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Abstract
In many traditional job scheduling settings, it is assumed that one knows the time it will take
for a job to complete service. In such cases, strategies such as shortest job first can be used to
improve performance in terms of measures such as the average time a job waits in the system. We
consider the setting where the service time is not known, but is predicted by for example a machine
learning algorithm. Our main result is the derivation, under natural assumptions, of formulae for the
performance of several strategies for queueing systems that use predictions for service times in order
to schedule jobs. As part of our analysis, we suggest the framework of the “price of misprediction,”
which offers a measure of the cost of using predicted information.
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1 Introduction

While machine learning research seems to be growing at an exponential rate, there seems
to be surprisingly little overlap with “traditional” algorithms and data structures and their
analysis. Here we attempt to bridge this gap for the area of job scheduling, providing a
general framework that may prove useful for additional problems.

Although we begin with settings with a finite number of jobs in order to provide insight
into our approach, our main results are in the area of queueing systems. In this setting,
we assume there is some algorithm (such as a neural network or other machine learning
algorithm) that predicts the job time1 upon entry; we model this predictor via a density
function g(x, y), so that g(x, y) is the probability density for a job having actual service time
x and predicted service time y. We emphasize that only the predicted service time is known
to the system on the job’s arrival, and we need not assume that the joint distribution is known
in order to perform the scheduling. Rather, we use the joint distribution to derive equations
for queue performance. This probabilistic model is sensible under the assumption that the
true distribution of jobs is not changing over time, and the prediction quality is not changing
over time; such assumptions frequently appear in settings utilizing machine learning.

In standard queueing theory, under standard assumptions such as Poisson arrivals, and
independent service times, one can derive formulae for the behavior of many natural scheduling
strategies, including shortest job first (SJF) and shortest remaining processing time (SRPT),
which both minimize the average time a job spends in the system. (Shortest job first assumes

1 We use the terms job time, service time, and processing time interchangeably; historically these different
terms have all been used.
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14:2 Scheduling with Predictions

no preemption; shortest remaining processing time allows preemption.) In the setting where
job times are predicted, we refer to the corresponding natural strategies as shortest predicted
job first (SPJF) and shortest predicted remanining processing time (SPRPT). Our main
result is to derive formulae for the expected time a job spends in the system for such
strategies; the formulae can be computed in terms of the density function g(x, y). We further
provide some empirical evidence from simulations that even weak predictions can yield very
good performance.

More generally, we consider the cost of using predictions in place of accurate job service
times, and introduce the concept of the price of misprediction to describe this cost. Our
results provide the price of misprediction for these basic strategies.

We emphasize that our goal here is not to develop specific prediction methods, and we do
not do so in this work. Rather, our goal is to show that given a real or hypothetical prediction
system matching our assumptions, we can develop equations for its performance. This general
framework may apply to a variety of machine learning methods. In this way, we aim to
extend traditional queueing theoretic formulations to the general setting where machine
learning prediction systems are available. Just as queueing theoretic models and results
have historically guided many real-world systems (see, e.g., [12, 16, 17] for background),
our motivation stems from the idea that extending such models and results to setting with
predictions will enhance the use of machine learning prediction in real-world systems that
use queues. Indeed, we further hope that our approach may prove useful for the analysis of
other traditional algorithms and data structures.

2 Related Work

While traditional algorithmic analysis focuses on worst-case algorithm behavior, there is a
growing movement to develop frameworks that go beyond worst-case analysis [27]. While
such frameworks have existed in the past, most notably via probabilistic analysis (e.g., [24]),
semi-random models (e.g., [7, 9]), and smoothed analysis [31], one natural approach that has
received little attention is the use of machine-learning-based approaches to provide predictions
to algorithms, with the goal of realizing provable performance guarantees. (The idea of using
machine learning to give hints as to which heuristic algorithm to employ has been considered
in meta-heuristics for several large-scale problems, most notably for satisfiability [33]; this is
a distinct line of work.)

Notable recent work with this theme is that of Lykouris and Vassilvitskii [20], who show
how to use prediction advice from machine learning algorithms to improve online algorithms
for caching in a way that provides provable performance guarantees, using the framework of
competitive analysis. A series of recent papers consider the setting of optimization with noise,
such as in settings when sampling data in order to obtain values used in an optimization
algorithm for submodular functions [2, 14, 3, 4, 5, 26]. Other recent works analyze the
performance of learned Bloom filter structures [19, 23], a variation on Bloom filters [6] that
make use of machine learning algorithms that predict whether an element is in a given fixed
set as a subfilter structure, and heavy hitter algorithms that use predictions [15]. One prior
work in this vein has specifically looked at scheduling with predictions in the setting of a
fixed collection of jobs, and considered variants of shortest predicted processing time that
yield good performance in terms of the competitive ratio, with the performance depending
on the accuracy of the predictions [25].

In scheduling for queues, some works have looked at the effects of using imprecise
information, usually for load balancing in multiple queue settings. For example, Mitzenmacher
considers using old load information to place jobs (in the context of the power of two
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choices) [21]. A strategy called TAGS studies an approach to utilizing multiple queues when
no information exists about the service time; jobs that run more than some threshold in the
first queue are cancelled and passed to the second queue, and so on [11].

