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Abstract
We study a new model of space-bounded computation, the random-query model. The model is
based on a branching-program over input variables x1, . . . , xn. In each time step, the branching
program gets as an input a random index i ∈ {1, . . . , n}, together with the input variable xi (rather
than querying an input variable of its choice, as in the case of a standard (oblivious) branching
program). We motivate the new model in various ways and study time-space tradeoff lower bounds
in this model.

Our main technical result is a quadratic time-space lower bound for zero-error computations in
the random-query model, for XOR, Majority and many other functions. More precisely, a zero-error
computation is a computation that stops with high probability and such that conditioning on the
event that the computation stopped, the output is correct with probability 1. We prove that for any
Boolean function f : {0, 1}n → {0, 1}, with sensitivity k, any zero-error computation with time T

and space S, satisfies T · (S + log n) ≥ Ω(n · k). We note that the best time-space lower bounds for
standard oblivious branching programs are only slightly super linear and improving these bounds is
an important long-standing open problem.

To prove our results, we study a memory-bounded variant of the coupon-collector problem that
seems to us of independent interest and to the best of our knowledge has not been studied before. We
consider a zero-error version of the coupon-collector problem. In this problem, the coupon-collector
could explicitly choose to stop when he/she is sure with zero-error that all coupons have already been
collected. We prove that any zero-error coupon-collector that stops with high probability in time T ,
and uses space S, satisfies T · (S + log n) ≥ Ω(n2), where n is the number of different coupons.
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1 Introduction

In this paper, we introduce a new model for studying time-space tradeoff lower bounds for
computation, the random-query model. The model is based on a branching program. Roughly
speaking, a branching program of length T and width 2S , over input variables x1, . . . , xn, is
a directed (multi) graph with vertices arranged in T + 1 layers containing at most 2S vertices
each. Intuitively, each layer represents a time step and each vertex represents a memory
state of the program. In layer-0 of the program, there is only one vertex, called the start
vertex. Each leaf of the program is labelled by an element from {0, 1} that we think of as
the output of the program on that leaf.
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20:2 The Random-Query Model and the Memory-Bounded Coupon Collector

In a standard branching program, every non-leaf vertex v in the program is labeled by an
input variable xv and has 2 outgoing edges, labeled by 0 and 1, going into vertices in the
next layer. Intuitively, xv is the input variable read by the vertex v. The program is called
oblivious if all the vertices in the same layer read the same input variable. Given a branching
program, the input x1, . . . , xn defines a computation-path, by starting from the start vertex
and following in each step the edge labeled by the value of the corresponding input variable.
The program outputs the label of the leaf reached by the computation path.

In the random-query model, every non-leaf vertex v in the program has 2n outgoing
edges, labeled by each element of {1, . . . , n} × {0, 1} exactly once. Given such a program
and input x1, . . . , xn, the computation-path starts from the start vertex and follows in each
step the edge labeled by (i, xi), where i ∈ {1, . . . , n} is random. (Intuitively, the program
reads a random index i ∈ {1, . . . , n}, together with the input variable xi). As before, the
program outputs the label of the leaf reached by the computation path.

1.1 Motivation
We have various motivations to study the new model. First, it seems to us an interesting
model in its own right. The standard model of space-bounded computation is not always
fully convincing in all settings, as it is not clear why would a machine be able to store for
free the n input variables, while at the same time have a very restricted (typically, of size
much smaller than n) additional memory. Moreover, in various situations the random-query
model seems to be the natural one to use. Consider for example the following situation:
you are at a party and you want to know if the majority of the participants prefer coffee or
tea. (Assume that you know the number of participants in the party, that that number is
odd and that you know all participants (or they are labeled 1, . . . , n)). Assume that at each
time step you meet a random participant and she/he tells you their preference. How long
would it take to figure out if the majority prefers coffee or tea if your memory is bounded?
Another example may be a distributed setting where n players have one input variable each
and they keep sending these input variables to a central player who needs to compute a
Boolean function of all of them. However, the input variables arrive to the central player in
an arbitrary order.

