simulations guarantee a relative error of ε with probability at least (1− δ) for the estimate
of any particular set S. Interestingly, this sample complexity bound is tight for point-wise
influence estimation even for IC models: The example family of models in Figure 2a is such
that τ = 2 and Ω(ε−2n) simulations are required for estimating the influence value of a single
node. The UREE sample complexity bound (1) follows from applying a union bound over all(
n
s

)
= O(ns) subsets.
The generic upper bound has prohibitive linear dependence on the number of nodes n

(that the example in Figure 2a shows is unavoidable for UREE even for IC models). A simple
example shows that we can not hope for an umbrella improvement for IM: Consider the star
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graph family of Figure 2b when edges are dependent so that either all edges are live or none
is. Clearly n/100 simulations are necessary to detect a 1-step approximate maximizer (which
must be the actual maximizer). The remaining hope is that we can obtain stronger bounds
on the IM sample complexity for models with weaker or no dependencies such as IC and
IGT models. This question eluded researchers for nearly two decades.

1.1 Contributions and Overview
We study the sample complexity of influence maximization from averaging oracles computed
from i.i.d. simulations. One of our main contributions is an upper bound of

O
(
ε−2sτ log n

δ

)
(2)

on the IM sample complexity of independent strongly submodular SDMs. Informally, strong
submodularity means that the influence function of any “reduced” model (model derived
from original one by setting a subset T ⊂ V of nodes as active) is submodular. The IC and
IGT models are special cases of strongly submodular independent SDMs.

Interestingly, we provide similar sample complexity bounds for natural families of models
that are not independent: Mixtures of small number of strongly submodular SDMs and what
we call b-dependence live-edge models that allow for positive dependence of small groups of
edges with a shared tail node.

Our bound improves over prior work by replacing the prohibitive linear dependence in
the number of nodes n in (1) with the typically much smaller value τ . While on worst-case
instances unrestricted diffusions may require Ω(n) steps, understanding the sample complexity
in terms of τ is important: First, IM with explicit step limits [5, 33, 22, 19, 15], is studied for
applications where activation time matters. Moreover, due to the “small world” phenomenon
[44], in “natural” settings we can expect most activations (even with unrestricted diffusions)
to occur within a small number of steps. In the latter case, unrestricted influence values are
approximated well by corresponding step-limited influence with τ � n.

Our improvement is surprising as generally a linear-in-n number of simulations is necessary
for estimating influence values of some nodes or to estimate essential model parameters (for
example, the edge probabilities in IC models), and this is the case even when τ is very small.
This shows that the maximization problem is in an information sense inherently easier and
can circumvent these barriers.

We overview our results and implications – complete proofs can be found in the appendix.
We review related work in Section 2 and place it in the context of our results. In Section 3
we formulate quality measures for influence oracles and relate unrestricted and step-limited
influence. In particular, we observe that for IM it suffices that the oracle provides good
estimates (within a small relative error) of larger influence values. This allows us to circumvent
the lower bound for point-wise relative-error estimates shown in Example 2a.

In Section 4 we state our main technical result that for independent strongly sub-
modular SDMs, upper bounds the variance of the reachability of set T Var[Rτ (T )] by
τIτ (T ) maxv∈V \T Iτ−1(v). This variance upper bound facilitates estimates with small relat-
ive error for sets with larger influence values and additive error for sets with small influence
values. We also provide a family of IC models that shows that the linear dependence on τ in
the variance bound is necessary. We derive similar variance bounds to mixtures of strongly
submodular independent SDMs and b-dependence models. All our subsequent sample com-
plexity bounds apply generically to any SDM (submodular/independent or not) that satisfies
variance bounds of this form. In Section 5 we review averaging oracles and bound the sample
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Figure 3 Dependent SDM Example. A live-edge model where with probability 1
2 all red edges

are active and otherwise all blue edges are active. The influence values I4(v) are shown in black.
Simulation averages and RR samples with full simulations provide unbiased estimates of influence
values E[Î4(v)] = I4(v). However, “efficient” RRS, which works with the marginal edge probabilities
(pe = 1

2 ) or with decomposed simulations is biased, with E[Î4(v)] shown in green. We can see that
the bias induces large errors and also yields an erroneous maximizer.

complexity using variance upper bounds. In section 6 we present our median-of-averages
oracle that amplifies the confidence guarantees of the averaging oracle and facilitates a tighter
sample complexity bound. In Section 7 we provide a data-adaptive framework that provides
guarantees while avoiding the worst-case sample complexity upper bounds on models when a
smaller number of simulations suffices. In Section 8 we consider computational efficiency
and present a greedy maximization algorithm based on our median-of-averages oracles that
returns a (1 − (1 − 1/s)s − ε approximate maximizer with probability 1 − δ. The design
generically applies to any SDM with a submodular influence function that satisfies the
variance bounds.

2 Related work

We focus here on influence estimates obtained from averages of i.i.d. simulations of a SDM.
We note that alternative approaches can be more effective for specific families of models.
Most notably for IC models, state of the art large-scale greedy approximate maximization
algorithms [43, 42, 38, 28] are not based on simulation averages. The estimates are also
obtained by building a sample that reflects the influence of each but instead they use a finer
building block of i.i.d. Reverse Reachability (RR) searches. The random RR search method
was proposed in [10] to estimate size of reachability sets in graphs and Borg et al [3] adapted
it to IC models.

The method is applicable in principle with any live-edge model: A basic RR search is
conducted by selecting a node v ∈ V uniformly at random and performing a BFS search on
reversed edges that is pruned at length τ . The search “flips” edges as their head node is
reached according to conditional distribution on G. The index number of the RR search is
then added to the sample set of each node that is “reached” by the search. Influence of a
subset S can then be unbiasedly estimated from the cardinality of the union of the samples of
nodes v ∈ S and the greedy algorithm can be applied to the sets of samples for approximate
maximization. To obtain an approximate influence maximizer we need to perform RR
searches until some node has a sample of size O

(
ε−2s log(n/δ)

)
. In the worst case, this

requires O
(
ε−2sn log(n/δ)

)
RR searches. For general live-edge models, an independent RR

search can always be obtained from a simulation E ∼ G by randomly drawing a node and
performing a reverse search from it using edges E. The same simulation, however, can not
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generally be reused to generate multiple independent RR searches. This way of obtaining
RR searches works for general live-edge models (with arbitrary dependencies) but requires
O(ε−2ns log(n/δ)) simulations, which does not improve over the generic upper bound (1).

The appeal of the RR searches method is that it can be implemented very efficiently
for independent live-edge (including IC or LT) models. The total work performed requires
only O(ε−2ms(log(n/δ))) “edge flips” that can be easily performed using specified edge
probabilities pe for IC models. Moreover, the basic building block of RR searches are local
simulations of sets of incoming edges of specified nodes and the full computation requires
at most O(ε−2s log(n/δ)) local simulations for each node. When we have full simulations
generated by an independent live-edge model these “local” simulations are independent and
the required number of “local simulations” can be obtained by decomposing O(ε−2s log(n/δ))
full simulations. But the caveat is that this approach breaks the coherence of simulations,
as we construct each RR search from components taken from multiple simulations. These
“efficient” implementations (i.e. based on decomposed simulations or edge flips according to
marginal probabilities) may “catastrophically fail” when dependencies exist: The influence
estimates obtained are biased and cause large errors even when the variance is low. Figure 3
shows an example of a simple mixture model (of two degenerate IC models) where “efficient”
RRS has large error due to bias but averages of few simulations provide accurate estimates.
To summarize, with RRS, the implementation that works with full simulations is robust to
dependencies but is inefficient and the efficient implementation breaks ungracefully even
with light dependencies. To conclude, both basic approaches to approximate IM, simulation
averages and RRS offer distinct advantages: Simulation averages are robust in that they
remain unbiased and are accurate on any SDM, including dependent ones, for which the
variance is sufficiently small whereas RRS offers more efficiency for purely independent
live-edge models.

3 Preliminaries

We consider stochastic diffusion models G(V ) as outlined in the introduction. We denote
by Reachτ (φ, T ) the τ -steps reachability set of T when we use a specific set φ of activation
functions. We will use the notation Reachτ (T ) (with the parameter φ omitted) for the
random variable Reachτ (φ, T ) obtained when we draw φ ∼ G according to the model.

3.1 Utility Functions

For simplicity, the discussion in the introduction took the utility of a reachable set to be
the number of reachable nodes VReachτ (φ, T ) := |Reachτ (φ, T )|. Generally, we can consider
utility functions H : 2V → <+ that are nonnegative monotone non-decreasing with H(∅) = 0:

VReachτ (φ, T ) := H(Reachτ (φ, T )). (3)

Submodular utility is particularly natural and studied by Mossel and Roch [35]. Additive
utility is the special case where nodes have nonnegative weights w : V → R+ and

VReachτ (φ, T ) :=
∑

v∈Reachτ (φ,T )

w(v). (4)

ITCS 2020
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We consider a diffusion model G(V,H) together with a utility function H. The random
variable RτG(T ) is the utility of the reachable set, that is, VReachτ (φ, T ) when φ ∼ G. The
influence function is then the expected utility of the reachable set

Iτ (T ) := E[Rτ (T )] = Eφ∼GVReachτ (φ, T ) .

We denote the maximum influence value of a subset of cardinality s by OPTτ
s :=

maxS:|S|≤s Iτ (S).
It follows from the definition that for any SDM G(V,H) with utility H, the influence

Iτ (T ) is monotone non-decreasing in τ and in the set T and the optimum values OPTτ
s

are non-decreasing in τ and s. Generally, influence functions Iτ (T ) of SDMs may not be
submodular even when utility is additive. The influence function is known to be submodular
for live-edge and for IGT models [35] with submodular utility.

3.2 Reduced Models
We work with the following notion of model reduction. Let G(V,H) be an independent SDM
with submodular utility. For a set of nodes T ⊂ V , we define the reduced model G′(V ′, H ′)
of G with respect to T : The reduced model contains the nodes V ′ = V \ T . The activation
function φ′v ∼ G′ for v ∈ V \ T are obtained by drawing φv ∼ G conditioned on φv(T ) = 0
and take

for all S ⊂ V \ (T ∪ {v}), φ′v(S) := φv(S ∪ T )

(Note that since we have independent SDM we can separately consider the distribution of
activation functions of each node). The utility in G′ is the marginal utility in G with respect
to T :

for all S ⊂ V \ T , H ′(S) := H(S ∪ T )−H(T ).

The reduced model G′(V ′, H ′) is also an independent SDM with submodular utility: Activ-
ation functions φ′ ∼ G′ are independent and monotone and the utility is monotone with
H ′(∅) = 0 and submodular.

3.3 Strongly Submodular SDM
We say that an independent SDM G(V,H) is strongly submodular if the utility function H is
submodular and the influence function IτG′ is submodular with any reduced model G′ and
step limit τ ≥ 0. IC and IGT models are strongly submodular SDMs (see Theorem 19).

The variance and thus sample complexity upper bounds that we present in the sequel
apply to any strongly submodular SDM. We will also provide bounds for some dependent
families of models. One family is a slight generalization of IC models that we refer to as
b-dependence. Here edges are partitioned into disjoint groups, where each group contains at
most b edges emanating from the same node. The edges in a group must be either all live or
none live (are positively dependent).

