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1 Introduction

While the homotopy associative A, algebra [1, 2] is the mathematical structure underlying
the classical open string field theory sector, closed string field theory is organized by a
homotopy Lie algebra, an Lo, algebra whose axioms and identities were given in [3]-[4].
These algebras feature in a vast range of field theories [5], including consistent truncations
of closed string field theory [6], higher-spin theories [7] and gauge theories [8-11]. Given
this context it was recently suggested in [12] that L, algebras provide a classification of
perturbative gauge invariant classical field theories. This expectation was supported in that



paper by a number additional examples of field theories fitting into L., algebras: Chern-
Simons theories, Einstein gravity, etc. Later on the scope was even expanded [13-16]. More
aligned with our plan is the fact that Double Field Theory (DFT) [17, 18]-[19] also enjoys
an underlying Lo, structure: Courant algebroids can be cast in this language [20] as well
as their duality covariant counterparts [21]-[22, 23], but more generally the full interacting
theory exhibits this structure [12].

The explicit relation between the elements appearing in an Lo, algebra and those in
field theories has been systematized in [12]. The fields, gauge transformations and equations
of motion belong to distinct graded subspaces in the algebra. Certain products can be read
from the gauge transformations of the fields, the equations of motion, the closure identities,
etc. Other products are then chosen to satisfy the L., identities, which eventually force
the inclusion of additional graded subspaces.

This paper is devoted to discuss how tensor hierarchy [24] algebras fit into L, alge-
bras.! We consider a number of representative examples in four space-time dimensions,
such as the tensor hierarchy entering the Kaluza-Klein formulation of DFT (KK-DFT) [39],
the one in E7(7) Exceptional Field Theory (EFT) [40, 41], and those of gauged supergravi-
ties (in particular half-maximal [42], maximal [43, 44] and we also give a general discussion
based on [45]). For general reviews see [46-50].

A number of caveats are in order:

e We will only discuss the tensor hierarchy sector, namely p-form fields, and ignore
other fields such as the graviton and scalars. The reason for this is that the metric
must be invertible, and in duality covariant theories the scalars are grouped into a
group-valued tensor, so they necessarily involve a background field expansion making
the analysis cumbersome. Considering the tensor hierarchy fields only involves finite
expansions and so can be dealt with exactly and non-iteratively. It is important to
emphasize that the products and identities involving field perturbations of the metric
and scalars will be ignored, so those considered here are only a subset of the full story.

e Tensor hierarchies are saturated by space-time dimensionality, namely, in n space-
time dimensions they can only include up to n-forms. However, the hierarchy can be
projected to end at any given level < n, forming a subalgebra that closes exactly. In
some cases the tower of p-forms ends before space-time saturation, this is the case of
KK-DFT, where the tower has a single unprojected two-form and the tensor hierarchy
algebra closes exactly. Other cases, like in EFT and some gauged supergravities the
hierarchy is space-time saturated, but only a projection of it (via intertwiners) is
dynamical and enters the action. Democratic formulations including all p-forms in
the action are possible [51]. All these situations will be discussed here.

e We will mostly focus on L&2"8° or L%ﬁugejLﬁelds, subalgebras of the full L algebra that
includes interactions and dynamics. There will be exceptions such as when analyzing
the KK-DFT tensor hierarchy, where we discuss the full LI algebra including the

nteresting papers with similar goals are [25-29]. Tensor hierarchies are also discussed in [30-35] and
in EFT in [36-38].



equations of motion. Crucial to our analysis will be a theorem stating sufficient
criteria for an algebra to fit into L85"®° [52], and a small extension introduced here
to the rgueetfields . ce.

Let us briefly anticipate some points to be discussed in the paper:

e It is well known that Double and Exceptional Field Theories are restricted by a sec-
tion condition, and as a consequence the gauge transformations admit non-vanishing
trivial parameters. We show that something similar happens in gauged supergravities:
the quadratic constraints imply that the gauge transformations admit non-vanishing
trivial parameters that depend on the gaugings and are then absent in the ungauged
theories. We will show how these two facts are connected through generalized Scherk-
Schwarz compactifications.

e It is a common saying that in Double and Exceptional Field Theories the gauge al-
gebra closes with respect to a bracket whose Jacobiator is a trivial parameter. This
is only true for a specific choice of variables. While field redefinitions leave the gauge
algebra intact, parameter redefinitions change the brackets and their field dependence
in such a way that the Jacobiator is no longer a trivial parameter. Any two sets of
variables are of course equivalent, and must correspond to an isomorphism of the L
algebra, so the fact that the gauge algebra is an L., algebra remains intact, but the
way in which the products are defined changes. In Double and Exceptional Field
Theories, and in gauged supergravities there are two interesting set of parameters.
One in which the gauge transformations of the fields can be cast in a manifestly co-
variant form (with respect to generalized diffeomorphisms and gauge transformations
respectively): this is the usual set chosen in ExFT and gauged supergravities. For
this set the brackets and trivial parameters are field dependent, and the Jacobiator
in not a trivial parameter. There is a different set of parameters, related to the
previous one through field dependent redefinitions, for which the brackets and trivial
parameters do not depend on the fields, and the Jacobiator is a trivial parameter.

e When dynamics is taken into account — so as to obtain the L' — the tensor
hierarchy couples to the other fields through the equations of motion. It is then
impossible to disentangle the tensor hierarchy from the rest of the theory and, even
if the perturbations of the metric and scalars are ignored, the L., products and
identities must depend on their background values. We will show this explicitly with
some examples.

e Some ExFT feature the presence of “covariantly constrained fields” satisfying section-
type conditions. These are required by closure of the algebra and covariance of the
field strengths, and so play a crucial role in the L, analysis. They are also crucial
to establish how to extend the tensor hierarchy to higher forms, which also require
new covariantly constrained fields.



The paper is organized as follows. Section 2 is a self-contained review of L., algebras,
closely following [12]. We review sufficient criteria [52] for a theory to fit into L&"®°, and

rguegetfields 1 goction 3 we review the KK-

slightly generalized the theorem to the case
formulation of DFT and show how the tensor hierarchy sector embeds into L. The gauge
algebra of the tensor hierarchy in E;;) EFT is discussed in section 4, together with its

gauge+fields
0o

embedding in L algebras. Finally in section 5 we show how tensor hierarchies

in gauged supergravities fit into L., algebras. The appendices contain complementary

computations.

2 L, algebra and its field theory

In this section we give a brief self-contained review of L., algebras in the /-picture and
their relation to field theories, their gauge sector and dynamics, as presented in [12]. We
refer to that paper and references therein for more details.

To have an L., algebra we first define a vector graded space X which is the direct sum
of vector spaces X, each of which has degree n

X=X, necz. (2.1)
n

We will denote by = an element of X with definite degree, i.e, x € X, for some fixed p.
Next we introduce multilinear products ¢,

0 X% 5 X (2.2)
with intrinsic degree k — 2, meaning that when acting on elements x; we obtain
k
deg(Cp(21, 22, ... 2x)) =k — 2+ ) deg(;). (2.3)
i=1
It is useful to note that ¢ acts as a mapping as follows ¢; : X;, — X,,_1. The products are
graded commutative and obey the L., relations, which constitute a deformation of Jacobi

identities and will be introduced soon. The graded commutative property means that a sign
might appear when exchanging the arguments. For a permutation o of k labels we have

Ue(To1)s -5 Toy) = (=1)7€(0;2) b (@1, - - 5 k) - (2.4)

The (—1)7 factor gives a plus or minus sign if the permutation is even or odd, respec-
tively. The e(o;x) factor is the Koszul sign. We first take a graded commutative algebra
A(x1,x9,--+) with
. . (_1)des(zi)deg(z;) . , o
zi Nz =(—1) Vx;Nay, Vi g, (2.5)

and then define the Koszul sign for a general permutation as
TI N ... ANz = €(o;x) To(1) N N Zo(k) - (2.6)
For example, for /o we get

lo(y, 29) = (—1)1T71%2 0y (29, 21) (2.7)



where we introduced the notation
(—1)de(@i)deg(z;) = (_1)TiTs | (2.8)

that is, within exponents the x; always refer to its degree.
The L relations are labeled by a positive integer n given by the number of inputs.
Explicitly they take the general form

S VIS (<1)%€e(o32) 4 (LilTo(ry s - To() s To(irt)s - Tom) = 0. (2.9)
1+j=n+1 o
The sum over ¢ is a sum over “unshuffles”, it includes only the terms which satisfy
o(l) < -+ < o(i), o(i+1)< - < on). (2.10)
As a shorthand notation, it is common to write these relations as
> (=) =0, (2.11)
itj=n+1

such that

n=1 0=/0/ (2.12)
n=2 0=~y —lsl; (2.13)
n=3  0=~00;+lols+ ls0 (2.14)
n=4  0=~010y— lols+ b5l — 40y, ... (2.15)

For n = 1 we have
016 (x)) =0. (2.16)

This means that ¢; is a nilpotent operator, sometimes called @) as the BRST operator.
The n = 2 identity is

01 (b (@1, 22)) = Co(fy (1), 32) + (—1)" by(1, b1 (22)) . (2.17)

It implies that ¢; acts as a (graded) distributive operator on the arguments of /5.
For n = 3 we have

0 = lo(la(1, m2), 23) + (—1)EVFEDT3 00 (0 (5, 21), m9) 4 (—1)@2H2)T10y (4o (29, 223), 1)
+ 01 (0321, z2, x3)) + L3(b1(x1), 2, x3) + (—1)" U3 (21, 1 (22), x3)
+ (—1)‘”1+x2£3(a;1,azg,ﬁl(:cg)) . (2.18)

In the following we will see that when the arguments of /o are the gauge parameters of
some field theory, it will be related to the bracket of the gauge algebra. As such, the
first line above will become the Jacobiator. For this reason, the last line characterizes a
deformation of a strict Lie algebra. Since the Jacobi identity holds modulo a BRST exact
term (¢103 + ¢3¢1), in the language of homological algebra /3 is a chain homotopy, so the



Xo X 4 X o
Gauge Parameters ( | Fields ¥ | E (3 EOMF)

Table 1. Graded subspaces and the elements they contain.

saying is that /o satisfies the Jacobi identity “up to homotopy”, or that this is an homotopy
Lie algebra [4].
We also display the n = 4 identity, as will be needed later

0 = l1(ly(x1, 72,73, 74))
— la(l3(@1, w2, w3), 04) + (1) Lo (L3(21, T2, 74), 73)

+ (_1)(1+m1)m2£2(w‘27€3($17x37x4)) - (—1)x1£2(x1,€3($27.’1}'37.’1}'4))

+ l3(ba(z1, 22), w3, w4) + (—1)1F2278 (3 (0 (1, 13), 22, 24)
o+ (= 1) @2 3 0y (21, 34), w2, 3) — L3 (@1, bo (2, 23), 74)

+ (—1)"3%43(x1, lo(z2, xa), x3) + L3(z1, 22, lo(23, 24))

(2.19)

—ly(b1(x1), 22, w3, 24) — (—1)" Uy (21, 1 (22), 23, T4)

— (=112 (21, 29, 01 (23), 24) — (= 1) 2140 (2, 29, 23, 1 (74)) -

Notice that, in the same sense that for n = 3 the “Jacobiator” f9fo vanishes “up to
homotopy”, the same is true in n = 4 for fol3 — l345.

After this brief self-contained introduction to L, algebras, we now show how to relate
these results with field theories [12]. In the first place, we must assign a given degree p
to gauge parameters, fields, EOM, etc. and so specify to what vector subspace X, they
belong. The general rule is to take the gauge parameters ( as vectors of degree p = 0,
the dynamical fields ¥ as vectors of degree p = —1 and the EOM F as vectors of degree
p = —2. The EOM’s will form a subset of X_o and, when needed, we will refer to a general
element of X 5 as “E”. If the field theory exhibits symmetries for symmetries, this picture
is incomplete and requires an extra graded subspace X7 with elements parameterizing such
ambiguity, and possibly further graded subspaces X3, X3, .... Here, ¢, ¥ and F stand for
direct sums in case there are more than one of each. After these assignments, one can readily
read some brackets from certain equations in the field theory. Lets see some examples.

e The gauge transformations define the brackets ¢,,+1(¢, ¥™) as follows
1 n(n=1) 1
U= (1) Lasa(G W) = 6(C) + 6(C W) = S(¢ W) — o, (220)
n>0
where we use the exponential notation for short

U=, ... 0.
N——

k times

(2.21)

It can be checked that 6. ¥ so defined consistently belongs to the same vector subspace
than the fields, namely X_;.



e The EOM instead define the £,(¥U") brackets as follows?