For single queues, the setting examined in this paper, Wierman and Nuyens look at
variations of SRPT and SJF with inexact job sizes, bounding the performance gap based on
bounds on how inexact the estimates can be [32]. Dell’Amico, Carra, and Michardi note that
such bounds may be impractical, as outliers in estimating job sizes occur frequently; they
empirically study scheduling policies for queueing systems with estimated sizes [8]. We note
[8] points out there are natural methods to estimate job size, such as by running a small
portion of the code in a coding job; we expect this or other inputs would be features in a
machine learning formulation. Recent work by Scully and Harchol-Balter have considered
scheduling policies that are based on the amount of service received, where the scheduler
only knows the service received approximately, subject to adversarial noise, and the goal is
to develop robust policies [29]. Our work differs from these past works in providing a model
specifically geared toward studying performance with machine-learning based predictions,
along with corresponding analyses. Finally, we note that our policies appear to fit within
the more general framework of SOAP policies presented by Scully et al. [30] This provides
an alternative approach to analyzing the policies studied here. We present derivations here
based on the original analyses of SJF and SRPT, as we feel they are more instructive and
straightforward.

3 Price of Misprediction

3.1 A Simple Example
To demonstrate our framework, we start with a simple example. Consider a collection of n
jobs j1, . . . , jn, each of one of two types, short or long. Short jobs require time s to process
and long jobs require time ` to process, with s < `. Jobs are to be ordered and then processed
sequentially. When the job times are known, shortest job first is known to minimize the
average waiting time over all jobs. (Here and throughout waiting time is the time spent in
the system before starting being served.) If there are ns short jobs and n` long jobs the
average waiting time is

1
n

(
ns
ns − 1

2 s+ n`
n` − 1

2 `+ n`nss

)
.

That is, on average each of the ns jobs waits for half of the remaining ns − 1 short jobs, and
similarly for the long jobs, and the long jobs further have to wait for all of the short jobs.

We note that asymptotically if we drop lower order terms this is approximately

n2
ss+ n2

``+ 2nsn`s
2n .

For simplicity, we will generally work with asymptotic expressions throughout.
If one has no information about the type of all of the jobs, the optimal policy (under the

assumption that an adversary can present the jobs in a worst-case order) is to randomize
the order of the jobs. In this case, using linearity of expectations, we can find the overall
expected waiting time by finding the expected waiting time of each job. A simple calculation
shows that if there are ns short jobs and n` long jobs the expected waiting time is

1
n

(
ns

(
ns − 1

2 s+ n`
2 `
)

+ n`

(
ns
2 s+ n` − 1

2 `

))
.
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Asymptotically, this is approximately

n2
ss+ n2

``+ nsn`(s+ `)
2n .

Finally, in the prediction setting, when a job’s type is predicted we assume short jobs are
misclassified as long jobs with some probability p and long jobs are misclassified as short
jobs with some probability q. We consider the policy of shortest-predicted-job-first; that is,
we apply shortest-job-first based on the predictions. Our analysis requires multiple cases, as
we must consider the expected waiting time for a job conditioned on whether it was classified
correctly or incorrectly. Considering all of these four cases leads to the following expression
for the expected waiting time when mispredictions occur:

1
n

(
(1− p)ns

(
(1− p)(ns − 1)

2
s +

qn`

2
`

)
+ pns

(
(1− p)(ns − 1)s +

p(ns − 1)
2

s +
(1− q)n`

2
` + qn``

)
+ (1− q)n`

(
(1− q)(n` − 1)

2
` + q(n` − 1)` +

pns

2
s + (1− p)nss

)
+ qn`

(
q(n` − 1)

2
` +

(1− p)ns

2
s

))
.

Asymptotically, this is approximately

n2
ss+ n2

``+ nsn`((2− (p+ q))s+ (p+ q)`)
2n .

This differs from the optimal (asymptotic) expression additively by nsn` (p+q)(`−s)
2n ; it depends

specifically on the “total error” p+ q.
Following the standard terminology2, we might refer to the ratio between the expec-

ted waiting time with imperfect information and the expected waiting time with perfect
information as the price of misprediction. We propose the following definition:

I Definition 1. Let MA(Q; I) be the value of some measure (such as the expected waiting
time) for a system Q given information I about the system using algorithm A, and let
MA(Q;P ) be the value of that metric using predicted information P in place of I when using
algorithm A. Then the price of misprediction is defined as MA(Q; I)/MA(Q;P ).

We note that often the “price of” terminology is used to compare to an optimal algorithm,
while here we are suggesting comparing to a (perhaps non-optimal) algorithm with perfect
information. Of course one could also compare against optimal algorithms, as one does for
online algorithms; see [20], for example.