3.4 Relating Step-Limited and Unrestricted Influence
When unrestricted diffusion from a seed set S is such that most activations occur within τ
steps, the unrestricted influence I(S) is approximated well by τ -step influence Iτ (S). We
can also relate unrestricted influence with small expected steps-to-activation to step-limited
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influence: For a seed set S, node v, and length d, we denote by p(S, v, d) the probability
that node v is activated in a diffusion from S in step d. For additive utility functions (4)
by definition, Iτ (S) =

∑
v∈V w(v)

∑
d≤τ p(S, v, d). The expected length of an activation path

from S (in unrestricted diffusion) is:

D(S) :=
∑
v∈V w(v)

∑
d≤n d · p(S, v, d)

I(S) . (5)

The following lemma is an immediate consequence of Markov’s inequality and shows that
τ -stepped influence with τ = O(D(S)) approximates well the unrestricted influence:

I Lemma 1. For all S and ε > 0, ID(S)ε−1(S) ≥ (1− ε)I(S).

3.5 Influence Oracles
We say that a set function F̂ is an ε-approximation of another set function F at a point
T if

∣∣∣F̂ (T )− F (T )
∣∣∣ ≤ εmax{F (T ),OPT1(F )}, where OPTs(F ) := maxS||S|≤s F (S). That

is, the estimate F̂ has a small relative error for sets T with F (T ) ≥ OPT1(F ) and a small
absolute error of εOPT1(F ) for sets T with F (T ) ≤ OPT1(F ). We say that F̂ provides a
uniform ε-approximation for all subsets T in a collection C if F̂ is an ε-approximation for all
T ∈ C.

An influence oracle, Î
τ , is a randomized data structure that is constructed from a set of

i.i.d. simulations of a model. The influence oracle, Î
τ , defines a set function (we use the same

name Î
τ for the set function) that for any input query set T ⊂ V , returns a value Î

τ (T ). For
ε < 1 and δ < 1 we say that an oracle provides (ε, δ) approximation guarantees with respect
to Iτ if for any set T it is an ε-approximation with probability at least 1− δ. That is

∀T such thatIτ (T ) ≥ OPTτ
1 ,Pr

[∣∣Îτ (T )− Iτ (T )
∣∣

Iτ (T ) ≥ ε

]
≤ δ . (6)

∀T such that Iτ (T ) ≤ OPTτ
1 ,Pr

[∣∣∣Îτ (T )− Iτ (T )
∣∣∣ ≥ εOPTτ

1

]
≤ δ . (7)

where OPTτ
1 := OPT1(Iτ ). Example 2a shows that this type of requirement is what we

can hope for with an oracle that is constructed from a small number of simulations.
The (ε, δ) requirements are for each particular set T . If we are interested in stronger

guarantees that with probability (1 − δ) the approximation uniformly holds for all sets
in a collection C, we can use an oracle that provides (ε, δA = δ/|C|) guarantees. The ε-
approximation guarantee for all sets in C then follow using a union bound argument: The
probability that all |C| sets are approximated correctly is at most |C|δA ≤ δ.

4 Variance Bounds

We consider upper bounds on the variance Var [Rτ (T )] of the reachability of a set of nodes T
that have the following particular form

Var[Rτ (T )] ≤ cIτ (T ) max{Iτ (T ),max
v∈V

Iτ (v)} (8)

for some c ≥ 1. The sample complexity bounds we present in the sequel apply to any SDM
that satisfies these bounds. In the remaining part of this section we state our variance upper
bound for strongly submodular SDMs and extensions and a tight worst-case lower bound for
IC models.

ITCS 2020
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4.1 Variance Upper Bound
The following key theorem facilitates our main results. We show that any strongly submodular
SDM satisfy the bound (8) with c = τ . The proof is technical and provided in Appendix A.

I Theorem 2 (Variance Upper Bound Lemma). Let G(V,H) be a strongly submodular SDM.
Then for any step limit τ ≥ 0 and a set T ⊂ V of nodes we have

Var[Rτ (T )] ≤ τIτ (T ) max
v∈V \T

Iτ−1(v).

Some natural dependent SDMs have a variance bound of the form (8): (See Appendix F
for proofs.)

I Corollary 3. IC models with τ -steps and b-dependence satisfy the bound (8) with c = 2bτ .
Any mixture of τ -steps strongly submodular SDMs where each model has probability at least p
satisfy the bound (8) with c = (τ + 1)/p.

4.2 Variance Lower Bound
We provide a family of IC models for which this variance upper bound is asymptotically
tight. This shows that the dependence of the variance bound on τ is necessary.

I Theorem 4 (Variance Lower Bound). For any τ > 0 there is an IC model Gτ = (V, E) with
a node v ∈ V of maximum influence such that Var[Rτ (v)] ≥ 1

12τIτ (v)2.

Our family of models Gτ = (V, E) are such that (V, E) is a complete directed binary tree
of depth τ ≥ 1 rooted at v ∈ V with all edges directed away from the root and pe = 1/2 for
all e ∈ E . We show (details in Appendix B) that:

Iτ (v) = τ

Var[Rτ (v)] = 1
12τ(τ − 1)(2τ − 1).

5 The Averaging Oracle

The averaging oracle uses i.i.d. simulations {φi}`i=1. For a query T it returns the average utility
of the reachability set of T : Â

τ
(T ) = Avei∈[`] VReachτ (φi, T ) := 1

`

∑`
i=1 VReachτ (φi, T ) . We

quantify the approximation guarantees of an averaging oracle in terms of a variance bound
of the form (8).

I Lemma 5. Consider an SDM that for some c ≥ 1 satisfies a variance bound of the form (8).
Then for any ε, δ < 1, an averaging oracle constructed from ` ≥ ε−2δ−1c i.i.d. simulations
provides (ε, δ) guarantees.

In particular for strongly submodular SDMs, we use the variance bound in Theorem 2
and obtain these approximation guarantees using ` ≥ ε−2δ−1τ i.i.d. simulations.

Proof. Using variance properties of the average of i.i.d. random variables, we get that for
any query T

Var[Â
τ
(T )] = 1

`
Var[Rτ (T )] ≤ 1

`
cIτ (T ) max{Iτ (T ),OPTτ

1} .

The claims follow using Chebyshev’s inequality that states that for any random variable
X and M , Pr[|X − E[X]| ≥ εM ] ≤ ε−2 Var[X]/M2. We apply it to the random variable
Â
τ
(T ) that has expectation Iτ (T ) and plug in the variance bound. To establish (6) we use

M = Iτ (T ) and to establish (7) we use M = OPTτ
1 . J
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5.1 Sketched Averaging Oracle
For live-edge models with additive utility (4), the query efficiency of the averaging oracle can
be improved with off-the-shelf use of τ -step combined reachability sketches [10, 14, 15, 11].
The sketching is according to a sketch-size parameter k that also determines the sketches
computation time and accuracy of the estimates that sketches provide. A sketch of size O(k)
is computed for each node v so that for any set of nodes S,

∑r
i=1 VReachτ (Ei, S) can be

efficiently estimated from the sketches of the nodes v ∈ S. The computation of the sketches
from an arbitrary set of simulations {Ei} uses at most

∑
i |Ei| + k

∑
v maxi dv(Ei) edge

traversals, where dv(Ei) is the maximum in-degree of node v over simulations {Ei}. In the
case of an IC model, the expected number of traversals is (k + `)

∑
e pe. Sketching with

general node weights can be handled as in [11]. The estimates obtained from the sketches
are unbiased with coefficient of variation 1/

√
k − 2 and are concentrated: Sketches of size

k = O(ε−2 log(δ−1)) provide estimates with relative error ε with probability 1− δ.

6 Confidence Amplification: The Median-of-Averages Oracle

The statistical guarantees we provide for our averaging oracle are derived from variance
bounds. The limitation is that the number of simulations we need to provide (ε, δ) guarantees
is linear in δ−1 and therefore the number of simulations we need to provide uniform guarantees
(via a union bound argument) grows linearly with the number of subsets. In order to
find an approximate optimizer, we would like to have a uniform ε-approximation for all
the

(
n
s

)
subsets of size at most s but doing so with an averaging oracle would require too

many simulations. We adapt to our setting a classic confidence amplification technique [1] to
construct an oracle where the number of simulations grows logarithmically in the confidence
parameter δ−1.

A median-of-averages oracle is specified by a number r of pools with ` simulations in
each pool. The oracle is therefore constructed from r` i.i.d. simulations φij for i ∈ [r] and
j ∈ [`].

The simulations of each pool are used in an averaging oracle that for the ith pool (i ∈ [r])
returns the estimates Â

τ

i (T ). The median-of-averages oracle returns the median value of
these r estimates

m̂A
τ
(T ) := Median

i∈[r]
Â
τ

i (T ) = Median
i∈[r]

Ave
j∈[`]

VReachτ (φij , T ) . (9)

We establish that when the i.i.d simulations are from a model that has variance bound
(8) for some c ≥ 1, the median-of-averages oracle provides (ε, δ) approximation guarantees
using 112ε−2c ln δ−1 i.i.d. simulations.

I Lemma 6. Consider an SDM that for some c ≥ 1 satisfies the variance bound (8). Then
for every ε and δ, a median-average oracle m̂A organized with r = 28 ln δ−1 pools of ` = 4ε−2c

simulations in each provides (ε, δ) approximation guarantees.

Proof. An averaging oracle with ` simulations provides (ε, δA) approximation guarantees for
δA = 1/4. Therefore, the probability of correct estimate for any subset is at least 3/4. We
now consider the estimates Âj obtained from the r pools when sorted in increasing order.
The estimates that are not correct (too low or too high) will be at the prefix and suffix of the
sorted order. The expected number of correct estimates is at least µ ≥ 3

4r. The probability
that the median estimate is not correct is bounded by the probability that number of correct
estimates is ≤ r/2, which is ≤ 2

3µ. From multiplicative Chernoff bounds, the probability of
a sum of Bernoulli random variables beings below (1− ε′)µ is at most e−ε′2µ/(2+ε′). Using
ε′ = 1/3 we have ε′2µ/(2 + ε′) = 1

9
3
4

3
728 ln δ−1 = ln δ−1. J
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As a corollary, we obtain a sample complexity bound for influence maximization from
variance bounds:

I Theorem 7. Consider an SDM that satisfies the variance bound (8) for some c ≥ 1.
Then for any ε < 1 and δ < 1, using 112ε−2cs ln n

δ i.i.d. simulations, we can construct a
median-of-averages oracle m̂A such that the oracle optimum

T := arg max
S||S|≤s

m̂A(S)

satisfies

Pr [Iτ (T ) ≥ (1− 2ε)OPTτ
s ] ≥ 1− δ .

Proof. We construct our median-of-averages oracle with ` = 4ε−2c and r = 28 ln δ−1
MA where

δMA = δ/
(
n
s

)
. From Lemma 6 using a union bound over the

(
n
s

)
sets we obtain that with

probability 1− δ the oracle provides a uniform ε-approximation for all subsets of size at most
s. Let S be a set with maximum influence I(S) = OPTτ

s and let T be the oracle optimum.
We have

I(T ) ≥ (1− ε)m̂A(T ) ≥ (1− ε)m̂A(S) ≥ (1− ε)2I(S) ≥ (1− 2ε)OPTτ
s .