%) n(n 1)
Z (") = £0(T) - *52(‘112) - 55 3(9°) + 4,5 2() +
n=1
(2.24)
e The study of the gauge algebra leads to interesting features. Taking the commutator
of two gauge transformations and using the L., identities one finds

T
[541 3 5(2]\:[] - 5_C(<1,C21‘I’)\I] + 5(17{2 ,\I’. (225)
with .
n(n—1) n
Cl6. ) =) —(=1) % Llny2(C1, 620", (2.26)
n>0
and
(n— 2)(n 3) n
6(17C2\Il Z n! ”+3(Cl’ o, F, W ) : (2.27)
n>0

The supralabel in 521742 stands for “trivial” as it is a term that vanishes on-shell.
Suppose we want to rewrite in the Lo, framework some gauge algebra. If it closes
off-shell, then 5;7 o¥Y=0 and we obtain a gauge algebra that closes under the bracket
given by C((1, (2, ¥), which might be field dependent. If furthermore it turns out to
be field independent, then we get

[6¢,,06,)9 = 0_pyc.c0)¥ s nsa(Cl, G2, U™) =0, (2.28)
and the closure bracket is simply given by /s, as anticipated under (2.18).

e With respect to the gauge algebra, one can also consider the gauge Jacobiator J,
given by
j((la CZa C3) = Z[6C3 5 [6C2 ) 5(1]] =0. (229)

cyc

This vanishes by definition, as can be seen by expanding the terms and acting on a
probe field from right to left, i.e. d¢,d¢, 0, ¥ = ¢, (O¢, (0¢, V). Using the Lo relations

2As a side remark we point out that it might also be possible to go a step further and define an action
from which the EOM are obtained, study the gauge algebra, the covariance of the EOM under gauge
transformations, etc. For this one should be able to define an inner product (z1,z2) with the properties

(x1,22) = (1) (22, 20) ,

2.22
(T, bn (21, 0)) = (1) TNy, b, 20)) (2.22)

The first one accounts for its graded symmetry, and the second one implies that it is a multilinear graded-
commutative function of all the arguments. With this inner product the action is given by

n(n 1)

Z n+1 (0, 6.(¥7)), (2.23)

and it can be checked that the EOM are obtained from it.



Product From Equation
0, (T™) Equations of motion (2.24)
ln+1(C, U) Field gauge transformations | (2.20)
lni2(C?, 0) Closure (2.26)
lnrs3(C3, ) Jacobiator (2.31)
lpya(C, F, U™ EOM gauge transformations | (2.34)
lnrs(C3, F, UM On-shell closure (2.27)

Table 2. Products that can be read from kinematic and dynamical equations in a field theory.

over (2.29) one finds

D [0+ 10 06 )] W = =0 W — 5, W, (2.30)

cyc

with xy € X7 given by

1 (n=2)(n-3) .
X= 2 DT f (G G G, 0T, 2.31)
n>0
and
1 n(n+1) n

Ax=)_ (D7 Lan(x. ") (2.32)
"0 n!

T 1 n(n=1) n

5x‘l’zza(—1) 2 U2 (Fx, U (2.33)
n>0

It can be shown that the r.h.s. of (2.30) vanishes identically when using the L
relations, as it must be.

e [t will be useful in what follows to consider the gauge transformation of the equations
of motion, which gives

5 F =" :%(—1)i"(”z‘” lnra(CL, F, D) :€2(C,]-")+€3(C,]-",\IJ)—%E4((,]-“,\I/2)+...
n>0
(2.34)

We collect in a table 2 some of the products that can be directly read from standard
expressions in a field theory. To see if a particular theory can be written in this framework
one has to determine all ¢,, products acting over all vectors (fields, gauge parameters and
equations of motion) and then check all Lo, relations. It could also be possible that the
vector subspaces defined so far are not enough (namely that table 1 is incomplete) and one
has to consider additional ones, as it happens for example in DFT where one has to add a
vector subspace X;. The fundamental formulas are (2.20) and (2.24). Knowing the specific
form of the gauge transformations of the particular theory we are interested in, we can
immediately read off the products £,,4+1(¢, ¥™) and £,(¥") respectively. In principle with



these products and the L, relations we can determine all products. However, this can be a
tedious work. At this point formulas like (2.25), (2.30) and (2.34) come to our rescue. They
are a consequence of the previous ones plus the L., relations but they are also important
as they allow to read off certain products immediately. We insist however that whatever
the route to identify products is, in the end all L., identities must be checked explicitly.

Take for example the case of DET [21]. The gauge algebra closes under the C-bracket,
which does not depend on fields

[0, 06) ¥ = 0_1¢, o)) ¥ - (2.35)
Comparing this expression with (2.28) we can readily make the identification

(¢, G2) = [€1, G2y - (2.36)

Now we could evaluate the identity for three gauge parameters (2.18). We have pointed
out that the last line of (2.18) in this particular case gives the Jacobiator, which in the
case of DFT is famously given by

J(C1,¢2,63) =3[ [¢1, Gl Gg] = ON(Cr,¢2,G3) (2.37)
with the so-called Nijenhuis scalar defined by
1
N(C1,¢2,¢3) = B [ C2liey Gy - (2.38)
After setting £3(41((i), ¢j, Ck) = 0 we can identify

3(C1,C2,¢3) = —N(C1,¢2,¢3)
gl(N(Cl, 427 C3)) = aN(Cla 427 C3) :

These two last identifications done after evaluating a particular L., identity could also be

(2.39)

obtained by directly comparing the DFT gauge Jacobiator with (2.30)

> [0as s [Oas s 6a]] ¥ = Son(crcoic) ¥ s (2.40)

cyc

which, of course, is zero when evaluating the gauge variation of the field after using the
strong constraint.

A clarification is in order. We have said that we need to determine all products acting
over all vectors and that some equations make this possible, for example (2.24) leads to
the knowledge of £,,(¥™). However, we would like to know not only the diagonal part of ¢,
acting on fields, but £, (¥, V,,...,¥,) with non diagonal entries. This can be achieved
with the help of polarization identities. For the simplest case, fo, we get

262(\111, \I/2> = 62(\111 + Uy, Uy + \IIQ) — 62(\1/1, \Ifl) — 62(\112, \112) R (241)

and this expression can be generalized to any £,,.
After we have identified the products, we must check the L., identities. However,
there is a large subset of identities which are automatically fulfilled due to the general



construction of an L., field theory and it is not necessary to do an explicit check. As

shown in [12], the identities acting over a list of fields (¥y, ..., ¥,) hold true provided we
define

lbpi1(E ¥, ..., 9,)=0, n>0, EcX,. (2.42)
The identities acting over a list ((1,(2, V1, ..., ¥,), and (¢, ¥y, ... ,¥,) with n > 1 also

hold true. These identities come from closure of the gauge algebra over fields and the gauge
transformations of the equations of motion, respectively.

2.1 Sufficient criteria for the gauge sector to fit into L

In [52] a theorem was presented, stating sufficient conditions for a gauge algebra to lie
within an L8"®° structure. Since we will refer to it often, we dedicate a separate subsection
to review it briefly. The theorem only refers to the gauge algebra, not the complete field
theory. Given an algebra (V,[-,-]) with bilinear antisymmetric 2-bracket and a vector space
U with a linear map D : U — V satisfying

Im(D),V] ¢ Im(D), (2.43)
and
Vi, ve,v3 € V1 Jac(vi,ve,v3) € Im(D), (2.44)

where Im(D) denotes the image of D, there exists a 3-term Lo structure with ¢3(v, w) =
[v, w] on the graded vector space with

b= =D
Xy 25 xy 2

Xo, (2.45)

where Xo =V, X; = U, X3 = Ker(D), Ker(D) denotes the kernel of D and ¢ denotes the
inclusion of Ker(D) into U.
In a more physical language, the hypothesis of this theorem are roughly

e The field transformations admit trivial parameters. The gauge algebra closes with
respect to a given bracket. The bracket between a trivial parameter and a generic
one is itself a trivial parameter.

e The Jacobiator computed from the bracket is a trivial parameter.

When these hypothesis are met, the theorem states that the gauge algebra fits into an Lo,
structure, with a few non-vanishing products written in equation (4.26) in [52].

We will show that all the cases considered in this paper satisfy these hypothesis.
However, this will prove not to be always a simple task: the form of the brackets and
the trivial parameters is highly sensitive to redefinitions, and the criteria outlined above is
only useful when a specific set of parameters is considered. Meeting the criteria involves
finding an appropriate set of variables, and we will comment on what happens when other
sets are considered.

In the next subsection we point out that the consequences of these hypothesis are in

fact a little broader: when the hypothesis are met the algebra fits into [g2u8e*fields,
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2.2 Sufficient criteria for the gauge + field sectors to fit into L

The theorem of the previous subsection 2.1 can be extended so as to consider in addition

field .
Lgareethields Ty he more precise,

the graded space of fields, in what was called in [12]
we will take the fields to belong to the graded subspace X_1 and consider their gauge
transformations given by (2.20). We will not consider their EOM, so all the products
in (2.24), namely ¢, (¥"), are taken to be null and thus there is no need for a graded
subspace X_o. Under the same conditions, we show that the algebra is in fact that of
nguge+ﬁelds and the only additional non-vanish products (apart from those in equation

(4.26) in [52]) are those obtained from the gauge transformations of the fields (2.20), namely

e = Y ) (W) = (0 (G0 — (G ¥~ (240)
n>0 "

We have to deal now with products involving fields ¥ € X_; and other elements from
other subspaces. We can consider the L., relations acting over the following lists:

e Two ('s € Xy and any number n > 0 of ¥'s € X_1: ((1, (2, U1, ¥o,...).

One ¢ € X and any number n > 0 of ¥'s € X_;: ((, ¥y, ¥o,...).

Only one ¢ € Xg. There is no ¥ € X_; in this list, but we have to consider it because
the product ¢; maps to the subspace of fields: ¢1(¢) € X_;.

At least one ¢ € X5 (and any other vector on the list, including at least one ¥ € X_1):

(c,...).

At least one x € X (and any other vector on the list, including at least one ¥ € X_1):

(X, -)-

e Three or more ('s € Xy and any number n > 0 of ¥'s € X_1: ((1,(2,C5- -,
Cny, W1, Wo,...).

As shown in [12], the products given by the first case satisfy the Lo, relations as a
consequence of closure of the gauge algebra over fields. The second item is trivially fulfilled
once we make the choice ¢;(x) =0, with x € X_;. The third one gives rise to the identity
01(£1(¢)) = 0 which is verified trivially for the same reason.

For the other cases, we will construct all possible terms of the identities, which are
of the form ¢;(...¢;(...)) and show that they are null or compensate each other. We will
make use of the nontrivial products defined in equation (4.26) in [52].

- 11 -



At least one ¢ € X, (and any other vector on the list, including at least one
W € X_41). There are only two nontrivial products involving a ¢ in Xa: ¢1(c), £2(c, ().
First consider that we have at least two ¢’s. We would get the products

ie1, U, .. la(ca, ) = Li(er, T,...8) =0, (2.47)
——
=ceXo
gi(Cl,\Ij,...El(Cg)) :>€Z‘(Cl,\l’,...x) =0, (2.48)
~——
=xeX1
&(61,02...@'(...)) =0. (2.49)

For only one ¢ we get

&(\I/, - @1(6) ) = 62(\117 .. .X) =0, (2.50)
GO, . (e, C)) = 6(, ... &) =0, (2.51)

e, 6(T..) ), (2.52)

must be in Xg.

but it is not possible to form a nontrivial £;(\V...) € Xy, thus the last product is also zero.

At least one x € X; (and any other vector on the list, including at least
one ¥ € X_4). There are only four nontrivial products involving x: £1(x), f2(x, (),
la(x1,x2)s £3(X,C1,C2). This means that we can have at most two x’s.

If we have more than two x’s we would necessary have to group at least one with a
U inside a product (as we cannot have more than two x’s together in the same product),
which is zero. Take for example the case of three x’s:

gi(XlaXZa-"éj(XZi,\p---)) or Ei(Xla---gj(X27X37\II---)>- (2 53)
=0 =0 ‘

Now take the list (x1, X2, -..). The possibilities are:

=0
Gi(x1, V.. 4i(x2,-..)) =0 (2.55)

=0

gi(\lf...fg(){l,){z)) :&(\IJ,C) :0, (256)
———

=ceX2

where we have used in the last line that there is no product mixingac € Xoanda ¥ € X_;.
Now take the list with only one y and consider it as an argument of the second
product. As we cannot take together a ¥ € X_; and a xy € X; inside the same product,
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the possibilities are

———
=ceXo
LU la(x, Q) =4i(P...x)=0 (2.58)
—
=xeX1
El(\lf ce 61()() ) = £n+1(\11n, Ctriv.) =0. (259)
~——
Ectriv.GXO
The last line gives zero, as these products come from the gauge transformations of the
fields with a trivial parameter.
Considering that x is in the outermost product, we get

lj(¥...) € Xo, not possible,

G, 4(T..) = 200
(0 65( ) {Ej(\ll...)EXl, not possible . 250

Gi(x, ¢, (P...)) = £;(¥...) € Xo, not possible. (2.61)

Three or more ¢'s € Xo and any number n > 0 of ¥'s € X_;. We start
by considering three gauge parameters. We first notice that we cannot use the products
ln4+1(¢, ¥"™), which give an element UeX . If they were in the second product ¢; we
would have

Ci(Cr, Cor g1 (,07) = £3(C1, G2, ) = 0. (2.62)

Trying to use them in the first product does not work either. For ¢1(¢) we would need the
second product to give an element of Xj:

gl (£n+3(C17 CQ? C37 \I]n)) .

(2.63)
#Xo
For ¢5(¢, ¥) we would need the second product to give an element of Xy or X_;:
Oy (b2 (Cr, Co, G5, W), ), (G lnt2(Cas C3, ™)) (2.64)
| S —— .

ZXo gX_1
For ¢3(¢, ¥, ) we would need the second product to give an element of Xg or X_;:

63(£TL+1(C17 C27 C37 \I/n_Q)a \Ija lIl)? £3(C17€n+1(<27 C3a \Iln_l)v \Il) .
¢Xo gX_1

(2.65)

Thus, one of the products must be ¢3((1,(2,(3) = x € X;. If it was in the second product
¢; we would have

Gi(oo () = b (7, 03(C1, G2, G3)) = L1 (P, x) = 0. (2.66)

If it was in the first product, we would need the second one to give a X element to get a
nontrivial term, but this is not the case

3(C1, G2, nga (G3,¥7)) -
—_————
#Xo
Considering more than three gauge parameters and repeating the arguments as before one
also finds that the Lo, identities are fulfilled trivially.