Second, we study time-space lower bounds for the random-query model in order to make
progress in proving time-space lower bounds for standard (oblivious) branching programs.
Time-space lower bounds for branching programs have been studied in numerous works (see
for example [3, 2, 1, 5, 6]). Currently, the best time-space lower bounds for any explicit
function are only slightly super linear and improving these lower bounds has been a very
important and long standing open problem in computational complexity. In section 5, we
show that various extensions of our results would imply such strong time-space lower bounds.
Roughly speaking, our time-space lower bounds for the random-query model are proved for
the case where the indices i1, i2, i3, . . . of the input variables read by the program at time
steps 1, 2, 3, . . . are mutually independent random variables, while in order to extend these
lower bounds to standard branching programs one needs to generalize the proofs to the case
where some of these indices are known to be the same. Interestingly, the key component of
our proof, Theorem 2, does apply to the more general case where some of the indices are
known to be the same. However, the main results do not.

Third, the new model is related to several other problems that have been studied recently.
First, it is related to the recent line of works on proving time-space lower bounds for learning
(see for example [16, 18, 14, 11, 12, 15, 13, 4, 8, 7, 17, 9]). Indeed, computing a function
f : {0, 1}n → {0, 1} in the random-query model is equivalent to the task of distinguishing
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between the following two families of distributions (which is a learning task1): For x ∈ {0, 1}n,
let Dx be the distribution of the random variable (i, xi), where i ∈ {1, . . . , n} is uniformly
distributed. The task is to distinguish between a distribution taken from {Dx}x:f(x)=0 and a
distribution taken from {Dx}x:f(x)=1, from a stream of independent samples. Second, the
random-query model is similar to a recently studied model of streaming complexity, where
a source of i.i.d samples of edges of a graph is considered [10]. In particular, [10] studied
approximation algorithms for the maximum matching problem in that model. The main
difference from our model is that they studied the space needed for approximate computation
in the case where the number of samples is smaller than the number of input variables, while
we study time-space tradeoffs for exact computation in the case where the number of samples
may be much larger than the number of input variables.

Finally, it turns out that in the zero-error case, the random-query model is closely related
to a memory-bounded variant of the coupon-collector problem, a problem that seems to be
of independent interest and to the best of our knowledge has not been studied before. In our
variant of the problem, the coupon collector gets a stream of random elements from the set
{1, . . . , n} and needs to stop when she is sure with zero-error that all elements of {1, . . . , n}
have already passed. The question is what is the time T needed when the memory size of
the coupon collector is bounded by S.

1.2 Our Results
In Theorem 5, we prove that any algorithm for the zero-error coupon-collector problem that
runs in time T and space S satisfies T · (S + logn) ≥ Ω(n2). This result is essentially tight.
In Theorem 6, we prove that in the random-query model, any zero-error computation of
XOR or Majority (or any other function with sensitivity Ω(n)) that runs in time T and space
S satisfies T · (S + logn) ≥ Ω(n2). The results for XOR and Majority are essentially tight
(See Remarks 8 and 9 for the discussions on tightness). More generally, in the random-query
model, any zero-error computation of a function with sensitivity k that runs in time T and
space S satisfies T · (S + logn) ≥ Ω(n · k).

A very interesting open problem is to prove similar time-space lower bounds for the
random-query model in the bounded-error case, rather than the zero-error case (Conjecture 1).

In Theorem 2, we prove time-space lower bounds for a special type of branching programs
called set-labeled branching programs, in the random-query model. Intuitively, a set-labeled
branching program is a branching-program for the coupon-collector problem, such that each
vertex in the program “remembers” a set of coupons that must have been collected if that
vertex was reached.

