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Abstract
The cumulative pebbling complexity of a directed acyclic graph G is defined as cc(G) = minP

∑
i
|Pi|,

where the minimum is taken over all legal (parallel) black pebblings of G and |Pi| denotes the number
of pebbles on the graph during round i. Intuitively, cc(G) captures the amortized Space-Time
complexity of pebbling m copies of G in parallel. The cumulative pebbling complexity of a graph
G is of particular interest in the field of cryptography as cc(G) is tightly related to the amortized
Area-Time complexity of the Data-Independent Memory-Hard Function (iMHF) fG,H [7] defined
using a constant indegree directed acyclic graph (DAG) G and a random oracle H(·). A secure
iMHF should have amortized Space-Time complexity as high as possible, e.g., to deter brute-force
password attacker who wants to find x such that fG,H(x) = h. Thus, to analyze the (in)security of
a candidate iMHF fG,H , it is crucial to estimate the value cc(G) but currently, upper and lower
bounds for leading iMHF candidates differ by several orders of magnitude. Blocki and Zhou recently
showed that it is NP-Hard to compute cc(G), but their techniques do not even rule out an efficient
(1 + ε)-approximation algorithm for any constant ε > 0. We show that for any constant c > 0, it is
Unique Games hard to approximate cc(G) to within a factor of c.

Along the way, we show the hardness of approximation of the DAG Vertex Deletion problem
on DAGs of constant indegree. Namely, we show that for any k, ε > 0 and given a DAG G with
N nodes and constant indegree, it is Unique Games hard to distinguish between the case that G
is (e1, d1)-reducible with e1 = N1/(1+2ε)/k and d1 = kN2ε/(1+2ε), and the case that G is (e2, d2)-
depth-robust with e2 = (1− ε)ke1 and d2 = 0.9N (1+ε)/(1+2ε), which may be of independent interest.
Our result generalizes a result of Svensson who proved an analogous result for DAGs with indegree
O (N).
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1 Introduction

The black pebbling game is a powerful abstraction that allows us to analyze the complexity of
functions fG with a static data-dependency graph G. In particular, a directed acyclic graph
(DAG) G = (V,E) can be used to encode data-dependencies between intermediate values
produced during computation e.g., if Lv is the vth intermediate value and Lv := Lj × Li
then the DAG G would include directed edges (i, v) and (j, v) indicating that Lv depends
on the previously computed values Li and Lj . A black pebbling of G is a sequence P =
(P0, . . . , Pt) ⊆ V of pebbling configurations. Intuitively, a pebbling configuration Pi describes
the set of data labels that have been computed and stored in memory at time i. The rules of
the pebbling game stipulate that we must have parents(v) = {u : (u, v) ∈ E} ⊆ Pi for each
newly pebbled node v ∈ Pi+1 \ Pi i.e., before we can compute a new data value Lv, we must
first have the labels of each dependent data value Lu available in memory.

Historically, much of the literature has focused on the sequential black pebbling game
where we require that |Pi+1 \ Pi| ≤ 1 for all round i. In recent years, the parallel black
pebbling game has seen renewed interest due to the rapid expansion of parallel computing,
e.g., GPUs, FPGAs. In the more general parallel black pebbling game, there is no such
restriction on the number of new pebbles in each round, i.e., on a parallel architecture, it
is possible to determine Lv for each node v ∈ Pi+1 \ Pi simultaneously since the dependent
data-values are already in memory.

There are several natural ways to measure the cost of a pebbling. The space complexity
of a DAG G asks for a legal pebbling P = (P0, . . . , Pt) that minimizes the maximum space
usage maxi≤t |Pi| – even if the time t is exponential in the number of nodes N . Space-time
complexity asks for a legal pebbling P = (P0, . . . , Pt) that minimizes the space-time product
t×maxi≤t |Pi|. Alwen and Serbinenko [7] observed that in the parallel black pebbling game,
the space-time of pebbling G×m, m independent copies of a DAG G, does not always scale
linearly with m. In particular, for some DAGs G the total space-time cost of pebbling G×m
is roughly equal to the space-time cost of pebbling a single instance of G for m = Õ(

√
N)!

Alwen and Serbinenko [7] introduced the notion of the cumulative pebbling cost cc(G)
of a DAG G to model the amortized space-time costs in the parallel black pebbling game.
Formally, the cumulative pebbling cost of a pebbling P is given by cc(P ) =

∑
i |Pi| and

cc(G) = minP cc(P ), where the minimum is taken over all legal (parallel) black pebblings of
G. The cumulative pebbling cost is a fundamental metric that is worth studying. It captures
the amortized space-time cost of pebbling m copies of G in parallel, i.e., in the limit we have
cc(G) = limm→∞ ST (G×m) /m where the space-time cost of a pebbling P = (P1, . . . , Pt) is
ST(P ) = t×maxi |Pi| and the notation G×m denotes a new graph consisting of m disjoint
copies of G.

In this paper, we address the following question:

Given a DAG G, can we (approximately) compute cc(G)?

This is a natural question in settings where we want to evaluate the function fG (with
data-dependency DAG G) on many distinct inputs – cc(G) models the amortized cost of
computing fG. The question is also highly relevant to the cryptanalysis of Data-Independent
Memory-Hard Functions (iMHFs). In the context of password hashing we want to find a
(constant indegree) DAG G with maximum cumulative pebbling complexity, e.g., to maximize
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the cost of a brute-force attacker who wants to evaluate the function fG on every input in a
password cracking dictionary. Thus, given a DAG G one might wish to lower-bound cc(G)
before using G in the design of a memory-hard password hashing algorithm.

Cumulative Pebbling Complexity in Cryptography

In many natural contexts such as password hashing and Proofs of Work, it is desirable to
lower bound the amortized space-time cost, e.g., in the random oracle model it is known
that the cumulative memory complexity of a (side-channel resistant) iMHF fG,H is Ω(cc(G)),
where fG,H is a labeling function defined in terms of the DAG G and a random oracle H [7].
Thus, in the field of cryptography there has been a lot of interest in designing constant
indegree graphs with cumulative pebbling cost cc(G) as large as possible and in analyzing
the pebbling cost cc(G) of candidate iMHF constructions fG,H , e.g., see [2, 5, 3, 6, 4, 14].

From an asymptotic standpoint many of the open questions have been (nearly) resolved.
Alwen and Blocki [2] showed that for any DAG G with N nodes and constant indegree
we have cc(G) = O

(
N2 log logN/ logN

)
, while Alwen et al. [5, 4] gave constructions with

cc(G) = Ω(N2/ logN). For Argon2i, the winner of the password hashing competition, we
have the upper bound cc(G) = O

(
N1.767) and the lower bound cc(G) = Ω̃

(
N1.75) [14].

Most of these upper/lower bounds exploited a relationship between cc(G) and a combin-
atorial property called depth-robustness. A DAG G = (V,E) is (e, d)-reducible if we can
find a subset S ⊆ V with |S| ≤ e such that any directed path P in G of length d contains at
least one node in S. On the other hand, if G is not (e, d)-reducible, then we say that G is
(e, d)-depth robust. Depth-robustness is known to be both necessary [2] and sufficient [5] for
secure iMHFs. In particular, any (e, d)-reducible DAG G with N nodes and indegree indeg(G)
has cc(G) ≤ ming≥d

(
eN + gN × indeg(G) + N2d

g

)
[2] while any (e, d)-depth robust DAG G

has cc(G) ≥ ed [5]. The later observation was used to build a constant indegree graph G
with cc(G) = Ω(N2/ logN) by showing that the constructed G is (Ω(N/ logN),Ω(N))-depth
robust. The former observation was used to prove that any constant indegree graph has
cc(G) = O

(
N2 log logN/ logN

)
by exploiting the observation that any such DAG G is(

O (N log logN/ logN) ,Ω(N/ log2 N)
)
-reducible (simply set g = O (N log logN/ logN) in

the above [2] bound).

Although many of the open questions have been (nearly) resolved from an asymptotic
standpoint, from a concrete security standpoint for all practical iMHF candidates G, the
best known upper and lower bounds on cc(G) differ by several orders of magnitude. In
fact, Blocki et al. [11] recently found that for practical parameter settings (N ≤ 224),
Argon2i provides better resistance to known pebbling attacks than DRSample [4] despite
the fact that DRSample (cc(G) = Ω(N2/ logN)) is asymptotically superior to Argon2i
(cc(G) = Ω̃

(
N1.75)). Of course it is certainly possible that an improved pebbling strategy

for Argon2i will reverse this finding tomorrow making it difficult to provide definitive
recommendations about which construction is superior in practice.

Given a DAG G, one might try to resolve these questions directly by (approximately)
computing cc(G). Blocki and Zhou [15] previously showed that the problem of computing
cc(G) is NP-Hard. However, their result does not even rule out the existence of a (1 + ε)-
approximation algorithm for any constant ε > 0.

ITCS 2020
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1.1 Our Contributions
Our main result is the hardness of any constant factor approximation to the cost of graph
pebbling even for DAGs with constant indegree1.

I Theorem 1. Given a DAG G with constant indegree, it is Unique Games hard to approx-
imate cc(G) within any constant factor. (See Theorem 13.)

Along the way to proving our main result, we show that for any constant k > 0, ε > 0,
given a constant indegree graph G, it is Unique Games hard to distinguish between the
following two cases: (1) G is (e1, d1)-reducible with e1 = N1/(1+2ε)/k and d1 = kN2ε/(1+2ε)

and (2) G is (e2, d2)-depth-robust with e2 = (1 − ε)ke1 and d2 = 0.9N (1+ε)/(1+2ε). This
intermediate result (see Corollary 8) generalizes a result of Svensson [45], who proved an
analogous result for DAGs G with arbitrarily large indegree indeg(G) = O (N).

Corollary 8 may be of independent interest as depth-robust graphs have found many other
applications in cryptography including Proofs of Sequential Work [37], Proofs of Space [24],
Proofs of Replication [39, 25] and (relaxed) locally correctable codes for computationally
bounded channels [10, 12]. Testing the depth-robustness of a DAG G is especially relevant to
the analysis of (tight) Proofs of Space/Replication – several constructions rely on (unproven)
conjectures about the concrete depth-robustness of particular DAGs e.g., see [16, 25].