(2.67)
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3 L. and Double Field Theory

The embedding of DFT into L was performed in [12], and so there will be no surprises
in this section. Here we consider the KK-formulation of DET [39] with the goal of learning
how its tensor hierarchy fits into L,. The advantage of this formulation is that it is similar
in structure with EFT and gauge supergravities, and so will serve as a platform to extract
lessons for future discussions.

3.1 Review of the Kaluza-Klein formulation of Double Field Theory

In this section we review the KK-formulation of DFT [39]. We present in the appendix
the relation of this formulation with the generalized metric approach [53]. The fields
and gauge parameters depend on external and internal coordinates (z*, X™), with p an
external GL(n) index, and M an internal fundamental O(d, d) index. The duality invariant
metric sy and its inverse raise and lower internal indices, and the internal coordinate
dependence is restricted by the strong constraint that states that fields and parameters
and their products are annihilated by the duality invariant Laplacian

oy @dM...=0. (3.1)

The fields are
glLl/ ’ B/JJ/ ) ¢7 A;LM ’ MMN ’ (32)
the scalar matrix M sn being a duality group-valued constrained field (i.e. My Mp? =

6]\]\[[) The gauge fields AMM and B,,, will be referred to as the fields of the tensor hierarchy.
The symmetries of the theory are:

e A global O(d,d|R) symmetry.

e Alocal O(1,n — 1|R) x O(d|R) x O(d|R) which is trivial in this formulation.
e External diffeomorphisms, parameterized by a vector &.

e Gauge transformations of the two-form, parameterized by a one-form =,,.

e Internal generalized diffeomorphisms, parameterized by an O(d, d) vector AM,

We will deal with two different sets of parameters, related by field-redefinitions. Those
noted with a hat (K, ﬁ) are such that the gauge transformations can be written in a
covariant form with respect to internal generalized diffeomorphisms. An alternative set of
parameters (A, Z) are more convenient in order to make contact with the usual formulation
of DFT (see appendix) and to explore how the tensor hierarchy gauge algebra is that of

L. Both sets of parameters are related as follows

AM = AM perg M (3.3)

1
=5, - <BW — QAMMA,,M> &+ AMAy .

[11)
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The covariant form of the local symmetries is the following

5g;w = (ﬁgp + EK) Juv = {prguu + 2 'D(prgu)p + KMaMg,LLV s
0By = ApM 5 A0 + € Hpp + 2Dy 2 — Fr™ Aar

(
(
§e~% = £PD,e2 + )y (KMe—2¢) . 0p = EPDyp+ AM Oy — %aMKM, (3.
sAM = e FpuM + g,y MMNOne? + D,AM + 0ME,, | (
SMurn = EDpMun + Lz Mun - (
Before defining the quantities that appear in these transformations, let us briefly go
through a review of generalized diffeomorphisms. First we define the D-bracket

(A, Vb = APopVM + (0MAp — 0pAM) VT, (3.9)

which is not antisymmetric but does satisfy the Jacobi identity. In terms of it we can define
the generalized Lie derivative

LAVM =[N, VLD + A(V) 0pAP VM (3.10)

Here A(V) is called a weight: all tensors in this section have vanishing weight except for
the generalized dilaton. Extending the action of the generalized Lie derivative to tensors
of higher rank is straightforward. Crucially, it admits trivial gauge parameters of the form
M M =

Atrivial = 8 X7 £Atlrivial = 0 ) (311)
parameterized by functions x(x, X). Then, we have a situation of symmetries for symme-
tries in DFT: two apparently different gauge parameters generate the same transformation
if they are related by a trivial parameter. There is even a symmetry for symmetries for
symmetries situation, given by constant shifts in the space of functions that leave the trivial
parameters invariant.

While the symmetric part of the D-bracket is in fact a trivial parameter

1
[Aas Az)]?é) =M (21\{31\213) : (3.12)

the antisymmetric part is called the C-bracket

M

[A17 AZ]%) = [A[17 AQ]] (D)

and doesn’t satisfy the Jacobi identity.

External derivatives 0, of objects that transform tensorially with respect to these
transformations are not covariant, so making these symmetries manifest requires the intro-
duction of new derivatives

~ -~

Du:au—,CA — 5AD,u“’:»CADu-~a (3.14)

o
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which are covariant because the connection transforms as follows with respect to internal
generalized diffeomorphisms (3.7)3

oaAM = 0,AM + A AT - (3.15)

The dilaton e~2¢ transforms as a density (it is in fact the only tensor in KK-DFT with
non-vanishing weight A (e72¢) = 1)

Spe=2? = By (AM e—2¢) , (3.16)
and so its covariant derivative reads explicitly*
Dye 2 = 0,72 — Oy (A#M 6_2¢> ;
Db = 0up — AMOn b + %aMAff : (3.17)
such that D, ¢ transforms as a scalar with vanishing weight
oADue ™2 = Oy (MM D) | (3.18)
oaDup =AM 0D . (3.19)
The covariant curvatures of the gauge fields are given by

Fu =20, A0™ = [A, Ay — 0 B, (3.20)

)
M L
Huwp =3 (D[qu} + AT O A — gA[u [A,,, Ap}] M)

transforming under local symmetries as follows®
5]:WM - (££D + Zf\) ]:WM — Huwp 8pr + 2D[u (gl/]pMMNapr) J (3.23)

57'[;“//) = (»C? + EK) H;,Lljp + BF[uVMgp}oMMNaNfg ’ (324)

3Since the gauge vector A, enters the covariant derivative as a generator of the generalized Lie derivative,
its gauge transformation is only determined up to trivial parameters of the form (3.11). However, all possible
“orbits” are related through redefinitions of the parameters Z, as can be seen from (3.7).

4We note in passing that this covariant derivative can be integrated by parts in the presence of the

measure e 2¢

/d"xd2dX e 20 VMM D T gy = —/d"a:deX Dy (e72VHM M) Ungyagy + T,

5A useful intermediate step is

6Fu™ =2Du5A,M — 0" AB,.., (3.21)
Hpuvp = 3D AB,, +35ALN Fupu (3.22)

with AB, = 6By, — Afll 6A, .
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and they are related through Bianchi identities
3Dy Fyy™ + M Hpw, =0, (3.25)
3 M
Dy Hypo) = Z]:[/w Fpolm = 0.

Now that we have defined all the ingredients appearing in the gauge transformations,
we can verify closure. The gauge transformations obviously close

[61 ’ 52] = _5612 - 6/\12 - 6512 ) (326)

but only for the particular set of un-hatted parameters the brackets are field-independent

&y = [&1, & + Afjopg) (3.27)
A = [Ar, Ao]{y + 260,005 + €[,0MEy), + Ep,0Mel (3.28)
B, = 2Aﬁap52] ot AﬁaHAQ] P+ € 0pEa) — € OuEs)y — E1,0utl) - (3.29)

This fact makes this set of parameter particularly convenient to explore how the DFT
tensor hierarchy fits into an L., algebra.
We can now turn to dynamics. The action of KK-DFT is given by

S = / d"zd?1X e~ %L (3.30)

where d depends as usual on g = det [g,,] and ¢

e 2 = /—ge 2, (3.31)

and the Lagrangian is
~ 1
L=TR—-4¢""D,¢D,¢+ 4V, ("D, ¢) — E’HWPH”VP

1 1
+ 39" DuMun D MMN — S My F M PN =V (3.32)

Up to a single term, the “scalar potential” V is defined as minus the generalized Ricci
scalar in DFT, but with the generalized metric replaced by the scalar matrix M

—V =4 MMNgynd — Oy n MM — 4 MMN 9y dOnd + 4 Oy MMN Ond (3.33)
1 1 1
- gMMNﬁMMPQE?NMpQ - §MMN6MMPQ8PMQN + 1MMNaMgwaaNgW.

Given that the metric transforms as a scalar w.r.t. internal diffeomorphisms, within the
Ricci scalar R all derivatives 9, must be replaced by A-covariantized derivatives D,, in the
following way

7/—\;’ = g;w ﬁp,upu ) (3.34)

Ry = DT, — D,T%, + 0T, —T0,T0, (3.35)
=~ 1

FZV - igpa (Dugua + Dugua - Dgguy) s (336)
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and we also defined a new covariant derivative V,, = D, + fu that covariantizes the part
of the external diffeomorphisms that involves external derivatives only.

Written like this, each term in the Lagrangian is independently and manifestly a A-
scalar, E-invariant and duality invariant (the scalar potential is the only exception, as
the invariance with respect to internal diffecomorphisms is far from being manifest). The
relative coefficients between the terms are fixed by external diffeomorphism invariance, and
as a result

6L = "D, L+ AMoy L = ¢0,L + AMOy L. (3.37)

On the other hand, while \/—¢g transforms as a density under external diffeos and as a
scalar under internal ones, e 2% plays the opposite role, and hence e~2? acts as a density
w.r.t. both

be=2 =D, (g4e72) 4 0y (AMe ) = 9, (¢#e72T) +op (AMe ™) (3.38)

where D,, acts on d the same way as on ¢ in (3.17). As a consequence, the action is
invariant w.r.t. to all the local symmetries.
Regarding equations of motion, we find that under variations of the action w.r.t. the
fields one has
59 = / "z X (89" Agy, + 5B ABM +...) | (3.39)

with

1 ~ 1 1
e?INg,, = 19m A+ R +2V(, Dy b= 7 Huupo Ho 5JTM)MJE,,PNMMN

1 1
—i—gDuMMND,,MMN—QaM (MMNﬁNgw,) R (3.40)
1 1
AB™ =D, ((MHPW) —50M (e*mM N FrN ) , (3.41)
e INp=—-2L, (3.42)
1
AAYy =AB" Ay +D, (e_QdMMN}—p“N) — §€_ZdH“VpJTVpM (3.43)

—0p (e_QdMPNg“”DVMNM> +D, (e_Qd(?Mg’“’)

1
+e % (—49“”8MDyd—49“”DyMP YopMpq

1
- §gMVDVngaMgpa ‘|‘Dl/g#paMgpagm/>

1 1
e AMN =5 Dy (e_ngWD”M> @)~ 3 F " N
1
+R(MM (M, d]+ Za(ﬂguyaﬂ)gm/ . (3.44)

In the last line we used the standard notation for left-right projections,® and wrote the
variation of the scalar potential in the same way as the generalized Ricci tensor because
the former is equal to minus the generalized Ricci scalar.

SDefining Pyny = %(UMN — Muyn) and Pyy = %(ﬁMN + Mun), the notation is such that Vi =
PMNVN and Vﬁ = pMNVN.
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3.2 The tensor hierarchy

Here we restrict attention to the degrees of freedom involved in the tensor hierarchy, namely
AMM and B,,,, and so set the gravitational and scalar degrees of freedom to background
values (which we write with an overline). The symmetries relevant in the discussion of
the tensor hierarchy are internal generalized diffeos AM, and gauge transformations of the
two-form =, so we will also ignore external diffeomorphisms from now on £# = 0. This in
particular implies that A = A in (3.3), and

S, =S+ AMAy. (3.45)
When the transformations (3.5) and (3.7)
SAM =D, AM 4 9ME,,, (3.46)
0By = ApM8A 0 + 2DLE,) — A Fu™
are written in terms of the un-hatted parameters the gauge covariance is no longer manifest

sAM = 9,AM + LA M + 0ME,, (3.47)

5Buu = AMaMB/W + 28[“51,} + 8ME[M AV]M — A[“M&,]AM .

These gauge transformations are annihilated by the following trivial parameters
AM =My, E,=-0.x, E.=-Dux, (3.48)

where we define the arbitrary function y to carry vanishing weight.
Let us now discuss the gauge algebra. We saw in (3.28)—(3.29) that closure with respect
to the parameters AM and =, was achieved through the brackets

A5 = [Ar, Agl(dy (3.49)
Eioy = 2/\{;31352}“ + Aﬁaqu]P .

We can now collectively define the gauge parameters

(= (AM,2,), (3.50)

and note the brackets as
A =Gy =[G, G, (3.51)
Eigp = G2 =[G, G, - (3.52)

This notation is useful to compute the Jacobiator

J(C1, G25 €3) = [[¢1, Cal» Ca] +cye. =3 [[¢u, G2 » Gy (3.53)

the components of which are known to be trivial parameters

JM=MN, J,=-0,N, (3.54)
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where we introduced the Nijenhuis scalar

1 1
N((1, G2, (3) = 5 [Ay 7A2]€\é) Asn +cye. = 3 [Ap ,A2]?é) Agjp - (3.55)

If instead we choose to work with the redefined parameters

(= (AM , éu) : (3.56)
we then find
Gy = [21, Zz}M = [A1, AQ]%) ; (3.57)
Clop = [21 ; Z2L = DAY Agjar (3.58)
and now

= > M M
JM=0"N, J,=-D.,N+2D, Ay, AQ](C) Agjn — [Ap, AQ](C) DulAgnr,  (3.59)

and so we see that the Jacobiator is no longer a trivial parameter. We will discuss this
further and its relevance for EFT later.

3.3 The L, structure of the tensor hierarchy

Here we discuss how the algebraic structure of the tensor hierarchy in DFT fits into L.
We begin by discussing the kinematics, and later move to consider the dynamics. The first
step is to define the graded vector spaces, which divide here into the following subspaces

X1 : functions: x(zt, XM

Xop: gauge parameters (generically noted (): AM, = (3.60)
X_1: fields (generically noted W): AHM, B ‘
X_o: field equations (generically noted F): AA¥ N, ABHY

The space of functions might come as a surprise at the moment, but it turns out to be a
general feature in theories that exhibit symmetries for symmetries. We will sometimes add
indices to indicate which particular subspace we refer to within a given level. For example:
for ¥ € X_q, \I!MM refers to a field AMM and ¥, to a field B,,. The same notation will
be used over products, for instance x € X, £1(x), indicates a parameter Z, as ¢; maps
from X7 to X, etc.

