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We argue that making accept/reject decisions on scientific hypotheses, including a

recent call for changing the canonical alpha level from p = 0.05 to p = 0.005,

is deleterious for the finding of new discoveries and the progress of science.
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Trafimow et al. Not Curing Significance

Given that blanket and variable alpha levels both are problematic, it is sensible to dispense

with significance testing altogether. There are alternatives that address study design and

sample size much more directly than significance testing does; but none of the statistical

tools should be taken as the new magic method giving clear-cut mechanical answers.

Inference should not be based on single studies at all, but on cumulative evidence from

multiple independent studies. When evaluating the strength of the evidence, we should

consider, for example, auxiliary assumptions, the strength of the experimental design,

and implications for applications. To boil all this down to a binary decision based on a

p-value threshold of 0.05, 0.01, 0.005, or anything else, is not acceptable.

Keywords: statistical significance, null hypothesis testing, p-value, significance testing, decision making

Many researchers have criticized null hypothesis significance
testing, though many have defended it too (see Balluerka et al.,
2005, for a review). Sometimes, it is recommended that the
alpha level be reduced to a more conservative value, to lower
the Type I error rate. For example, Melton (1962), the editor
of Journal of Experimental Social Psychology from 1950–1962,
favored an alpha level of 0.01 over the typical 0.05 alpha level.
More recently, Benjamin et al. (2018) recommended shifting
to 0.005—consistent with Melton’s comment that even the 0.01
level might not be “sufficiently impressive” to warrant publication
(p. 554). In addition, Benjamin et al. (2018) stipulated that the
0.005 alpha level should be for new findings but were vague
about what to do with findings that are not new. Though
not necessarily endorsing significance testing as the preferred
inferential statistical procedure (many of the authors apparently
favor Bayesian procedures), Benjamin et al. (2018) did argue
that using a 0.005 cutoff would fix much of what is wrong with
significance testing. Unfortunately, as we will demonstrate, the
problems with significance tests cannot be importantly mitigated
merely by having a more conservative rejection criterion, and
some problems are exacerbated by adopting a more conservative
criterion.

We commence with some claims on the part of Benjamin
et al. (2018). For example, they wrote “. . . changing the P value
threshold is simple, aligns with the training undertaken by
many researchers, and might quickly achieve broad acceptance.”
If significance testing—at any p-value threshold—is as badly
flawed as we will maintain it is (see also Amrhein et al.,
2017; Greenland, 2017), these reasons are clearly insufficient
to justify merely changing the cutoff. Consider another claim:
“The new significance threshold will help researchers and readers
to understand and communicate evidence more accurately.”
But if researchers have understanding and communication
problems with a 0.05 threshold, it is unclear how using a
0.005 threshold will eliminate these problems. And consider
yet another claim: “Authors and readers can themselves take
the initiative by describing and interpreting results more
appropriately in light of the new proposed definition of statistical
significance.” Again, it is not clear how adopting a 0.005
threshold will allow authors and readers to take the initiative
with respect to better data interpretation. Thus, even prior
to a discussion of our main arguments, there is reason for

the reader to be suspicious of hasty claims with no empirical
support.

With the foregoing out of the way, consider that a basic
problem with tests of significance is that the goal is to reject a null
hypothesis. This goal seems to demand—if one is a Bayesian—
that the posterior probability of the null hypothesis should be
low given the obtained finding. But the p-value one obtains is
the probability of the finding, and of more extreme findings,
given that the null hypothesis and all other assumptions about
the model were correct (Greenland et al., 2016; Greenland, 2017),
and one would need to make an invalid inverse inference to draw
a conclusion about the probability of the null hypothesis given
the finding. And if one is a frequentist, there is no way to traverse
the logical gap from the probability of the finding and of more
extreme findings, given the null hypothesis, to a decision about
whether one should accept or reject the null hypothesis (Briggs,
2016; Trafimow, 2017). We accept that, by frequentist logic, the
probability of a Type I error really is lower if we use a 0.005
cutoff for p than a 0.05 cutoff, all else being equal. We also accept
the Bayesian argument by Benjamin et al. (2018) that the null
hypothesis is less likely if p = 0.005 than if p = 0.05, all else
being equal. Finally, we acknowledge that Benjamin et al. (2018)
provided a service for science by further stimulating debate about
significance testing. But there are important issues Benjamin et al.
(2018) seem not to have considered, discussed in the following
sections.