1.2 Technical Ingredients
To prove our result we use three technical ingredients. The first ingredient is a reduction of
Svensson [45] that it is Unique Games hard to distinguish between a DAG G (with indeg(G) =
O (N)) that is (e1, d1)-reducible or (e2, d2)-depth-robust. The second technical ingredient
is γ-Extreme Depth-Robust Graphs [6] with bounded indegree. We use γ-Extreme Depth-
Robust Graphs to modify the construction of Svensson [45] and show that the same result
holds for graphs with much smaller indegree. Finally, we use low depth superconcentrators
to boost the lower bound on cc to min{e2N, d2N}/8 instead of e2d2 in the case the graph is
(e2, d2)-depth robust. We prove that this can be done without significantly increasing the
pebbling cost in the case the graph is (e1, d1)-reducible.

1.2.1 Technical Ingredient 1
Our first technical ingredient is a result of Svensson [45], who proved that for any constant
k > 0, ε > 0, it is Unique Games hard to distinguish between the following two cases (1)
G is (e1, d1)-reducible with e1 = N/k and d1 = k, or (2) G is (e2, d2)-depth robust with
e2 = N(1−1/k) and d2 = Ω(N1−ε). To prove this, Svensson gave a reduction that transforms
from any instance of Unique Games U to a directed acyclic graph GU on N nodes such
that GU is (e1, d1)-reducible for e1 ≈ N/k and d = k if U is satisfiable. Otherwise, if U
is unsatisfiable, it can be shown that GU is (e2, d2)-depth robust. This is a potentially
useful starting point because the pebbling complexity of a graph GU is closely related
to its depth-robustness. In particular, in the second case, a result of Alwen et al. [5]
establishes that cc(GU ) ≥ e2d2 and in the first case, a result of Alwen and Blocki shows that
cc(GU ) ≤ ming≥d1

(
e1N + gN × indeg(GU ) + N2d1

g

)
[2].

1 Each node v in a data-dependency DAG G model an atomic unit of computation. Thus, in practice we
expect G to have indegree 2 or 3. If Lv = g(Lv1 , . . . , Lvk ) is a function of k � 2 previously computed
values Lv1 , . . . , Lvk then we would have generated several additional intermediate data-values while
evaluating g(·). These data-values should have been included as nodes in G which is supposed to have a
node for every intermediate data-value.
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Challenges of Applying Svensson’s Construction

While the pebbling complexity of GU is related to depth-robustness, there is still a vast
gap between the upper/lower bounds. In particular, in Svensson’s construction we have
indeg(GU ) = O (N), so the gN × indeg(GU ) term could be as large as gN2 � e2d2. Thus,
we would need to be able to reduce the indegree significantly to obtain a gap between cc(GU )
in the two cases. (In fact, we can show the that pebbling cost is exactly cc (GU ) = N(L+1)

2
independent of the Unique Games instance U – see Lemma 17 in the appendix.) We remark
that a naïve attempt to reduce indegree in Svensson’s construction GU by replacing every node
v (as in [5]) with a path of length N + indeg(v) would result in a constant indegree graph G′U
with N ′ ≈ 2N2 nodes that will not be useful for our purposes. The new graph G′U would be
(e1, d1)-reducible in the first case with e1 = N/k = O

(√
N ′/k

)
and d1 = 2kN = O

(√
N ′k

)
.

In the second case, the DAG G′U would be (e2, d2)-depth robust with e2 ≈ ke1 and d2 =
O
(
N ′1−ε/2). We would now have cc(G′U ) ≤ ming≥d1

(
e1N

′ + 2gN ′ + N ′2d1
g

)
= ω(e1N

′) for
our upper bound while the lower bound is at most e2d2 ≈ ke1N

′1−ε/2. At the end of the
day, the graph GU is still quite far from what we need.

1.2.2 Technical Ingredient 2: γ-Extreme Depth-Robust Graphs

It does not seem to be possible to obtain a suitable graph GU by applying indegree reduction
techniques to Svensson’s Construction in a black-box manner. Instead, we open up the
black-box and show how to reduce the indegree using a recent technical result of Alwen
et al. [6]. A DAG Gγ,N on N nodes is said to be γ-extreme depth-robust if it is (e, d)-depth
robust for any e, d > 0 such that e + d ≤ (1 − γ)N . Alwen et al. [6] showed that for any
constant γ > 0, there exists a family {Gγ,N}∞N=1 of γ-extreme depth robust DAGs with
maximum indegree O (logN). While Alwen et al. [6] were not focused on outdegree, it is
not too difficult to see that their construction yields a single family of DAGs with maximum
indegree and outdegree O (logN).

In Svensson’s construction, the DAG GU is partitioned into L = N1−ε symmetric layers
i.e., if u` (the copy of node u in layer `1) is connected to v`2 (the copy of node v in layer
`2 > `1) then for any layers i < j ≤ L, the directed edge (ui, vj) exists. The fact that
this edge is “copied” O

(
L2) times for every pair of layers i < j significantly increases the

indegree. However, Svensson’s argument that GU is depth-robust in the second case relies on
the existence of each of these edges. To reduce the indegree we start with a γ-extreme depth
robust DAG Gγ,L on L nodes and only keep edges between nodes ui and vj in layers i and j
if there is a path of length ≤ 2 between nodes i and j in Gγ,L. The new graph can also be
shown to have degree at most O (indeg(GL)× outdeg(GL)×N/L) = O

(
Nε log2 N

)
. Despite

the fact that the indegree is vastly reduced, we are still able to modify Svensson’s argument
to prove that (for a suitable constant γ > 0) our new graph is still (e2, d2)-depth robust with
e2 ≈ ke1 and d2 = O

(
N1−ε) – note that the new graph is clearly still (e1, d1)-reducible if U

is satisfiable since we only remove edges from Svensson’s construction.
We can then apply the generic black-box indegree reduction of [5] to reduce the indegree to

2 by replacing every node with a path of length N2ε. This established our first technical result
that even for constant indegree DAGs, it is Unique Games hard to distinguish between the
following two cases: (1) G is (e1, d1)-reducible with e1 = N1/(1+2ε)/k and d1 = kN2ε/(1+2ε),
and (2) G is (e2, d2)-depth-robust with e2 = (1− ε)ke1 and d2 = 0.9N (1+ε)/(1+2ε).

ITCS 2020
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1.2.3 Technical Ingredient 3: Superconcentrators
Although indegree reduction is a crucial step toward showing hardness of approximation for
graph pebbling complexity, we still cannot apply known results that relate (e1, d1)-reducibility
and (e2, d2)-depth robustness to pebbling complexity, since there is still no gap between the
pebbling complexity of the two cases. In particular, we are always stuck with the e1N term
in the upper bound of [2] which is already much larger than the lower bound e2d2 from [6].
To overcome this result we rely on superconcentrators. A superconcentrator is a graph that
connects N input nodes to N output nodes so that any subset of k inputs and k outputs
are connected by k vertex disjoint paths. Moreover, the total number of edges in the graph
should be O (N).

Blocki et al. [11] recently proved that G′, the superconcentrator overlay of an (e, d)-depth
robust graph, has pebbling cost cc(G′) ≥ max{eN, dN}/8, which is a significant improvement
on the lower bound cc(G′) ≥ ed when e = o(N) and d = o(N). This allows us to increase
the lower-bound in case 2, but we need to be careful that we do not significantly increase the
pebbling cost in case 1. To do this we rely on the existence of superconcentrators with depth
O (logN) [40] and we give a significantly improved pebbling attack on the superconcentrator
overlay DAG G′ in case 1 when the original graph is (e1, d1)-reducible. With the improved
pebbling attack, we are able to show that cc(G) ≥ e1kN/16 in case 2 and that cc(G) ≤ 16e1N

in case 1. Since k is an arbitrary constant, this implies that it is Unique Games hard to
approximate cc(G) to within any constant factor c > 0.

2 Related Work

Pebbling games have found a number of applications under various formulations and models
(see the survey [38] for a more thorough review). The sequential black pebbling game was
introduced by Hewitt and Paterson [29], and by Cook [19] and has been particularly useful
in exploring space/time trade-offs for various problems like matrix multiplication [47], fast
fourier transformations [43, 47], integer multiplication [46] and many others [17, 44]. In
cryptography it has been used to construct/analyze Proofs of Space [24, 41], Proofs of
Work [23, 37] and Memory-Hard Functions [26]. Alwen and Serbinenko [7] argued that the
parallel version of the black pebbling game was more appropriate for Memory-Hard Functions
and they proved that any iMHF attacker in the parallel random oracle model corresponds to
a pebbling strategy with equivalent cumulative memory cost.

The space cost of the black pebbling game is defined to be maxi |Pi|, which intuitively
corresponds to minimizing the maximum space required during computation of the associated
function. Gilbert et al. [27] studied the space-complexity of the black-pebbling game and
showed that this problem is PSPACE-Complete by reducing from the truly quantified boolean
formula (TQBF) problem. In our case, the decision problem is cc(G) ≤ k is in NP because
the optimal pebbling strategy cannot last for more than N2 steps since any graph with N
nodes has cc(G) ≤ N2.

Red-Blue Pebbling

Given a DAG G = (V,E), the goal of the red-blue pebbling game [30] is to place pebbles on
all sink nodes of G (not necessarily simultaneously) from an empty starting configuration.
Intuitively, red pebbles represent values in cache and blue pebbles represent values stored
in memory. Blue pebbles must be converted to red pebbles (e.g., loaded into cache) before
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they can be used in computation, but there is a limit m (cache-size) on the number of red-
pebbles that can be used. Red-blue pebbling games have been used to study memory-bound
functions [22] (functions that incur many expensive cache-misses [1]).

Ren and Devadas introduced the notion of bandwidth hard functions and used the red-blue
pebbling game to analyze the energy cost of a memory hard function [42]. In their model,
red-moves (representing computation performed using data in cache) have a smaller cost cr
than blue-moves cb (representing data movements to/from memory) and a DAG G on N
nodes is said to be bandwidth hard if any red-blue pebbling has cost Ω(N · cb). Ren and
Devadas showed that the bit reversal graph [35], which forms the core of iMHF candidate
Catena-BRG [26], is maximally bandwidth hard. Subsequently, Blocki et al. [13] gave a
pebbling reduction showing that any attacker random oracle model (pROM) can indeed be
viewed as a red-blue pebbling with equivalent cost. They also show that it is NP-Hard to
compute the minimum cost red-blue pebbling of a DAG G i.e., the decision problem “is the
red-blue pebbling cost ≤ k?” is NP-Complete (A result of Demaine and Liu [20, 36] implies
that the problem is PSPACE-Hard to compute the red-blue pebbling cost when cr = 0 i.e.,
computation is free). In general, the red-blue cost of G is always lower bounded by crN and
upper-bounded by 2cbN + crN . The question of a more efficient c-approximation algorithm
for c = o(cb/cr) remains open.