We will first describe thoroughly how to construct the pure gauge part and then con-
sider the dynamics of the fields. The pure gauge structure of DFT is given by the O(D, D)
covariantization of the Courant algebroid [21]. The relation between this structure and
L algebras was done in [20] and later extended to the O(D, D) case in [22, 23] and [12].
As discussed in subsection 2.1, a recent paper [52] established sufficient conditions for a
gauge algebra to have an L., structure. In this section we review these results, closely
following the line of reasoning in [52] for a general bracket and then specializing to our case
of interest.
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X4 Xo X 4 X o
Functions x | Gauge Parameters ¢ | Fields ¥ | E (5 EOMF)

Table 3. New subspace X7 required by the failure of Jacobi.

For the sake of simplicity we begin by focussing on the subspace Xy with elements
C=AM 4 E,, ignoring for the moment to the maximum extent the spaces X_; and lower.
We will proceed in an order that might seem capricious, but is only intended to reach the
relevant results quickly. The first identity we consider is n = 3

—l1(€3(C1, G2, C3)) = L2(l2(C1,C2), C3) + £2(£a((3, C1), G2) + £2(£2(C2,(3), C1)

3.61
+ 3(01(¢1), €2, C3) + €3(C1,41(C2), G3) + €3(C1, G2, 41(C3)) - (361

We have already all the required ingredients to evaluate the r.h.s.. As explained before,
05(¢1, C2) must be read from the crossing of (2.28) and (3.49), yielding

lo(C1, C2) = [A1 , Ag]é\é) + QAﬁapEgm + Aﬁ(‘)MAQ]p . (3.62)
The first line in the r.h.s. of (3.61) then becomes the Jacobiator (3.53)—(3.54)

J(Cl) C2a 43) - aMN(CLCZu C3) - a,U«N(CL CZa C3) = DN(CLCQ: C3) ) (363)

where N is the Nijenhuis scalar (3.55) and we have defined the operator
D=0M-9,. (3.64)

The second line in (3.61) is schematically of the form ¢3(¢;, (j, £1(¢x)). Given that ¢; maps
the last argument into X_; these terms are of the form ¢3((1, (2, ¥) and vanish in light of
the discussion in (2.28). Then, the n = 3 equation (3.61) can be written as

- gl(€3(gla C27 C3)) = DN(Clv C27 C3) S XO . (365)

Now note that the r.h.s. of (3.65) is not zero, and so ¢3((1, (2, (3) € X7 must also be non
vanishing, implying as anticipated that a new graded subspace X; of functions x(z, X) is
required (see table 3).

From here it is trivial to see that (3.61) is satisfied for the following choice of products

€3(C1,C2,C3) = =N (A1, A2, A3) € X3

(3.66)
li(x) =Dx, x € Xi.

Having introduced a new space of functions we now have to define new products and
verify identities, that include such elements as arguments. We begin the verification of the
first identity for y € X3

n=1: 6(hL(x) =hL(Dx)=0. (3.67)
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Since Dy belongs to the space of parameters, and is in fact a trivial one (3.48) one then
finds from (2.20) that

1
5py ¥ = (1(Dx) + l2(Dx, V) — ifg(px, U2 — ... =0. (3.68)

Since each term contains different powers in field perturbations, each one must vanish
separately, in particular the first one which implies that ¢;(Dy) = 0, which is what we
wanted to verify.

Now we consider the next identity for n =2 (2.17), with 1 = { and z2 = x

£1(£2(¢, x)) = €2(£1(€), x) + £2(C, 41(x)) - (3.69)

An extra hypothesis was considered in [52]: for any ¢ € Xy we will need [Im(D),(] C
Im(D) i.e., Im(D) is an ideal of Xy or, stated in other way, the commutator of a trivial
gauge parameter and any gauge parameter gives back a trivial gauge parameter. A short
computation shows that this is exactly what happens in the tensor hierarchy of DF'T

1
Dx, (=D <—2AP8PX> . (3.70)
Comparing this with the following rewriting of the n = 2 identity

we conclude that fo(¥, y) = 0 and
B¢, X) = GATOrx (3.72)

So far we obtained the following non-vanishing products with entries belonging to the
graded subspaces X; and X

() = Mx - dux,
06(¢) = oA +0ME, +20,5,,
05(C1,Ga) =[G, o) = [A1, Aal(cy + 2A[[0pEsy, + A DuAgyp (3.73)
| .
6(CGx) = M) = SA 0Py,
1
03(C1s G2, G3) = =N (A1, A2, Ag) = —5 [Ap ’Aﬂfm Azp.

These are the only non trivial products coming from the pure gauge sector and are
enough to show that this sector fits into an L, structure (with the help of the observation
made in subsection 2.1). The remaining identities that have not been checked (involving two
X's € X; and for {'s € X|) are presented in the appendix. The outcome of the forthcoming
analysis is that the products obtained so far will not be modified when considering entries
with lower grade. In particular, the absence of a 4-product ¢4 indicates that fof3 — £3f
vanishes exactly as opposed to “up to homotopy”, meaning that the gauge sector of the
hierarchy tensor in DFT is governed by an L3 algebra.
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We now take into account the fields, their gauge transformations and their dynamics.
Some products that are trivial to identify are the following:

e From the gauge transformations of DFT (3.47) and the identifications (2.20) we

rapidly find
lo(C, W) = [A, A#]é‘g) +0pE A" — AL 0, Ap + AP OpB,, (374
U1 (C,T") =0, n>1. '

e From the equations of motion of the gauge fields (3.43) and two-form (3.41) and
crossing with (2.24) we read off the products involving only fields ¢, (¥™). As men-
tioned previously, we will only consider the fields of the tensor hierarchy and ignore
the fluctuations around the background for the metric g,, = g,,, the dilaton ¢ = b
and My = Mjpsny. Note that these backgrounds are by no means assumed to be
constant nor covariantly constant: they are only forced to satisfy the equations of
motion. In this case, the non-trivial products are of the form ¢, (V") with n < 3 and
v = AMM + B,,,. Here we only write explicitly the single product as will be needed
later. Expanding the EOM (3.43) and (3.41) in powers of A, and By, and keeping
only the leading order gives

(W) = =M (e Mng"g" o), 40N ) + gap (e 297795 010 By
+%aM (e*23ﬂMN§“p§”"aNBpa) +20, (e*ZEﬂMNEPUW‘Sa[UAg]N)
+Op (e*Z‘JMPNgWE AVMNM) L4 (e*ﬂaMgW) (3.75)
-0, (e_ZEMMNﬁpaﬁ“aaNBmg) p— (—4§“”8M£AAVJ

1— v A A 1— ve o o — = — =0V
—19“ EA,,MPQGMMPQ_igu L4,57° OmGpo+La, 5" 00Gpe§° )

Higher products of fields are obtained in the same way, we don’t show the expressions
here in order to lighten the presentation, and also because the identities in which they
appear are fulfilled by construction as explained at the end of section 2).

e We can use the gauge transformation of the EOM (2.34) to determine products of
the form ¢,,42(¢, F, ¥"), n > 0. First let us point out that the EOM for B, (3.41)
is covariant, namely it transforms as a tensorial density

JABy, = LAABM = 9y (AMAB*) | NAB™) =1, (3.76)

and the EOM for A* ), includes a covariant part also of weight one (which we denote

A, c.f ((3.43)))

AAF = AB™ Appr + DAl pp . SAAF = LANARy, ANAcAP ) = 1.
(3.77)
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Then, from (2.34) we read

05(C, F) = LAAB™ + ABM (9, Aps + OmEy) + LaAcA
(3(C, F, W) = LAABM™ Aypr+ AB™ Ly Ay, (3.78)
lpo(C, F, 0" = 0, forn > 2.

The products presented so far are enough to show that the theory lies within an L.
structure (modulo a subtlety to be discussed in what follows). The direct way to verify
this is to write down all possible non-trivial identities with their corresponding arguments
and to check that there is no need for new non-zero products. This is done in detail in
the appendix. The strategy we follow consists in writing all possible lists of vectors with
definite degree and then apply the identities over them. Such possibilities are given by the
following lists:

e Any number of ¥'s € X_1: (¥y,¥q,...).
e One ¢ € Xy and any number n > 0 of ¥'s € X_1: (¢, ¥y, Uy,...).
e Two ('s € Xy and any number n > 0 of ¥'s € X_1: ((1, 2, U1, Po,...).

e Three or more ('s € Xy and any number n > 0 of ¥'s € X_1: ((1,(2,C3- -+,
Cns U1, W, 0).

o At least one x € X; (and any other vector on the list): (x,...).
e At least one E € X_5 (and any other vector on the list): (E,...).
e Only one ¢ € Xj.

The first three lists fulfill the L., identities by construction as pointed out at the end
of section 2. The first one is associated to the non-existence of a graded subspace X _3,
the second one to gauge transformations of the equations of motion, and the third one to
closure of the gauge algebra over fields. The fourth, fifth and sixth ones fulfill the identities
straightforwardly (see appendix).

The last one has an interesting implication: the dynamics of the tensor hierarchy can
not fit alone within an L., algebraic structure, it requires the extra field perturbations and
their background values. So far we considered mostly the gauge sector and decoupled the
degrees of freedom of the fields not belonging to the tensor hierarchy. In particular, we
found that if the graded subspace X_ is assumed to be absent (namely, the dynamics is
ignored) then from (3.73) one finds that the following choice for ¢; over gauge parameters
is consistent with the L., structure

06(¢) = 9 AM + M=, + 20,5, (3.79)

Since this product maps into the space of fields, in order to verify the ¢1(¢1(¢)) = 0 identity
we must insert the above into (3.75). We rapidly get to the conclusion that it does not work.
What we are missing are the contributions to X_; coming from the gauge transformations
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of the other fields. This is in fact to be expected because on the one hand the EOM mix
all the fields, and on the other because there are non-vanishing ¢;({) components along
the fields that do not belong to the tensor hierarchy. Consider as an example the gauge
transformation of the scalar fields

SAMpo = LaMpg = LaMpg+ Lampg + . ..

A)pg  L2(Am)pg

(3.80)

where mpg = mpg 1s the scalar first order perturbation. Only when these components of

¢1(A) are considered, namely
01(¢) = 9,AM + M=, + 20,5, + LaMpg + Lad + EAQW : (3.81)
the following identity is obtained
(0 () ar = En (DA 1)y = O, (3.82)

where (AA¥ )y, stands for the equations of motion evaluated on background fields, and
we used that background fields are by definition constrained to satisfy the EOM.

This concludes the proof on how the tensor hierarchy in KK-DFT fits into an L
algebra. We remark that it is not enough to restrict the analysis to the tensor hierarchy
components of the different graded subspaces, but one should also consider other compo-
nents that might contribute through dependence on background fields, even if their pertur-
bations are ignored. The same situation arises when one considers the list (¢, Uy, Us,...):
the corresponding L, identity can be seen as coming from the gauge transformation of
the equations of motion, and we have made use of the gauge transformations over all fields
(including Mpg, d and g,,) in order to get the products in (3.78).

3.4 Redefinitions

~

When discussing KK-DFT we considered two sets of parameters. Ones with a hat (AM éu)
that are convenient to write transformations covariantly with respect to internal generalized
diffeomorphisms. This set is interesting as it is the one usually considered in Exceptional
Field Theories and gauged supergravities. A property of this set of parameters is that, as
shown before, the brackets with respect to which the gauge transformations close are field
dependent, and the Jacobiator is not a trivial gauge parameter, and so identifying symme-
tries for symmetries in this set is a rather non-trivial task. We circumvented these issues
by performing the redefinitions (3.3) that connect the hatted parameter with the un-hatted
ones, which have the disadvantage of spoiling the manifest generalized diffeomorphism co-
variance of the gauge transformations, but are the specific set in which the brackets are
field independent and the Jacobiator is a trivial parameter, making them easier to analyze
in the context of L, algebras.

Given that the redefinition (3.3) is field dependent, the graded subspace to which
the hatted parameters belong must involve mixing between the graded subspaces of the
other set of parameters. Both sets define equivalent algebras and so there must exist an
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isomorphism that connects them. Here we discuss how things fit into L., in the hatted
“frame”. We start by considering the gauge transformations in the form of interest, given by

5 AM =D, AM 4 9ME,

N (3.83)
6<BMV = QD[“EV] — AMf#VM + A[,uM5AV]M

from which we can identify the non-trivial products ¢1((), ¢2((, W), £l3(¢, ¥y, ¥s),
£4(<7\P17\1127\Il3)'
We saw that closure
[01,02] = —0p,, — 02

=12

: (3.84)

holds with respect to field dependent brackets

A = [A1, Aol

Erop = DuA{ Agjas -
Comparing with (2.25) we now get the identifications

0a(C1, G2) = (A1, (e + OuAY Aoyag

> (3.85)
031, Go, A) = —La, A Mgy,

which differ from the previous ones, the novelty being that we have a non-vanishing
l3(C1,C2, W), as expected for a field dependent bracket. There are however certain products
that still take the same value. For example, consider the identity for n = 3

—l1(03(C1, G2, C3)) = £2(£2(C1,C2), C3) + £2(la((3,C1), C2) + £2(£2(C2, C3), C1)

(3.86)
+£3(£1(C1), G2, G3) + £3(C1, £1(C2)5 €3) + €3(C1, €2, £1(C3)) -

This time, the £3f5 terms on the r.h.s. of the first line are not anymore the Jacobiator of
the bracket, because the bracket now depends on fields, and now the second line does not
vanish. It would be convenient to separate this expression according to its index structure.