REGRESSION AND REPLICABILITY

Trafimow and Earp (2017) argued against the general notion of
setting an alpha level to make decisions to reject or not reject null
hypotheses, and the arguments retain their force even if the alpha
level is reduced to 0.005. In some ways, the reduction worsens
matters. One problem is that p-values have sampling variability,
as do other statistics (Cumming, 2012). But the p-value is special
in that it is designed to look like pure noise if the null hypothesis
and all othermodel assumptions are correct, for in that case the p-
value is uniformly distributed on [0,1] (Greenland, 2018). Under
an alternative hypothesis, its distribution is shifted downwards,
with the probability of p falling below the chosen cutoff being the
power of the test. Because the actual power of typical studies is
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not very high, when the alternative is correct it will be largely a
matter of luck whether the sampled p-value is below the chosen
alpha level. When, as is often the case, the power is much
below 50% (Smaldino and McElreath, 2016), the researcher is
unlikely to re-sample a p-value below a significance threshold
upon replication, as there may be many more p-values above
than below the threshold in the p-value distribution (Goodman,
1992; Senn, 2002; Halsey et al., 2015). This problem gets worse as
the cutoff is lowered, since for a constant sample size, the power
drops with the cutoff.

Even if one did not use a cutoff, the phenomenon of regression
to the mean suggests that the p-value obtained in a replication
experiment is likely to regress to whatever the mean p-value
would be if many replications were performed. How much
regression should occur? When the null hypothesis is incorrect,
that depends on how variable the point estimates and thus the
p-values are.

Furthermore, the variability of p-values results in poor
correlation across replications. Based on data placed online
by the Open Science Collaboration (2015; https://osf.io/fgjvw),
Trafimow and de Boer (submitted) calculated a correlation of
only 0.004 between p-values obtained in the original cohort
of studies with p-values obtained in the replication cohort, as
compared to the expected correlation of zero if all the null
hypotheses and models used to compute the p-values were
correct (and thus all the p-values were uniformly distributed).

There are several possible reasons for the low correlation,
including that most of the studied associations may have in
fact been nearly null, so that the p-values remained primarily
a function of noise and thus a near-zero correlation should be
expected. But even if many or most of the associations were far
from null, thus shifting the p-values downward toward zero and
creating a positive correlation on replication, that correlation
will remain low due not only to the large random error in
p-values, but also due to imperfect replication methodology
and the nonlinear relation between p-values and effect sizes
(“correcting” the correlation for attenuation due to restriction
of range, in the original cohort of studies, increases the
correlation to 0.01, which is still low). Also, if most of the
tested null hypotheses were false, the low p-value replicability
as evidenced by the Open Science Collaboration could be
attributed, in part, to the publication bias caused by having a
publishing criterion based on p-values (Locascio, 2017a; Amrhein
and Greenland, 2018). But if one wishes to make such an
attribution, although it may provide a justification for using
p-values in a hypothetical scientific universe where p-values
from false nulls are more replicable because of a lack of
publication bias, the attribution provides yet another important
reason to avoid any sort of publishing criteria based on p-
values or other statistical results (Amrhein and Greenland,
2018).

Thus, the obtained p-value in an original study has little
to do with the p-value obtained in a replication experiment
(which is just what the actual theory of p-values says should
be the case). The best prediction would be a p-value for
the replication experiment being vastly closer to the mean of
the p-value distribution than to the p-value obtained in the

original experiment. Under any hypothesis, the lower the p-
value published in the original experiment (e.g., 0.001 rather
than 0.01), the more likely it represents a greater distance of the
p-value from the p-value mean, implying increased regression
to the mean.

All this means that binary decisions, based on p-values, about
rejection or acceptance of hypotheses, about the strength of the
evidence (Fisher, 1925, 1973), or about the severity of the test
(Mayo, 1996), will be unreliable decisions. This could be argued
to be a good reason not to use p-values at all, or at least not to use
them for making decisions on whether or not to judge scientific
hypotheses as being correct (Amrhein et al., 2018).