Unique Games

Recently, the Unique Games Conjecture and related conjectures have received a lot of
attention for their applications in proving hardness of approximation. Khot et al. [32]
showed that the Goemans-Williamson approximation algorithm for Max-Cut [28] is optimal,
assuming the Unique Games Conjecture. Khot and Regev [34] showed that Minimum Vertex
Cover problem is Unique Games hard to solve within a factor of 2− ε, which is nearly tight
from the guarantee that a simple greedy algorithm gives. The Unique Games Conjecture
also leads to tighter approximation hardness for other problems including Max 2-SAT [32]
and Betweenness [18]. Although a previous stronger version of the conjecture asked whether
Unique Games instances required exponential time algorithms in the worst case, Arora
et al. [8] gave a subexponential time algorithm for Unique Games. Lately, focus has also
been drawn toward studying the related Label Cover Problem, such as the 2-Prover-1-Round
Games, i.e. the 2-to-1 Games Conjecture [21] and the 2-to-2 Games Conjecture [33].

3 Preliminaries

We use the notation [N ] to denote the set {0, 1, . . . , N − 1}. Given a directed acyclic
graph G = (V,E) and a node v ∈ V , we use parents(v) = {u : (u, v) ∈ E} (resp.
children(v) = {u : (v, u) ∈ E}) to denote the parents (resp. children) of node v. We use
indeg(v) = |parents(v)| (resp. outdeg(v) = |children(v)|) to denote the number of incoming
(resp. outgoing) edges into (resp. out of) the vertex v. We also define indeg(G) = max

v∈V
indeg(v)

and outdeg(G) = max
v∈V

outdeg(v). Given a set S ⊆ V of nodes, we use G − S to refer to
the graph obtained by deleting all nodes in S and all edges incident to S. We also use
G[S] = G− (V \S) to refer to the subgraph induced by the nodes S, i.e., deleting every other
node in V \ S. Given a node v 6∈ S, we use depth(v,G− S) to refer to the longest directed
path in G− S ending at node v and we use depth(G− S) = maxv 6∈S depth(v,G− S) to refer
to the longest directed path in G−S. Given a subset B, we will also use depthB(v,G−S) to
refer to the maximum number of nodes in the set B contained in any directed path in G− S
that ends at node v. We define depthB(G− S) = maxv 6∈S depthB(v,G− S) analogously.

ITCS 2020
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I Definition 2 (Unique Games). An instance U = (G = (V,W,E), [R], {πv,w}v,w) of Unique
Games consists of a regular bipartite graph G(V,W,E) and a set [R] of labels. Each edge
(v, w) ∈ E has a constraint given by a permutation πv,w : [R]→ [R]. The goal is to output a
labeling ρ : (V ∪W )→ [R] that maximizes the number of satisfied edges, where an edge is
satisfied if ρ(v) = πv,w(ρ(w)).

I Conjecture 3 (Unique Games Conjecture, [31]). For any constants α, β > 0, there exists
a sufficiently large integer R (as a function of α, β) such that for Unique Games instances
with label set [R], no polynomial time algorithm can distinguish whether: (1) the maximum
fraction of satisfied edges of any labeling is at least 1− α, or (2) the maximum fraction of
satisfied edges of any labeling is less than β.

Graph Pebbling

The goal of the (black) pebbling game is to place pebbles on all sink nodes of some input
directed acyclic graph (DAG) G = (V,E). The game proceeds in rounds, and each round i
consists of a number of pebbles Pi ⊆ V placed on a subset of the vertices. Initially, the graph
is unpebbled, P0 = ∅, and in each round i ≥ 1, we may place a pebble on v ∈ Pi if either
all parents of v contained pebbles in the previous round (parents(v) ⊆ Pi−1) or if v already
contained a pebble in the previous round (v ∈ Pi−1). In the sequential pebbling game, at
most one new pebble can be placed on the graph in any round (i.e., |Pi\Pi−1| ≤ 1), but this
restriction does not apply in the parallel pebbling game.

We use P‖G to denote the set of all valid parallel pebblings of G. The cumulative cost of a
pebbling P = (P1, . . . , Pt) ∈ P‖G is the quantity cc(P ) := |P1|+ . . .+ |Pt| that represents the
sum of the number of pebbles on the graph during every round. The (parallel) cumulative
pebbling cost of G, denoted cc(G) := min

P∈P‖
G

cc(P ), is the cumulative cost of the best legal
pebbling of G.

A DAG G is (e, d)-reducible if there exists a subset S ⊆ V of size |S| ≤ e such that
depth(G− S) < d. That is, there are no directed paths containing d vertices remaining, once
the vertices in the set S are removed from G. If G is not (e, d)-reducible, we say that it is
(e, d)-depth robust.

4 Reduction

Svensson [45] showed that for any constant k, ε > 0 it is Unique Games hard to distinguish
between whether a DAG G is (e1, d1)-reducible for e1 = N/k and d1 = k or G is (e2, d2)-depth
robust with e2 = N(1 − 1/k) and d2 = Ω(N1−ε). To prove this, Svensson showed how to
transform a Unique Games instance U = (G = (V,W,E), [R], {πv,w}v,w) into a graph GU
such that GU is (e1, d1)-reducible if it is possible to satisfy 1− α fraction of the edges and
GU is (e2, d2)-depth robust if it is not possible to satisfy β-fraction of the edges. To obtain
inapproximability results for cc, it is crucial to substantially reduce the indegree of this
construction.

4.1 Review of Svensson’s Construction
To construct GU , Svensson first constructs a layered bipartite DAG ĜU , which encodes
the unique games instance U and later transforms ĜU into the required DAG GU . For
completeness, we provide a full description of the DAG ĜU in the appendix. We will focus
our discussion here on the essential properties of the DAG ĜU .
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The graph ĜU has a number of bit-vertices B partitioned into bit-layers B = B0∪ . . .∪BL,
where Bi is the set of bit-vertices in bit-layer i. Each Bi can be partitioned into sets Bi,w
for w ∈ W . Similarly, ĜU has a number of test-vertices T partitioned into test-layers
T = T0 ∪ . . . ∪ TL−1, where Ti is the set of test-vertices in test-layer i. Outgoing edges for
test-layer T` must be directed into a bit vertex in layer B`′ with `′ > `. Similarly, outgoing
edges from B` must be directed into a test vertex in layer T`′ with `′ ≥ `. Each Ti can be
partitioned into sets Ti,v for v ∈ V . The constraints in our Unique Games instance U are
encoded as edges between the bit vertices and test vertices. We use N = |T | to denote the
total number of test nodes and remark that the parameter L is set such that L ≥ N1−ε.

ĜU also displays symmetry between the layers in the sense that B` = {b`1, . . . , b`m} and
T` = {t`1, . . . , t`p}, so that the number of bit-vertices in each bit-layer is the same and the
number of test-vertices in each test-layer is the same.

Symmetry

In Svensson’s construction, we have exactly m bit vertices in every layer B` = {b`1, . . . , b`m}
and exactly p test vertices in every layer T` = {t`1, . . . , t`p}. The edges between B` and T` (resp.
T` and B`+1 ) encode the edge constraints in the unique games instance U . Furthermore,
the construction is symmetric so that directed edge (b`i , t`j) exists if and only if for every
`′ ≥ ` the edge (b`i , t`

′

j ) exists. Thus for any `′ ≥ `, the edges between B` and T`′ encode the
constraints in U . Similarly, the directed edge (t`j , b`+1

i ) exists if and only if any `′ > ` the
edge (t`j , b`

′

i ) exists. We remark that this means that the indegree of the graph ĜU is at least
L (and can be as large as Ω(N) in general).

Robustness of ĜU

Svensson argues that if it is possible to satisfy a 1− α fraction of the constraints in U , then
there exists a subset S ⊆ T of at most |S| ≤ e1 test-vertices such that depthB(ĜU − S) ≤ d1.
Similarly, if it is not possible to satisfy a β-fraction of the constraints, then for any subset
S ⊆ T of at most |S| ≤ e2 test-vertices, we have depthB(ĜU −S) ≥ d2. This does not directly
show that ĜU is depth-robust since we are not allowed to delete bit-vertices. However,
one can easily transform ĜU into a graph GU on the N = |T | test nodes such that GU is
(e, d)-depth robust if and only if for all subsets S ⊆ T of |S| ≤ e test vertices in ĜU , we
have depthB(ĜU − S) ≥ d. It is worth mentioning that we can view these guarantees as a
form of weighted depth-robustness where all test-vertices have weight 1 and all bit-vertices
have weight ∞, i.e., if 1− α fraction of the constraints in U , then we can find a subset S of
nodes with weight weight(S) ≤ e1 such that depth(ĜU − S) ≤ d1, and if it is not possible
to satisfy β-fraction of the constraints, then for any subset S with weight(S) ≤ e2 we have
depth(ĜU − S) ≥ d1.

Graph Coloring and Robustness

An equivalent way to view the problem of weighted reducibility (resp. depth-robustness)
is in terms of graph coloring. This view is central to Svensson’s argument. In particular,
if we can find a depth reducing set S ⊆ T of size |S| ≤ e such that depthB(ĜU − S) ≤ d,
then we can define a d-coloring χ : B → [d] of each of the bit-vertices such that the coloring
χ is consistent with every remaining test node v ∈ T \ S. Here, consistency means that
maxb∈parents(v) χ(b) < minb∈children(v) χ(b). In fact, it is not too difficult to see that there is
a subset S ⊆ T of |S| ≤ e test-vertices such that depthB(ĜU − S) ≤ d if and only if there
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is a d-coloring χ such that
∣∣{v : maxb∈parents(v) χ(b) ≥ minb∈children(v) χ(b)}

∣∣ ≤ e, i.e., given
a d-coloring χ of the bit vertices, we can simply select S = {v : maxb∈parents(v) χ(b) ≥
minb∈children(v) χ(b)} of inconsistent test-vertices and then for every u ∈ B we can inductively
show that depthB(u, ĜU − S) ≤ χ(u).