We comment that the (1 − 2ε) ratio is not tight and we can obtain a bound closer to
(1 − ε). This because the particular set S to be approximated more tightly by the oracle
(that uses enough simulations to support a union bound). J

7 Optimization with Adaptive Sample Size

The bound on the number of simulations we derived in Theorem 7 (through a median-of-
averages oracle) and also the naive bound (1) (for the averaging oracle) are worst-case. This
is obtained by using enough simulations to have the oracle provide a uniform ε-approximation
with probability at least 1−δ on any problem instance. To obtain the uniform approximation
we applied a union bound over

(
n
s

)
subsets that resulted in an increase in the number of

required simulations by an s logn factor over the base (ε, δ) approximation guarantees.
On real data sets a much smaller number of simulations than this worst-case often suffices.

We are interested in algorithms that adapt to such data and return a seed set of approximate
maximum influence using a respectively smaller number of simulations and while providing
statistical guarantees on the quality of the end result. To do so, we apply an adaptive
optimization framework [12] (some example applications are [14, 38, 16, 13]). This framework
consists of a “wrapper” that take as inputs oracle constructions from simulations and a base
algorithm that performs an optimization over an oracle. The wrapper invokes the algorithm
on oracles constructed using an increasing number of simulations until a validation condition
on the quality of the result is met. The details are provided in Appendix E. We denote by
r(ε, δ) the number of simulations that provides (ε, δ) guarantees and we obtain the following
results:

I Theorem 8. Suppose that on our data the averaging (respectively, median-of-averages)
oracle Î has the property that with r simulations, with probability at least 1− δ, the oracle
optimum T := arg maxS||S|≤s Î(S) satisfies

Iτ (T ) ≥ (1− ε)OPTτ
s .
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Then with probability at least 1− 5δ, when using

2 max{r, r(ε, δ)}+O

(
ε−2c

(
ln 1
δ

+ ln
(

ln ln n
δ

+ ln s
)))

simulations with the median-of-averages oracle and

2 max{r, r(ε, δ)}+O

(
ε−2c

(
ln 1
δ

+ ln
(

ln ln n
δ

+ lnn
)))

simulations with the averaging oracle, the wrapper outputs a set T such that Iτ (T ) ≥
(1− 5ε)OPTτ

s .

The wrapper can also be used with a base algorithm that is an approximation algorithm.
For live-edge models, our averaging oracle is monotone and submodular and hence we can
apply greedy to efficiently compute a set with approximation ratio at least 1 − 1/e (with
respect to the oracle). If we use greedy as our base algorithm we obtain the following:

I Theorem 9. If the averaging oracle Â is submodular and has the property that with ≥ r
simulations, with probability at least 1 − δ, it provides a uniform ε-approximation for all
subsets of size at most s, then with

2 max{r, r(ε, δ)}+O

(
ε−2c

(
ln 1
δ

+ ln
(

ln ln n
δ

+ lnn
)))

simulations we can find in polynomial time a (1− (1− 1/s)s)(1− 5ε) approximate solution
with confidence 1− 5δ.

8 Approximate Greedy Maximization

In this section we consider the computational efficiency of maximization over our oracle Î
that approximates a monotone submodular influence function Iτ . The maximization problem
is computationally hard: The brute force method evaluates Î(S) on all

(
n
s

)
subsets S of size

s in order to find the oracle maximizer. An efficient algorithm for approximate maximization
of a monotone submodular function F̂ is greedy that sequentially builds a seed set S by
adding a node u with maximum marginal contribution arg maxu∈V (F̂ (S ∪ {u})− F̂ (S)) at
each step. To implement greedy we only need to evaluate at each step the function on a
linear number of subsets F̂ (S ∪ {u}) for u ∈ V and thus overall we do sn evaluations of F̂
on subsets. With a monotone and submodular F̂ , for any s ≥ 1 the subset T that consists of
the first s nodes in a greedy sequence satisfies [37]:

F̂ (T ) ≥ (1− (1− 1/s)s) max
S||S|≤s

F̂ (S) ≥ (1− 1/e)OPTs(F̂ ) .

If our functions F̂ provides a uniform ε-approximation of another function F for all subsets
of size at most s, then F (T ) ≥ (1− (1− 1/s)s)(1− 2ε)OPTs(F ) (See the proof of 7).

The averaging oracle is monotone and submodular [31] when reachability functions are
as in live-edge models. Unfortunately our median-of-averages oracle which facilitates tighter
bounds on the number of simulations is monotone but may not be submodular even for
models where the averaging oracle is submodular. Generally when this is the case, greedy
may fail (as highlighted in recent work by Balkanski et al [2]).

Fortunately, greedy is effective on a function F̂ that is monotone but not necessarily
submodular as long as F̂ “closely approximates” a monotone submodular F in that marginal
contributions of the form

F (u | S) := F (S ∪ {u})− F (S)

are approximated well by F̂ (u | S) [14]. We apply this to establish the following lemma:
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I Lemma 10. The greedy algorithm applied to a function F̂ that is monotone and provides a
uniform εA-approximation of a monotone submodular function F where εA = ε(1−ε)

14s returns
a set T such that F (T ) ≥ (1− (1− 1/s)s)(1− ε)OPTs(F ).

Our proof of Lemma 10 generally applies to an approximate oracle F̂ of any monotone
submodular function F and is presented in Appendix C. For approximate IM we obtain the
following as a corollary:

I Theorem 11. Consider a submodular SDM G(V,H) that for some c ≥ 1 satisfies the
variance bound (8). Consider a median-of-averages oracle constructed with O(ε−2s3c ln n

δ )
simulations of G arranged as r = O(s ln n

δ ) pools with ` = O(ε−2s2c) simulations each. Then
with probability 1 − δ, the set T that contains the first s nodes returned by greedy on the
oracle satisfies Iτ (T ) ≥ (1− (1− 1/s)s)(1− ε)OPTτ

s .

Proof. From Lemma 6, with appropriate constants, this configuration provides us with
(ε/(14s), δ) approximation guarantees. From Lemma 10 greedy provides the stated approx-
imation ratio. J

Greedy on the median-of-averages oracle can be implemented generically for any SDM G
by explicitly maintaining the reachability sets Reach(φij , {v}∪S) for all nodes v ∈ V in each
simulation φij as the greedy selects nodes into the seed set S. For each step, we compute
the oracle value (see (9)) and select v for which the value for {v} ∪ S is maximized:

arg max
v∈V \S

m̂A
τ
({v} ∪ S).

We obtain approximation guarantees, however, only when the conditions of monotone
submodular influence function and variance bounds are satisfied. For specific families of
models, we can consider tailored efficient implementations that incrementally maintain
reachability sets and values.

For live-edge models with additive utility (4) we consider an implementation of greedy
on a median-of-averages oracle. This can be done by explicit maintenance of reachability
sets or by using sketches [10, 14, 15, 11] (see Section 5.1). We obtain the following bounds
(proof is deferred to Appendix Section D).

I Theorem 12. Let G be a live-edge model with an additive utility function (4) that satifies
the variance bound (8). Then greedy on median-of-averages oracle can be implemented with
explicit reachability sets in time

O(ε−2s3c ln
(n
δ

)
mn) , (10)

where m is the average number of edges per simulation (For an IC model, c = τ and
E[m] =

∑
e∈E pe). When using sketches, the time bound is

O(ε−2s3 ln n
δ

(cm+ s(m∗ + ns) lnn)), (11)

where m∗ =
∑
v maxij dv(Eij). For an IC model, c = τ and m∗ =

∑
e pe in expectation.

Conclusion

We explore the “sample complexity” of IM on stochastic diffusion models and show that an
approximate maximizer (within a small relative error) can be recovered from a small number
of simulations as long as the variance is appropriately bounded. We establish the variance
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bound for the large class of strongly submodular stochastic diffusion models. This includes
IC models (where edges are drawn independently) and IGT models (where node thresholds
are drawn independently) and natural extensions that allow for some dependencies. Our
sample complexity bound significantly improves over the previous bounds by replacing the
linear dependence in the number of nodes by a logarithmic dependence on the number of
nodes and linear dependence on the length of the activation paths (which are usually very
short). An interesting question for future work is to address the gap between the sample
complexity and the larger number of simulations currently needed for greedy maximization.
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A Variance Upper Bound: Proof of Theorem 2

In this section we prove Theorem 2 which upper bounds the variance in strongly sub-
modular SDMs. We start by bounding the variance in a more basic setting of a submodular
function over a random subset in Section A.1 (Theorem 14). This will be an ingredient in
our main proof provided in Section A.3.

We will be using the following basic tools:

I Lemma 13. If X,Y are two random variables on the same probability space and the
variance of Y is finite, then:

E[Y ] = E[E[Y |X]] (total expectation)

Var[Y ] = E[Var[Y |X]] + Var[E[Y |X]] (total variance)

where E[Y |X] is a random variable that gets the expectation of Y conditioned the value
of X and Var[Y |X] is a random variable that gets the variance of Y conditioned the value
of X.

When X is a Bernoulli random variable X ∼ Ber(p) then Lemma 13 gives that

Var[Y ] = E[Var[Y |X]] + Var[E[Y |X]] = pV1 + (1− p)V0 + p(1− p)(E1 −E0)2.

where V0 = Var[Y |X = 0], V1 = Var[Y |X = 1], E0 = E[Y |X = 0], and E1 = E[Y |X = 1].

A.1 Submodular Monotone Functions on Random Subsets
Let S = {ai}1<i≤t be a set with t elements and let P = {pi}1<i≤t be a set of t probabilities
such that pi is associated with the element ai. Let X be a random subset of S that contains
ai with probability pi independently for each i = 1, ..., t. That is

∀A ∈ 2S : Pr[X = A] =
∏
ai∈A

pi
∏
ai /∈A

(1− pi).

We say that X is a random subset of S using probabilities P .
A submodular monotone function f over S is a function with the following properties:

1. f : 2S → R+

2. For every A,B ⊂ S with A ⊂ B and for every x ∈ S \B we have that f(A∪ x)− f(A) ≥
f(B ∪ x)− f(B)

3. A ⊂ B ⇒ f(A) ≤ f(B)

For any singelton {a} ∈ S we write f(a) instead of f({a}). Let Mf = maxi f(ai)− f(∅).
Our purpose in this subsection is to establish the following:

I Theorem 14. Let X be a random subset of S using probabilities P and let f be a submodular
monotone function. Then

Var[f(X)] ≤ MfE [f(X)− f(∅)] .

We give the following additional definitions and lemmas before proving this theorem.
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Let S−i = S \ {ai} and let P−i = P \ {pi}. We define X−i to be a random subset of
S−i using the probabilities P−i. Let f0

i , f
1
i be submodular functions over S−i defined by

f0
i (A) = f(A) and f1

i (A) = f(A ∪ {ai}). Let

E1
i = E[f1

i (X−i)] =
∑

A∈2S\{ai}
Pr[X−i = A]f1

i (A).

and

E0
i = E[f0

i (X−i)] =
∑

A∈2S\{ai}
Pr[X−i = A]f0

i (A).