1.3 Paper Organization
The paper is organized as follows. In section 3, we prove the tight time-space lower bound
for set-labeled branching programs, in the random-query model. In section 4, we reduce
zero-error computation tasks in the random-query model, including the coupon-collector
problem and function evaluation, to set-labeled branching programs, and hence prove tight
time-space lower bounds for both problems. In section 5, we illustrate how lower bounds in
the random-query model with special input distribution imply lower bounds for oblivious
branching programs.

1 Technically it is a testing task, which is easier than learning.
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2 Preliminaries

For an integer n, we use [n] to denote {1, 2, . . . , n}. For any set A and an n-tuple x ∈ An, we
use xi to denote the i-th element of x. For any x ∈ {0, 1}n, let x(i) be the vector that is the
same as x but with the i-th coordinate flipped. Given a boolean function f : {0, 1}n → {0, 1},
let s(f, x) be the sensitivity of f at x, that is the number of coordinates i ∈ [n] such that
f(x(i)) 6= f(x), and let s(f) = maxx s(f, x) be the sensitivity of f .

2.1 Coupon-Collector Problem
The classical coupon-collector problem asks how large T should be, so that a uniformly
random T -tuple in [n]T contains every element of [n] with high probability. Generalizing the
goal to a subset A ⊆ [n], we have the following answer:

I Proposition 1. Given any subset A ⊆ [n], for a uniformly random i ∈ [n]T , the probability
that A * {i1, . . . , iT } is at most n(1 + log |A|)T−1.

The proof follows directly from the fact that the expected waiting time for every element in
A to appear is n

∑|A|
j=1 j

−1 ≥ n(1 + log |A|), and Markov’s inequality.
In this paper, we consider a zero-error version of the coupon-collector problem. In this

problem, the coupon collector could explicitly choose to stop when she is sure with zero-error
that every element in A has already been collected. The results in this paper show that with
bounded memory, the zero-error coupon-collector cannot stop within few (say, O(n log |A|))
turns with high probability, in contrast to the proposition above.

2.2 Random-Query Model
In the random-query model, at each step t ∈ N+ a uniformly random index it ∈ [n] is
provided. When the problem specifies an input x ∈ {0, 1}n, at each step t the value of the
bit xit ∈ {0, 1} is also given along with the random index it. In this paper, we consider two
cases for the joint distribution of the indices:
Independent The indices i1, i2, . . . are mutually independent.
Recurring The only dependencies allowed among i1, i2, . . . are equalities. More formally,

there is a partition p : Z+ → Z+, such that it = i′p(t) for every t ∈ Z+, where i′1, i′2, . . .
are mutually independent and uniformly random over [n].

For the rest of the paper, we refer to the two cases as independent distribution and recurring
distributions. Notice that the independent distribution is a special case of the recurring ones.
The recurring distributions are closely related to oblivious branching programs; see Section 5
for a detailed discussion.

2.3 Computational Models
The computational models we consider are based on branching programs. A branching
program of length T and width 2S is a directed (multi) graph with vertices arranged in T + 1
layers containing at most 2S vertices each. Denote the set of vertices in the i-th layer by Li,
for i = 0, 1, . . . , T . In L0 there is only one vertex, called the start vertex. Every vertex in LT
has out-degree 0, and is called a leaf. The outgoing edges from every non-leaf vertex in Li
only go to vertices in Li+1, for every i < T .

A simple branching program is one such that every non-leaf vertex has n outgoing edges,
labeled with each element in [n] exactly once. We consider two types of simple branching
programs:
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A set-labeled branching program is a simple branching program, where every vertex v is
labeled with a set H(v) ⊆ [n], satisfying the following soundness condition: if an edge
from vertex u to vertex v is labeled with i ∈ [n], it must hold that H(v) ⊆ H(u) ∪ {i}.
The start vertex must be labeled with ∅.
A branching program for the coupon-collector problem is a simple branching program
such that every leaf is labeled with either “accept” or “reject”.