Brief Overview of Svensson’s Proof

Svensson defines χ(w, i) to denote the largest color that is smaller than the colors of at least
(1 − δ) fraction of the bit-vertices in Bi,w, i.e., χ(w, i) = max{color c : Pr

b∈Bi,w
[χ(b) ≥ c] ≥

1 − δ}. Suppose that it is not possible to satisfy a β = δη2

t2k2 -fraction of the constraints
in U for tunable parameters t, η > 0 that are part of Svensson’s construction. The core
piece of Svensson’s proof is demonstrating that if the set S = {v : maxb∈parents(v) χ(b) ≥
minb∈children(v) χ(b)} of inconsistent test-vertices has size |S| ≤ (1− 32δ)|T |, then we can find
some w ∈W such that Pr[χ(w, i) > χ(w, i+ 1)] ≥ 32δ2 for some constant c that depends on
various parameters of the construction. Svensson notes that by symmetry of the construction
ĜU , we can assume without loss of generality that χ(i, w) ≤ χ(i+ 1, w) for any i ≤ L. We
remark that this will not necessarily be the case after our indegree reduction step. Thus, it
immediately follows that χ uses more than 32|T |δ2 colors, i.e., depthB(u, ĜU − S) ≥ 32|T |δ2.

4.2 Reducing the Indegree
As previously discussed, Svensson’s construction has indegree that is too large for the purposes
of bounding the pebbling complexity by finding a gap between known results implied by
(e1, d1)-reducibility and (e2, d2)-depth robustness. To perform indegree reduction, we use a
γ-extreme depth-robust graph Gγ,L+1 with L+ 1 vertices in a procedure SparsifyGγ,L+1

(ĜU )
to decide which edges in ĜU to keep and which edges to discard. Intuitively, we will keep
the edge (b`, t`′) from a bit vertex b` ∈ B` on layer ` ≤ `′ to test vertex t`′ ∈ T`′ on layer
`′ if and only if ` = `′ or Gγ,L+1 contains the edge (`, `′). Similarly, we will keep the edge
(t`, b`′) from a test vertex t` ∈ T` on layer ` < `′ to bit vertex b`′ ∈ B`′ on layer `′ if and only
if (`, `′) ∈ Gγ,L+1. The result is a new DAG SparsifyGγ,L+1

(ĜU ) with substantially smaller
indegree and outdegree O

(
Nε log2 N

)
instead of O (N).

Transformation SparsifyGγ,L+1
(ĜU )

Input: An instance ĜU = (V,E) of the Svensson’s construction, whose vertices are
partitioned into L+ 1 bit-layers B0, . . . , BL and L test-layers T0, . . . , TL−1, a γ-extreme
depth robust graph Gγ,L+1 = (Vγ = [L+ 1], Eγ).

1. Let G′ = (V,E) be a copy of ĜU .
2. If e = (b, t) is an edge in G, where b ∈ Bi and t ∈ Tj , delete e from G′ if i 6= j and

(i, j) 6∈ Eγ .
3. If e = (t, b) is an edge in G, where b ∈ Bi and t ∈ Tj , delete e from G′ if (j, i) 6∈ Eγ .

Output: G′

We remark that we only delete edges from ĜU . Thus for any subset S ⊆ T of
|S| ≤ e1 test vertices, we have depthB(ĜU − S) ≥ depthB(SparsifyGγ,L+1

(ĜU ) − S). Hence,
SparsifyGγ,L+1

(ĜU ) is certainly not more depth-robust than ĜU . The harder argument is
showing that the graph SparsifyGγ,L+1

(ĜU ) is still depth-robust when our unique games
instance U has no assignment satisfying a β fraction of the edges.
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Assuming that the Unique Games instance is unsatisfiable, Lemma 4 implies that as long
as 32δ2|T | test-vertices are consistent with our coloring, we can find some w ∈W such that
w is locally consistent on at least 32δ2L layers, i.e., w is locally consistent on layer ` if ∀`′ > `

we have χ(w, `′) > χ(w, `).
The parameters η, t in Lemma 4 are tunable parameters of the reduction.

I Lemma 4. Let χ be any coloring of SparsifyGγ,L+1
(ĜU ). If the Unique Games instance has

no labeling that satisfies a fraction δη2

t2k2 of the constraints and at least 32δ2|T | test vertices
are consistent with χ, then there exists w ∈W with

Pr
`∈[L]

[χ(w, `′) > χ(w, `) for all `′ > ` with (`, `′) ∈ Eγ ] ≥ 32δ2.

We remark that the proof of Lemma 4 closely follows Svensson’s argument with a few
modifications. While the modifications are relatively minor, specifying these modifications
requires a complete description of Svensson’s construction. We refer an interested reader to
Appendix B for details and for the formal proof of Lemma 4.

Lemma 5 now shows that SparsifyGγ,L+1
(ĜU ) is still depth-robust in case 2. The main

challenge is that after we sparsify the graph, we can no longer assume that χ(w, `′) >
χ(w, `) for all `′ > ` without loss of generality, e.g., even if there are many i’s for which
χ(w, i + 1) > χ(w, i) we could have a sequence like χ(w, 1) = 1, χ(w, 2) = 2, χ(w, 3) =
2, χ(w, 4) = 2, χ(w, 5) = 1, χ(w, 6) = 2, . . .. We rely on the fact that Gγ,L+1 is extremely
depth-robust to show that for any sufficiently large subset LC ⊆ [L] of layers for which w
is locally consistent, there must be a subsequence Pw ⊆ LC of length |Pw| ≥ |LC| − γL over
which χ(w, ·) is strictly increasing.

I Lemma 5. If the Unique Games instance has no labeling that satisfies a fraction δη2

t2k2

of the constraints and γ ≤ 31δ2, then for every set S ⊆ T of at most |S| ≤ (1 − 32δ)|T |
test-vertices the graph G′ = SparsifyGγ,L+1

(ĜU ) has a path of length δ2L.

Proof. Suppose the Unique Games instance has no labeling that satisfies a fraction δη2

t2k2

of the constraints. Let S contain at most (1 − 32δ)|T | and define the labeling χ(b) =
depthB (b,G′ − S). By Lemma 4, there exists w ∈W with

Pr
`∈[L]

[χ(w, `′) > χ(w, `) for all `′ > ` with (`, `′) ∈ Eγ ] ≥ 32δ2.

Let LC ⊆ [L] denote the subset of layers over which w is locally consistent. We remark that
each ` ∈ LC corresponds to a node in Gγ,L+1 and that Gγ,L+1[LC] contains a path Pw =
(`1, . . . , `k) of length k ≥ |LC|−γL ≥ (32δ2−γ)L. We also note that χ(w, `i+1) > χ(w, `i) for
each i < k. Hence, χ(w, `k) ≥ k, which means that depthB (b,G′ − S) ≥ (32δ2 − γ)L ≥ δ2L

as long as γ ≤ 31δ2. J

Theorem 6, our main technical result in this section, states that it is Unique Games hard
to distinguish between (e1, d1)-reducible and (e2, d2)-depth robust graphs even for a DAG G

with N vertices and indeg(G) = O
(
Nε log2 N

)
.

I Theorem 6. For any integer k ≥ 2 and constant ε > 0, given a DAG G with N ver-
tices and indeg(G) = O

(
Nε log2 N

)
, it is Unique Games hard to distinguish between the

following cases: (1) (Completeness): G is
(( 1−ε

k

)
N, k

)
-reducible, and (2) (Soundness): G is(

(1− ε)N,N1−ε)-depth robust.
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Proof. Recall that we can transform G′ = SparsifyGγ,L+1
(ĜU ) into an unweighted graph G

over theN = |T | test-vertices. In particular, we add the edge (u, v) toG if and only if there was
a path of length 2 from u to v in G′. We remark that the indegree is indeg(G) = O

(
Nε log2 N

)
and that for any S ⊆ T , we have depth(G − S) ≤ depthB(G′ − S) ≤ depth(G − S) + 1.
Completeness now follows immediately from Theorem 20 under the observation that we
only removed edges from Svensson’s construction. Soundness follows immediately from
Theorem 20 and Lemma 5. J

Obtaining DAGs with Constant Degree

We can now apply a second indegree reduction procedure IDR(G, γ). For a graph G = (V,E),
the procedure IDR(G, γ) replaces each node v ∈ V with a path Pv = v1, . . . , vδ+γ , where δ is
the indegree of G. For each edge (u, v) ∈ E, we add the edge (uδ+γ , vj) whenever (u, v) is
the jth incoming edge of v, according to some fixed ordering. [5] give parameters e2 and d2 so
that IDR(G, γ) is (e2, d2)-depth robust if G is (e, d)-depth robust. For a formal description
of IDR(G, γ), see Appendix B. We complete the reduction by giving parameters e1 and d1 so
that IDR(G, γ) is (e1, d1)-reducible if G is (e, d)-reducible.

I Lemma 7. There exists a polynomial time procedure IDR(G, γ) that takes as input a DAG G

with N vertices and indeg(G) = δ and outputs a graph G′ = IDR(G, γ) with (δ+ γ)N vertices
and indeg(G′) = 2. Moreover, the following properties hold: (1) If G is (e, d)-reducible, then
IDR(G, γ) is (e, (δ + γ) · d)-reducible, and (2) If G is (e, d)-depth robust, then IDR(G, γ) is
(e, γ · d)-depth robust.

I Corollary 8. For any integer k ≥ 2 and constant ε > 0, given a DAG G with N vertices
and maximum indegree indeg(G) = 2, it is Unique Games hard to decide whether G is (e1, d1)-
reducible or (e2, d2)-depth robust for (Completeness): e1 = 1

kN
1

1+2ε and d1 = kN
2ε

1+2ε , and
(Soundness): e2 = (1− ε)N

1
1+2ε and d2 = 0.9N

1+ε
1+2ε .