By our definitions E[f(X−i)] = E0
i and from total expectation (Lemma 13), E[f(X)] =

piE1
i + (1− pi)E0

i .

I Lemma 15. let f be a submodular monotone function over S and X a random subset of
S using probabilities P . Then,

∀i : E1
i −E0

i ≤ f(ai)− f(∅) ≤ Mf .

Proof. Since X is obtained by drawing the elements in S independently it follows that

E1
i −E0

i =
∑

A∈2S−i

Pr[X−i = A]
[
f (A ∪ {ai})− f (A)

]
≤︸︷︷︸

submodularity∑
A∈2S\ai

Pr [X−i = A]
[
f (ai)− f(∅)

]
≤ f(ai)− f(∅) ≤ Mf . J

I Lemma 16. for any submodular monotone function f over S and for any index i we have
that Mf0

i
≤ Mf and Mf1

i
≤ Mf .

Proof. The first inequality follows immediately from our definition since

Mf0
i

= max
j 6=i

f0
i (aj)− f0

i (∅) = max
j 6=i

f(aj)− f(∅) ≤ Mf .

For the second inequality we use submodularity as follows

Mf1
i

= max
j 6=i

f1
i (aj)− f1

i (∅) = max
j 6=i

f({aj ∪ ai})− f(ai) ≤︸︷︷︸
sub-modularity

max
j
f(aj)−f(∅) = Mf .

J

We are now ready for the proof of Theorem 14.

Proof of Theorem 14. The proof is by induction on the size of S.
Base case. Let S = {a1}, P = {p1} we have that

E[f(X)] = p1f(a1) + (1− p1)f(∅),

and

Var[f(X)] = E[f(X)2]− E2[f(X)] = p1f
2(a1) + (1− p1)f2(∅)−

[
p1f(a1) + (1− p1)f(∅)

]2

= p1(1− p1)
[
f(a1)− f(∅)

]2 ≤ Mfp1(1− p1)
[
f(a1)− f(∅)

]
.



G. Sadeh, E. Cohen, and H. Kaplan 29:19

It is left to prove that E [f(X)− f(∅)] ≥ p1(1− p1)
[
f(a1)− f(∅)

]
, and indeed we have

that

E [f(X)− f(∅)] = p1
[
f(a1)− f(∅)

]
≥ p1(1− p1)

[
f(a1)− f(∅)

]
.

Inductive Step. Assume the lemma holds for sets of size ` and any submodular function f
and probabilities P . For a set S with `+ 1 elements and a submodular function f over S.
Let j ≤ i be an arbitrary index.
From the total variance formula in Lemma 13 we know that

Var[f(X)] = pjV1
j + (1− pj)V0

j + pj(1− pj)
[
E1
j −E0

j

]2
, (12)

where E1
j = E[f1

j (X−j)], E0
j = E[f0

j (X−j)], V1
j = Var[f1

j (X−j)], and V0
j = Var[f0

j (X−j)].
By applying the induction hypothesis to S−j with probabilities P−j and |S−j | = ` and
f0
j and f1

j we get that

V0
j ≤ Mf0

j

[
E0
j − f0

j (∅)
]

≤︸︷︷︸
Lemma 16

Mf
[
E0
j − f(∅)

]
,

and

V1
j ≤ Mf1

j

[
E1
j − f1

j (∅)
]

≤︸︷︷︸
Lemma 16

Mf
[
E1
j − f(aj)

]
.

Substituting these bounds in Equation (12) we get that

Var[f(X)] ≤ pjMf
[
E1
j − f(aj)

]
+ (1− pj)Mf

[
E0
j − f(∅)

]
+ pj(1− pj)

[
E1
j − E0

j

]2

= Mf
[
pjE1

j + (1− pj)E0
j − f(∅)

]
+ pj(1− pj)

[
E1
j − E0

j

]2 − pjMf
[
f(aj)− f(∅)

]
=︸︷︷︸

total expectation

Mf
[
E[f(X)]− f(∅)

]
+ pj(1− pj)

[
E1
j − E0

j

]2 − pjMf
[
f(aj)− f(∅)

]
≤︸︷︷︸

Lemma 15

Mf
[
E[f(X)]− f(∅)

]
+ pjMf

[
f(aj)− f(∅)

][
(1− pj)− 1

]
≤ Mf [E[f(X)]− f(∅)]. J

A.2 Properties of Reduced Diffusion Models
We establish some properties of reduced independent SDMs that are needed for our upper
bound.

We first show that influence values of nodes in a reduced model can only be lower than
respective values in the original model:

I Lemma 17. Let G′(V \ T,H ′) be a reduction of a model G(V,H).

For all v ∈ V \ T and t ≥ 0, ItG′(v) ≤ ItG(v). (13)

Proof. Note that G′ is obtained from G by removing nodes. Therefore respective reachability
sets given φ are such that those in G′ can only be subsets of those in G:

ReachG′(v,φ′) ⊂ ReachG(v,φ).

Then from monotonicity and submodularity of H we get

H ′(ReachG′(v,φ′)) ≤ H ′(ReachG(v,φ)) ≤ H(ReachG(v,φ)).
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(second inequality follows from monotonicity and submodularity of H so that for all A ⊂ V \T ,
H ′(A) ≤ H(A).) Therefore,

ItG′(v) = E[VReachtG′(v)] ≤ E[VReachtG(v)] = ItG(v). J

A convenient property is that reduction preserves strong monotone submodularity:

I Lemma 18. A reduction of a strongly monotone submodular model is also strongly monotone
submodular.

Proof. A reduced model with respsect to T2 of a reduced model of G with respect to T1 is a
reduced model of G with respect to T1 ∪ T2. Also note that the reduced utility function H ′
is also monotone and submodular. J

We next show that IC or IGT models with submodular utility are closed under reduction:

I Theorem 19. IC and IGT models with submodular utility are strongly submodular SDMs.

Proof. We first show that IC/IGT models are independent SDMs. In the introduction we
expressed IC and IGT models as SDMs: A live-edge model is expressed as an SDM using
φv(T ) = 1 if and only if there is an edge from a node in T to v. The model is independent if
for all v the edges incoming to v are independent of all other edges. In IC models all edges
are independent and hence IC models are independent SDMs. Recall (from the Introduction)
that an IGT model is expressed as an SDM using φv(T ) := Indicator(θv ≤ fv(T )). In an IGT
model the thresholds θv are independent random variables, and hence φv are independent.
Hence, an IGT model is an independent SDM. Submodularity of influence when utlity is
submodular is established for IC models in [31] and for IGT models in [35].

Reduction of any model preserves submodularity of the utility and in particular this holds
for reduced IC/IGT models. What remains to show is that a reduced IC/IGT model is also
an IC/IGT model (respectively). This would conclude the proof of strong submodularity
since any IC and IGT models with submodular utility has a submodular influence functions.

To establish this remaining claim we consider IC/IGT models and express the reduction
in terms of the activation functions as one in terms of the respective family of models.

We first consider IC models. The reduced IC model G′(V \ T, E \ (V × T ∪ T × V ) is
obtained from G(V ) by deleting the nodes T and their incident edges and keeping pe on
remaining edges. This is clearly an IC model. It remains to show that this is equivalent to
the reduction of the distribution of activation functions. The conditioning that φv(T ) = 0
is equivalent to live-edge set E with no edges from T to V . For such edge set for any
S ⊂ V \ (T ∪ {v}) we have φ′v(S) = φv(S ∪ T ) = φv(S) which corresponds to E having at
least one edge from S to v. From independence of edges, the conditional distribution is also
independent and retains the same inclusion probabilities.

We next consider IGT models. The reduction G′(V \ T, {f ′v}) in terms of activation
functions distribution is equivalent to functions is equivalent to modifying the functions so
that

f ′v(S) := fv(S ∪ T )− fv(T ).

The reduced model is clearly an IGT model. The conditioning that φv(T ) = 0 means that
θv > fv(T ). Therefore, the conditional distribution of θv provided it was not activated in the
first step is uniform on [fv(T ), 1]. The probability that θv > fv(S∪T ) given this conditioning
is equal to the probability that θ′v > fv(S ∪ T )− fv(T ) = f ′v(S). J
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A.3 Upper Bound on the Variance in Strongly Submodular SDM
Let G(V,H) be a τ -stepped diffusion model. We denote by MτG(T̄ ) the maximum influence of
a single node in G that is not included in T :

MτG(T̄ ) = max
v∈V \T

IτG(v)

As before, we omit G if it can be understood from the context. We prove the following
theorem which is a restatement of Theorem 2.

I Theorem 20. Let G(V,H) be a strongly submodular SDM. Then for any τ ≥ 0 and a set
of nodes T ⊂ V :

Var[Rτ (T )] ≤ τMτ−1(T̄ )Iτ (T ).

The remaining part of this Subsection contains the proof of the Theorem.
Let T be a set of nodes, and let

N(T ) = {v ∈ V \ T | Pr[φv(T ) = 1] > 0}

be the nodes that have nonzero probability to be activated if T is active. For the special case
of IC models, N(T ) = {v /∈ T | ∃(u, v) ∈ E , u ∈ T} is the set of outgoing neighbors of T .

We first consider the case where N(T ) is empty. In this case, Reachτ (T ) = T for all
τ ≥ 0. Therefore, Var[Rτ (T )] = 0, Iτ (T ) = H(T ) ≥ 0, and Mτ−1(T̄ ) = 0 and the claim holds.

We now assume that N(T ) is not empty and give a proof by induction on τ .

A.3.1 Base case (τ = 1)
Let

pv := Pr[φv(T ) = 1]

be the probability that node v is activated in step 1 provided that the set of nodes T was
active at step 0. From independence of the model, the events of activating different nodes
v ∈ N(T ) at step 1 are independent. We have that the set of nodes that is active at step 1 is
a random subset S of N(T ) with probabilities {pv} as defined in Subsection A.1. Moreover,
from monotonicity and submodularity of H, the function f(S) := H(T ∪ S) − H(T ) is
monotone and submodular with f(∅) = 0. We can therefore apply Theorem 14 to bound the
variance of f(S):

Var[f(S)] ≤MfE[f(S)]. (14)

We now note that

E[f(S)] = E[H(T ∪ S)]−H(T ) = I1(T )− I0(T )

and

Var[f(S)] = Var[H(T ∪ S)] = Var[R1(T )].

For all v ∈ N(T ) we have f(v) = H(T ∪ {v})−H(T ) ≤ H(v) = I0(v). Therefore

Mf := max
v∈N(T )

f(v) ≤ max
v∈N(T )

I0(v) = M0(T̄ ).