When the indices i1, . . . , iT ∈ [n] are given, the computation path in a simple branching
program starts from the start vertex, and at step t follows the edge labeled with it until
reaching a leaf v, and outputs the label of v.

Given a function f : {0, 1}n → {0, 1}, a branching program computing f is one such that
every non-leaf vertex has 2n outgoing edges, labeled with each element in [n]×{0, 1} exactly
once. Every leaf v in the program is labeled with an output f̃v ∈ {0, 1,�}. When an input
x ∈ {0, 1}n and the indices i1, . . . , iT ∈ [n] are given, the computation path in the branching
program starts from the start vertex, and at step t follows the edge labeled with (it, xit)
until reaching a leaf v, and outputs f̃v.

In the random-query model where the indices i1, . . . , iT are given according to a specified
distribution, we define the success of every type of branching program as follows:

We say that a set-labeled branching program succeeds on A ⊆ [n], if the probability that
the output of the branching program H(v) ⊇ A is at least 1/2.
For the coupon-collector problem, we say the branching program collects A ⊆ [n] with
zero-error, if the probability that the branching program outputs “accept” is at least 1/2,
and conditioned on outputting “accept”, the probability that {i1, . . . , iT } ⊇ A is 1.
For computing a function f , we say that the branching program computes f with error ε, if
for every x ∈ {0, 1}n, the probability that the output of the branching program f̃v = f(x)
is at least 1− ε. We say that the branching program computes f with zero-error, if for
every x ∈ {0, 1}n, the probability that the output of the branching program f̃v ∈ {0, 1}
is at least 1/2, and the probability that f̃v = 1− f(x) is zero.

3 Lower Bounds for Set-Labeled Branching Programs

In this section, we prove the following theorem:

I Theorem 2. Under the random-query model with any recurring distribution, for any set
A ⊆ [n], any set-labeled branching program of width 2S ≥ |A| that succeeds on A must have
length at least n|A|

8S for sufficiently large n.2

Fix such a set-labeled branching program. We first prove an upper bound on the
probability of the computation path reaching two given vertices:

I Lemma 3. For any two vertices u, v in a set-labeled branching program, where u ∈ Li,
v ∈ Lj and i < j. Under the random-query model with any recurring distribution,

Pr[reaching u ∧ reaching v] ≤
(
j − i
n

)|H(v)\H(u)|
.

2 Notice that by definition, a branching program of width 2S < |A| is also a branching program of width
|A|. Therefore for smaller widths, the theorem still holds, but with an additional log|A| overhead on S.
Theorems 5 and 6 work similarly.

ITCS 2020
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Proof. Let p : Z+ → Z+ be the partition for the recurring distribution. Let ` = |{p(k) |
i < k ≤ j}|. The indices received from the random queries between layer i and layer j are
uniformly distributed over [n]`. Let G be the random variable that represents the set of
indices received between layer i and layer j. By the soundness requirement of set-labeled
branching programs, if the computation path reaches u and then v, the set G corresponding
to this path must satisfy H(v) ⊆ H(u) ∪G. Therefore,

Pr[reaching u ∧ reaching v] ≤ Pr[H(v) ⊆ H(u) ∪G] = Pr[H(v) \H(u) ⊆ G].

If ` < |H(v) \H(u)| then the above probability is zero. Otherwise by (over)counting the
positions where the elements of |H(v) \H(u)| appear and the union bound we have

Pr[H(v) \H(u) ⊆ G] ≤ `!
(`− |H(v) \H(u)|)! · n

−|H(v)\H(u)|

≤
(
`

n

)|H(v)\H(u)|

≤
(
j − i
n

)|H(v)\H(u)|
. J

I Remark 4. For the independent distribution, the above argument yield:

Pr[reaching v | reaching u] ≤
(
j − i
n

)|H(v)\H(u)|
.

The weaker result in Lemma 3, however, holds more generally for any recurring distribution.
It is also strong enough for proving Theorem 2.