5 Putting the Pieces Together

We would now like to apply Theorem 18 and Theorem 19. However, the upper bound
on cc(G) that we obtain from Theorem 18 will not be better than e1N = 1

kN
2+2ε
1+2ε , while

the lower bound we obtain from Theorem 19 is just (1 − ε)N
2+ε

1+2ε , so we do not get our
desirable gap between the upper and lower bounds. We therefore discard Theorem 18 and
Theorem 19 altogether and instead apply a graph transformation with explicit bounds on
pebbling complexity.

I Definition 9 (Superconcentrator). A graph G with O (N) vertices is called a supercon-
centrator if there exists N input vertices, denoted input(G), and N output vertices, denoted
output(G), such that for all S1 ⊆ input(G), S2 ⊆ output(G) with |S1| = |S2| = k, there are k
vertex disjoint paths from S1 to S2.

Pippenger gives a superconcentrator construction with depth O (logN).

I Lemma 10 ([40]). There exists a superconcentrator G with at most 42N vertices, containing
N input vertices and N output vertices, such that indeg(G) ≤ 16 and depth(G) ≤ log(42N).

Now we define the overlay of a superconcentrator on a graph G (see Figure 1).

I Definition 11 (Superconcentrator Overlay). Let G = (V (G), E(G)) be a fixed DAG with N
vertices and GS = (V (GS), E(GS)) be a (priori fixed) superconcentrator with N input vertices
input(GS) = {i1, · · · , iN} ⊆ V (GS) and N output vertices output(GS) = {o1, · · · , oN} ⊆
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V (GS). We call a graph G′ = (V (GS), E(GS) ∪ EI ∪ EO) a superconcentrator overlay
where EI = {(iu, iv) : (u, v) ∈ E(G)} and EO = {(oi, oi+1) : 1 ≤ i < N} and denote as
G′ = superconc(G).

We will denote the interior nodes as interior(G′) = G′ \ (input(G′) ∪ output(G′)) where
input(G′) = input(GS) and output(G′) = output(GS). We remark that when using Pip-
penger’s construction of superconcentrators, it is easy to show that superconc(G) is(
e+ N

d , 2d+ log(42N)
)
-reducible whenever G is (e, d)-reducible, which implies that

cc(superconc(G)) ≤ min
g≥d

(
e+ N

d

)
42N + 2g(42N) + 42N

g
(2d+ log(42N)) 42N.

For more details, we refer an interested reader to Lemma 24 and Corollary 25 in Appendix D.
However, these results are not quite as strong as we would like. By comparison, we have the
following lower bound on the pebbling complexity from [11]:

cc(superconc(G)) ≥ min
(
eN

8 ,
dN

8

)
.

In Lemma 12 we obtain a significantly tighter upper bound on cc(superconc(G)) with an
improved pebbling strategy described at the end of this section.

I Lemma 12. Let G be an (e, d)-reducible graph with N vertices with indeg(G) = 2. Then
cc(superconc(G)) ≤ min

g≥d

{
2eN + 4gN + 43dN2

g + 24N2 log(42N)
g + 42N log(42N) +N

}
.

With the improved attack in Lemma 12, we can tune parameters appropriately to obtain
our main result, Theorem 13.

I Theorem 13. Given a DAG G, it is Unique Games hard to approximate cc(G) within any
constant factor.

Proof. Let k ≥ 2 be an integer that we shall later fix and similarly, let ε > 0 be a constant
that we will later fix. Given a DAG G with N vertices, then it follows by Corollary 8
that it is Unique Games hard to decide whether G is (e1, d1)-reducible or (e2, d2)-depth
robust for e1 = 1

kN
1

1+2ε , d1 = kN
2ε

1+2ε and e2 = (1 − ε)N
1

1+2ε and d2 = 0.9N
1+ε

1+2ε . If G
is (e1, d1)-reducible, then by Lemma 12, cc(superconc(G)) ≤ min

g≥d
{2e1N + 4gN + 43d1N

2

g +
24N2 log(42N)

g +42N log(42N)+N}. Observe that 2e1N = 2
kN

(2+2ε)/(1+2ε), whereas for g = e1

and sufficiently large N , 4gN + 43d1N
2

g + 24N2 log(42N)
g + 42N log(42N) +N ≤ 5

kN
2+2ε
1+2ε . Hence

for sufficiently large N ,

cc(superconc(G)) ≤ 7
k
N

2+2ε
1+2ε .

On the other hand, if G is (e2, d2)-depth robust, then by Lemma 23, cc(superconc(G)) ≥
min

(
e2N

8 , d2N
8
)
. Specifically,

cc(superconc(G)) ≥ e2N

8 = 1− ε
8 N

2+2ε
1+2ε .

Let c > 1 be any constant. Setting ε = 0.1 and k = d 560
9 c2e, we get that if G is

(e1, d1)-reducible, then cc(superconc(G)) ≤ 9
80c2N

2+2ε
1+2ε but if G is (e2, d2)-reducible, then

cc(superconc(G)) ≥ 9
80N

2+2ε
1+2ε . Hence, it is Unique Games hard to approximate cc(G) with a

factor of c. J
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1 2 · · · ` · · · N

G

o1 o2 · · · o` · · · oN

superconcentrator

• • •

i1 i2 · · · i` · · · iN

• • •

•• •
• • •

GS

⇒ o1 o2 · · · o` · · · oN

superconcentrator

i1 i2 · · · i` · · · iN

G′ = superconc(G)

Figure 1 An example of the superconcentrator overlay G′ = superconc(G). We remark that as
illustrated in GS , for any k inputs and k outputs (highlighted in red), there exist k vertex disjoint
paths in a superconcentrator.

Improved Pebbling Strategy for G′ = superconc(G)

Step 1: Pebble the input nodes input(G′) = G.
Step 2: Efficiently pebble interior(G′) using the property of superconcentrator.
Step 3: Pebble all nodes in output(G′) by alternating between light and ballon phases.

Light Phase - Walk pebble across the interval Ii = [o(i−1)g+1, oig] in g steps.
◦ Precondition for the ith light phase:
(1) Pebbles on all nodes v ∈ parents(o(i−1)g+1).
(2) Pebbles on all nodes v ∈ parents(Ii) \ Ii.
(3) Pebbles on the set S where S is a (e, d)-depth reducing set for G.
◦ Postcondition for the ith light phase:
(1) Pebbles on the set S and node oig.
Balloon Phase - Recover all the missing pebbles in input(G′) ∪ interior(G′) for the
upcoming light phase.
◦ Precondition for the ith balloon phase:
(1) Pebbles on the set S.
(2) Pebble on node oig+1 (the first node in the next light phase interval.)
◦ Postcondition for the ith balloon phase:
(1) Pebbles on all nodes in input(G′) ∪ interior(G′) = G′ \ output(G′).
(2) Pebble on node oig+1 (the first node in the next light phase interval.)

Figure 2 An improved pebbling strategy for G′ = superconc(G). It brought ideas from [2].
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Proof of Lemma 12. We will examine the pebbling cost of superconc(G) for each step shown
in Figure 2.

Step 1: We need to place pebbles on all input nodes in G′. By Theorem 18, the pebbling
cost of input(G′) = G will be upper bounded by2

cc(G) ≤ min
g≥d

{
eN + 2gN + N2d

g

}
.

Step 2: Start with a configuration with pebbles on every node in input(G′). We have that
depth(G′) \ input(G′) = log(42N). Therefore, in time log(42N), we can place pebbles on
every node in input(G′) ∪ interior(G′). Hence, the total pebbling cost in Step 2 will be at
most 42N log(42N).
Step 3: The goal for step 3 is to walk a pebble across the output nodes starting from o1
to oN . To save cost during this step, we should alternate light phases and balloon phases
repeatedly N/g times in total since we walk pebble across the interval Ii = [o(i−1)g+1, oig]
of length g in output(G′) in each phase. Let S be a (e, d)-depth reducing set for G. In
each light phase, to walk a pebble across the interval Ii, we should keep pebbles on S and
parents(Ii)\Ii. Since each node in Ii has two parents outside the interval and we keep one
pebble in Ii (the current node) for each step, the maximum number of pebbles to keep
would be |S|+ 2g + 1 = e+ 2g + 1 for each step. Hence, the maximum pebbling cost to
walk pebble across Ii in ith light phase is (e+ 2g + 1)g. In each balloon phase, we recover
the pebbles in input(G′) ∪ interior(G′) for the next light phase. Since S is a (e, d)-depth
reducing set, we have that depth(G′ \ (S ∪ output(G′))) ≤ d + log(42N). Therefore,
recovering the pebbles will cost at most (d+log(42N))42N for each balloon phase. Hence,
the total pebbling cost for Step 3 will be at most [(e+ 2g + 1)g + (d+ log(42N))42N ] Ng .

Taken together, we have that

cc(superconc2(G)) ≤ min
g≥d

{
eN + 2gN +

N2d

g︸ ︷︷ ︸
Step 1

+ 42N log(42N)︸ ︷︷ ︸
Step 2

+ [(e + 2g + 1)g + (d + log(42N)42N ]
N

g︸ ︷︷ ︸
Step 3

}

≤ min
g≥d

{
2eN + 4gN +

43dN2

g
+

24N2 log(42N)
g

+ 42N log(42N) + N

}
as desired. J
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A Svensson’s Construction

In this section, we review Svensson’s Construction. Given an instance U of Unique Games,
Svensson first constructs a weighted instance ĜU of the DAG reducibility problem. Recall
that in the weighted DAG reducibility problem, we are given a DAG G with weights on each
node and a target depth d and the goal is to find a minimum weight subset S such that
(G− S) contains no path of length d. Given (e1, d1) and (e2, d2) with e1 < e2 and d1 > d2
a weaker goal is simply to distinguish between the following cases: (1) there is a set S of
weight at most e1 s.t. (G− S) contains no path of length d1, and (2) for all sets S of weight
at most e2 the graph (G − S) contains a path of length d2. Svensson constructs ĜU s.t.
distinguishing between these cases allows us to solve the original Unique Games instance U .