In the example of short and long jobs above, the asymptotic price of misprediction for
the waiting time is the ratio R given by:

R = n2
ss+ n2

``+ nsn`((2− (p+ q))s+ (p+ q)`)
n2
ss+ n2

``+ nsn`(s+ `)

2 The terms “price of anarchy” [18] and “price of stability” [1] are commonly used in game theoretic
situations, and in particular in job scheduling, when multiple players act in their own self interest
instead of cooperating. One could also view this as a multiplicative form of regret, but we think this
terminology is more general and potentially helpful.
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We can find where the ratio is maximized by considering ns = γn for a constant γ. Some
algebraic work yields that:

R ≤ 1 +
(p+ q)(

√
l/s− 1)

2 ,

giving a bound on the price of misprediction. Note that the setting with no information, or
a random ordering, is equivalent to the case p = q = 1/2, in which case R is bounded by
1 + (

√
l/s− 1)/2.

3.2 General Predictions
More generally, we can consider a setting where each job can be described as an independent
random variable, where the random variable for a job is given by a density distribution
g(x, y); that is, g(x, y) is the density function for a job, where a job has service time x and
predicted service time y. We assume that g(x, y) is “well-behaved” throughout this work,
so that it is continuous and all necessary derivatives exist. (The analysis can be readily
modified to handle point masses or other discontinuities in the distribution.)

It is convenient to let fs(x) =
∫∞
y=0 g(x, y) dy be the density function for the service time,

and fp(y) =
∫∞
x=0 g(x, y) dx be the density function for the predicted service time. If there are

n total jobs, the expected waiting time for a job using shortest job first given full information
is given by

(n− 1)
∫ ∞
x=0

fs(x)
(∫ x

z=0
zfs(z) dz

)
dx,

while the expected waiting time for a job using predicted information using shortest predicted
job first is given by

(n− 1)
∫ ∞
y=0

fp(y)
(∫ ∞

x=0

∫ y

z=0
xg(x, z) dz dx

)
dy.

In words, in the full information case, to compute the expected waiting time for a job, given
its service time, we can determine the probability each other job has a smaller service time
and the conditional value of that smaller service time to compute the waiting time. In the
predicted information case, to compute the expected waiting time for a job given its predicted
service time, we must determine the probability each other job has a smaller predicted service
time and the conditional value of the actual service time of a job given that it has a smaller
predicted service time to compute the waiting time.

Note that the factors of n− 1 are cancelled in the ratio of the expected waiting times, and
the function g suffices to determine to price of misprediction. As an example motivated by
the prevalence of exponential distributions in queueing theory, suppose that service times are
exponentially distributed with mean 1, and a job with service time x has a prediction that is
distributed according to an exponential distribution with mean x. Then g(x, y) = e−x−y/x/x,
fs(x) = e−x, and fp(y) =

∫∞
x=0

e−x−y/x

x dx. We note fp(y) does not appear to have a simple
closed form, though it is expressible in terms of Bessel functions.3 In fact the price of
misprediction can be shown to be exactly 4/3 using the integration features of Mathematica,
and we can directly and formally prove it is exactly equal to 4/3 through a subtle argument
allowing us to evaluate the corresponding integrals; this argument is given in the appendix.

3 This was determined using the integration features of Mathematica 11.3.

ITCS 2020
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In comparison, using no information and just scheduling in sequential order the expected
waiting time is a factor of 2 worse than when using full information. This example, while not
meant to match a real-world example,provides the right high-level intuition, in that it shows
that even a weak predictor can yield significant improvements. Indeed, this is natural; for a
predictor to work well in this setting, it simply has to order most of the jobs correctly in
the queue.

The key here is that the price of misprediction can be computed (at least numerically)
given the density distribution g. In practice, one might use this framework to determine the
benefit of using a predictor; for example, one might seek to trade off the reduction in total
waiting time with the cost of developing or using better prediction methods. While g may
not be known exactly, we expect in practice good approximations for g can be determined
empirically, which in turn will allow a good approximation for the price of misprediction or
related quantities.

We note that, for suitably good prediction schemes, ordering by predicted service time
should naturally correspond to ordering by the expected service time. That is, denote a job
by (X,Y ), where X is a random variable representing the true service time and Y is a random
variable representing the predicted service time. Then suppose the density distribution g
satisfies for any y1, y2 with y1 < y2 the natural inequality

E[X | Y = y1] < E[X | Y = y2].

In this case ordering by predicted service times yields an ordering according to expected
service times.

We now extend these ideas to queueing theoretical models.

4 Single Queue Models

In this section, we present results providing formulae for prediction-based variants of shortest
job first and shortest remaining processing time for single queue systems, which yield
expressions for the price of misprediction. We briefly review the appropriate analysis methods
for standard queues, starting with jobs with priorities, and then extend them prediction
setting.

4.1 Priority-based Systems
Consider a queueing system with k types of jobs, t1, . . . , tk. We assume Poisson arrivals,
and that the arrival rate for type ti is λi, with

∑k
i=1 λi = λ. A natural setting is that the

ith type of job has service time qi, with q1 < q2 < . . . < qk. In this case, with complete
information about the service times, the shortest job first (SJF) strategy (without preemption)
corresponds to a priority-based strategy, with the types corresponding to priorities; t1 has
the highest priority, and so on. More generally, the ith type of job may have a service time
distribution, rather than a fixed service time. We describe this more general case, where job
ti has service distribution Si; here the natural setting is E[S1] < E[S2] < . . . < E[Sk], and
if the types are prioritized by expected service time, the strategy is expected shortest job
first (ESJF).