Proof for Theorem 2. Suppose the length of the set-labeled branching program is T . Define
the weight of a vertex v as W (v) = Pr[reaching v]. For a set of vertices A, let W (A) =∑
v∈AW (v). Since the leaves are all in LT , for every 0 ≤ i ≤ T we have W (Li) = 1. The

fact that the branching program succeeds on A ⊆ [n] translates to:∑
v∈LT

A⊆H(v)

W (v) ≥ 1/2. (1)

We divide the branching program into |A|2S stages, each consists of a consecutive part of
the layers. For every 0 ≤ k ≤ |A|2S , let ik be the smallest index of a layer Li such that∑

v∈Li

|H(v)|≥2kS

W (v) ≥ kS

|A|
.

By (1) we know such a layer must exist. Now the k-th stage consists of the layers from Lik
to Lik+1−1. Let

Ak = {u ∈ Lik | |H(u)| ≥ 2kS}, Bk = {u ∈ Lik−1 | |H(u)| < 2kS}.

By the definitions of ik, we know that W (Ak) ≥ kS/|A|, W (Bk) > 1− kS/|A|.
Now we show that every stage contains at least (n/3−1) layers. Suppose for contradiction

that for some k, it holds that ik+1− ik < n/3− 1. For any two vertices u ∈ Bk and v ∈ Ak+1,
by Lemma 3 we have

Pr[reaching u ∧ reaching v] ≤
(
ik+1 − ik + 1

n

)|H(v)\H(u)|
< 3−2S .
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Therefore, applying the union bound gives:

Pr[reaching Lik−1 ∧ reaching Lik+1 ]
≤Pr[reaching Lik−1 \ Bk] + Pr[reaching Lik+1 \ Ak+1] + Pr[reaching Bk ∧ reaching Ak+1]

≤1−W (Bk) + 1−W (Ak+1) +
∑

u∈Bk
v∈Ak+1

Pr[reaching u ∧ reaching v]

<
kS

|A| + 1− (k + 1)S
|A| + 2S · 2S · 3−2S < 1.

The second last step is because there are at most 2S vertices in each layer, and the last step
is because 2S ≥ |A|. However, since the computation path must pass through both Lik−1
and Lik+1 , the probability above must be 1, which is a contradiction.

Thus we conclude that, for n large enough, ik+1 − ik ≥ n/3− 1 ≥ n/4. Therefore,

T ≥
∑

0≤k<|A|/2S

(ik+1 − ik) ≥ n|A|
8S J

4 Lower Bounds for Zero-error Computations under Independent
Distribution

I Theorem 5. Under the random-query model with the independent distribution, for any set
A ⊆ [n], any branching program for the coupon-collector problem of width 2S ≥ |A| which
collects A with zero-error must have length at least n|A|

8S for sufficiently large n.

Proof. We show that for such a branching program, we can assign each vertex v with a
label H(v) ⊆ [n] so that the branching program is set-labeled. Let P (v) be the collection
of directed paths from the starting vertex to v. For every directed path p let h(p) be the
collection of indices labeled on the edges of p. Then we define H(v) = ∩p∈P (v)h(p).

The starting vertex is clearly labeled with the empty set. To check the soundness, consider
an edge e from vertex u to vertex v labeled with i. For every path p ∈ P (u), the concatenation
pe is a path in P (v), and h(pe) = h(p) ∪ {i}. Therefore H(v) ⊆ ∩p∈P (u)h(pe) = H(u) ∪ {i}.

Notice that every path from the starting vertex to a leaf corresponds to a collection of
indices i1, . . . , iT , that are given with probability n−T > 0 under the independent distribution.
Since the branching program collects A with zero-error, for every path to an “accept” leaf
it must holds A ⊆ {i1, . . . , iT }, so every “accept” leaf v is now labeled with H(v) ⊇ A.
Therefore, as a set-labeled branching program it succeeds on A. By Theorem 2 we know the
length of the branching program is at least n|A|

8S for sufficiently large n. J

I Theorem 6. Let f : {0, 1}n → {0, 1} be a boolean function with sensitivity s(f). Under
the random-query model with the independent distribution, any branching program of width
2S ≥ n which computes f with zero-error must have length at least n·s(f)

8S for sufficiently
large n.