A.1 Notation
We first review some notation that is used to describe Svensson’s initial construction. For
x ∈ [k]R and a subset S of not necessarily distinct indices of [R], let

Cx,S = {z ∈ [k]R : zj = xj∀j /∈ S}

denote the sub-cube whose coordinates not in S are fixed according to x. Let

Cx,S,v,w = {z ∈ [k]R : zj = xπv,w(j)∀πv,w(j) /∈ S}

denote the image of the sub-cube Cx,s under πv,w. Similarly, let

C⊕x,S = {z ⊕ 1 : z ∈ Cx,S},

where ⊕ denotes addition modulo k and 1 denotes an R-dimensional vector with all elements
1, and let

C⊕x,S,v,w = {z ⊕ 1 : z ∈ Cx,S,v,w}.

https://doi.org/10.4230/LIPIcs.ITCS.2019.59
https://doi.org/10.1007/978-3-319-70500-2_16
https://doi.org/10.1145/800133.804348


J. Blocki, S. Lee, and S. Zhou 13:19

A.2 Construction
In Svensson’s initial construction, nodes are divided into two sets: bit-vertices and test-
vertices. Bit-vertices are assigned weight infinity to guarantee that these nodes are not
deleted. Test-vertices are assigned weight one. Here, we focus on the construction of ĜU
though the graph ĜU is later transformed into an instance GU of the unweighted DAG
reducibility problem, i.e., distinguishing between the cases that GU is (e1, d1)-reducible and
(e2, d2)-depth robust is sufficient to solve the original Unique Games instance U . See Figure 3
for a simple example of ĜU along with the transformation to the unweighted instance GU .
The DAG ĜU is defined formally as follows:

For some L to be fixed, there are L + 1 layers of bit-vertices. Each bit-layer ` with
0 ≤ ` ≤ L the DAG ĜU contains bit-vertices b`w,x for each w ∈ W and x ∈ [k]R. Each
bit-vertex is assigned weight ∞.
There are L layers of test-vertices. For each 0 ≤ ` ≤ L− 1, the DAG ĜU contains test-
vertices t`x,S,v,w1,...,w2t

for every x ∈ [k]R, every sequence of indices S = (s1, . . . , sεR) ∈
[R]εR, every v ∈ V and every sequence (w1, . . . , w2t) of 2t not necessarily distinct neighbors
of v. Each test-vertex is assigned weight 1.
If ` ≤ `′ and z ∈ Cx,S,v,wj , then there is an edge from bit-vertex b`wj ,z to test-vertex
t`
′

x,S,v,w1,...,w2t
for each 1 ≤ j ≤ 2t.

If ` > `′ and z ∈ C⊕x,S,v,wj , then there is an edge from test-vertex t`
′

x,S,v,w1,...,w2t
to

bit-vertex b`wj ,z for each 1 ≤ j ≤ 2t.
If T is the total number of test-vertices, then L is selected so that δ2L ≥ T 1−δ.

A.3 Transformation
As mentioned before, in the Svensson’s construction, the bit-vertices are given weight ∞ so
that they are never deleted, and the graph can be simplified in the following manner without
altering the reduction. The transformation to GU is defined formally as follows:

For each 0 ≤ ` ≤ L− 1, there exists a vertex v`x,S,v,w1,...,w2t
for every x ∈ [k]R, every se-

quence of indices S = (s1, . . . , sεR) ∈ [R]εR, every v ∈ V and every sequence (w1, . . . , w2t)
of 2t not necessarily distinct neighbors of v.
If γ is the number of vertices in each layer, then L is selected so that δ2L ≥ (γL)1−δ.
There exists an edge between v`x,S,v,w1,...,w2t

and v`′x′,S′,v′,w′1,...,w′2t if and only if ` < `′ and
there exist i, j such that C⊕x,S,v,wi ∩ Cx′,S′,v′,w′j is nonempty.

I Example 14. In this example, we will illustrate how to reduce from a Unique Games
instance U to a Svensson’s construction ĜU , and a simplification procedure from ĜU to GU
by examining a simple toy example.

Consider the following Unique Games instance U = (G = (V,W,E), [R], {πv,w}v,w) with
V = {v1},W = {w1}, E = {(v1, w1)}, πv1,w1 : {1, 2} → {2, 1}, a labeling ρ : (V ∪W )→ [R]
such that ρ(v1) = 1, ρ(w1) = 2, and with the parameters R = 2, k = 2, t = 1, δ = 0.1 and
ε = 0.5. Then we have the following observations when constructing ĜU :

Each bit-layer ` with 0 ≤ ` ≤ L contains bit-vertices b`w,x for each w ∈W and x ∈ [k]R.
Hence, the number of bit-vertices in each layer is |W | × |[k]R| = 1× 22 = 4. That is, for
each layer i, we have the following bit-vertices:

biw1,(11), b
i
w1,(12), b

i
w1,(21), and biw1,(22).
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Each test-layer ` with 0 ≤ ` ≤ L−1 contains test-vertices t`x,S,v,w1,...,w2t
for every x ∈ [k]R,

every sequence of indices S = (s1, . . . , sεR) ∈ [R]εR, every v ∈ V and every sequence
(w1, . . . , w2t) of 2t not necessarily distinct neighbors of v. Since εR = 1 and v1 has only
one neighbor w1, the number of test-vertices in each layer is |[k]R|×|S|×|V |×|NG(v1)2t| =
22 × 2× 1× 12 = 8, where NG(v) denotes the set of neighbors of v in a graph G. That is,
for each layer i, we have the following test-vertices (from now on, we omit the subscript
v, w1, . . . , w2t in this example since there is only one such case for each test-vertex):

ti(11),(1), t
i
(12),(1), t

i
(21),(1), t

i
(22),(1), t

i
(11),(2), t

i
(12),(2), t

i
(21),(2), and ti(22),(2).

There exists an edge from bit vertex b`w1,z to test-vertex t`′x,S if ` ≤ `′ and z ∈ Cx,S,v1,w1 .
We recall that Cx,S,v1,w1 = {z ∈ [k]R : zj = xπv1,w1 (j) ∀πv1,w1(j) 6∈ S}. Now it is easy to
see that if S = {1}, z ∈ Cx,S,v1,w1 if and only if z1 = x2, and if S = {2}, z ∈ Cx,S,v1,w1 if
and only if z2 = x1. Therefore, we have an edge from biw1,(12) to tj(11),(1), t

j
(21),(1), t

j
(21),(2),

and tj(22),(2) for all 0 ≤ i ≤ j < L, and so on.
There exists an edge from test-vertex t`′x,S to bit-vertex b`w1,z if ` > `′ and z ∈ C⊕x,S,v1,w1

,
where ⊕ denotes addition modulo k = 2 and C⊕x,S,v1,w1

= {z ⊕ 1 : z ∈ Cx,S,v1,w1}. Hence,
for example, if there is an edge from biw1,(12) to tjx,S then there should be an edge from
tjx,S to bj

′

w1,(21) for all j′ > j since (12)⊕ 1 = (12)⊕ (11) = (21).

When transforming ĜU into GU , we can observe that C⊕x,S,v1,w1
∩ Cx′,S′,v1,w1 is nonempty if

and only if there is a path between two test-vertices through one bit-vertex. Taken together,
we have the following structure of graphs reduced from a Unique Games instance U , as shown
in Figure 3. J

B Modified Construction

Given an instance ĜU of the Svensson’s construction and a γ-extreme depth-robust graph
Gγ,L+1 = (Vγ = [L+1], Eγ), we formally define our modified instanceG′ = SparsifyGγ,L+1

(ĜU )
in the following manner.

Transformation SparsifyGγ,L+1
(ĜU )

Input: An instance ĜU = (V,E) of the Svensson’s construction, whose vertices are
partitioned into L+ 1 bit-layers B0, . . . , BL and L test-layers T0, . . . , TL−1, a γ-extreme
depth robust graph Gγ,L+1 = (Vγ = [L+ 1], Eγ).

1. Let G′ = (V,E) be a copy of ĜU .
2. If e = (b, t) is an edge in ĜU , where b ∈ Bi and t ∈ Tj , delete e from G′ if i 6= j and

(i, j) 6∈ Eγ .
3. If e = (t, b) is an edge in ĜU , where b ∈ Bi and t ∈ Tj , delete e from G′ if (j, i) 6∈ Eγ .

Output: G′

We give an illustration of the Sparsify procedure in Figure 4.
Correspondingly, our modified instance can also be simplified in the following manner

without altering the reduction.

For a input parameter γ, let Gγ,L+1 = (Vγ = [L+ 1], Eγ) be an γ
2 -extreme depth robust

graph with L+ 1 vertices, which we use [L+ 1] to represent.
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Unique Games instance U :

v1 w1

V W

[R] := {1, 2}

πv1,w1 : {1, 2} → {2, 1}

Reduction ĜU : ...

...

...

...

Ti+1

...
ti+1
(11),(1) ti+1

(12),(1) ti+1
(21),(1) ti+1

(22),(1) ti+1
(11),(2) ti+1

(12),(2) ti+1
(21),(2) ti+1

(22),(2)

Bi+1 bi+1
w1,(11) bi+1

w1,(12) bi+1
w1,(21) bi+1

w1,(22)

Ti ti(11),(1) ti(12),(1) ti(21),(1) ti(22),(1) ti(11),(2) ti(12),(2) ti(21),(2) ti(22),(2)

Bi
...

biw1,(11) biw1,(12) biw1,(21) biw1,(22)

· · · · · · · · ·

· · · · · · · · ·

· · · · · · · · ·

Transformation GU :

Layer (i+ 1)

...
vi+1

(11),(1) vi+1
(12),(1) vi+1

(21),(1) vi+1
(22),(1) vi+1

(11),(2) vi+1
(12),(2) vi+1

(21),(2) vi+1
(22),(2)

Layer i
...

vi(11),(1) vi(12),(1) vi(21),(1) vi(22),(1) vi(11),(2) vi(12),(2) vi(21),(2) vi(22),(2)

· · · · · · · · ·

Figure 3 An example of reduction ĜU from a Unique Games instance U and a transformation
into GU illutrated in Example 14. We remark that in ĜU and GU , we only drew edges from the
highlighted vertices for simplicity and readability. In GU , we only keep test-vertices from ĜU and
connect two vertices if there is a path between those two through one bit-vertex. Therefore, we can
easily check that totally 6 edges (shown in snaked magenta edges) going out from the vertex vi(11),(2)

in GU comes from the edges (ti(11),(2), b
i+1
w1,(12)) and (ti(11),(2), b

i+1
w1,(22)) (shown in a snaked red edge)

and edges from bi+1
w1,(12) and bi+1

w1,(22) to the test layer Ti+1 (shown in snaked blue/green edges) in
ĜU . We also note that the edges starting from the ith bit layer Bi go to every upper test layers Tj
for all j ≥ i. Those edges are represented as dashed ones.
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B0

T0

...
...