We describe some standard formula for priority systems, following the framework of [12].
Let ρi = λiE[Si]; this represents the load on the system from jobs of type i. Further,
let ρ =

∑k
i=1 ρi, and W (i) be the distribution of the waiting time in the queue for jobs
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of type i in equilibrium. Also, let S be service time distribution of an incoming job, so
E[S] =

∑k
i=1 λiE[Si]/λ, and ρ = λE[S]. Then the following is known (see Equation (31.1)

of [12]):

E[W (i)] = ρE[S2]
2E[S]

(
1−

∑i
j=1 ρj

)(
1−

∑i−1
j=1 ρj

) .
We now consider a system where types are not known but are predicted, for example

according to a machine learning algorithm. For convenience, going forward, we refer to the
true type of a job for its type, and refer to the machine prediction for a job as the predicted
type where appropriate. We may represent the machine learning algorithm by a matrix M
where mij is the probability that a job of true type i has predicted type j; here we are
assuming that each job labelling can be treated as independent. In this case, let λ′i be the
arrival rate of jobs with predicted type i. Then

λ′i =
k∑
j=1

λjmji.

Correspondingly, the distribution of service times for jobs having predicted type i is that the
job has service time given by S` with probability

λ`m`i/

k∑
j=1

λjmji.

If we use S′i to represent the distribution of service times for jobs having predicted type i,
then

E[S′i] =
∑k
j=1 λjE[Sj ]mji∑k

j=1 λjmji

.

Of course the expected service time S′ over all jobs is

E[S′] =
k∑
i=1

λiE[Si] = E[S].

Assuming we prioritize jobs now according to their predicted type, we may again use the
standard formula for priority systems. We derive the corresponding result. First, let

ρ′i = λ′iE[Si] =
k∑
j=1

λjE[Sj ]mji.

Also let W ′(i) be the distribution of the waiting time in the queue for jobs of predicted type
i in equilibrium. Then

E[W ′(i)] = ρ′E[(S′)2]
2E[(S′)]

(
1−

∑i
j=1 ρ

′
j

)(
1−

∑i−1
j=1 ρ

′
j

)
= ρE[S2]

2E[S]
(

1−
∑i
j=1 ρ

′
j

)(
1−

∑i−1
j=1 ρ

′
j

) .

ITCS 2020
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Hence, by summing over all possible types, we can see that the price of misprediction for
the expected waiting time corresponds to the following expression:

∑k
i=1 λ

′
i

((
1−

∑i
j=1 ρ

′
j

)(
1−

∑i−1
j=1 ρ

′
j

))−1

∑k
i=1 λi

((
1−

∑i
j=1 ρj

)(
1−

∑i−1
j=1 ρj

))−1 .

4.2 Shortest Job First
We now show that the performance of shortest predicted job first, which we denote as SPJF,
can be readily expressed as a limiting case of the priority analysis, similarly to how shortest
job first is the limiting case of a priority queue based on service time. (Here we roughly
follow the methodology of Section 31.3 of [12].) To start, we recall the formula for shortest
job first; this is easily obtained as the limit of the priority system setting, where there are
an infinitely many possible “priorities”, and the priority corresponds to the service time.
Here again let S be the service distribution of an incoming job. Further, let fs(x) be the
corresponding density function, ρx = λ

∫ x
t=0 tfs(t)dt, and ρ = λ

∫∞
t=0 tfs(t)dt. We consider

W (x), the time spent waiting in the queue (not being served) for jobs with service time x in
equilibrium. Then for standard shortest job first without preemption, where we know the
exact service times without prediction, it is known that

E[W (x)] = ρE[S2]
2E[S] (1− ρx)2 .

The overall expected time waiting in a queue, which we denote by E[W ] where W is the
waiting time in queue of an incoming job, is then simply

E[W ] =
∫ ∞
x=0

f(x)E[W (x)] dx.

We now generalize this to SPJF. For a non-preemptive queue that uses a service time
estimate, if g(x, y) is the joint distribution that a job has service time x and predicted service
time y, we again let fs(x) =

∫∞
y=0 g(x, y) dy be the density function for the service time, and

fp(y) =
∫∞
x=0 g(x, y) dx be the density function for the predicted service time. We also let

ρ′y = λ
∫ y
t=0
∫∞
x=0 xg(x, t) dx dt to be the load on the system associated with jobs of predicted

service time up to y. With the assumption that each job’s service time characteristics are
independently determined according to g(x, y), if we let W ′(y) be the distribution of time
spent waiting in the queue for a job with predicted service time y in equilibrium, then

E[W ′(y)] = ρE[S2]
2E[S]

(
1− ρ′y

)2 ,

where W ′(y) is the distribution of time in the queue for jobs with predicted service time y.
Integrating over service time or predicted services time gives us that the price of misprediction
is given by:∫∞

y=0
fp(y)

(1−ρ′y)2 dy∫∞
x=0

fs(x)
(1−ρx)2 dx

.
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Let us again consider the example of service times that are exponentially distributed with
mean 1, where a job with service time x has a prediction that is distributed according to an
exponential distribution with mean x. Then the price of misprediction can be expressed as

∫∞
y=0

∫∞
x=0

e−x−y/x

x dx

(1−λ
∫ y

t=0

∫∞
x=0

e−x−y/x dx dt)2 dy∫∞
x=0

e−x

(1−λ(1−(x+1)e−x))2 dx
.