Proof. Suppose there is a branching program P of width 2S and length T that computes f
with zero-error. Let x ∈ {0, 1}n be an input such that s(f) = s(f, x), and let A = {i ∈ [n] |
f(x) 6= f(x(i))}. We show below that from P, one can extract a simple branching program
P ′ for the coupon-collector problem of width at most 2S and length T , which collects A with
zero-error. Since |A| = s(f), by Theorem 5 we know T ≥ n·s(f)

8S for sufficiently large n.

ITCS 2020
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We construct P ′ inductively to simulate P on input x. For vertex v in P we use v′ to
denote its corresponding vertex in P ′. The start vertex v′0 in P ′ corresponds to the start
vertex v0 in P. If in P there exists an edge from u to v labeled with (i, xi), and u′ is in P ′,
then add v′ to P ′ (if v′ is not already there), and add an edge from u′ to v′ labeled with
i. Finally, for every leaf v′ in P ′, label v′ with “accept” if f̃v = f(x), otherwise label v′
with “reject”.

First notice that under the independent distribution, the probability of reaching a vertex
v′ in P ′ is exactly the same as the probability of reaching v in P with the input x. Since the
probability that P outputs f(x) on input x is at least 1/2, the probability that P ′ outputs
“accept” is also at least 1/2.

We now show that conditioned on reaching a leaf v′ in P ′ labeled with “accept”, it must
hold that A ⊆ {i1, . . . , iT }. Suppose not, then for some index i ∈ A there is a path p′ from
the start vertex to v′ where no edge is labeled with i. Consider the corresponding path p in
P . On input x(i), the computation follows the path p with non-zero probability and outputs
f̃v = f(x) 6= f(x(i)), which contradicts the zero-error property of P. That concludes the
proof that P ′ collects A with zero-error. J

For the large class of functions with sensitivity Ω(n), Theorem 6 provides the quadratic
time-space lower bound:

I Corollary 7. Let f be a boolean function on n-bits with sensitivity Ω(n) (For instance, AND,
XOR, Majority, s-t connectivity, etc.). Under the random-query model with the independent
distribution, any branching program of width 2S ≥ n which computes f with zero-error must
have length Ω(n2/S).

I Remark 8. Theorem 6 is tight up to logarithmic factors, in the sense that for every
m ≤ n, the function x1 ⊕ · · · ⊕ xm can be computed with zero-error within S space and
O(nmS−1 logn) steps. We briefly sketch the algorithm here: Equally partition [m] into
O(mS−1) parts, each of size O(S). For each part P , use O(n logn) steps to record the values
xi for all indices i ∈ P . If any i ∈ P does not appear within these O(n logn) steps, output
�. Otherwise compute the partial parity

⊕
i∈P xi, and accumulate the partial parities.

As the lower bound in Theorem 6 is derived directly from Theorem 5 and further from
Theorem 2, variants of the above algorithm also imply that Theorems 2 and 5 are tight up
to logarithmic factors.

Similar to the case in the coupon-collector problem, the zero-error guarantee is crucial
to Theorem 6, since for instance, the n-bit AND function can be computed with constant
error by a branching program of length O(n) and width O(1). However, when specified to
the parity function, the best trade-off seems to be still quadratic even in the bounded-error
setting. We propose the following conjecture:

I Conjecture 1. Under the random-query model with the independent distribution, any
branching program of length T and width 2S which computes x1 ⊕ · · · ⊕ xn with error 1/3
must satisfy TS = Ω̃(n2).