For the M component, we get

[61(€3(C1, G2y G3))]M = —Jac(Ar, Ao, Ag) = —0M N (A1, Ag, A3), (3.87)
suggesting
03(C1, (2, C3) = —N(A1, A2, A3g), e X,
3.88
()M = aMy, Lex. (3.88)

For the p part we get

3 P 3 P
[1(£3(C1, €2, G3))],, = _58“ [A[h/\ﬂ(c) Asp + 53#\[319 [ALAQ]](C)

(3.89)
+ 30, AL OpAY Agy + 6A[0pO, A NAY
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which can be rewritten as’

[1(€3(C1, €2, €3))],, = OuN (A1, Ao, As) - (3.91)
Thus we see that this identity gives the same identifications we had before

€3(C1,¢2,¢3) = =N(A1,A2,A3), € X,

(3.92)
li(x) =Dx, xe€Xi.

Even though now we needed a non-trivial /3f; to complement f2¢5 to obtain the above
identifications, we emphasize that now ¢1(y) is not a trivial gauge parameter. Instead, the
product form of the trivial parameter must be read from (2.32).

4 Ly and Er@7) Exceptional Field Theory

In this section we present a self-contained review of E77) EFT [40, 41] and discuss how it
fits into L. The fields and gauge parameters depend on external and internal coordinates
(z#, XM), with g an external GL(n) index, and M an internal fundamental Er(7y index.
The invariant tensors are the generators (to)as" and the symplectic metric Qy7, which
is antisymmetric and raises and lowers internal indices through the north-west south-east
convention®

VM —oMNyy o Vi = VO, QMEQiy = -6 (4.3)

Adjoint indices are instead raised and lowered with the Cartan-Killing form k.g =
(ta)m™ (ts)nM, and the Er7(7y structure constants can be read from [ta, tg] = fop't,.
The adjoint representation is symmetric for Er(7), i.e. (ta)n] = 0.

The internal coordinate dependence of fields and gauge parameters is restricted by the
“section condition”, which states the vanishing of the following duality covariant Laplacians

OMN oy @y =0, (to)MVoyy@oy---=0. (4.4)

4.1 Exceptional generalized diffeomorphisms

Just so the paper is self-contained, here we discuss very briefly the structure of E;)
covariant generalized diffeomorphisms [40, 41, 64, 65]. The generalized Lie derivative acting
on a contravariant vector is given by

LAVM = A9 VM — 1206 M y (t) 5 1 O AX VN + A(V) 0k AKX VM (4.5)

"The following identity is useful for this computation

ad, [A 1,1\2](0) 3P + BOuA p [A1, Ag ](c) (2a+ B)0, A 8@1\2 Asp (3.90)
+3aA (0,005 Agjp — (a + 28)0,AF0" AagAgyp -
8The only two E7(7y identities that are needed to reproduce the computations in this section are
(ta)MK(ta)NL ﬂ(SM&N + 5M5N + (ta) M (t* )KL - QQMNQKL (4.1)
0= (ta)we(t" >M<K<tﬁ>Q>L — sy QO 4 (1) 5Q) (42)

— S () @t + 5 (1))t + o

KQ M
5 (t8)" oN -



with a natural generalization to higher rank tensors. The way this transformation acts on
covariant tensors follows from the observation that the symplectic metric €275 is invariant
under generalized diffeomorphisms. The same is true for the generators

~

ZAQMN =0, LAt)un=0. (4.6)
There are two types of trivial parameters

AM = (M NoNT,, AM = QMNTy (4.7)

trivial — trivial —
with Ty a covariantly constrained vector in the sense of the section condition
MY Ty Ty = (YN Typon - = Q"N Ty @ Ty = QYN T 0y -+ = 0. (4.8)

The symmetric part of the generalized Lie derivative with weight A\ = % turns out to be a
trivial parameter

=1 1
(A1 Ao} =Ly P Ay = 12(t*)Y N Onye + §QMN YN (4.9)
with 1
Yo = —§(ta)KLA{(A§, r = Qe A0S . (4.10)

The antisymmetric part is instead the E-bracket with respect to which the generalized Lie
derivative algebra closes

M =1 1
[Ar, Aa](gy = Ly Ay = 2A( Or A —12(t)M N (ta) kLA 8NA1L]—ZQMNQKL8N (AfFAL).
(4.11)
=1
In this sense, Ei\l 2 Ao plays the role of an exceptional D-bracket.
It was shown in [40, 41] that from the definitions above, it follows that a tensor in the
adjoint representation T, transforms as

OATo = AOKT, +12f057 (7). KO AL T, + N (T) O AKT,, . (4.12)
Another useful result is that a trivial vector

N 1
™ = 12(t)MNONT,, + 5QMNTN, (4.13)

transforms as a vector of weight (1) = 1, provided N (T,) = 1 and the covariantly
constrained field T, transforms as follows

oaT = AKGKTM + 12(ta)NM(ta)KL BKAL Tn + %8KAK Ty — 24(7fa)LK T, 8M8KAL .
(4.14)
Note that the transformation of Ty; depends on T}, so both fields must always be considered
jointly, forming a covariant pair (T, Ty ).
We emphasize that every vector with a tilde in this paper indicates that it is of the
trivial form (4.13), and as such must be considered constrained and with weight A = 3. Let
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us also point out that if the vectors A; and Ag in (4.10) were transformed with respect the
generalized Lie derivative with weight A = %, then 7, and ~ys would transform as (4.12)
and (4.14) respectively, as expected.

At this point, we would like to make an observation that will be crucial in the next
sections. Given the following adjoint and covariantly constrained tensors

A, Tla = 05 To + (ta) k. T5 A" (4.15)
0IA, Tlar = 0aThr + Qe (aMfK AL TK aMAL) :

where again AM is a vector, T, is an adjoint tensor of weight X'(T) = 1 and Ty is a
covariantly constrained tensor, the following trivial parameter vanishes

™M = 12(tMN N, + %QMNnN =0, (4.16)
as can easily be seen from the following rewriting
ﬁ:EAT—2{T, A} = —L;A=0. (4.17)
Let us now state what the Jacobiator looks like in terms of the above defined quantities
J(A1, A, Ag) = 3 [[Ap, Ao)m), Ag] ) = N, (4.18)
with N given by
N = {A[l, [As, A3]](E)} : (4.19)
whose “Nijenhuis” components are
No = —(ta)scnAf§ [Ao, gl (4.20)

Ny = %QKL (A{f Onr [As, Ag)] () — Sl [As, Agl](LE)) .

Of course, these components cannot in general be disentangled due to the ambiguity dis-
cussed in (4.15), namely that they can be shifted in such a way to leave N invariant.
However, in this particular case we will now argue that there is no redundancy. Taking a
close look into (4.15) we see that it depends on three objects: a vector A, an adjoint tensor
T, and a covariantly constrained tensor Ths. In order to shift the components in (4.20)
such that N in (4.19) remains invariant, we must find expressions for AM, T, and Ty,
depending only on Ay, As and As. The only possibility that preserves the way in which
the tensors transform is

1
AM =AM T, = —i(ta)KLAfAﬁ, Ty = QrAfomAyy, 65,k =1,2,3, (4.21)

but the antisymmetry in [123] eliminates it, leaving (4.20) as the only possible choice.
We end this brief subsection by noting that given a trivial vector T, one has

ZTA =0= {T’, A} + [f, A](E) , (4.22)

so the E-bracket between a trivial and a generic vector is itself a trivial vector. This
observation will be useful later.
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4.2 The theory and its projected tensor hierarchy
The fields in E77) EFT [40, 41] are

eua ) Bm/a > B,uuM » AuM , Muwun, (423)

where the scalar matrix My is again a duality group-valued constrained field. Note
that now the two-form field is non-Abelian, and takes values in the adjoint representation.
In addition, this EFT requires extra two-forms B, s, which are covariantly constrained
as in (4.8).

A parent background independent action based on a larger duality group (the analog of
0(10,10) for DFT) remains unknown in the case of exceptional duality (though see [66]).
Constructions for the internal scalar sector were originally considered in [54-63]. One
must then build the action as envisioned by O. Hohm and H. Samtleben [40, 41], by
demanding that “internal” generalized diffeomorphisms behave as gauge symmetries in
four dimensions and extending the KK-DF'T framework to be compatible with exceptional
duality symmetries and maximal supergravity (for ExF'Ts in other dimensions see [67-77]).
In total, the bosonic action enjoys the following symmetries:

e A global continuous E7(7) symmetry.

A local SO(1, 3|R) x SU(8|R) which is trivial in the bosonic sector.

External improved diffeomorphisms, infinitesimally parameterized by &.

Internal generalized diffeomorphisms, inf. parameterized by AM.

Gauge transformations of the two-forms, parameterized by Z,, and Z,/.

As in DFT, there is a set of parameters that allows to write the gauge transformations
in a covariant form, and another set that gives rise to field-independent brackets. As
before, we note the former with a hat AM , éuw éuM, and so on, and the later without
hat. Also as before, and for the same reasons, we will restrict attention to the tensor
hierarchy, and so will ignore external improved diffeos, and set the vielbein and scalars to
background values, ignoring the perturbations around them. The way the transformations
of the fields were obtained by Hohm and Samtleben are the following. The vector fields
transform such that the derivative D, = 0,, — L A, 1s covariant with respect to generalized
diffeomorphisms. Given that it appears here as the argument of a generalized Lie derivative,
this only determines the transformation of A, up to terms of the form (4.7) which we
note with Eu bellow

~ 1 ~
SAM = DAY +12(t)YMNONE o + §QMNEMN : (4.24)

These of course will become the gauge parameters of the two-forms. We have written
a hat on them to indicate that this is the set for which the gauge transformations are
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covariant with respect to internal diffeos, as before in DFT. Later one defines a covariant
field strength as follows

1
F,uuM — Qa[qu/]M - [ALH Al/]é\é‘) - 12(ta)MN8NBNVa - §QMNBNVN7 (425)
which transforms as
1
6Fuw™ = 2D, 0 A M = 12(t") M NON AB e — 5N AB (4.26)

where A\(0A) = % and we used the variation symbol A to isolate the covariant part of the

transformation of the two-form

ABuya = 0Buva + (ta) kL A 04" (4.27)
AB;WM = 5BW’M + Q1. (A[HLaMéAV]K — aMA[ML(SA,,}K) . (4.28)

By demanding covariance of the field strength one can obtain the gauge transformations
of the two-forms from those of the gauge vector. There is a caveat though. Notice that
the transformations of the two-forms enter the variation of the field strength (4.26) exactly
in the same way as in (4.16). There, we made the observation that the combination
(t)MN OmBva is not completely independent from QMN B,yn. Then, it is not a priory
possible to isolate the transformations AB,,, from those of AB,, /. At this point one
should instead consider a combined two-form

~ 1
B,ul/M = 12(ta)MNaNB;U/a + QB,LLVMa (429)

such that the ambiguity is eliminated, with its corresponding gauge parameter

= 1~
v = 12t N ONE e + S (4.30)

[11)>2

and then demanding that 5.7-"WM = EAA}"WM the unambiguous fields and their gauge
transformations are

§AM =D AM QMNE (4.31)

where we used the symmetrization {} in (4.9) to show that the transformation is con-
strained in the same way as the field, and defined the covariant transformation AEW M=
(5§W M—2 {A[u, 5A,,]} M- The expressions beNtween brackets cannot be directly assigned to
the A-transformations of the components of By, s, they must be considered always in this
combination. The naive separation would lead to the failure of closure of the gauge trans-
formations, the absence of trivial parameters, etc. We will discuss later how to properly
disentangle the components and their transformations.
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The Bianchi identities

3'D[#./TVP}M + ﬁ,uz/pM =0 (4.32)
~ 3
Dy HMypoinr — 9 {]:[uw ]:ptf]} M =0, (4.33)
define the three-form field strength
~ ~ 1
Hywpyr = 3 <D[HBVP}M +2 {A[w Ov Ay = 3Av, A,,]](E)} M) ) (4.34)

which also is constrained in the same way as the tilded tensors and transforms as a vector
under generalized diffeomorphisms, as can be easily computed from

SHyupnt = 3D AB, v + 6 {6 A1, Fup b a1 - (4.35)

The diffeomorphism covariant transformations (4.31) admit the following trivial pa-
rameters

AM = 12(t)YMN Oy x o + %QMNXN = OMN3y (4.36)

E#M = —DuXm , (4.37)

where X, is a generic function in the adjoint of E7(7), xus a covariantly constrained function,
such that Y, carries weight A = % The situation is analogous to that in DF'T, where there
is a set of parameters (noted with a hat) with respect to which the gauge transformations
can be written in a generalized diffeomorphism covariant form, and such that the trivial
set of parameters is field dependent. For this set of parameters the brackets with respect
to which the algebra closes are field dependent, in full analogy with DFT, so we find it
convenient to turn to a redefined set of non-covariant parameters (AM , Eu M)

1)

S = Eur +2{A, Au) s (4.38)
such that for this set the trivial parameters are field independent

AM — QMN)?N,

uM — — u%M . (439)

[1]2

The gauge transformations are now given by
SAM = 9 AM 4 LoAM + QMNE (4.40)
5§,uzzM = 28[;L§V}M + EAE;WM +2 {E[H ) Ay]} M s

where we defined
2, M=0MNE N+ 09,AM. (4.41)

These transformations close

[61) 52] - _5A12 - 6§ ) (442)

12
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with respect to field independent brackets

A5 = [A1, Aol (R (4.43)

Merging both parameters into a single one, and defining the brackets

¢= (AM, iuM) LG Gl = (A{‘é, §12,uM> : (4.44)
the Jacobiator is given by
J=3 HC[L G Cg]] = (ZVM, —&JVM) , (4.45)

with N defined in (4.19).