ERROR RATES AND VARIABLE ALPHA

LEVELS

Another disadvantage of using any set alpha level for publication
is that the relative importance of Type I and Type II errors might
differ across studies within or between areas and researchers
(Trafimow and Earp, 2017). Setting a blanket level of either 0.05
or 0.005, or anything else, forces researchers to pretend that the
relative importance of Type I and Type II errors is constant.
Benjamin et al. (2018) try to justify their recommendation
to reduce to the 0.005 level by pointing out a few areas of
science which use very low alpha levels, but this observation
is just as consistent with the idea that a blanket level across
science is undesirable. And there are good reasons why variation
across fields and topics is to be expected: A wide variety of
factors can influence the relative importance of Type I and
Type II errors, thereby rendering any blanket recommendation
undesirable. These factors may include the clarity of the
theory, auxiliary assumptions, practical or applied concerns, or
experimental rigor. Indeed, Miller and Ulrich (2016) showed
how these and other factors have a direct bearing on the
final research payoff. There is an impressive literature attesting
to the difficulties in setting a blanket level recommendation
(e.g., Buhl-Mortensen, 1996; Lemons et al., 1997; Lemons and
Victor, 2008; Lieberman and Cunningham, 2009; Myhr, 2010;
Rice and Trafimow, 2010; Mudge et al., 2012; Lakens et al.,
2018).

However, we do not argue that every researcher should get
to set her own alpha level for each study, as recommended by
Neyman and Pearson (1933) and Lakens et al. (2018), because
that has problems too (Trafimow and Earp, 2017). For example,
with variable thresholds, many old problems with significance
testing remain unsolved, such as the problems of regression to
the mean of p-values, inflation of effect sizes (the “winner’s curse,”
see below), selective reporting and publication bias, and the
general disadvantage of forcing decisions too quickly rather than
considering cumulative evidence across experiments. In view of
all the uncertainty surrounding statistical inference (Greenland,
2017, 2018; Amrhein et al., 2018), we strongly doubt that we
could successfully “control” error rates if only we would justify
our alpha level and other decisions in advance of a study,
as Lakens et al. (2018) seem to suggest in their comment to
Benjamin et al. (2018). Nonetheless, Lakens et al. (2018) conclude
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that “the term ‘statistically significant’ should no longer be used.”
We agree, but we think that significance testing with a justified
alpha is still significance testing, whether the term “significance”
is used or not.

Given that blanket and variable alpha levels both are
problematic, it is sensible not to redefine statistical significance,
but to dispense with significance testing altogether, as suggested
by McShane et al. (2018) and Amrhein and Greenland (2018),
two other comments to Benjamin et al. (2018).

DEFINING REPLICABILITY

Yet another disadvantage pertains to what Benjamin et al. (2018)
touted as the main advantage of their proposal, that published
findings will be more replicable using the 0.005 than the 0.05
alpha level. This depends on what is meant by “replicate” (see
Lykken, 1968, for some definitions). If one insists on the same
alpha level for the original study and the replication study, then
we see no reason to believe that there will be more successful
replications using the 0.005 level than using the 0.05 level. In
fact, the statistical regression argument made earlier suggests that
the regression issue is made even worse using 0.005 than using
0.05. Alternatively, as Benjamin et al. (2018) seem to suggest,
one could use 0.005 for the original study and 0.05 for the
replication study. In this case, we agree that the combination of
0.005 and 0.05 will create fewer unsuccessful replications than
the combination of 0.05 and 0.05 for the initial and replication
studies, respectively. However, this comes at a high price in
arbitrariness. Suppose that two studies come in at p < 0.005
and p < 0.05, respectively. This would count as a successful
replication. In contrast, suppose that the two studies come in
at p < 0.05 and p < 0.005, respectively. Only the second
study would count, and the combination would not qualify
as indicating a successful replication. Insisting that setting a
cutoff of 0.005 renders research more replicable would demand
much more specificity with respect to how to conceptualize
replicability.

In addition, we do not see a single replication success or
failure as definitive. If one wishes to make a strong case for
replication success or failure, multiple replication attempts are
desirable. As is attested to by recent successful replication studies
in cognitive psychology (Zwaan et al., 2017) and social sciences
(Mullinix et al., 2015), the quality of the theory and the degree
to which model assumptions are met will importantly influence
replicability.