Substituting in (14) we obtain the claim

Var[R1(T )] ≤M0(T̄ )I1(T ).
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A.3.2 Inductive step
We define ReachtG(T | A) to be the random variable that is the t-steps reachability of T
in a diffusion on G seeded with T that is conditioned on the event that exactly the nodes
A ⊂ N(T ) (and no other nodes) are activated in step 1. Equivalently, we condition on φ such
that for v \ (T ∪A), φv(T ) = 0 and for v ∈ A, φv(T ) = 1. We respectively define RtG(T | A)
to be the random variable H(ReachtG(T | A)). From definition, we have

ItG(T ) =
∑

A⊂N(T )

Pr[Reach1
G(T ) = A ∪ T ]E[RtG(T | A)] = EAE[RtG(T | A)] . (15)

We consider the reduced model G′ of G with respect to T and show that the conditioned
t ≥ 1 steps diffusion from T in G is equivalent to the unconditioned t− 1 steps diffusion from
A in G′:

I Lemma 21. For any A ⊂ N(T ) and t ≥ 1, the random variables Reacht−1
G′ (A) and

ReachtG(T |A) \ {T} have identical distribution overs subsets. The random variables Rt−1
G′ (A)

and RtG(T |A)−H(T ) have identical distributions over values.

Proof. We first consider t = 1. For a draw of conditioned activation functions we have
Reach1

G(T |A) = T ∪A. By definition, we also have Reach0
G′(A) = A and the claim holds.

We next consider t > 1. We first observe that in both situations, (i) the reduced model
G′ when seeded with A and (ii) the conditioned diffusion in G seeded with T such that the
nodes A are activated in the first step, the progression is determined only by the activation
functions on the nodes V \ (T ∪A) .

We next argue that the distribution of activation functions projected on the nodes
V \ (T ∪A) is the same in both situations. From independence of G it suffices to consider
separately the activation functions of each node. From definition of a reduced model, we
draw for each v ∈ V \ T , φv ∼ G conditioned on φv(T ) = 0. This is exactly what we get for
the conditioned diffusion in G.

We can thus match the supports (sets of activations functions) in both situations so
that φ and φ′ are matched when the projections on V \ (T ∪A) is the same. The starting
points are at steps 0 of the reduced model and step 1 of the conditioned process is A, the
progression of new activations is thus the same. Therefore, for any step t ≥ 1,

ReachtG(T | A,φ) \ T = Reacht−1
G′ (A,φ′)

and the first claim follows.
For the second claim, note that RtG(T |A) = H(ReachtG(T |A)) and thus

Rt−1
G′ (A) = H ′(Reacht−1

G′ (A)) = H(Reacht−1
G′ (A)∪ T )−H(T ) = H(ReachtG(T |A))−H(T )

where the equalities are those of distributions. J

As immediate corollaries we can relate expectations and variance of as follows:

Iτ−1
G′ (A) = E[Rτ−1

G′ (A)] = E[H ′(Reachτ−1
G′ (A))] = E

[
H(ReachτG(T |A))

]
−H(T ) (16)

= E[Rτ−1
G (T |A)]−H(T ).

Var[Rτ−1
G′ (A)] = Var[H ′(Reachτ−1

G′ (A))] = Var[H ′(ReachτG(T |A) \ {T})] (17)
= Var[H(ReachτG(T |A))−H(T )] = Var[H(ReachτG(T |A))] = Var[RτG(T |A)] .
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A.3.2.1 Total Variance

We define the random variable A to be the subset of N(T ) which is activated after the first
step. Note that A is a random subset of N(T ) using probabilities pv for v ∈ N(T ) as defined
in Section A.1. By the total variance formula we get that

Var[RτG(T )] = VarA[E[RτG(T |A)]] + EA[Var[RτG(T |A)]]. (18)

We bound the total variance by separately bounding the two terms.

A.3.2.2 Bound on the first term of the total variance

We consider the reduced model G′ with respect to T and a restriction of the influence function
Iτ−1
G′ to the domain that is subsets A ⊆ N(T ):

f(A) := Iτ−1
G′ (A).

From Lemma 21, this function represents the expected marginal utility value of nodes which
are not in T that are activated after τ steps if we activate T at step 0 and the set A at step
1.

We first observe that f is monotone and submodular. This because strong monotone
submodularity of our model implies that the reduced model is also strongly monotone and
submodular, and a restriction of a monotone and submodular function is also monotone and
submodular. We establish two helpful properties of f . First,

f(∅) = 0 , (19)

which holds for any influence function. Second, using Lemma 17 we obtain

max
v∈N(T )

f(v) ≤︸︷︷︸
(13)

max
v∈N(T )

Iτ−1
G (v) ≤ Mτ−1(T̄ ) . (20)

We are now ready to bound the first term of the total variance (18). Our monotone
submodular function f and the random subset A using probabilities pv satisfy the conditions
of Theorem 14.

VarA[E[Rτ (T |A)]] = VarA[f(A) +H(T )] = VarA[f(A)] ≤︸︷︷︸
Theorem 14

( max
v∈N(T )

f(v))EA [f(A)− f(∅)]

≤︸︷︷︸
(19), (20)

Mτ−1(T̄ )EA [E[Rτ (T |A)−H(T )]] = Mτ−1(T̄ ) (IτG(T )−H(T ))

(21)

A.3.2.3 Bound on the second term of the total variance

We next bound the second term of (18) which is the expectation of the variance conditioned
on A:
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EA[Var[RτG(T | A)]] =
∑

S⊂N(T )

Pr[A = S] Var[RτG(T | S)]

=
∑

S⊂N(T )

Pr[A = S]E[RτG(T | S)−H(T )] Var[RτG(T | S)]
E[RτG(T | S)−H(T )]

≤ max
S⊂N(T )

Var[RτG(T | S)]
E[RτG(T | S)−H(T )]

∑
S⊂N(T )

Pr[A = S]E[RτG(T | S)−H(T )]

= EA [E[RτG(T | A)−H(T )]] max
S⊂N(T )

Var[RτG(T | S)]
E[RτG(T | S)−H(T )]

=︸︷︷︸
(15),(16),(17)

(IτG(T )−H(T )) max
S⊂N(T )

Var[Rτ−1
G′ (S)]

I[Rτ−1
G′ (S)]

= (IτG(T )−H(T ))
Var[Rτ−1

G′ (S′)]
I[Rτ−1
G′ (S′)]

(22)

Where we take

S′ = arg max
S⊂N(T )

Var[Rτ−1
G′ (S)]

I[Rτ−1
G′ (S)]

to be the subset that maximizes the ratio.
Using the induction hypothesis on (τ − 1)-stepped influence we get

Var[Rτ−1
G′ (S′)] ≤ (τ − 1)Mτ−2

G′ (S̄′)I[Rτ−1
G′ (S′)]. (23)

We now relate the maximum influence of nodes in the original and reduced models:

Mτ−2
G′ (S̄′) = max

v∈V \(T∪S′)
Iτ−2
G′ (v) ≤︸︷︷︸

(13)

max
v∈V \(T∪S′)

Iτ−2
G (v) ≤ Mτ−2

G (T ∪ S′) ≤ Mτ−1
G (T̄ ). (24)

From (22) using (23) and (24) we obtain

EA[Var[Rτ (T |A)]] ≤︸︷︷︸
(23)

(
IτG(T )−H(T )

)
(τ−1)Mτ−2

G′ (S̄′) ≤︸︷︷︸
(24)

(
IτG(T )−H(T )

)
(τ−1)Mτ−1

G (T̄ ) .

(25)

A.3.2.4 Combining the bounds of the first and second terms

The claim of the Theorem follows using total variance (18) and the bounds on the first term
(21) and second term (25).

B Variance lower bound construction

I Lemma 22. Let G be complete binary tree where each edge has probability 1
2 and let

h(u) be the height of the node u. Then, Iτ (u) = h(u) and Var[Rτ (u)] = 1
2
∑h(u)−1
i=0 i2 =

(h(u)−1)h(u)(2h(u)−1)
12 .

Proof. By induction on the height of the of the node.
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Base step (h(u) = 1). It is clear that I1(u) = 1 and Var
[
R1(u)

]
= 0 since u is a leaf.

Inductive step. u has two neighbors and each is reached with probability 1
2 . Let v1 and v2

be the neighbors of u and let X1, X2 be random variables that indicate if (u, v1), (u, v2)
were activated respectively. The variables X1, X2 are Bernoulli random variables with
p = 1

2 , hence, E[X1] = E[X2] = 1
2 and Var[X1] = Var[X2] = 1

4 . Since the graph is a tree,
the reachabilities of v1 and v2 are independent random variables, so we can simply write:

Rτ (u) = 1 +X1Rτ−1(v1) +X2Rτ−1(v2)

The variable Rτ−1(v1) and Rτ−1(v2) are identical and X1, Rτ−1(v1) and X2, Rτ−1(v2) are
independent random variables, Thus,

Iτ (u) = E[Rτ (u)] = 1 + E[X1]E[Rτ−1(v1)] + E[X2]E[Rτ−1(v2)] = 1 + 21
2E[Rτ−1(v1)]

=︸︷︷︸
induction’s hypothesis

1 + h(u)− 1 = h(u)

The computation of the variance is similar:

Var[Rτ (u)] = Var[X1Rτ−1(v1)] + Var[X2Rτ−1(v2)] = 2 Var[X1Rτ−1(v1)]

For two independent random variables A,B holds that: Var[AB] = Var[A] Var[B] +
Var[A]E2[A] + Var[B]E2[B], we have that:

Var[Rτ (u)] = 2
(
Var[X1] Var[Rτ−1(v1)] + Var[X1]E2[Rτ−1(v1)] + Var[Rτ−1(v1)]E2[X1]

)
= 2

(
1
2 Var[Rτ−1(v1)] + 1

4E2[Rτ−1(v1)]
)

= Var[Rτ−1(v1)] + 1
2(h(u)− 1)2

=︸︷︷︸
induction’s hypothesis

1
2

h(u)−1∑
i=0

i2 = (h(u)− 1)h(u)(2h(u)− 1)
12 . J

I Theorem 23. There is a model G and a set of nodes T such that Var[Rτ (T )]
Mτ (T̄ )Iτ (T ) ≥

τ
12 .

Proof. Lemma 22 shows that for every node u ∈ G, Iτ (u) = h(u) and Var[Rτ (u)] =
(h(u)−1)h(u)(2h(u)−1)

12 . It follows that the root r has the largest influence Iτ (r) = τ and
Var[Rτ (u)] = (τ−1)t(2τ−1)

12 , Furthermore Mτ (r̄) = τ − 1 since the nodes of the largest influence
in V \ r are the children of r. We conclude that:

Var[Rτ (r)]
Mτ (r̄)Iτ (r) = (τ − 1)τ(2τ − 1)

τ(τ − 1)12 = 2τ − 1
12 ≥︸︷︷︸

τ≥1

τ

12 . J

C Greedy Optimization with an Approximately Submodular Oracle

In this section we present the proof of Lemma 10. We show that our approximation guarantees
imply that the application of greedy on F̂ generates a sequence that is an approximate greedy
sequence (in the sense of Lemma 24) with respect to F .

We first state a helpful Lemma [14] that establishes that it suffices that F̂ (u | S) to
approximate the marginal contributions

F (u | S) := F (S ∪ {u})− F (S)

.
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I Lemma 24 ([14]). Given a monotone submodular function F , an approximate greedy
algorithm that for some ε ∈ [0, 1) selects at each step an element u such that F (u | S) ≥
(1− ε) maxv F (v | S) has approximation ratio ≥ (1− (1− 1/s)s)(1− ε).