4.3 The Ly structure of the Er(7) projected tensor hierarchy

We begin here discussing the simplest case of the E-bracket gauge algebra and its formu-
lation in terms of the L, structure. As we will show, we only need to define two graded
subspaces, which are

X1 : functions: = + XN,
X = Xa i\; (4.46)
Xo: gauge parameters: A .

An arbitrary element y € X; splits into two different parts: y, belonging to the adjoint
representation 133 of Ey(7), and a covariantly constrained function x . The non-vanishing

products are
la(A1,Ag) = [A1, As] € Xo

l3(A1, A2, Ag) = —No — Ny, € Xy

1 4.47
(00 = 1267 oy + 10N, € X, 47

1 1
EQ(A,X) = §6AXOL + §5AXN e X1

where we defined the “Nijenhuis” tensors in (4.20).
The construction goes as follows. We start by defining the graded spaces. Initially, we
only define X as the space of gauge parameters AM. Next we identify

la(A1, Ag) = [A1, As] s (4.48)

and we set ¢1(A) = 0, so that the identities 6% =0 and ¢1¢5 — £5f1 = 0 acting over gauge
parameters are trivially fullfilled. The first non trivial identity we must verify is

—01(03(A1,A2,A3)) =Lla(Ca(A1,A2),A3)+Ll2(Ca(As, A1), A2)+a(l2(Aa, Ag), A1) (4.49)
+03(01(A1), Ao, Ag)+03(A1,01(A2),Ag)+03(A1,A2,01(Ag)). '

On the first line of the r.h.s. we recognize the Jacobiator, which for the E-bracket is given
by (4.19)

1
TN (A1 As A) = 3[[Ap, ], Ag]" = 12(%) M NN N + SQMNN (4.50)
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Comparing the expressions (4.50) and (4.49) we get the identifications

l3(A1, A2, Ag) = —No — Ny,
MN L mN ~M (4'51)
l1(x) = 12(t*)" " Onxa + 59 N=X1".

Here we continue using the notation that a tilde over a tensor means that it takes the form
of a trivial parameter (4.13). In order to accomplish this we have defined a new space
X1 because there is a nontrivial £3(A1, A2, A3) which maps into this graded subspace. The
elements belonging to this subspace will be denoted as x. As already pointed out, x € X3
splits into two different parts: x., which belongs to the adjoint representation of Er7),
and ypy, a covariantly constrained field.

Now that we have this new space we have to reconsider the identity £1fo — fof; = 0
acting on elements belonging to this new subspace

C1(l2(A, x)) = La(br(A), x) + L2 (A, bi(X)) - (4.52)

We take the first term in the r.h.s. to zero as it contains ¢1(A) € X_1, the space of fields
that we are ignoring for the moment. The second term in the r.h.s. takes the form of a
trivial parameter by virtue of (4.22). This determines f2(A, x) € X1, but only up to terms
of the form (4.15), which belong to the kernel of ¢,

1
la(A, X)a = §5Axa +...
1
fg(A,X)M = §5AXM+-~~ . (4.53)

The dots represent the ambiguity discussed in (4.15), which is resolved by analyzing the
n = 4 identity. We will discuss this soon and for the moment take (4.53) without the dots
as our definition. We now show that the products defined so far are the only ones needed

gauge
L3

to guarantee the structure of the gauge algebra given by the E-bracket.

We now proceed with the n = 2 identity £1f5 — f2¢1 = 0, but now over x1, x2 € Xi:

l1(€2(x1, x2)) = L2(€1(x1), x2) + L2(1(X2), X1) - (4.54)

The r.h.s. of this identity is zero because ¢1(x) is trivial, and we already chose ¢5(A, x) to be
identified with a generalized diffeomorphic transformation (4.53). Then we can safely take

l2(x1,x2) = 0. (4.55)

Next, we must check the n = 4 identity £104 — lol3 + €305 — ¢4¢17 = 0 in the case of
four gauge parameters (this identity is trivially fulfilled when evaluated with arguments in
X1). First we note that £4¢; = 0 by crossing (2.32) with the fact that the Jacobiator is
field independent (4.19). We now point out that ¢3¢ — f2¢3 vanishes per se

laly — Loly = 6L3([Apr, A2), Ag, Ayy) — 4L2(l3(Ap, A2, As), Ay) =0, (4.56)

a computation that can be checked with some effort. Then, there is no need to define a
ly(A1, Ao, A3, Ag) = 0. Let us however analyze what would have happened if we had chosen
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a different product in (4.53), by deforming our previous choice with arbitrary elements 7,
and 77 in the kernel of £ (see (4.15))

1
52(A7 X)oc = §6AX04 + ang (457)
1
LA, x)m = §5AXM tann, (4.58)
with
77[/\» X]a = 61\ Xa + (ta)KL %K AL 5 (459)

nlA, XIv = Saxar + Qxr (O X AV — X5 0pA") |
the identity would read
(s = 65([Aqs, Aa], As, Ay) — 46o(63(Apr, As, Ag), Ay))
= dan[Ap, N(Az2, Az, Ay)la + 4an[Ap, N(Az, As, Ay)ln, (4.60)

where we have used the vanishing of (4.56) when the old products (4.53) were considered,
and the components of N were defined in (4.20). We see that in order to satisfy the
identity, the £1£4 term must absorb the ambiguity. In consequence, one should then define
a new graded subspace Xy and take f4(A1, A2, A3, Ay) = 4dan, + dany € X5. Notice
that so defined, £4(A1, Ao, A3, Ag) would live in the kernel of (1., nn) = 12(t*)MNOnn, +
%QM Nnn. One should then take X5 as the space of functions that live in the kernel of 7j
in order to fulfill the n = 1 L, identity, and also define the action of the ¢; product over
this subspace, which following [12] can be simply taken to be an inclusion map into the
subspace X;. In summary, the choice made for f2(A, x) in (4.53) is the simplest one in
that requires a lower number of non-vanishing products and graded subspaces.

Including to this analysis the tensors coming from the tensor hierarchy is now an easy
task. Following the same steps as before, we defined three graded subspaces

X functions: X = Xa+ XN,
Xo : gauge parameters: ¢=AM 4 EMM . (4.61)
X_y:  fields: =AM+ B,,.

We have added a new graded subspace in order to incorporate the fields and their gauge
transformations. The only nontrivial products are given by

£5(C1,C2) =[C1,¢2], € Xo
3(¢1,¢2,¢3) = —No— N, € Xy
1 1
l(x) = 12(ta)MN3NXa+§QMNXN—12(t°‘)MN8N8an—§3MXM, € Xo
1 1
l2(C,x) = §5AX04+§5AXN, X,
41(Q) :auAM—FQMNéuN-i-Qa[M\%V]M, eX

0o(C, W) = LAAM 460 By —12(1%) oy ((ta) LK (QKpi[MPJra[MAK) AL)

V]

n %QLK (8MA[LM (QK PE, pt0, A% ) — AL o (QK PE, P+8V]AK)> eX_,
(4.62)
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We have simply added here the L., products coming from the gauge transformations of
the fields (4.40) and their trivial versions (4.39).

This completes the analysis on how the tensor hierarchy of Er(7 fits into [gaueetfields
We do not consider here the full dynamical theory. Even if restricted to the tensor hier-
archy degrees of freedom, we expect similar features as those arising in DFT to appear
here. Namely, that the spaces and products defined so far must be extended to include
components along the other fields and to depend on their background values, see for ex-
ample (3.81).

4.4 The unprojected tensor hierarchy

So far the two-forms we considered (and the one-form gauge parameters) were a specific
combination (or projection) of two different contributions. For a general discussion, let us
consider generic projected tensors

N 1
™ = 12(t)MNONT, + 5QMNTN : (4.63)

While T, is a generic adjoint tensor, Ty, is covariantly constrained (i.e. as if it were a
derivative) and T™ is also constrained to be of the form above. We saw that when the two-
forms B v and their gauge parameters Eu were grouped into this form, the hierarchy closes
exactly. This projection is well known in the context of gauged supergravities, in which
case the responsible is usually called the intertwining tensor. Here, the projector is given
in terms of a differential operator, and so we will refer to it as the intertwining operator.

The particular projection discussed so far is the one entering the action of Ey) EFT,
a duality covariantization of maximal supergravity. Un-projecting points towards new
M-theoretical degrees of freedom not present in the supergravity limit. A full hierarchy
contains in principle a tower of p-forms in different representations A € Ry, B € Ry,
C € R, etc. Then, R; here is the 56 of E;;). The intertwining operator noted with a
tilde “~” maps between these spaces ~ : Ry41 — R, such that™~= 0. So far we considered
Be R7, and here we are interested in B € Ry and Ce R5. One could in principle continue
the hierarchy until the p-forms saturate the space-time dimensionality. Modulo covariantly
constrained fields, the representations we are expecting here are Ry = 133, R3 = 912 and
Ry = 8645 @ 133.

The intertwining operator has a non-vanishing kernel, and so it is not invertible. At
this stage it might seem a little confusing, but we will call (Ta, fM) the elements of the
kernell of TM , namely

~ 1 ~
12(t)MNoNT,, + §QMNTN =0. (4.64)

The reason of this notation will become clear soon. In the meantime it is important to
keep in mind that fM is not TM with its index lowered, but simply a constrained tensor
that belongs to the kernel of TM . In the previous sections, we identified two tensors that
belong to the kernel of the intertwining operator

T[A, V] = 0a Va + (ta)xr VE AL, (4.65)
T[A, V]M =0AVr + Q1L (anK AL — ‘7K OMAL) ,

namely, for this specific choice one has ™ = 0.
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It turns out however that there is a more general way to parameterize the kernel of the
intertwining operator. It is in terms of new tensors in different representations than the
ones considered so far. On the one hand, a tensor in the 912 T,,™ (more on representations
and projectors can be found in [30, 31, 43, 44])

T,M = pORIMB N - pO)ME % (8508 =12 (tat )N + 4 (Pta)n™M) |, (4.66)
and a covariantly constrained tensor Ty, (with unconstrained upper index)
OVMon @ Ty ™ = OMN Ty B Tt = )Y Moy Ty ™ = )MV Ty B Tt =0, (4.67)
Taking into account that due to the section condition
(t) ™ PPN 0 yc @ 01y =0, (4.68)
more generally the kernel of T is given by [40, 41]

To = 200 To™ + (to) v TaN

v o= —208TaY — O TNy, (4.69)
namely, for any To,™ and T/ one has ™ = 0.

The way to recover the specific case (4.65) is by making the choice
7
2
1

T = (t%)k™ (8OnA™ Vg = 4 A% 00 V) — SAY Vi

TM = P MEB ANy, (4.70)

It should be clear now why we chose the tilde notation again. The equation (4.69) is
the analog to (4.63) for the next level in the hierarchy. An interesting point is that from
the definition (4.69), it can be checked that (T, Ths) transform as in (4.12) with weight
N =1 and (4.14), provided

0T M = AR O T M —12(t°)M n (1) X LOKAFTLN +12 fmﬁ(mKLaKALTBM+;aKAKTaM
5TMN = AK(?KTMN — 12(ta)Np(ta)KLaKALTMP+ 12(ta)PM(ta)KLaKALTpN
+ O ATy N —24(t*)N L0y O NPT K (4.71)

Of course, these transformations preserve the constrained nature of both tensors.

Given that the intertwining operator is not invertible, it is not possible to read T, and
Ty from a given ™ , except up to terms of the form (4.69). Let us apply this lesson to
disentangle the components of the projected two-form of the previous sections. From the
transformation of B in (4.31) we can write the covariant form of the transformations of its
components

AB;LV& = 2,D[,u§y]oé + (ta)KLAK]:;wL + i,uua (472)

AB,uuM = 2D[M§V]M - QKL (AKaMf,uuL + f,uzxKaMAL) + iﬂuMa
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which are related to the genuine transformation through the relation AEWM = 5§W —

2 { Ay, 64, }

ABuua = 5B/u/a + (ta)KLAmKéA,,]L (473)
ABuunr = 0B — Qkr (AR 0nd A" + 64,50 A ")

The last terms in both lines of (4.72) parameterize the ambiguity in removing the projec-

tion, but will obviously correspond to the transformation of the two-form with respect to

the parameter of the next field in the hierarchy (a three-form). The hat on it is to continue

with the notation that parameters with a hat are those that allow to write the gauge trans-

formations covariantly with respect to generalized diffeomorphisms. The tilde indicates

that the parameters are of the form (4.69), namely they belong to the kernel of AEW M-
We now remove the projection from the three-form field strength (4.34)

~

Hp,upa = 3D[MBup]o¢ - 3<ta)KLA[MKFVp]L - C,uupa (474)
Hywprm = 3Dy By + 3L (A[uKaMFVp]L + F[VpKaMAM]L) - CN'WPM )

where we defined the following combination relevant for the Chern-Simons contributions
1
L™ =0,4,M - 3 A A 5 - (4.75)

The transformation of the three-form components (which can also be derived from (4.35))
are

Hywpa = 3DAB, 0 — 3(ta)SALS Fy iyt — AC,wpa (4.76)

SHywprr = 3D AB, ar + 31 (0AL S OmF, " + FupS 0mAy") — ACuwpn
where

ACyupa = 0Chpa + 3Ta[0A),, B, ]+ 2Ta[Au, {As,04,}]
ACoupnt = 6Cyumpont + 3Ta[6 Ay, Byl + 2T [Au . {Av, 04,1, (4.77)

and the requirement of these transforming covariantly determines the covariant transfor-
mations of the three-form fields

Aé,uypa = 3D[uiyp}o¢ - Ta [A, H,uup] - 3Ta [}—[uw ép]] (4'78)
ACyupnt = 3DS 0 — TarlA, Hywp) — 3T01[Fips ) (4.79)

where T’ was defined in (4.65).
The new three-form field and its parameter are now constrained to take the form (4.69)

é,w/poz = 28Mcuupon + (toz)NM Cul/pMN (480)
NquM = _28NC;LVpMN - 6MC',uIJpNN )
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and

DM

uro = 28M§,LLVCMM + (ta)NM i,uzzMN (481)

M

S N S N
uvM = _QaNE,uVM - aME,LWN

This is the projection required to truncate the hierarchy to this level. This new intertwining
operator has its own non-vanishing kernel,? and so the projection is non-removable unless
higher tensors enter the game.