While there does not appear to be a simple closed form for this expression, it can be readily
evaluated numerically for a given λ.

We note that a similar analysis can be used for preemptive shortest predicted job first
(PSPJF), where a job may be preempted by another job that has an originally shorter
predicted time (note that the time a job has been serviced is not considered). This is
because preemptive shortest job first (PSJF) can be represented as the limit of a preemptive
priority-based system (as in Section 32.3 of [12]), leading to a similar analysis. (We provide
the analysis in the appendix.)

4.3 Shortest Remaining Processing Time
A more challenging variation involves extending the shortest remaining processing time
(SRPT) policy to predictions. With complete information, SRPT maintains the remaining
processing time for each job, and the job being processed can be preempted by an incoming
job with service time smaller than the remaining processing time. To generalize to the
prediction setting, we follow the framework of Schrage and Miller [28], who presented an
analysis of SRPT. (See also [10] for a similar derivation, or [12] for an alternative.) Because
the system is preemptive, it makes sense to consider the total time in the system, rather than
the waiting time (as jobs may have further waits after they start being served). Because of
the complexity of the expressions, we do not have a clean form for the price of misprediction,
but they can be found from the derived formulae.

Before starting, we note a key issue in using SPRPT and how we describe the predicted
remaining service time. Suppose that the original predicted service time for a job is y, but
the actual service time is x > y. If the amount of service received by the job has been t, then
the remaining service time is x− t, and it is natural to use y − t as the predicted remaining
service time. Of course, at some point we will have t > y, and the predicted remaining
service time will be negative, which seems unsuitable.

Here we simply use (y − t)+ = max(y − t, 0) as the predicted remaining service time.
We recognize that this remains problematic; clearly the predicted remaining service time
should be positive, and ideally would be a function f(y, t). However, determining the
appropriate function would appear to require some knowledge of the joint distribution g(x, y);
our aim here is to explore simple, general approaches that are agnostic to the underlying
distribution g, such as SPRPT. We therefore leave the question of how to optimize the
estimate of the predicted remaining time to achieve the best performance in this context
as future work. It is worth noting, though, that [8] finds empirically that with sufficiently
heavy-tailed service distributions and inaccurate predictions, large jobs whose service times
are significantly underestimated can delay many short jobs, leading to very poor performance.
They correspondingly suggest policies to deal with these situations, either sharing the
processor among jobs in some cases, or suggesting PSJF over SPRPT.

We again use g(x, y) for the joint distribution that a job has service time x and predicted
service time y, and let fs(x) =

∫∞
y=0 g(x, y) dy, fp(y) =

∫∞
x=0 g(x, y) dx, ρx = λ

∫ x
t=0 tfs(t) dt,

and ρ′y = λ
∫ y
t=0
∫∞
x=0 g(x, t)x dx dt. The expected time in the system in equilibrium for a job

ITCS 2020



14:10 Scheduling with Predictions

can be expressed as the sum of its residence time (time in the system once it has started
receiving service) and it waiting time (time spent waiting before being served). For SRPT, a
job with service time x has mean residence time∫ x

t=0

dt

1− ρt
;

one can think of this as the remaining service times drop from t to 0, at any instant there is
a possible addition (given by the 1/(1− ρt) factor) due to preemptions.

The corresponding mean residence time for a job of service time x and predicted service
time y under SPRPT is∫ x

t=0

dt

1− ρ′(y−t)+
.

That is, here the predicted remaining processing time drops from y to (y−t)+ = max(y−t, 0);
it is possible the predicted remaining processing time is 0, but the job continues to require
service, in which case we leave its predicted remaining processing time at 0, and it cannot be
preempted. It follows that the mean residence time E[R(y)] for a job of predicted service
time y is

E[R(y)] =
∫ ∞
x=0

g(x, y)
fp(y)

∫ x

t=0

dt

1− ρ′(y−t)+
dx.

We now compute the waiting time, which is more difficult. The steady-state probability
that an arriving job finds the server working on a job whose remaining predicted processing
time is less than q is given by

b(q) = ρ′q + λ

∫ ∞
t=q

∫ ∞
x=0

g(x, t)(x− (t− q))+ dx dt.

The first term comes from arrivals with predicted service time less than q; the second
term comes from jobs that start with predicted service time greater than q, but later their
remaining predicted service time falls below q.

If Y (q) is the length of a busy period where all jobs processed have predicted remaining
processing times less than q, then the waiting time W (q) for a job of predicted service time
q is given by:

E[W (q)] = b(q) E[Y (q)2]
2E[Y (q)] .