Proof. It is easy to see that the approximation ratio of ε-approximate greedy is 1− (1− (1−
ε)/s)s. It therefore suffices to establish that this expression is larger than (1−(1−1/s)s)(1−ε)
for ε ∈ [0, 1]. Equivalently, we need to show that for all s ≥ 2 and x ∈ [0, 1]

(1− (1− x)/s)s − (1− x)(1− 1/s)s − x ≤ 0 .

This follows from equality holding for x = 0 and x = 1 and the function being concave up
(second derivative is positive). J

Proof of Lemma 10. Consider a monotone non-negative F̂ that is a uniform εA-approxima-
tion of a monotone non-negative F with εA = ε(1−ε)

14s . By definition of ε-approximation (see
Section 3.5),

∣∣∣F̂ (T )− F (T )
∣∣∣ ≥ εA max{F (T ),OPT1(F )} for all S with |S| ≤ s. Therefore,

if F (S) ≥ (1− ε)OPT1(F ) then

∣∣∣F̂ (S)− F (S)
∣∣∣

F (S) ≤ ε

14s (26)

if F (S) ≤ (1− ε)OPT1(F ) then F̂ (S) ≤
(

1− ε

2

)
OPT1(F ) . (27)

Inequality (26) follows immediately when F (S) ≥ OPT1(F ) because the relative error is
at most εA ≤ ε

14s . For (1− ε)OPT1(F ) ≤ F (S) < OPT1(F ) we have absolute error being
at most εAOPT1(S) which is a relative error of at most εA/(1− ε) ≤ ε

14s . Inequality (27)
follows from the absolute error being at most εAOPT1(F ) and εA ≤ ε/2.

We establish that these conditions imply that greedy on F̂ on the prefix of the greedy
sequence where F (S) ≤ 3

4OPTs(F ) is actually approximate greedy (as in the conditions of
Lemma 24) with respect to F . Note that 1− (1− 1/s)s ≥ 3/4 for s ≥ 2 and thus the prefix
restriction does not limit generality. The claim will then follow from Lemma 24.

For s = 1, it follows from Equations (26) and (27) , that the first element of a greedy
sequence with respect to F̂ , arg maxu F̂ (u), satisfies F̂ (u) ≥ (1− ε

14 )OPT1(F ). Therefore
from the second iteration and on, we have a set S for which the relative error bounds in
Equation (26)) applies.

We consider the marginal contributions F (u | S) for any node u. We have

|F̂ (S)− F (S)| ≤ ε

14sF (S)

|F̂ (S ∪ {u})− F (S ∪ {u})| ≤ ε

14sF (S ∪ {u}) = ε

14s (F (S) + F (u | S)) .

We use these inequalities to bound the absolute error of (any) marginal influence estimate by∣∣∣F̂ (u | S)− F (u | S)
∣∣∣ =

∣∣∣F̂ (S ∪ {u})− F̂ (S)− F (S ∪ {u}) + F (S)
∣∣∣ (28)

≤
∣∣∣F̂ (S ∪ {u})− F (S ∪ {u}

∣∣∣+
∣∣∣F̂ (S)− F (S)

∣∣∣
≤ ε

7sF (S) + ε

14sF (u | S) .

We now consider the node v = arg maxu∈V F (u | S) with maximum marginal contribution
to S with respect to F and its contribution value

∆ := F (v | S) ≥ 1
s

(OPTs − F (s)) .
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Thus, when F (S) ≤ 3
4OPTs,

∆ ≥ 1
3sF (S). (29)

By applying (28) to v we get that

F̂ (v | S) ≥ ∆− ε

7sF (S)− ε

14s∆

Therefore the node v′ = arg maxv F̂ (v′ | S) with maximum marginal contribution
according to F̂ satisfies

F̂ (v′ | S) ≥ F̂ (v | S) ≥ ∆− ε

7sF (S)− ε

14s∆.

By using (28) again, substituting (29), and using that fact that s ≥ 2:

F (v′ | S) ≥ ∆− 2 ε

7sF (S)− 2 ε

14s∆ (30)

≥ ∆− ε∆( 1
7s + 6

7) ≥ ∆ (1− ε) . (31)

Therefore, the greedy sequence according to F̂ is an approximate greedy sequence
according to F and satisfies the conditions of Lemma 24. Therefore the resulting sequence
yields an approximation ratio at least (1− (1− 1/s)s)(1− ε). J

D Greedy for Live-Edge Models

Proof of Theorem 12. For the first bound, we explicitly maintain for each node u ∈ V , for
each pool, the reachability set of u in the simulations of the pool (and its cardinality). The
dominant term in the cost of computation is performing a BFS from each node in each of
the r` simulations that is truncated at distance τ . The total computation time is

O(r`mn) = O(ε−2s3c ln
(n
δ

)
mn) , (32)

where

m = 1
`r

r∑
i=1

∑̀
j=1
|Eij |

is the average number of edges per simulation. For an IC model, E[m] =
∑
e∈E pe. When

a node u is selected into the seed set we remove all nodes in its reachability set from
the reachability sets of all other nodes. The removal cost can be “charged” to the initial
reachability computation.

The dependence of the computation time on the graph size can be improved by using
combined reachability sketches [10, 14, 15, 11] instead of maintaining the reachability sets
explicitly (see Section 5.1). The sketch size needed in order to provide the required accuracy
of O(ε/s) (as in Theorem 10) uniformly for all subsets of size at most s is k = O(ε−2s3 lnn).
We compute a sketch for each node in each of the r pools, so in total we have rn node sketches.
The construction time of these sketches has a term

∑
ij |Eij | = r`m linear in the total size

of simulations and a term for sketch constructions which is a product of the number of pools
r and the construction time for each pool. The per-pool construction time is as described
in Section 5.1 and is bounded by k (sketch size) visits for each node, each involving reverse
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traversals of incoming edges of the node in some simulation. The per-pool construction time
for an IC model is O(k(n +

∑
e pe)) in expectation. The time with arbitrary simulations

for pool i is O(k(n +
∑
v maxj dv(Eij))). In total over all pools, the construction time is

dominated by O(r(`m+ k(n+m∗)), where m∗ =
∑
v maxij dv(Eij) for arbitrary simulations

and m∗ =
∑
e pe for simulations generated by an IC model.

The sketches improve the computation time of greedy. Each iteration of greedy uses
the (precomputed) union sketch of the current seed set S in each pool. It then examines
the sketches of each v ∈ V to compute the estimate of the averaging oracle Â(S ∪ {v}) in
each pool. This operations takes O(knr) in total for the iteration. Therefore s iterations of
greedy maximization takes O(knrs) using the sketches. Combining the construction cost of
the sketches using r = O(s ln n

δ ) and ` = O(ε−2s2c) and the greedy implementation over the
sketches we obtain a total bound on the computation time of

O(r`m+ kr(m∗ + ns)) = O(r(`m+ k(m∗ + ns)))

= O(s ln n
δ

(ε−2s2cm+ ε−2s3(m∗ + ns) lnn)

= O(ε−2s3 ln n
δ

(cm+ s(m∗ + ns) lnn)) . J

E Optimization with Adaptive Sample Size

The pseudocode for our wrapper is provided in Algorithm 1. The inputs to the wrapper
are a base algorithm A and two constructions of oracles from sets of simulations. The first
construction produces an oracle, F̂v, that we use for validation. The second construction
produces oracles, F̂x, that are provided as input to A to perform the optimization. The
oracles provide an approximation of our influence function Iτ (S) with non-uniform guarantees.
For specified (ε, δ) we use the expressions rv(ε, δ) or rx(ε, δ) for the number of simulations
required to obtain (ε, δ) guarantees (in the sense of Section 3.5). This gives us a relation
between ε, δ, and a number of simulations. When constructing an oracle with a given number
of simulations r and a specified ε, we can determine the confidence δ we have from ε and r.
The oracles that we consider have the property that for a fixed ε, δ decreases at least linearly
with the number of simulations. (i.e., when we double the number of simulations δ decreases
by at least a factor of 2.)

The wrapper first determines an upper bound (dlog2M/rx(ε, δ)e) on the maximum
number of iterations it performs (based on the initial number and the simulation budget) and
constructs a validation oracle that provides guarantees for a small number of sets (queries)
which equals this maximum number of iterations. It then starts with a set R of rx(ε, δ)
simulations that suffice for the oracle F̂x to provide (non-uniform) (ε, δ) approximation
guarantees. The wrapper repeats the following: It constructs an “optimization” oracle F̂x
using the set of simulations R and applies A over F̂x to obtain a set T . The wrapper
terminates when F̂v(T ) is close to F̂x(T ) or when our simulation budget of M is exceeded.
Otherwise, we double the number of simulations in our set R and repeat.

The wrapped algorithm A can be an exact or approximate optimizer. It is applied to the
oracle function and therefore its quality guarantees are with respect to how well the oracle
value F̂x(T ) of the output set T approximates the oracle optimum maxS||S|≤s F̂x(S). The
wrapper extends the approximation guarantees that A provides (with respect to the oracle)
to a guarantee with respect to the influence function while avoiding the worst-case number
of simulations needed for a uniform approximation.

We first establish some basic properties.
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Algorithm 1 Optimization Wrapper.

Input: (i) Two oracle constructions from simulations: F̂v (validation) and F̂x (optimization)
that with rv(ε, δ) (resp., rx(ε, δ)) simulations provide (ε, δ) guarantees. (ii) An
optimization algorithm A that applies to the optimization oracle F̂x and returns a
subset. (iii) M : Bound on maximum number of simulations. (iv) Parameters ε > 0
and δ > 0.

r ← rx(ε, δ) // #simulations for F̂x to provide (ε, δ) guarantees
// Build validation oracle
δv ← δ

dlog2 M/r)e ; rv ← rv(ε, δv) // #simulations for validation oracle

F̂v ← validation oracle from rv i.i.d simulations that provides (ε, δv) guarantees
R←⊥ // Initialize set of i.i.d simulations for optimization

repeat
Add r fresh i.i.d simulations to set R
F̂x ← optimization oracle from simulations R that provides (ε, ∗) guarantees // * determined
by |R|
T ← A(F̂x) // Optimize over the oracle

if F̂v(T ) ≥ (1−2ε)
1+ε F̂x(T ) then

return T , F̂v(T )
else

r ← 2r
until |R|+ rv > M

I Lemma 25. Let S be a set with maximum influence (with Iτ (S) = OPTτ
s). With

probability at least 1− 2δ, all the optimization oracles F̂x constructed by the wrapper have
(1− ε)OPTτ

s ≤ F̂x(S) ≤ (1 + ε)OPTτ
s .

Proof. The probability that (1− ε)OPTτ
s ≤ F̂x(S) ≤ (1 + ε)OPTτ

s fails for the first oracle
is at most δ. The number of F̂x uses simulations doubles in each iteration and all our
constructions are such that the confidence parameter δ decreases at least linearly with the
number of simulations. We therefore obtain that the sequence of failure probabilities for
(1− ε)OPTτ

s ≤ F̂x(S) ≤ (1 + ε)OPTτ
s is geometric and sums up to at most 2δ. J

As an immediate corollary we obtain:

I Corollary 26. Under the conditions of Lemma 25, the oracle optimum in all iterations
satisfies

max
T ||T |≤s

F̂x(T ) ≥ (1− ε)OPTτ
s .