B`

T`

...
...

BL−1

TL−1

BL

· · · · · · · · ·

ĜU

· · · · · · · · ·

· · · · · · · · ·

· · · · · · · · ·

· · · · · ·

· · · · · ·

· · · · · ·

+

0

...

`

L–1

...

L

Gγ,L+1

⇒

B0

T0

...
...

B`

T`

...
...

BL−1

TL−1

BL

· · · · · · · · ·

SparsifyGγ,L+1
(ĜU )

· · · · · · · · ·

· · · · · · · · ·

· · · · · · · · ·

· · · · · ·

· · · · · ·

· · · · · ·

Figure 4 A description of the transformation SparsifyGγ,L+1
(ĜU ) where ĜU is Svensson’s con-

struction and Gγ,L+1 is a γ-extreme depth-robust graph. We remark that the edges between the
subsets of nodes indicate that every node in the input subset is connected to every node in the
output subset (in this example, there should be 3× 3 = 9 edges from B0 to T0.)

For each 0 ≤ ` ≤ L− 1, there exists a vertex v`x,S,v,w1,...,w2t
for every x ∈ [k]R, every se-

quence of indices S = (s1, . . . , sεR) ∈ [R]εR, every v ∈ V and every sequence (w1, . . . , w2t)
of 2t not necessarily distinct neighbors of v.
If γ is the number of vertices in each layer, then L is selected so that δ2L ≥ (γL)1−δ.
There exists an edge between v`x,S,v,w1,...,w2t

and v`′x′,S′,v′,w′1,...,w′2t if and only if ` < `′, the
edge (`, `′) is in Eγ , and there exist i, j such that C⊕x,S,v,wi ∩ Cx′,S′,v′,w′j is nonempty.

We first recall the following definition of influence of the ith coordinate:

Infli(f) = Ex [Var(f)|x1, . . . , xi−1, xi+1, . . . , xR] .

We now reference the key theorem used in Svensson’s analysis.

I Theorem 15 ([31, 45]). For every ε, δ > 0 and integer k, there exists η > 0 and integers
t, d such that any collection of functions f1, . . . , ft : [k]R → {0, 1} that satisfies
∀j,E [fj ] ≥ δ
∀i ∈ [R], ∀1 ≤ `1 6= `2 ≤ t: min

{
Infldi (f`1), Infldi (f`2)

}
≤ η

has

Pr
x,Sε

 t∧
j=1

fj(Cx,Sε) ≡ 0

 ≤ δ.
We now show that the transformed graph maintains similar properties as Svensson’s

construction, given an instance of Unique Games. The following statement is analogous to
Lemma 4.7 in [45].

I Reminder of Lemma 4. Let χ be any coloring of SparsifyGγ,L+1
(ĜU ). If the Unique

Games instance has no labeling that satisfies a fraction δη2

t2k2 of the constraints and at least
32δ2|T | test vertices are consistent with χ, then there exists w ∈W with

Pr
`∈[L]

[χ(w, `′) > χ(w, `) for all `′ > ` with (`, `′) ∈ Eγ ] ≥ 32δ2.
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Proof of Lemma 4. As in [45], an equivalent formulation of the problem is finding a coloring
χ in {1, 2, . . . , k} to each bit-vertex to minimize the number of unsatisfied test-vertices.
Unlike in [45], we say a test-vertex t`x,S,v,w1,...,w2t

is satisfied if

max
1≤j≤2t

z∈Cx,S,v,wj

χ
(
b`
′

wj ,z

)
< min

1≤j≤2t
z∈C⊕

x,S,v,wj

χ
(
b`
′′

wj ,z

)
,

for all `′ ≤ ` < `′′ with (`′, `′′) ∈ Eγ , so that all the predecessors of ` are assigned lower
colors than the successors of `.

We also define the color χ(w, `) for w ∈ W and 0 ≤ ` ≤ L as the maximum color that
satisfies

Pr
x

[
χ(b`w,x) ≥ χ(w, `)

]
≥ 1− δ.

For w ∈W and 0 ≤ ` ≤ L− 1, define the indicator function f `w : [k]R → {0, 1} by

f `w(x) =

0 if χ
(
b`
′

w,x

)
> χ(w, `) for all `′ > ` with (`, `′) ∈ Eγ ,

1 otherwise.

We call a test-vertex w ∈ W good in test-layer ` if for χ(w, `′) > χ(w, `) for every edge of
the form (`, `′) in the γ-extreme depth-robust graph Gγ,L+1 = (Vγ = [L+ 1], Eγ).

B Claim 16. If the Unique Games instance has no labeling satisfying a fraction δη2

t2k2 of the
constraints and a fraction 16δ of the vertices of test-layer ` are satisfied, then at least a 2δ
fraction of the vertices are good in test-layer `.

Proof. Let A` be the set of satisfied vertices of test-layer ` so that for all `′ ≤ ` < `′′ with
(`′, `′′) ∈ Eγ , it follows that

Pr
x,S,v,w1,...,w2t

 max
1≤j≤2t

z∈Cx,S,v,wj

χ
(
b`
′

wj ,z

)
< min

1≤j≤2t
z∈C⊕

x,S,v,wj

χ
(
b`
′′

wj ,z

) ≥ 16δ,

since at least 16δ fraction of the vertices in A` are satisfied. We call a tuple (v, w1, . . . , w2t)
good if

Pr
x,S

 max
1≤j≤2t

z∈Cx,S,v,wj

χ
(
b`
′

wj ,z

)
< min

1≤j≤2t
z∈C⊕

x,S,v,wj

χ
(
b`
′′

wj ,z

) ≥ 8δ,

for all `′ ≤ ` < `′′ with (`′, `′′) ∈ Eγ . Observe that at least 8δ fraction of the tuples are good.
From the definition of χ(w, `′), we have that Pr

x

[
χ
(
b`
′

w,x

)]
≥ 1 − δ. Hence for a good

tuple, it follows that

7δ ≤ Pr
x,S

 max
1≤j≤2t

χ(wj , `′) < min
1≤j≤2t

z∈C⊕
x,S,v,wj

χ
(
b`
′′

wj ,z

) ≤ Pr
x,S

 2t∧
j=1

f `wj (Cx,S,v,wj ) ≡ 0

 ,
for all `′ ≤ ` < `′′ with (`′, `′′) ∈ Eγ .
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Therefore by Theorem 15, at least one of the following cases holds:

1. more than t of the functions have E
[
f `wj

]
< δ so that χ(wj , `′) > χ(wj , `) for every edge

of the form (`, `′) in Eγ , or
2. there exist 1 ≤ `1 6= `2 ≤ t and j ∈ I [w`1 ] , j′ ∈ I [w`2 ] such that πv,w`1

(j) = πv,w`2
(j′),

where

I[w] = {i ∈ [R] : Infldi (f `w) ≥ η}.

If Condition 1 holds for at least 1
2 of the good tuples, or equivalently a 4δ fraction of all

tuples, then at least a 2δ fraction of the test-vertices are good in test-layer ` because we
can pick a vertex wj ∈W uniformly at random by picking a tuple (v, w1, . . . , w2t) and then
taking one of the vertices w1, . . . , w2t at random. Conditioned on the (at least) 2δ probability
that the tuple is good and satisfies Condition 1, the probability that χ(wj , `′) > χ(wj , `)
for every edge of the form (`, `′) in Eγ for the sampled vertex wj is at least 1

2 . Therefore,
Pr
w

[χ(w, `′) > χ(w, `) for all `′ > ` with (`, `′) ∈ Eγ ] ≥ 2δ, so that at least 2δ fraction of the
test-vertices are good in test-layer `.

By way of contradiction, we can show that if Condition 2 were to hold for more than
half of the good tuples, the assumption that the Unique Games instance has no labeling
satisfying a fraction δη2

t2k2 of the constraints is violated. The argument holds exactly as Claim
4.8 in [45], but we repeat it here for completeness.

For every w ∈ W , let ρ(w) be a random label from I[w]. For every v ∈ V , let w be
a random neighbor of v and let ρ(v) = πv,w(ρ(w)). If Condition 2 holds for half of the
good tuples, then a random tuple has this property with at least probability 4δ. Thus
with probability at least 1

4t2 , w = w`1 and w′ = w`2 for w,w′ randomly picked from the
set {w1, . . . , w2t}. Moreover, [45, 9] observes that with probability at least η2

k2 , the labeling
procedure defines j = ρ(w) and j′ = ρ(w′). Hence if Condition 2 holds for half of the good
tuples,

Pr
v,w,w′

[πv,w(ρ(w)) = πv,w′(ρ(w′))] ≥ 4δη2

4t2k2 ,

so that over the randomness of the labeling procedure,

Pr
(v,w)

[ρ(v) = πv,w(ρ(w))] ≥ δη2

t2k2 ,

which contradicts the assumption that the Unique Games instance has no labeling satisfying
a fraction δη2

t2k2 of the constraints is violated. C

Consider a subgraph induced by all bit-vertices and a fraction 32δ of the test-vertices and
consider the minimum number of colors required for a coloring χ to satisfy the 32δ fraction
of the test-vertices. Since at least 16δ fraction of the test-vertices are good in at least 16δ
fraction of the test-layers, then by Claim 16,

Pr
`∈[L],w∈W

[χ(w, `′) > χ(w, `) for all `′ > ` with (`, `′) ∈ Eγ ] ≥ 16δ · 2δ = 32δ2.

Therefore, there exists w ∈W with Pr
`∈[L]

[χ(w, `′) > χ(w, `) for all `′ > ` with (`, `′) ∈ Eγ ] ≥

32δ2. J

Interestingly, we can exactly compute the pebbling complexity of the simplified Svensson’s
construction, when the graph is only represented with the test-vertices.
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I Lemma 17. Given a (simplified) Svensson’s construction GU that consists of N vertices
partitioned across L layers, cc(GU ) = N(L+1)

2 .

Proof. We first show that the pebbling complexity of GU is at least N(L+1)
2 . Observe that

the Svensson’s construction contains N
L vertices in each layer and furthermore, for each pair

of layers i and j, there is a perfect matching between vertices of layer i and vertices of layer
j among the edges connecting layers i and j. LetMi,j be the subset of edges between i and
j that is perfect matching.