QUESTIONING THE ASSUMPTIONS

The discussion thus far is under the pretense that the
assumptions underlying the interpretation of p-values are true.
But how likely is this? Berk and Freedman (2003) have
made a strong case that the assumptions of random and
independent sampling from a population are rarely true. The
problems are particularly salient in the clinical sciences, where
the falsity of the assumptions, as well as the divergences
between statistical and clinical significance, are particularly

obvious and dramatic (Bhardwaj et al., 2004; Ferrill et al.,
2010; Fethney, 2010; Page, 2014). However, statistical tests
not only test hypotheses but countless assumptions and the
entire environment in which research takes place (Greenland,
2017, 2018; Amrhein et al., 2018). The problem of likely
false assumptions, in combination with the other problems
already discussed, render the illusory garnering of truth from
p-values, or from any other statistical method, yet more
dramatic.

THE POPULATION EFFECT SIZE

Let us continue with the significance and replication issues,
reverting to the pretense that model assumptions are correct,
while keeping in mind that this is unlikely. Consider that as
matters now stand using tests of significance with the 0.05
criterion, the population effect size plays an important role
both in obtaining statistical significance (all else being equal,
the sample effect size will be larger if the population effect
size is larger) and in obtaining statistical significance twice for
a successful replication. Switching to the 0.005 cutoff would
not lessen the importance of the population effect size, and
would increase its importance unless sample sizes increased
substantially from those currently used. And there is good reason
to reject that replicability should depend on the population
effect size. To see this quickly, consider one of the most
important science experiments of all time, by Michelson and
Morley (1887). They used their interferometer to test whether
the universe is filled with a luminiferous ether that allows
light to travel to Earth from the stars. Their sample effect
size was very small, and physicists accept that the population
effect size is zero because there is no luminiferous ether. Using
traditional tests of significance with either a 0.05 or 0.005
cutoff, replicating Michelson and Morley would be problematic
(see Sawilowsky, 2003, for a discussion of this experiment in
the context of hypothesis testing). And yet physicists consider
the experiment to be highly replicable (see also Meehl, 1967).
Any proposal that features p-value rejection criteria forces
the replication probability to be impacted by the population
effect size, and so must be rejected if we accept the notion
that replicability should not depend on population effect
size.

In addition, with an alpha level of 0.005, large effect sizes
would be more important for publication, and researchers might
lean much more toward “obvious” research than toward testing
creative ideas where there is more of a risk of small effects and of
p-values that fail to meet the 0.005 bar. Very likely, a reason null
results are so difficult to publish in sciences such as psychology
is because the tradition of using p-value cutoffs is so ingrained. It
would be beneficial to terminate this tradition.

ACCURACY OF PUBLISHED EFFECT

SIZES

It is desirable that published facts in scientific literatures
accurately reflect reality. Consider again the regression issue.
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The more stringent the criterion level for publishing, the more
distance there is from a finding that passes the criterion to the
mean, and so there is an increasing regression effect. Even at the
0.05 alpha level, researchers have long recognized that published
effect sizes likely do not reflect reality, or at least not the reality
that would be seen if there were many replications of each
experiment and all were published (see Briggs, 2016; Grice, 2017;
Hyman, 2017; Kline, 2017; Locascio, 2017a,b; Marks, 2017 for
a recent discussion of this problem). Under reasonable sample
sizes and reasonable population effect sizes, it is the abnormally
large sample effect sizes that result in p-values that meet the
0.05 level, or the 0.005 level, or any other alpha level, as is
obvious from the standpoint of statistical regression. And with
typically low sample sizes, statistically significant effects often are
overestimates of population effect sizes, which is called “effect size
inflation,” “truth inflation,” or “winner’s curse” (Amrhein et al.,
2017). Effect size overestimation was empirically demonstrated in
the Open Science Collaboration (2015), where the average effect
size in the replication cohort of studies was dramatically reduced
from the average effect size in the original cohort (from 0.403 to
0.197). Changing to a more stringent 0.005 cutoff would result in
yet worse effect size overestimation (Button et al., 2013; Amrhein
and Greenland, 2018). The importance of having published effect
sizes accurately reflect population effect sizes contradicts the use
of threshold criteria and of significance tests, at any alpha level.