The following is immediate from the construction of the validation oracle.

I Lemma 27. With probability at least 1− δ, the validation oracle has relative error at most
ε on all tests in which the input set T is such that Iτ (T ) ≥ OPTτ

1 and absolute error at
most εOPTτ

1 otherwise.

Proof. The wrapper performs at most dlog2M/re iterations before it stops, in each iteration
the validation oracle fails to provide an ε-approximation with probability at most δv. There-
fore, by union bound, the probability that the algorithm fails to provide an ε-approximation
in at least one round is at most δvdlog2M/re ≤ δ. J
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I Lemma 28. Assume that our data and our optimization oracle with r or more simulations,
are such that with probability at least 1 − δ, the optimum of the oracle is an approximate
optimizer, that is:

(1 + ε)OPTτ
s ≥ max

S||S|≤s
F̂x(S) ≥ (1− ε)OPTτ

s (33)

Iτ (arg max
S||S|≤s

F̂x(S)) ≥ (1− ε)OPTτ
s (34)

and assume that the algorithm A returns the oracle optimum. Then with probability at least
1− 5δ, the wrapper terminates after at most 2 max{r, rx(ε, δ)}+ rv simulations and returns
T such that Iτ (T ) ≥ (1− 5ε)OPTτ

s .

Proof. First we show that the wrapper returns a set T with the required properties with
probability at most 1− 3δ and then we show that the number of iterations the wrapper does
before it stops is smaller than M with probability of at most 1− 2δ.

From Lemma 25, with probability at least 1 − 2δ in all iterations A returns T for
which F̂x(T ) ≥ (1 − ε)OPTτ

s . The validation succeeds only if F̂v(T ) ≥ (1−2ε)
1+ε F̂x(T ) ≥

(1−ε)(1−2ε)
1+ε OPTτ

s . From Lemma 27 with probability at least 1− δ in all iterations we have

F̂v(T ) ≤ max{(1 + ε)Iτ (T ), Iτ (T ) + εOPTτ
1} .

Therefore, with probability 1− 3δ the set T returned by the wrapper satisfies

(1− ε)(1− 2ε)
1 + ε

OPTτ
s ≤ max{(1 + ε)Iτ (T ), Iτ (T ) + εOPTτ

1} .

If (1 + ε)Iτ (T ) > Iτ (T ) + εOPTτ
1 then Iτ (T ) ≥ (1−ε)(1−2ε)

(1+ε)2 OPTτ
s ≥ (1 − 5ε)OPTτ

s .

Otherwise, we have that Iτ (T ) ≥
(

(1−ε)(1−2ε)
1+ε − ε

)
OPTτ

s ≥ (1− 5ε)OPTτ
s .

We have to show that with probability at least 1 − 2δ within 2 max{r, rx(ε, δ)} + rv
simulations the wrapper returns such a set T to finish the proof. Consider the first iteration
where |R| ≥ r. By Equations (33) and (34) with probability at least 1 − δ we have that
Iτ (T ) ≥ (1− ε)OPTτ

s and (1 + ε)OPTτ
s ≥ F̂x(T ) ≥ (1− ε)OPTτ

s .By Lemma 27 we have
that with probability at least 1− δ, the validation oracle satisfies that F̂v(T ) ≥ (1− ε)Iτ (T )
or F̂v(T ) ≥ Iτ (T ) − εOPT1

s ≥ Iτ (T ) − εOPTτ
s . By the last two statements we have that

with probability of at least 1− 2δ:

F̂v(T ) ≥ (1− ε)Iτ (T ) ≥ (1− ε)2OPTτ
s ≥ (1− 2ε)OPTτ

s ≥
(1− 2ε)

1 + ε
F̂x(T )

or

F̂v(T ) ≥ Iτ (T )− εOPTτ
s ≥ (1− 2ε)OPTτ

s ≥
(1− 2ε)

1 + ε
F̂x(T ). J

Theorem 8, which we restate below to provide reading fluency, now follows as a corollary.

I Theorem 29 (Theorem 8). Suppose that on our data the averaging (respectively, median-
of-averages) oracle F̂ has the property that with r simulations, with probability at least 1− δ,
the oracle optimum T := arg maxS||S|≤s F̂ (S) satisfies

Iτ (T ) ≥ (1− ε)OPTτ
s .
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Then with probability at least 1 − 5δ, when using 2 max{r, r(ε, δ)} +
O
(
ε−2c

(
ln 1

δ + ln
(
ln ln n

δ + ln s
)))

simulations with the median-of-averages oracle and
2 max{r, r(ε, δ)}+O

(
ε−2c

(
ln 1

δ + ln
(
ln ln n

δ + lnn
)))

simulations with the averaging oracle,
the wrapper outputs a set T such that Iτ (T ) ≥ (1− 5ε)OPTτ

s .

Proof of Theorem 8. We analyze here the number of simulations required using the aver-
aging oracles and the median-of-averages oracles, in both cases we use median-of-averages
oracles for validation. In both cases rv = r(ε, δv) = O

(
ε−2c log 1

δv

)
, where δv = δ

dlog2
M
rx
e .

By Lemma 28 the number of simulations is at most 2 max{r, rx(ε, δ)}+ rv. M and rx get
different values for each oracle.

Median-of-averages oracles analysis. We have that rx = O(ε−2c ln δ−1) by Lemma 6 and
we set M = O(ε−2cs ln n

δ ) by Theorem 7. Simple calculation shows that:

1
δv

=
dln s ln n

δ

ln 1
δ

e

δ
≤ 1
δ

(
ln s+ ln (ln n

δ
)
)
.

Therefore,

rv = O

(
ε−2c

(
ln 1
δ

+ ln
(

ln ln n
δ

+ ln s
)))

.

Averaging oracles analysis. We have rx = O(ε−2cδ−1) and we set M = O
(
ε−2sn ln n

δ

)
according to the respective worst-case guarantees on the number of simulations specified
in (1). A simple calculations shows:

1
δv

=
dln δsn ln n

δ

c e
δ

≤ 1
δ

(
ln ln n

δ
+ 2 lnn

)
Therefore,

rv = O

(
ε−2c

(
ln 1
δ

+ ln
(

ln ln n
δ

+ lnn
)))

. J

We next consider cases where the algorithm A is approximate (may not return the oracle
optimizer). We assume in these cases that the optimization oracles F̂x when constructed
with a given number of simulations provide, with high probability, uniform ε-approximation
for all

(
n
s

)
subsets of cardinality at most s:

∀T such that |T | < s,
∣∣∣F̂ (T )− Iτ (T )

∣∣∣ ≤ εmax{Iτ (T ),OPTτ
1} .

We first show that a very weak assumption on A suffices to guarantee termination with
good probability.

I Lemma 30. If the optimization oracle F̂x when constructed with r or more simulations
provides uniform ε-approximation with probability at least 1− δ, and the algorithm A returns
T such that F̂x(T ) ≥ (1− ε)OPTτ

1 . Then with probability at least 1− 2δ the wrapper will
terminate after using at most 2 max{r, rx(ε, δ)}+ rv simulations.

Proof. Consider the first iteration where F̂x is constructed using at least r simulations. Let
T be the set that A returns at this iteration. Since F̂x provides uniform ε-approximation we
have that F̂x(T ) ≤ (1 + ε)Iτ (T ) with probability at least 1 − δ. Combining this with our
assumption we get that Iτ (T ) ≥ OPTτ

1 and by Lemma 27 we have that with probability at
least 1− δ if Iτ (T ) ≥ OPTτ

1 then F̂ (T ) ≥ (1− ε)Iτ (T ) and if 1−ε
1+εOPTτ

1 ≤ Iτ (T ) ≤ OPTτ
1

then F̂v(T ) ≥ Iτ (T )− εOPTτ
1 ≥ Iτ (T )− ε(1+ε)

1−ε Iτ (T ). Combining we obtain that F̂v(T ) ≥
1−2ε
1+ε F̂x(T ), and thus the validation condition holds. J
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We next consider algorithms A that guarantees some approximation ratio ρ.

I Theorem 31. Suppose that our optimization oracle when constructed with r or more
simulations provides uniform ε-approximation with probability at least 1− δ. Assume now
that the algorithm A returns a set T such that

F̂x(T ) ≥ ρ max
S||S|≤s

F̂x(S) .

Then, the set T returned by our wrapper satisfies Iτ (T ) ≥ ρ(1− 5ε)OPTτ
s with probability of

at least (1− 3δ).

Proof. Consider an optimal set S (with Iτ (S) = OPTτ
s ). By Lemma 25 with probability

at least 1 − 2δ all our oracles have (1 − ε)OPTτ
s ≤ F̂x(S) ≤ (1 + ε)OPTτ

s are within
(1± ε)OPTτ

s . By the assumption, the sets T returned by A in all iterations have F̂x(T ) ≥
ρmaxS||S|≤s F̂x(S) ≥ ρ(1 − ε)OPTτ

s . When the wrapper stops we have that F̂x(T ) ≤
1+ε
1−2ε F̂v(T ) and by Lemma 27 we have with probability at least 1− δ that F̂v(T ) ≤ max{(1 +
ε)Iτ (T ), Iτ (T ) + εOPTτ

1}.
Combining, we have that with probability at least 1− 3δ,

ρ(1− ε)OPTτ
s ≤ ρF̂x(S) ≤ F̂x(T ) ≤ 1 + ε

1− 2ε F̂v(T ) ≤ 1 + ε

1− 2ε max{(1− ε)Iτ (T ), Iτ (T ) + εOPTτ
s}.

Now, a simple calculation shows that Iτ (T ) ≥ ρ(1− 5ε)OPTτ
s . J

We can prove now Theorem 9 (restated for reading fluency):

I Theorem 32 (Theorem 9). If the averaging oracle Â has the property that with ≥ r

simulations, with probability at least 1 − δ, it provides a uniform ε-approximation for all
subsets of size at most s, then with 2 max{r, r(ε, δ)} + O

(
ε−2c

(
ln 1

δ + ln
(
ln ln n

δ + lnn
)))

simulations we can find in polynomial time a (1− (1− 1/s)s)(1− 5ε) approximate solution
with confidence 1− 5δ.

Proof. The averaging oracle is monotone and submodular [31] and therefore greedy can
efficiently recover a set T such that F̂x(T ) ≥ (1− (1− 1/s)s) maxS||S|≤S F̂x(S).

By Lemma 30, the wrapper terminates using at most 2 max{r, rx(ε, δ)}+rv with probably
at least 1 − 2δ. Applying Theorem 31 with ρ = (1 − (1 − 1/s)s), we get that Iτ (T ) ≥
(1− (1− 1/s)s)(1− 5ε)OPTτ

s with probability at least 1− 3δ. Hence, with probability at
least 1 − 5δ the wrapper applied with greedy finds (1 − (1 − 1/s)s)(1 − 5ε)-approximate
solution using 2 max{r, rx(ε, δ)}+ rv simulations. J

F Variance Bounds for Dependent Models

In this section we provide a proof for Corollary 3. We consider a natural extensions of IC
models, b-dependence, that allow for some dependencies between edges and mixtures of IC
and IGT models. For these extensions, we establish upper bounds of the form (8) on the
variance of the reachability of a set of nodes.