To find the first two moments of Y (q), we use the fact that the length of the busy period
Y (q) has the same distribution as the busy period for a first-come, first-served server where
the job that initiates the busy period has processing time according to some distribution
Z(q), where additional jobs have a processing time distribution X(q), and the arrivals are
Poisson with rate λFp(q), for Fp(q) =

∫ q
x=0 fp(x)dx. We require the first two moments of

Z(q) and X(q).
The moments for X(q) are fairly straightforward, as X(q) corresponds to the processing

time of a job with predicted processing time at most q:

E[X(q)] = 1
Fp(q)

∫ q

t=0

∫ ∞
x=0

g(x, t)x dx dt,

and

E[X(q)2] = 1
Fp(q)

∫ q

t=0

∫ ∞
x=0

g(x, t)x2 dx dt.
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To determine the first two moments of Z(q), we note that there are two ways a job can
start the corresponding busy period. It either arrives when a busy period is not in progress
and has predicted processing time at most q, or it is a job with predicted processing time
greater than q (which starts a busy period when the predicted processing time reaches q).
Note that in the second case, if the predicted processing time t is greater than q, but the
actual processing time x is such that x < t − q, then the job cannot start a busy period,
as the job will finish before the remaining predicted processing time reaches q. (Ideally,
such situations should not occur with a suitably good predictor, but it must be taken into
account.) Hence the probability a job initiates a corresponding busy period is

d(q) = (1− b(q))Fp(q) +
∫ ∞
t=q

∫ ∞
x=t−q

g(x, t) dx dt.

If we let (for typesetting reasons)

a1(q) = (1− b(q))
∫ q

t=0

∫ ∞
x=0

g(x, t)x dx dt

+
∫ ∞
t=q

∫ ∞
x=t−q

g(x, t)(x− (t− q)) dx dt

and

a2(q) = (1− b(q))
∫ q

t=0

∫ ∞
x=0

g(x, t)x2 dx dt

+
∫ ∞
t=q

∫ ∞
x=t−q

g(x, t)(x− (t− q))2 dx dt

then

E[Z(q)] = a1(q)/d(q),

and

E[Z(q)2] = a2(q)/d(q).

We now use the facts (see, e.g., Problem 49 of [10])

E[Y (q)] = E[Z(q)]
1− ρ′q

and

E[Y (q)2] = E[Z(q)2]
(1− ρ′q)2 + λE[Z(q)]Fp(q)

E[X(q)2]
(1− ρ′q)3 .

This yields

E[W (q)] = b(q)
(

a2(q)
2a1(q)(1− ρ′q)

+ λFp(q)
E[X(q)2]
2(1− ρ′q)2

)
.

The expected time in the system for a job is simply
∫∞
y=0 fp(y)E[W (y) +R(y)]dy. From

this value (and the corresponding equations for standard SRPT) one can compute the price
of misprediction for the total expected time in the system. (Of course, the expected service
time can be subtracted if desired.)
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Table 1 Results from simulations and equations for Shortest Job First (SJF) and Shortest
Predicted Job First (SPJF).

SJF SJF SPJF SPJF FIFO
λ Eqns Sims Eqns Sims Eqns

0.5 1.7127 1.7128 1.7948 1.7949 2.00
0.6 1.9625 1.9625 2.1086 2.1087 2.50
0.7 2.3122 2.3121 2.5726 2.5730 3.33
0.8 2.8822 2.8828 3.3758 3.3760 5.00
0.9 4.1969 4.1987 5.3610 5.3609 10.00
0.95 6.2640 6.2701 8.6537 8.6541 20.00
0.98 11.2849 11.2734 16.9502 16.9782 50.00
0.99 18.4507 18.4237 29.0536 29.1162 100.00

5 Simulation Results

We present a small number of simulation results to demonstrate that our equations are
accurate and, at least in the cases we have examined, the price of misprediction is generally
reasonably small. Correspondingly, this implies that even a small amount of predictive power
yields significantly better performance than standard First-In First-Out (FIFO) queueing.
We focus on high load settings, as under low load all systems perform well. We also note that
additional simulations we have performed further substantiate our high-level conclusions.
(Our simulation was written in C and runs on a standard laptop.)

We first compare simulation results against the results from our equations; we also provide
results for schemes with full information for comparison. Our results are for the setting with
Poisson arrivals, service times are exponential with mean 1, and predicted service times are
exponential with mean x when the actual service time is x. For consistency, we provide
the total expected time in the system (waiting and service). The results of the equations
were computed using Mathematica 11.3 and numerical integration. The calculations for
SPRPT and PSPJF are somewhat lengthy and can lead to numerical stability issues; we
found integrating up to predicted times of at most 50 gives accurate answers while being
computable in reasonable time, approximately half an hour on a modern laptop. (Predicted
service times greater than 50 are very rare; they occur with probability less than 5 · 10−7.)
We did not optimize the calculations and expect this could be improved. The results of
simulations were from our own implementation of a queue simulator. The simulations are
the results of averaging the average time over 1000 trials, where in each trial we recorded
the time in system of each completed job. The trials were each run for 1 000 000 time units,
with jobs completing in the first 100 000 time units discarded from the calculations of the
averages to remove bias from starting with an empty system.