We have been able to move a step upwards in the hierarchy, so let us resume the main
results. The closed hierarchy now contains fields AMM y» Buvas Buvrs C’Wpa and C;WpM’
the last three being constrained fields. Their gauge parameters are AM s uuM, Eum

and f],“, M, and again the last three are also constrained. The gauge transformations are

sAM =D, AM 4 QMNHHN

ABuua = QD[ é v]a + (ta)KLAK.FMVL + fj;wa
ABuunr = 2D Ey 0 — Qi (NSOMF ™ + FuKomA") + S n (4.84)
ACyupa = 3D pa — TalAs Hyuwp] — 3TaFiuws 2]

ACuwont = 3D, nr — Tar (A Hyuwp] — 3T01[Fpuws E] -

They admit the following field-dependent trivial parameters

N 1
A = XV = 120 N oy + 50V
élzrévial = —DxXa + i\,ua
S = —Dyxar + Xpur (4.85)
~trivial ~ ~
E,uua = _ZD[uXu]a - Ta[]:,ulza X]
~trivial

EMVM = _2D[u5€l/]M - TM[]:,LLIM X] ;

where
12(t°)MNONX o + Q MNS v =0. (4.86)

The covariant transformations close

[(51, 52] = —0p,, — 02— 0x (4.87)

=12 212

Tt is easy to anticipate some representations of the next and final level of the hierarchy. Consider for
instance a tensor ©,™" € 8645 @ 133, namely satisfying

@ MN (tﬂ)MN@[aB] :P(iQIQ)I\/IﬂP ('_')BPN (482)
Due to the second identity we can choose a candidate in the 912 that because of the first one belongs to

the kernel of YN",X and YN"M

~

M =on0.MY, EuY =0, (4.83)

namely T’a = 28MiaM = 0, thanks to the section condition.
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with respect to field-dependent brackets

A5 = [A1, Ao)(hy
Siopa = (ta) kLAf DUl
E1opnr = Qi (DuAff 0 A% + A OnDuAT) (4.88)
§12um = 4To[DAp, Zgp] + QTQ[EH[W Byl + 2Ta[Ap, {Agj, Fuv)]

~

S1opnt = 4T [Py Ap, Zopg] + 2T (B o] + 200 [Aps {Ag, Fun}]-

If we wished to eliminate the field dependence of the brackets, we have to perform the
following field-dependent redefinitions of the gauge parameters

Epa = éua + (ta)KLAuKAL

Eum = Sum + Ok (O AR AL — AROp AL (4.89)
Sva = Suwa — 2TalAp, E) — Ta[A, Bu] — 2Ta[A, {A, A}
i,U,Z/M = iuuM - 2fM[A[H7 Eu]] - T’M[Aa Buu] - QTM[A[;U {Au]a A}] :

The redefinition is non-covariant with respect to generalized diffeomorphisms, and the
trivial parameters are now given by field-independent quantities

A%Vial = 12(ta)MNaNXa + %QMNXN

Ef;(;wal = —OupXa Tt )Néua

Eg}\}ial = —0uXM + XuM (4.90)
ig:%jal = _28[;15(/1/]01

iLrlix‘],\i/[al = —28“&41\/17

where we have made the redefinitions

)zua = SNC\;LCM + 7N—‘oz [A/u X]
XuM = Xpum + TarlAus X, (4.91)
that preserve the constraint (4.86).
The brackets for the redefined parameters are now independent of the fields
Ay = [A1, Ao)(hy
E1opa = 2(5/\[1 EQ]MQ + (ta)KLauA[Ing]
Srounr = 26, Sopnr + Ut (OuASONAL — D, ABAL) (4.92)
Yiopwa = 2Ta[Ap1, Bou] — 4Tal0) A gyl — 2Tw[En [ Eou)]

~

§12;LVM = 27N—I‘]W [A[lv iQ]uu] - 4TM [8[,uA[17 EQ]V]] - 2TM [E[l[ua E2]V]] .
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One can then compute the Jacobiator components as we did repeatedly before

JM = NM — 12(t¢YMPop N, + %QMPNP

Juo = =0 Na + Nyua

Junt = —0uNas + Ny (4.93)
Juwa = =20, N,a

~

JMVM = _2a[uﬁy]M7
with the Nijenhuis tensors N, and Ny defined in (4.20), and

Nua = *QT‘a[A[I, {A2a a;LA?)} }]
NMM = _QfM[A[la {A27 auA?)]}] : (494)

We can now compute the bracket between a trivial parameter (; of the form (4.90) and
a generic parameter, finding

(G, M =M
[gta C]lwé = _aﬂxix + i,:ia
[Ces Clnr = —OuXar + Xyt (4.95)
[Ct? g],u,l/a = _0[11%;]0[
[Cta <]NVM = 76[#%1//]]\47
where
! _1 L~L
Xo = 2(ta)KLA X
1 N ~
Xy = ~59K (AFonX" — oA RY) (4.96)

)z;ta = _Ta[Aa Et,u,]

Xpnr = T[N By

We have then shown that the next level in the hierarchy admits a set of parameters
for which the criteria required by the theorem discussed in sections 2.1 and 2.2 is met.
Namely, that the theory admits trivial field independent parameters (4.39), that for this
set of parameters the bracket is field independent (4.92), that the bracket between a trivial
parameter and a generic one is trivial (4.95), and that the Jacobiator is a trivial parame-
ter (4.93). The theorem then states that the gauge algebra again fits into an [82"8cTfelds
structure. This procedure could be extended all the way up to space-time saturation,

starting by the next level discussed in footnote 9.
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5 L, and gauged supergravity

As discussed in the previous sections, the gauge algebra of DFT and EFT does not satisfy
the Jacobi identity, requiring a deformation therein produced by a non-vanishing triple
product (so-called the Nijenhuis tensor). This is a manifestation of the fact that duality
covariant theories contain trivial parameters, or said in a more fancy way, symmetries
for symmetries.

On the other hand, generalized compactifications of these theories (originally intro-
duced in [78, 79] in the context of DFT, see also [80-88], and later considered in an EFT
context [89-98]) give rise to gauged supergravities. For reviews see [46-50]. It is then
natural to ask the question of whether the L., algebraic structure of the parent double
and exceptional field theories leaves some imprint after compactification. Of course, this
question can be asked and answered independently, without any mention to parent theories
and compactifications, so we will address these questions from both ends.

Here we show that the most salient aspects of the algebraic structure of DFT and
EFT are indeed reproduced by gauged supergravities. The failure of the Jacobi identity
to be satisfied is governed by the so-called intertwining tensor, a particular projection
of the embedding tensor. We explicitly compute the Jacobiator, and find that gauged
supergravities admit novel symmetries for symmetries in which the trivial parameters are
deformed by gaugings. Our goal is to show that gauged supergravities admit (via field
redefinitions) a set of parameters that satisfy sufficient criteria (see subsections 2.1 and 2.2)

gaugetfields o . cture.

for the algebra to fit into an L

The presentation proceeds as follows. First we perform a generalized Scherk-Schwarz
compactification of the KK formulation of DFT, ending with a gauged supergravity corre-
sponding to the electric sector of a theory with half-maximal supersymmetry. This is the
simplest possible scenario to explore these issues, serving as a prototype to confirm our
expectations. We then move to the general case of generic gauged supergravities, without
any mention to compactifications, for which the structure of the gauge transformations of
the tensor hierarchy is well know. In this context we perform convenient redefinitions in
order to identify field-independent brackets, their Jacobiator, the Nijenhuis tensors, and

the general form of trivial gauge parameters.

5.1 Generalized Scherk-Schwarz compactification of KK-DFT

Let us briefly discuss the generalized Scherk-Schwarz (SS) compactification of the KK-
DFT action so that our presentation is self-contained. The generalized metric and frame
formulations were compactified in [78, 79], and here we use the same technique for this
formulation. The KK-formulation is particularly useful to perform KK tower expansions
in tori compactifictations [99]. We start by recalling the KK-DFT action (3.30)

S = /d"xdde\/—ge_%[,, (5.1)
~ 1
L=R—-49g"D,¢D,¢ +4V, (g""D,¢) — EHWPHWP (5.2)

1 1
+ 59" DuMunD MUY — S M Fu M PN =V
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We will only discuss the case of n = 4 space-time dimensions: some results will suffer
modifications in other dimensions. We can distinguish three types of global transformations
(to be complemented with dy; — UpP0p and Oy — 6%8,)

G = € Guv
MMN M, UNQ MPQ
p—>d+c+y (5.3)
AM s e uMpat

B, — €'B,,

where ¢,y € R and U € O(d,d|R). When a field is shifted with a warp factor e*? we call
w the “external weight”, such that

w@)=wB)=1, wld) ==, we?)=-2, wM)=0. (5.4)

While U-rotations (standard duality symmetry) and + and c-sifts leave the Lagrangian
invariant, the c-transformations re-scale the measure

V—ge 2 e /—ge 2 (5.5)

and so are not a symmetry of the action, but of the equations of motion only. The Scherk-
Schwarz compactification procedure consists in proposing a compactification ansatz based
on the global transformations

guv(z, X) = "X g, (2)
MMN (2 X)) = UM 4 (X)) UN g(X) MAB(2)
o(z, X) = ¢(z) + c(X) +7(X) (5.6)
AM (2, X) = 75 UM 4(X) A, ()
By (z, X) = e’ B (z),

where in this context UM 4, v and ¢ are know as “twists”. We distinguish between in-
dices M, N, P, ... transforming under O(d,d) transformations in the parent DFT action,
and those A, B,C, ... transforming under the O(d,d) in the effective gauge supergravity.
Equivalently, we propose an ansatz for the gauge parameters

¥(X)

AM(z, X)=e"2 UM4(X) A (x)
Eu(z, X) =M=, (2), (5.7)

by assigning them external weights w(A) = £ and w(Z) = 1.
In general, the SS ansatz for a tensor 7™ (x, X) with weight A and external weight w is

TM (2, X) = e /X=X M (X)) TA(z). (5.8)
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The generalized diffeomorphisms determine the form of the effective gauge transformation
of T4 (z) through the relation

LATM (2, X) = 27X =2 gM | (X) LATA(z), (5.9)
yielding
LATA = —XpcAABTC + <)\ +w— ;) fABTA, (5.10)
where ]
Xpc® = —fpc® + f[c5§] - §fAnBc7 (5.11)

and we finally arrive to the gaugings or fluxes f# and f45%, defined as
fA=er UytoMy = —2e2 (2Un0Me — 9MUNA)
fapc = 3e2 Upad™ U sU%mpq -

Despite of being built from X-dependent twists, when they appear in this particular com-
bination we demand that they are constant. Demanding that the fluxes are constant, plus
strong constrained twists, is known to imply the quadratic constraints

fAfa=0
A =0 (5.12)

2
fias® fope = gf[ABCfD] -

The reverse implication is not true: the quadratic constraints are weaker than the strong
constraint, which in the context of generalized Scherk-Schwarz compactifications is know to
be unnecessary. We will not discuss this issue here, see [78-82] for discussions on this point.

The gauge transformations of the fields in the parent action (3.4)—(3.8) can also be
twisted in this way to extract their analogs in the effective theory. From now on, all the
quantities we display correspond to those in the effective gauged supergravity unless the
opposite is explicitly mentioned

5g;w = EAQ;W
5MAB _ EAMAB
be 20 = Lpre 2 (5.13)

SA,A = 9N + LaAA + fAE,
0By = 20,Z,) + LAByu + 0, A Ay s — fa ALAE,
where all fields have vanishing weight except for A(e~2?) = 1, and the external weights are
listed in (5.4).
Let us point out that similarly to DFT (3.46), the gauge transformations can be taken
to a covariant form
§A,A = DA + fAE, (5.14)
0By = 2Dy,E, — Fu A + Ay 64,4, (5.15)
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by redefining the one-form parameter as in (3.45)
S, =E.+ AN, (5.16)

The brackets for the parameters with a hat are expected to be field dependent, while
those without a hat depend on parameters only. The non-covariant ones are then more
convenient to deal with when analyzing the gauge algebra, which will be discussed later.
The covariant derivatives (3.14) can also be twisted, leading to their analogs in gauged
supergravity, namely
Dy=0u—La,, (5.17)

such that for a covariant tensor transforming as in (5.10) one has
1
LD, T4 = —XpcA AP D,TC + <)\ +w-— 2) fsABD, T4, (5.18)
For the field strengths (3.20) we have the same story
Fut =20, A" — foc® APAC — fALPAY — FA B, (5.19)

1
Huwp =3 (D[#BVP} + A[HA&,AP}A — 3fABcAMAA,,BApC> , (5.20)

and they satisfy the following Bianchi identities

3,D[,u"rup]A + fA Huup =0 (5.21)
3
Dy Hopo) — me,,Afpg] 4=0. (5.22)

Then, we automatically see that the compactified effective action takes exactly the
same form as the parent one (5.2), where the covariant derivatives and the field strengths
must be replaced by their lower dimensional gauged versions. The only subtlety is a local
overall shift [dX e 2¢77 which integrates in the internal space to modify the effective
action’s Planck constant. There is also the non-trivial task of compactifying the scalar
potential, which gives

V= %MABMCDMEFJCACEJCBDF + %MAB (fac® fep€ +3fafs) + éfABCfABC :
(5.23)
The last term can be seen to vanish due to the strong constraint [78-82], so we put it
in by hand. When the term is non-vanishing the theory cannot be uplifted to maximal
supergravity [100, 101].
The gauge invariance of the effective action is achieved due to the fact that the measure
transforms like

1) <\/—ge_2¢> = A fa/—ge 22, (5.24)
which is compensated by the variation of the Lagrangian

6L =—AfaL. (5.25)
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The brackets with respect to which the gauge transformations close can be either
obtained by direct computation, or by twisting those in (3.49)

AM (2, X) = 25 UM 4(X) Ads () 5.26)
Epe(z, X) = 1) Euiz(z), (5.27)

giving rise to
Ay = freAPAS + fp AfAY (5.28)
B2 = 2fa MiEa), + AjOuAgya (5.29)

which satisfy
[617 52] = _5127 (530)

for the compactified gauge transformations (5.13).