We bound the variance by constructing for each dependent model a corresponding IC
model and then apply the variance upper bound established in Section A for IC models.

For mixture models we provide a generic derivation that bounds the variance of the
mixture by variance of components.
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F.1 b-Dependence Models
The first family we consider are b-dependence models, which we define as follows. We assume
that all edges with the same tail node are partitioned into disjoint groups where each group
is of size at most b. The edges of each group B are either all active together with probability
pB or none is active with probability 1− pB . The special case where all groups are of size 1
corresponds to an IC model (where all edges are independent).

I Theorem 33. Let G be a b-dependence model for some b ≥ 1. For every set T we have
that:

Var[RτG(T )] ≤ 2bτIτG(T ) max
v∈V \T

IτG(v)

Proof. We construct an IC model G′ from the given b-dependence model G. The model G′ is
defined over the set of nodes V of G together with an additional set D of dummy nodes. The
construction has the properties that 2τ -step influence in G′ from a set of nodes T ⊆ V is
equal to τ -stepped influence of T in G. Furthermore, the variances of the sizes of the 2τ -step
reachbility of T in G′ is the same as the variance of the τ step reachability of T in G. The
influence of each dummy node in G′ is at most bmaxv∈V Iτ (v). The claim follows from these
properties and Theorem 2.

Here is a formal description of our reduction.
We start by putting in G′ the set V of the nodes of G. Then for every group B =

{(u, v1), (u, v2), ..., (u, v`)} in G we do the following:
1. Add a new dummy node vB to G′, and add to G′ the edge (u, vB) and give it the probability

pB . We assign weight 0 to vB so that it does not contribute to the reachability of any set
of nodes.

2. we create edges (vB , vi) for every 1 ≤ i ≤ `, each such edge has probability 1.

Let T ⊂ V be a set of nodes in G. It follows from our construction that for any set of
nodes B ⊂ V the probability that R2τ

G′ (T ) = B is the same as the probability that RτG(T ) = B.
This implies that for any T ⊆ V

I2τ
G′ (T ) = IτG(T ) ,

and

Var[R2τ
G′ (T )] = Var[RτG(T )] .

Each dummy node is connected to at most k original nodes, hence, I2τ
G′ (v) is bounded by

bmaxv∈V I2τ
G′ (v). By Theorem 20 it follows that for every set of nodes T in G′:

Var[R2τ
G′ (T )] ≤ 2τI2τ

G′ (T ) max
v∈V \T

I2τ
G′ (v).

Combining all these observations together, we get that

Var[RτG(T )] ≤ 2bτIτG(T ) max
v∈V \T

IτG(v) J

This Theorem can be generalized to more complex dependencies. For example it holds
for any distribution on subsets of the outgoing edges from each node that we can realize by
a distribution on disjoint subsets where we draw each subset with certain probability, and
take the union of the subset which we draw.
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F.2 Mixture of IC and IGT Models
The second family of dependent models we consider is a mixture of IC and IGT models.

Consider a set of models Gi(V ) for i ∈ [r] and respective probabilities pi such that∑r
i=1 pi = 1. We define a mixture model G(V ) as follows. To draw φ ∼ G, we first draw

i ∈ [r] according to probabilities pi and then return φ ∼ Gi.
We provide two proofs for the variance bound of the mixture. The first is direct and

applies to any mixture of models that satisfies the variance bound of Theorem 2), and in
particular to mixtures of strongly submodular SDMs. The second proof is specific to live-edge
models and based on a reduction to an IC model.

I Theorem 34. Consider a model G that is a mixture of r models Gi with probabilities pi
that satisfy the variance bound of Theorem 2. Then for all T ⊂ V ,

Var[RτG(T )] ≤ τ + 1
mini pi

IτG(T ) max
v∈V

IτG(v)

Proof. We first relate the influence of T in the mixture model to the influence of T in the
components.

IτG(T ) = E[RτG(T )] =
r∑
i=1

piE[RτGi(T )] =
r∑
i=1

piIτGi(T ) . (35)

This holds to any set T and any τ . Therefore we also obtain the inequality

MτG(T̄ ) = max
v∈V \T

IτG(v) = max
v∈V \T

r∑
i=1

piIτGi(v) ≤
r∑
i=1

pi max
v∈V \T

IτGi(v) =
r∑
i=1

piMτGi(T̄ ) . (36)

It also follows that we can bound the influence values on the component by the respective
ones in the mixture: IτGi(T ) ≤ 1

pi
IτG(T ) and thus

max
i

IτGi(T ) ≤ 1
mini pi

IτG(T ) (37)

max
i

MτGi(T ) ≤ 1
mini pi

MτG(T ) . (38)

The random variable RτG(T ) can be expressed as a sum of of r products of random
variables:

RτG(T ) =
r∑
i=1

XiRτGi(T ) ,

where Xi are Bernoulli with probabilities pi. The random variables {RτGi(T )} are independent
of each other and also are independent from (the joint distribution of) {Xi}. The variables
{Xi} have negative dependence as

∑
iXi = 1 and thus the products XiRτGi(T ) are also

negatively dependent and thus

Var[RτG(T )] ≤
∑
i

Var[XiRτGi(T )] .

We will instead bound the variance of a surrogate random variable

Y =
∑
i

XiRτGi(T )
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that has the same sum of products but with the variables {Xi} being independent of each
other and hence the products are also independent. We have

Var[Y ] =
∑
i

Var[XiRτGi(T )] ≥ Var[RτG(T )] (39)

We next express the variance of each product using variance properties of the product of
two independent random variables. For i ∈ [r]:

Var[XiRτGi(T )] = Var[Xi] Var[RτGi(T )] + E[Xi]2 Var[RτGi(T )]2 + Var[Xi]E[RτGi(T )]2

= pi(1− pi) Var[RτGi(T )] + p2
i Var[RτGi(T )] + pi(1− pi)IτGi(T )2

= pi Var[RτGi(T )] + pi(1− pi)IτGi(T )2 .

Therefore, invoking Theorem 2 to bound the variance for each IC model Gi and then
using (37) and (38) and finally using (35) and (36) we get

Var[Y ] =
r∑
i=1

pi
(
Var[RτGi(T )] + pi(1− pi)IτGi(T )2)

≤
r∑
i=1

pi Var[RτGi(T )] +
r∑
i=1

piIτGi(T )2

≤︸︷︷︸
Theorem 2

r∑
i=1

piτMτ−1
Gi (T̄ )IτGi(T ) +

r∑
i=1

piIτGi(T )2

≤︸︷︷︸
(37), (38)

τ

mini pi
IτG(T )

r∑
i=1

piMτ−1
Gi (T̄ ) + 1

mini pi
IτG(T )

r∑
i=1

piIτGi(T )

≤︸︷︷︸
(35) , (36)

1
mini pi

IτG(T )
(
τMτ−1
G (T̄ ) + IτG(T )

)
≤ τ + 1

mini pi
IτG(T ) max

v∈V
IτG(v)

J

We next give a different proof (of a slightly different bound) for live-edge models using a
reduction to an IC model. Consider a set of τ -steps models Gi(V, Ei) for i ∈ [r] and respective
probabilities pi such that

∑r
i=1 pi = 1. We define a mixture model G(V,

⋃
i Ei) as follows. To

draw E ∼ G, we first draw i ∈ [r] according to probabilities pi and then return E ∼ Gi.

I Theorem 35. Consider a model G that is a mixture of r IC models Gi with probabilities
pi. Then for all T ⊂ V ,

Var[RτG(T )] ≤ τ + 1
mini pi

IτG(T ) max{IτG(T ),max
v∈V

IτG(v)}

Proof. We first argue that we can assume without loss of generality that T is a single node
and

⋃
i Ei does not contain edges that are incoming to T . We can transform a general case G

and T to this form by contracting all nodes in T into a single node and deleting all edges
that are incoming to T . We then retain the same conditional distribution on the remaining
edges. Note that this transformation preserves the distribution of RτG(T ) and hence also its
expectation and variance. The influence values IτG(v) of nodes v ∈ V \ T can only decrease.
Finally, the transformed model is also a mixture of correspondingly transformed IC models,
where in each such model the distribution of RτGi(T ) remains the same and influence values
IτGi(v) can only decrease. It follows that the claimed variance bound for the transformed
model implies the same bound for the original model.
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We construct a new IC model G′ with respect to (a single node) T as follows. The new
model has nodes V ′ = {v} ∪

⋃
i Vi, where each Vi is a map of V . We create an instantiation

of each of our IC models Gi with set of nodes Vi and edges Ei with the probabilities as in the
model Gi. The new IC model G′ has a root node v with weight 0 and for each i ∈ [r], there
is an edge (v, Ti) with probability pi, where Ti is the image of T in the copy of Gi. We can
see that

Iτ+1
G′ (v) = IτG(T ) =

r∑
i=1

piIτGi(T ) , (40)

that is, the τ + 1 steps influence of v in the constructed IC model G′ is equal to the τ steps
influence of T in the mixture model G.

We next consider the variance of the random variables RτG(T ) and Rτ+1
G′ (v). Both these

random variables are a sum of r products of random variables:
r∑
i=1

XiRτGi(T ) ,

where Xi are Bernoulli with probabilities pi. In both cases the random variables {RτGi(T )}
are independent of each other and also are independent from (the joint distribution of)
{Xi}. But in the case of Rτ+1

G′ (v) the random variables Xi are independent and hence also
the products are independent and in the case of RτG(T ), the variables {Xi} have negative
dependence as

∑
iXi = 1 and thus the products XiRτGi(T ) are also negatively dependent.

Therefore,

Var[RτG(T )] ≤ Var[Rτ+1
G′ (v)] =

∑
i

Var[XiRτGi(T )] . (41)

Finally, we bound MτG′(v̄) by considering the maximum influence of a node other than v in
the constructed model G′. For Ti we have

IτG′(Ti) = IτGi(T ) ≤ 1
pi

IτG(T ) , (42)

where the last inequality follows from (40). We next consider nodes zi ∈ Vi that is a map of
a node z ∈ V .

IτG′(zi) = IτGi(z) ≤
1
pi

IτG(z) . (43)

The last inequality follows because for any node z ∈ v we have IτG(z) =
∑r
i=1 piI

τ
Gi(z).

Combining (42) and (43) we get

MτG′(v̄) = max
u∈V ′\{v}

IτG′(u) ≤ max
u∈V

max
i

IτGi(u) ≤ max
u∈V

1
mini pi

IτG(u) (44)

= 1
mini pi

max{IτG(T ),max
z∈V

IτG(z)} .

To conclude, we invoke Theorem 2 for the IC model G′:

Var[RτG(T )] ≤︸︷︷︸
(41)

Var[Rτ+1
G′ (v)] ≤︸︷︷︸

Theorem 2

(τ + 1)Iτ+1
G′ (v)MτG′(v̄) .

We then apply inequalities (44) and the equality (40) to obtain the claim. J
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