Table 1 shows both that the results from equations for SPJF match very closely to the
simulation results, and that the performance is not too much worse than when the service
times are known. With regards to accuracy, the difference is less than 1%, which appears
due to simulation variance. With regard to performance, using predicted times naturally
becomes increasingly worse as load grows, but the difference still shows the benefits of using
imperfect information. Recall that, with no information, for standard queueing schemes such
as FIFO the expected time in the system is 1/(1 − λ); for example, λ = 0.99 leads to an
expected time in the system of 100. We see that under high loads, the gains from prediction
remain substantial.
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Table 2 Results from simulations and equations for Preemptive Shortest Job First (PSJF) and
Preemptive Shortest Predicted Job First (PSPJF).

PSJF PSJF PSPJF PSPJF FIFO
λ Eqns Sim Eqns Sim Eqns

0.5 1.5314 1.5312 1.6636 1.6634 2.00
0.6 1.7526 1.7524 1.9527 1.9521 2.50
0.7 2.0839 2.0841 2.3970 2.3963 3.33
0.8 2.6589 2.6594 3.1943 3.1940 5.00
0.9 4.0518 4.0521 5.2232 5.2235 10.00
0.95 6.2648 6.2688 8.6166 8.6118 20.00
0.98 11.5513 11.5212 17.1090 17.1211 50.00
0.99 18.9556 18.8717 29.3783 29.2907 100.00

Table 3 Results from simulations and equations for Shortest Remaining Processing Time (SRPT)
and Shortest Predicted Remaining Processing Time (SPRPT).

SRPT SRPT SPRPT SPRPT FIFO
λ Eqns Sim Eqns Sim Eqns

0.5 1.4254 1.4251 1.6531 1.6588 2.00
0.6 1.6041 1.6039 1.9305 1.9397 2.50
0.7 1.8746 1.8757 2.3539 2.3684 3.33
0.8 2.3528 2.3519 3.1168 3.1376 5.00
0.9 3.5521 3.5486 5.04808 5.0973 10.00
0.95 5.5410 5.5466 8.3221 8.4075 20.00
0.98 10.4947 10.5003 16.6239 16.7852 50.00
0.99 17.6269 17.6130 28.7302 28.7847 100.00

Table 2 shows results for the same simulation setting using PSJF and PSPJF, with similar
conclusions; indeed, in this case, the numerical results are very similar.

Table 3 shows similar results for the same simulation setting using SRPT and SPRPT.
For SPRPT, the results from equations align a little less closely to the simulation results,
but the difference remains than 1%. Given the complexity of the equations, and the higher
variability in the time in system for SPRPT, this is unsurprising.

Figure 1 provides another example of prediction performance. Here we fix λ = 0.95,
and consider two types of service distributions: exponential with mean 1, and a Weibull
distribution with cumulative distribution 1 − e−

√
2x. (The Weibull distribution is more

heavy-tailed, but also has mean 1.) The simulations are again the average of the measured
time in system, averaged from results of 1000 trials, in the same manner as previously. Here
the predictions depend on a scale parameter α; a job with service time x has a predicted
service time that is uniform over [(1−α)x, (1 +α)x]. By varying α, we can see the impact on
performance as prediction accuracy diminishes. Note that when α = 0 the predicted service
time equals the true service time. In these examples, we observe that performance degrades
gracefully with α, a feature we see across values of λ in other experiments not presented.
The main point here is that even weak predictors may perform well under SPJF, PSPJF,
and SPRPT; as long as they generally lead jobs to be processed in the right order, they can
yield substantial benefits. (We note the standard deviation over trials ranges from 2-4%,
with higher variance for simulations with the Weibull distribution.)

We do point out some specific features of note. First, SPJF and PSPJF obtain essentally
the same performance with exponential service times, but are notably different with Weibull
distributed service times. Second, for the Weibull distribution, PSPJF is much better than
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Figure 1 Results from simulations at λ = 0.95 for exponential and Weibull distributions. A job
with service time x has predicted service time uniform over [(1−α)x, (1+α)x]. Performance degrades
gracefully with α. Note α = 0 corresponds to the full information case, as then the predicted service
time equals the true service time.

SPJF, and even becomes slightly better than SPRPT with large prediction errors. Both
of these feature are explained in large part by noting that the preemption of PSPJF is
particularly helpful when large jobs are significantly underestimated, as in those settings
without the preemption a large job can hold service for a long time, blocking shorter jobs;
this has also been noted previously in [8]. Under the Weibull distribution for service, there
are many much larger jobs than when the service times are exponentailly distributed. We
expect our equations for the expected time in system for SPJF, PSPJF, and PSRPT may
allow us to gain more insight into these kinds of behaviors, with provable results instead of
simulation-based results.

6 Conclusion

We have demonstrated that the analyses of various single-queue job scheduling approaches
can be generalized to the setting where predicted service times are used in place of true
values, under the assumption that the predictions can be modeled as joint distribution with
a corresponding density function. Such analyses can be used to determine the price of
misprediction, or the potential benefits of better prediction, for such systems.