I Remark 9. Besides the algorithm mentioned above, there is another essentially different
algorithm for computing parity (which actually computes the Hamming weight) with bounded
error: Equally partition [n] into O(S/ logn) parts. For each part P , record the number of steps
t when a pair (i, xi) such that i ∈ P and xi = 1 is received, and finally approximate the partial
sum

∑
i∈P xi with the integer closest to tn/T . By Chernoff bound, T = O(n2S−1 log2 n) is

enough so that the approximation of each part is wrong with probability O(n−1).
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Notice that this algorithm does not work in the zero-error setting. While the previous
algorithm corresponds directly to a set-labeled branching program, it is not clear whether
this approximation algorithm is related to set-labeled branching programs or not.

5 Oblivious Branching Programs and Random-Query Model

The random input model with recurring distributions is closely related to oblivious branching
programs. In this section, we present two potential directions to prove strong lower bounds
for oblivious branching programs, both via proving lower bounds in the random-query model.
Let SURJn,m : [n]m → {0, 1} be the surjectivity function: SURJn,m(i) = 1 if and only
{i1, . . . , im} = [n].

I Theorem 10. For any m ≥ 2n(logn+ 1), any deterministic oblivious branching program
computing SURJn,m is also a branching program for the coupon-collector problem that collects
[n] with zero-error under some recurring distribution.

Proof. Suppose at level t− 1 the oblivious branching program reads ip(t), for some function
p : Z+ → [m]. Use p as the partition in the recurring distribution in the random-query
model, then the computation of the branching program for the coupon-collector problem
is exactly the same as in the oblivious branching program with a uniformly random input
i ∈ [n]m. Proposition 1 shows that the probability of SURJn,m(i) = 1 is at least 1/2. As the
deterministic oblivious branching program always outputs correctly, as a branching program
for the coupon-collector problem it succeeds with zero-error. J

For any function f : {0, 1}n → {0, 1} and m ≥ n, let f∗ : [n]m × {0, 1}m → {0, 1} be a
partial function defined as follows: f∗(i, y) is well-defined for i ∈ [n]m and y ∈ {0, 1}m, if
and only if SURJn,m(i) = 1, and whenever ij = ik it must hold yj = yk. When f∗(i, y) is
well-defined, the value of f∗(i, y) is f(yj1 , . . . , yjn), where for every ι ∈ [n], jι is some j ∈ [m]
such that ij = ι.

I Theorem 11. Given any function f : {0, 1}n → {0, 1}. For any m ≥ 3n(logn + 1), if
there is a deterministic oblivious branching program computing f∗ of length T and width 2S
(on the inputs where f∗ is well-defined), then there is a branching program of the same length
and width, that computes f with error 1/3 in the random-query model under some recurring
distribution.

Proof. Add dummy levels to the oblivious branching program to double the length, such
that if originally at level t the branching program reads either ij or yj , now it reads ij at
level 2t and yj at level 2t + 1. The oblivious branching program now can be regarded as
the one of length T and width 2S that at each level t reads a pair (ip(t), yp(t)), for some
function p : Z+ → [m]. Use p as the partition in the recurring distribution. For any fixed
x ∈ {0, 1}n, the computation in the random-query model on input x is exactly the same as
in the oblivious branching program with a uniformly random i ∈ [n]m, and input y ∈ {0, 1}m
defined as yj = xij . For such i and y, f∗(i, y) is well-defined if and only if SURJn,m(i) = 1,
and Proposition 1 indicates the probability that f∗(i, y) is well-defined is at least 2/3. Since
whenever f∗(i, y) is well-defined, the deterministic oblivious branching program correctly
outputs f(yj1 , . . . , yjn

) = f(x), as a branching program under the random-query model it
computes f with error 1/3. J

As a corollary, if in the random-query model we were able to prove a time-space lower
bound that holds under any recurring distribution, either for the zero-error coupon-collector
problem, or for any bounded-error computation, we would immediately have the same lower
bound (up to logarithmic factors) on deterministic oblivious branching programs.
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