For a given pebble u in layer j, let vi be the vertex in layer i matched to u byMi,j . To
pebble a vertex u in layer j, all of its parents must contain pebbles in the previous round.
Namely, there must be a pebble on vi for all 1 ≤ i < j in the previous round. Since each
Mi,j is a perfect matching, there must be j − 1 pebbles on the graph solely for the purpose
of pebbling node u in layer j. Thus pebbling each node in layer j induces a pebbling cost of
at least j − 1. Since there are N

L pebbles in each layer and L layers, then the total pebbling
cost is at least N

L

∑L
j=1(j − 1) = N(L+1)

2 , which lower bounds cc(GU ).
On the other hand, consider the natural pebbling where all the pebbles in layer j are

pebbled in round j, and no pebble is ever removed. Then the graph is completely pebbled
in L rounds, since layer L is pebbled in round L. Moreover, the cost of pebbling round j
is N

L (j − 1). Hence, the pebbling cost is N
L

∑L
j=1(j − 1) = N(L+1)

2 , which upper bounds
cc(GU ). J

Finally, we give a formal description of the procedure IDR(G, γ). Recall that IDR(G, γ)
for a graph G = (V,E) replaces each vertex v ∈ V with a path Pv = v1, . . . , vδ+γ , where δ is
the indegree of G. For each edge (u, v) ∈ E, we add the edge (uδ+γ , vi) whenever (u, v) is
the ith incoming edge of v, according to some fixed ordering. [5] give parameters e2 and d2 so
that IDR(G, γ) is (e2, d2)-depth robust if G is (e, d)-depth robust. We complete the reduction
by giving parameters e1 and d1 so that IDR(G, γ) is (e1, d1)-reducible if G is (e, d)-reducible.

Transformation IDR(G, γ)

Input: An DAG G = (V,E) with indegree δ, parameter γ.

1. Let the vertices of G be [|V |].
2. Initialize G′ to be a graph with (δ+γ)|V | vertices and let these vertices be [(δ + γ)|V |]
3. If (δ + γ)n+ 1 ≤ u < (δ + γ)n for some integer n, add edge (u, u+ 1) to G′.
4. If (u, v) is the ith incoming edge of v by some fixed predetermined ordering, then add

(uδ+γ , vi) to G′.

Output: G′

We given an illustration of the IDR transformation in Figure 5.

v

u
· · ·

G

v1 v2 · · · vδ+γ

u1 · · · uδ+γ

· · · · · ·

IDR(G, γ)

Figure 5 An example of the transformation IDR(G, γ). We remark that if the red edge (u, v) is
the 2nd incoming edge of v, then in IDR(G, γ) we should add (uδ+γ , v2) to G′.
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C Useful Theorems

We rely on the following results in our constructions and proofs.

I Theorem 18 ([2]). Let G be a DAG with N vertices and indegree δ. If G is (e, d)-reducible,
then cc(G) ≤ min

g≥d

{
eN + δgN + N2d

g

}
.

I Theorem 19 ([5]). Let G be a DAG with N vertices and indegree δ. If G is (e, d)-depth
robust, then cc(G) ≥ ed.

While Theorem 18 and Theorem 19 are nice results that relate the pebbling complexities of
(e1, d1)-reducible and (e2, d2)-depth robust graphs, these statements are ultimately misleading
in that d ≤ N and thus there will never be a gap between the pebbling complexities of the
graphs.

I Theorem 20 ([45]). For any integer k ≥ 2 and constant ε > 0, given a DAG G with N
vertices, it is Unique Games hard to distinguish between the following cases:

(Completeness): G is
(( 1−ε

k

)
N, k

)
-reducible.

(Soundness): G is
(
(1− ε)N,N1−ε)-depth robust.

I Definition 21. Given a parameter 0 < γ < 1, a DAG G = (V,E) is γ-extreme depth-robust
if G is (e, d)-depth robust for any e, d such that e+ d ≤ (1− γ)N .

I Theorem 22 ([6]). For any fixed 0 < γ < 1, there exists a constant c1 > 0 such that
for all integers N > 0, there exists an γ-extreme depth robust graph G with N vertices and
indeg(G), outdeg(G) ≤ c1 logN .

I Lemma 23 ([11]). Let G be an (e, d)-depth robust graph with N vertices. Then

cc(superconc(G)) ≥ min
(
eN

8 ,
dN

8

)
.

D Missing Proofs

I Reminder of Lemma 7. There exists a polynomial time procedure IDR(G, γ) that takes
as input a DAG G with N vertices and indeg(G) = δ and outputs a graph G′ = IDR(G, γ)
with (δ + γ)N vertices and indeg(G′) = 2. Moreover, the following properties hold: (1) If
G is (e, d)-reducible, then IDR(G, γ) is (e, (δ + γ) · d)-reducible, and (2) If G is (e, d)-depth
robust, then IDR(G, γ) is (e, γ · d)-depth robust.

Proof of Lemma 7. Alwen et al. [5] show that IDR(G, γ) is (e, γ · d)-depth robust if G is
(e, d)-depth robust. It remains to show that IDR(G, γ) is (e, (δ + γ) · d)-reducible if G is
(e, d)-reducible.

Given an (e, d)-reducible graph G = (V,E) of N vertices, we use [N ] to represent the
vertices of G and let G′ = IDR(G, γ) so that the vertices of G′ can be associated with
[(δ + γ)N ]. Let S be a set of e vertices in G such that depth(V − S) < d. Let S′ be a set of
e vertices in G′ so that (δ + γ)v ∈ S′ for each vertex v ∈ S.

Suppose, by way of contradiction, that there exists a path P ′ of length (δ+γ) ·d in G′−S′.
Observe that if y, z ∈ G′ such that (δ + γ)a+ 1 ≤ y ≤ (δ + γ)(a+ 1) and (δ + γ)b+ 1 ≤ z ≤
(δ + γ)(b+ 1) for integers a < b, then y cannot be connected to z unless y = (δ + γ)(a+ 1).
Hence that if P ′ contains vertex u ∈ G′ such that (δ + γ)c+ 1 ≤ u ≤ (δ + γ)(c+ 1) and u
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is not one of the final δ + γ − 1 vertices of P ′, then (δ + γ)(c+ 1) ∈ P ′. Thus by a simple
Pigeonhole argument, there exists at least d integers j1, j2, . . . , jd such that (δ + γ)jn ∈ P ′
for 1 ≤ n ≤ d and moreover there exists an edge in P ′ from each vertex (δ + γ)jn to some
vertex w such that (δ + γ)(jn+1 − 1) + 1 ≤ w ≤ (δ + γ)jn+1 for 1 ≤ n ≤ d − 1. However,
this implies that j1, . . . , jd is a path in G by construction of IDR(G, γ). Moreover, since
(δ+ γ)v ∈ S′ for each vertex v ∈ S, this implies that j1, . . . , jd is a path of length d in G−S,
which contradicts the assumption that depth(G− S) < d. J

I Reminder of Corollary 8. For any integer k ≥ 2 and constant ε > 0, given a DAG G

with N vertices and maximum indegree indeg(G) = 2, it is Unique Games hard to decide
whether G is (e1, d1)-reducible or (e2, d2)-depth robust for (Completeness): e1 = 1

kN
1

1+2ε and
d1 = kN

2ε
1+2ε , and (Soundness): e2 = (1− ε)N

1
1+2ε and d2 = 0.9N

1+ε
1+2ε .

Proof of Corollary 8. Suppose G′ is a graph with M vertices. By applying Lemma 7 to
Theorem 6 and setting k = M2ε and γ = M2ε−δ, then we start from a graph withM vertices
and end with a graph G with N = M1+2ε vertices or equivalently,M = N1/(1+2ε). Thus, G =
IDR(G′, γ) is (e, d)-reducible for e = (1−ε)M

k = 1−ε
k N1/(1+2ε) and d = kM2ε = kN2ε/(1+2ε).

Since e < M
k , it is clearly the case thatG = IDR(G′, γ) is (e1, d1)-reducible for e1 = M

k > e and
d1 = d = kN2ε/(1+2ε) as we delete more nodes and the depth reducibility guarantees the same
upper bound of the remaining depth. On the other hand, IDR(G′, γ) is (e2, d2)-depth robust
for e2 = (1− ε)M = (1− ε)N1/(1+2ε), while d2 = γM1−ε = (M2ε − δ)M1−ε. By Theorem 6,
δ = O

(
Mε log2 M

)
so that for sufficiently large M , d2 = 0.9M1+ε = 0.9N (1+ε)/(1+2ε). J

I Lemma 24. If G is (e, d)-reducible, then superconc(G) is
(
e+ N

d , 2d+ log(42N)
)
-reducible,

where N is the number of vertices in superconc(G).

Proof. Let G = (V,E) be a (e, d)-reducible DAG with N vertices. Let G′ = superconc(G)
and suppose G′ has M vertices, which we designate [M ]. Thus, there exists a set S ⊆ V

such that |S| ≤ e and depth(G − S) < d. Let T be the set of Nd vertices {M,M − d,M −
2d, . . . ,M −N + d}, so that T ⊆ output(G′). We claim depth(G′ − S − T ) < 2d+ log(42N).

Suppose by way of contradiction that there exists a path P in G′−S−T of length at least
2d+ log(42N). By Lemma 10, the depth of any path from an input node to an output vertex
is at most log(42N). Moreover, all edges added in the superconcentrator overlay are either
between input vertices or two output vertices. Hence, then at least 2d vertices of P have to
lie in either the first N vertices or the last N vertices of G′. Because P does not contain
vertices of T , there is no path of length of length d in the last N vertices of G′, so there must
be a path of length d in the first N vertices of G′, which contradicts depth(G− S) < d.

Therefore, G′ is
(
e+ N

d , 2d+ log(42N)
)
-reducible. J

From Lemma 24 we immediately obtain an upper bound on the pebbling complexity of
superconc(G) by applying Theorem 18 to Lemma 24. However, the upper bound is not as
strong as we would like.

I Corollary 25. Let G be an (e, d)-reducible graph with N vertices. Then

cc(superconc(G)) ≤ min
g≥d

(
e+ N

d

)
42N + 2g(42N) + 42N

g
(2d+ log(42N)) 42N.
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