In future work, we plan to provide analyses of multiple queue systems using predicted
service times. Multiple queue systems are quite common in practice, but can have more highly
variable performance depending on how the workload is divided among queues. Natural
strategies to consider include the power of two choices [22] and size interval task assignment
(SITA) [13]. We expect analysis of such systems may require additional techniques, but will
show that in this setting also even mildly accurate predictions can provide significant value.

In the problems considered here, we were able to determine exact formulae for performance,
based on our probabilistic assumptions. It would be interesting to consider more general job
scheduling scenarios with fewer assumptions, perhaps using methods more akin to online
analysis, as in [20].

We believe this work suggests there is great potential in analyzing the large variety of job
scheduling problems, as well as other similar traditional algorithmic problems, in the context
of prediction.
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A Proof of 4/3 price of misprediction for the finite case

We recall the setting where there are n jobs, service times are exponential with mean 1, the
predicted service times are exponential with mean x when the actual service time is x, and
we seek to determine the expected waiting time. Since we care only about the expectation,
we may consider the expected waiting time with just a pair of jobs; linearity yields the price
of misinformation is the same.

When using the correct service times, the expected waiting time of a job with the shortest
job first is∫ ∞

x=0
e−x

(∫ x

z=0
ze−z dz

)
dx,

which is easily found to evaluate to 1/4. When using predicted service times, the expected
waiting time is∫ ∞

y=0
fp(y)

(∫ ∞
x=0

∫ y

z=0
e−x−z/x dz dx

)
dy,

where fp(y) =
∫∞
x=0

e−x−y/x

x dx. This does not appear to evaluate to a closed form of simple
functions. However, suppose we use as our prediction an exponentially distributed service
time with mean 1/x instead of x. This effectively reverses the predicted order, but leads to
an easier integral calculation. Since the expected waiting time for a job over both orderings
is trivially 1, finding the expected waiting time for the reverse order suffices.

For the reversed order,

fp(y) =
∫ ∞
x=0

xe−x−yx dx

= 1
(y + 1)2 ,

http://arxiv.org/abs/1806.09817
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and the integral becomes∫ ∞
y=0

1
(y + 1)2

(∫ ∞
x=0

∫ y

z=0
x2e−x−xz dz dx

)
dy

=
∫ ∞
y=0

1
(y + 1)2

(∫ ∞
x=0

(xe−x − xe−x−yx) dx
)
dy

=
∫ ∞
y=0

1
(y + 1)2

(∫ ∞
x=0

(xe−x − xe−x−yx) dx
)
dy

=
∫ ∞
y=0

(
1

(y + 1)2 −
1

(y + 1)4

)
dy

= 2/3.

The expected waiting time where predictions are exponential with mean x is therefore 1/3,
and the price of misprediction is 4/3 as claimed.

B Derivation for PSPJF

We consider the expected time a job spends in the system in equilibrium for preemptive
shortest predicted job first (PSPJF), where a job may be preempted by another job that
has an originally shorter predicted time (note that the time a job has been serviced is not
considered). The analysis is similar to both SPJF and SPRPT.

Here we consider the expected waiting time and the expected residence time in steady-state.
We again use g(x, y) for the joint distribution that a job has service time x and predicted
service time y, and let fs(x) =

∫∞
y=0 g(x, y) dy, fp(y) =

∫∞
x=0 g(x, y) dx, Fp(y) =

∫ y
t=0 fp(y) dt,

and ρ′y = λ
∫ y
t=0
∫∞
x=0 g(x, t)x dx dt. As a job will be preempted by another job with smaller

predicted service time, the mean residence time for a job of service time x and predicted
service time y is

x

1− ρ′y
.

This is because the residence time with preemptions is the same as the busy period started
by a job of length x and predicted length y, where the only jobs that need to be considered
in the busy period have predicted length at most y. This leads to the additional 1/(1− ρ′y)
factor.

It follows that the mean residence time E[R(y)] for a job of predicted service time y is

E[R(y)] =
∫ ∞
x=0

xg(x, y)
fp(y)(1− ρ′y)

dx.

The expected waiting time for a job with predicted service time y is the same as for a
shortest job first system, except that the job only waits for jobs of predicted service times as
most y. It follows that

E[W (y)] =
λ
∫ y
t=0
∫∞
x=0 x

2g(x, t) dx dt
2
(
1− ρ′y

)2 .

Note that here we have simplified the expression, which would originally have had a factor

ρ′y

(∫ y
t=0
∫∞
x=0 x

2g(x, t) dx dt
)
/Fp(y)(∫ y

t=0
∫∞
x=0 xg(x, t) dx dt

)
/Fp(y)

.
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The integral expressions are the second and first moments of the expected service time for a
job with predicted service time at most y. As ρ′y = λ

∫ y
t=0
∫∞
x=0 g(x, t)x dx dt, the expression

for E[W (y)] follows.
The expected time in the system for a job is then again simply

∫∞
y=0 fp(y)E[W (y) +

R(y)] dy.
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