SAMPLE SIZE AND ALTERNATIVES TO

SIGNIFICANCE TESTING

We stress that replication depends largely on sample size,
but there are factors that interfere with researchers using the
large sample sizes necessary for good sampling precision and
replicability. In addition to the obvious costs of obtaining large
sample sizes, there may be an underappreciation of how much
sample size matters (Vankov et al., 2014), of the importance of
incentives to favor novelty over replicability (Nosek et al., 2012)
and of a prevalent misconception that the complement of p-
values measures replicability (Cohen, 1994; Thompson, 1996;
Greenland et al., 2016). A focus on sample size suggests an
alternative to significance testing. Trafimow (2017; Trafimow
and MacDonald, 2017) suggested a procedure as follows: The
researcher specifies how close she wishes the sample statistics
to be to their corresponding population parameters, and the
desired probability of being that close. Trafimow’s equations
can be used to obtain the necessary sample size to meet this
closeness specification. The researcher then obtains the necessary
sample size, computes the descriptive statistics, and takes them
as accurate estimates of population parameters (provisionally
on new data, of course; an optimal way to obtain reliable
estimation is via robust methods, see Huber, 1972; Tukey, 1979;
Rousseeuw, 1991; Portnoy and He, 2000; Erceg-Hurn et al., 2013;
Field and Wilcox, 2017). Similar methods have long existed in
which sample size is based on the desired maximum width for
confidence intervals.

This closeness procedure stresses (a) deciding what it takes
to believe that the sample statistics are good estimates of

the population parameters before data collection rather than
afterwards, and (b) obtaining a large enough sample size to be
confident that the obtained sample statistics really are within
specified distances of corresponding population parameters. The
procedure also does not promote publication bias because there is
no cutoff for publication decisions. And the closeness procedure
is not the same as traditional power analysis: First, the goal
of traditional power analysis is to find the sample size needed
to have a good chance of obtaining a statistically significant p-
value. Second, traditional power analysis is strongly influenced
by the expected effect size, whereas the closeness procedure is
uninfluenced by the expected effect size under normal (Gaussian)
models.

The larger point is that there are creative alternatives to
significance testing that confront the sample size issue much
more directly than significance testing does. The “statistical
toolbox” (Gigerenzer and Marewski, 2015) further includes, for
example, confidence intervals (which should rather be renamed
and be used as “compatibility intervals”—see Amrhein et al.,
2018; Greenland, 2018), equivalence tests, p-values as continuous
measures of refutational evidence against a model (Greenland,
2018), likelihood ratios, Bayesian methods, or information
criteria. And in manufacturing or quality control situations, also
Neyman-Pearson decisions can make sense (Bradley and Brand,
2016).

But for scientific exploration, none of those tools should
become the new magic method giving clear-cut mechanical
answers (Cohen, 1994), because every selection criterion will
ignore uncertainty in favor of binary decision making and thus
produce the same problems as those caused by significance
testing. Using a threshold for the Bayes factor, for example, will
result in a similar dilemma as with a threshold for the p-value: as
Konijn et al. (2015) suggested, “God would love a Bayes factor of
3.01 nearly as much as a Bayes factor of 2.99.”

Finally, inference should not be based on single studies at all
(Neyman and Pearson, 1933; Fisher, 1937; Greenland, 2017), nor
on replications from the same lab, but on cumulative evidence
from multiple independent studies. It is desirable to obtain
precise estimates in those studies, but a more important goal
is to eliminate publication bias by including wide confidence
intervals and small effects in the literature, without which the
cumulative evidence will be distorted (Amrhein et al., 2017,
2018; Amrhein and Greenland, 2018). Along these lines, Briggs
(2016) argues for abandoning parameter-based inference and
adopting purely predictive, and therefore verifiable, probability
models, and Greenland (2017) sees “a dire need to get away
from inferential statistics and hew more closely to descriptions
of study procedures, data collection [...], and the resulting
data.”

CONCLUSION

It seems appropriate to conclude with the basic issue that
has been with us from the beginning. Should p-values and p-
value thresholds, or any other statistical tool, be used as the
main criterion for making publication decisions, or decisions on
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accepting or rejecting hypotheses? The mere fact that researchers
are concerned with replication, however it is conceptualized,
indicates an appreciation that single studies are rarely definitive
and rarely justify a final decision. When evaluating the strength
of the evidence, sophisticated researchers consider, in an
admittedly subjective way, theoretical considerations such as
scope, explanatory breadth, and predictive power; the worth of
the auxiliary assumptions connecting nonobservational terms
in theories to observational terms in empirical hypotheses;
the strength of the experimental design; and implications for
applications. To boil all this down to a binary decision based on
a p-value threshold of 0.05, 0.01, 0.005, or anything else, is not
acceptable.
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