As before, merging the two parameters into a single one and defining the bracket
notation

¢(=ANE), (G = AL, (G Gl =S, (5.31)
one can readily compute the Jacobiator
J=3[[¢us G Gy] = (FAN, —0uN), (5.32)

with the Nijenhuis scalar defined by
1
N(A1, A2, Ag) = 5 fapc AFABAS (5.33)
The same result is obtained by compactifying the parent quantities (3.54)-(3.55) with
external weights w(J4) = 3, w(J,) =1, w(N) = 1.

We now have a clear indication that the electric sector of half-maximal supergravity
admits trivial parameters

A?rivial = fA X Eu,tlrivial = _a,uX, (534)
which indeed can be verified by direct inspections using the quadratic constraints (5.12).

Moreover, it is easy to see that the commutator of a trivial parameter with a generic one,
yields a new trivial parameters characterized by the function

1
X == aM (5.35)

We then see that the electric sector of half-maximal gauged supergravity inherits from
its parent theory the sufficient conditions for its gauge algebra to fit into 82uectfields,
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5.2 The tensor hierarchy in gauged supergravity

The gauge structure of the tensor hierarchy in gauged supergravities has the nice advan-
tage of being writable in a universal form, regardless of the dimension and the amount
of supersymmetry. Following [45], and motivated by the fact that our discussion so far
reached the three-form in this paper only, we will project the hierarchy to this level here,
and discuss the full hierarchy relevant for n = 4 space-time dimensions in the appendix.
The conclusion will be that gauged supergravities admit symmetries for symmetries whose
trivial parameters are deformed by the embedding tensor. We will afterwards show in
the next subsection that the gauge algebra of the tensor hierarchy meets the criteria of

fiel
Hields structure.

subsections 2.1 and 2.2 implying that it has an L&2"®°

Starting from a generic ungauged supergravity with global symmetry group Go, we
can turn some subgroup G € Gy into local using the embedding tensor formalism, which
maintains at least formally the G covariance by treating the embedding tensor as a spuri-
onic object. In this procedure, the generators of the algebra of the local subgroup X, are

parameterized as a projection of the gy generators, t,
Xuv =0Opta, (5.36)

with the embedding tensor © /% a mixed index tensor with M =1,...,dim(g) in some V'
representation, and « in the adjoint of Gy. This embedding tensor has to satisfy linear and
quadratic constraints. The former is a supersymmetric requirement which can be written as
a projection that selects some particular irreducible representations of the product V®gq to
which the embedding tensor belongs. The latter is needed to ensure the closure of the gauge
algebra and can be obtained by demanding gauge invariance of (Xp)y @ = On® (ta)y @,
which leads to

(X, Xn] = —Xun®Xo . (5.37)
The gauge transformations act on vectors as follows

ATM = —XnpM ANTT (5.38)

AT = Xyl ANTp,

with respect to local gauge parameters AM(z). In order to preserve gauge invariance it
is necessary to replace derivatives 0, by covariant derivatives D, through the minimal
coupling procedure

Dy =0, — AMXwm, (5.39)

where A”M are the gauge vectors. The derivative is covariant provided the vectors trans-

form as follows
sAM =D, AM 4+ (5.40)

where the dots represent terms that vanish when contracted with the embedding tensor.
The story continues by introducing a field strength

[Dy, D) = —Fu™ Xar = = (20, A + Xnp™M AN AT +.0) X (5.41)
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which again is defined up to a projection with the embedding tensor. It turns out that the
dots are fixed by demanding covariance of the embedding tensor, namely that it transforms
as a vector (5.38), for which one must introduce new degrees of freedom B,

fm,M = 28[MAV]M + XNPMA[MNA,/}P + ZMIB;WI ) (5'42)

where ZM! the so-called intertwining tensor, is constrained to vanish when projected
with Xy
ZMI Xy =0. (5.43)

This object can then be used to fill in the dots in the variation of the vector fields
SAM =D, AM — ZMIZ (5.44)

The gauge transformation of the two form is then forced to compensate the failure of the
first two terms in (5.42) to transform covariantly, but then of course is defined only up to
terms that vanish when projected in this case with the intertwining tensor. So, covariance
of ]-"ﬂ,,M only teaches how to transform a projection of the two-form with respect to a
projection of its one-form parameter

Bu,M=2"Byr, EM=2"E,, (5.45)

giving
sAM =D, AM —E M (5.46)
0B = 2D, E M — 2X ()M (AN F T — A, N6A4,7) . (5.47)

Here we have used the same notation as in the rest of the paper, namely that tensors
with a tilde are projected by intertwiners, and tensors with a hat allow to write the gauge
transformations in gauge covariant form and involve brackets that are field dependent. In
fact a quick computation shows that this projected tensor hierarchy is self consistent, as it
closes with respect to the brackets

MM = —XnpM AT A (5.48)
S0, = 2X(wp) M DA AL (5.49)

By redefining the parameters
EM =M+ 2XnpMANAT (5.50)

the one-form bracket becomes field independent

[1]¢

1o = 2X (Aﬁ 90y — 22V TAL EQW) . (5.51)

We conclude this brief discussion by showing the projected three-form field strength

- ~ 1
Hyp™ = 3D, By ™ + 6 X (wp) ™ ALY (ayAp]P + 3XOQPAVOAP]Q> , (5.52)
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and the projected Bianchi identities

3

3D Fon™ = Huwo™ =0, Dy Hypn™ — §X(NP)MJ-"[WN}"W]P =0. (5.53)

Let us now move one step upwards in the hierarchy, by un-projecting the two-form.
This requires including a three-form which will now be projected. One could keep going
until the space-time dimension puts an upper limit to the hierarchy, but we will stop here
and discuss the general case in the appendix. Besides ANM and B,,; we now introduce
a three-form C’WPA, which in this case is required by demanding covariance of the un-
projected three-form field strength H,,,;. For the sake of briefly we will not pursue the
whole discussion, but simply state the results and refer to the details in [45]. The gauge
transformations are given by

5AM =D, AM - ZMIE (5.54)
8Byt = 2Dy, Eyr — 2diun AM Fu N + 2diun A MOA,N — Yia St (5.55)
6 (Y14 Cpp™) =Yia 3D[uiup]A + 3gMAI]:[uVM§p]I + oM AM
+3g0 A By, 64, + QgMAIdINpA[MMAl,N(SAP]P> . (5.56)
where we have introduced the field strength tensors

.7:,WM = 28[HA,,}M + XNOMA[HNAV]O + ZMIBNVI (5.57)

1
Huwpr = 3D[uBup]I + 6d[MNA[MM (8Z,Ap]N + 3XOPNAZ,OAp]P> + iflAc;pr, (5.58)

with the covariant derivative
DByt = 0uByor — A X1’ Bupy - (5.59)
The field strengths satisfy the generalized Bianchi identities

3Dy, ]:VP]M - ZMIHIWPI =0 (5.60)
4D[,LLHZ/pO']I - 6dIMN]:[p,V M]:po']N - Y]Agy,llpo'A - O, (561)

with gwx‘ the 3-form strength tensor, defined by this equation up to a projection
with Y74.

Let us explain the notation. The tensors djy/ny and gMAI

are gauging independent
and represent the Gp-invariants of the theory. Just to put an example, in n = 4 maximal
supergravity, where the gauge group is E7(7), these would the related to {2p/y and (to) MM,
The tensors ZM! and Y74 on the other hand do depend on the gaugings, and so together
with X s are responsible for its deformation. The intertwining tensor Z™! for example
is related to the symmetric part of the embedding tensor Xy, N)P . The fields are ANM ,
Byyr and CWpA, their associated gauge parameters are AM , Eu 7 and iwA, and their field
strengths are .7:WM s Huvpr and QWWA. The indices M, I, A, denote the representations
to which the tensors belong. Then, X7 corresponds to the embedding tensor in the

representation of the two-form field, X742 of the three-form field, etc.

— 49 —



Gauge covariance is achieved provided the following constraints are imposed

drpun) =0
draungoy™ =0
ZMdrno = X(voy™

Xorr? + 228 dpun = Yiagu™’

ZMIy, o =0
ZMIx, =0
YIAgMAJZMK —ogME zNJ g\ (5.62)

where the last two follow from the others and the quadratic constraints.

The vector fields A,™ in (5.54) transform exactly as in (5.46). Instead, the transfor-
mation of the two-form in (5.47) corresponds to a projection of (5.55) with the intertwining
tensor ZM!. When removing the projection in (5.55) one has to include terms that van-
ish when projected, which in this case are represented by Y7 A/X\JWA. The bracket of this
parameter is responsible of absorbing the failure of closure of the unprojected gauge trans-
formation, and its associated field Y7 ACWPA is responsible for guaranteing the covariance
of H,upr, namely to enforce

Hywpr = Xaar? AMH,p - (5.63)

In fact, if the three-form fields C’W,,A were absent in (5.58), then #,,,; would fail to
transform covariantly and the failure would be proportional to X s 17 +2ZN7d v, which
in turn is proportional to Y74, as can be seen in (5.62). To follow the notation we have
been using, we could put a tilde on the three-form and its gauge parameter to denote that
both are projected

~

é}LleI = YIAC,u,VpA ) Z;w[ = }/}AZuVA ’ (564)
and we have to remember that now the tensors with tilde satisfy

~
~

ZMIC =0, ZMIS,,1=0. (5.65)

If we decided to move a step forward and removed the projection with Y74, then the
strength tensor ngAA would not be covariant, and its failure would be proportional to
Xup? + gMAJ Y;p, forcing the inclusion of a four-form and so on. The same mechanism
is repeated over and over. Then, if we want to analyze the tensor hierarchy up to the
three-form only, a truncation scheme must be considered, which is possible given that

Yia (Xas® + g™ Yyp) =0, (5.66)

vanishes thanks to the G-invariance of Y74 and (5.62). We then cut the p-form chain at

~ ~

p = 3 and only consider {AMM, Buur, CWPI}, their parameters {AM, §M17 EWI} and their

field strengths {]-',“,M, Huwpls g~/1,1/po‘[}.
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To summarize, the gauge transformations of the projected tensor hierarchy up to the
three-form are

SAM =D AM — ZMIE (5.67)
6B#VI = 2D[u§u}l - 2d[MNAM]:W,N + 2d[MNA[MM5AV}N - E#VI (5.68)
5Chpr = 3Dy Sy + Yia g™’ (3 Fi™ME 0+ MM H, (5.69)

+3 B 04 +2dnp A M AN 5AP]P> ,
the field strengths are defined as

}—MVM = 28[HAZ,]M + XNOMA[MNAV}O + ZMIB/W[
1 ~
Huwpr = BD[“BVp]I + Gd[MNA[HM <8VAP}N + 3XOPNA,,OAP]P> + C/Wp[ (5.70)
Quupa[ = 4D[,uél/po}l —Yia gMAJ (6B[;LVJ]:pcf]M - 3ZMKB[,uI/JBpa]K
+8dJNPA[MMAVN8pAU]P + 2dJPNXQRPA[MMAVNApQAU]R) ,

and satisfy the following Bianchi identities

?’D[u]:l/p]M - ZMIH#VPI =0
4D[NHVpU]I - 6dIMN-F[uVM~FpU]N - g;u/po'f =0 (571)
5D, 9vpoN1 T 10Y1A9MAJ]:[WMH,MA]J =0.

Moving to the closure of the gauge algebra, we can now find the unprojected one-form

bracket élz# 1, and the projected two-form bracket ilgm, I

Ay =—XnpM AT A
\/:‘;12“] = zdeND#Af\fAé\}]

St =—2Yra g (dJNP AYAY fWP+2§[1WD,,]A§]4—ZMKEHW EQMK) . (5.72)

As expected, these brackets are those of the set of parameters for which the gauge
transformations are written covariantly, and so are field dependent. We show in the follow-
ing subsection that via redefinitions one can reach the hypothesis of the theorem presented
in subsections 2.1 and 2.2, implying that the gauge algebra of the tensor hierarchy in gauged

Lgauge+ﬁelds
00

supergravities fits into an algebra.

We have projected the hierarchy to the three-form field to match these results with
those of the EFT section, but it can of course be continued more generally to higher forms.
In the appendix we show how to extend the hierarchy exhaustively for the case we are
interested in here: n = 4 space-time dimensions.
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5.3 L algebra and gauged supergravity

In order to obtain field independent brackets we propose the following gauge parameter
redefinitions

[11>

ol = Zur + 2drun A M AN

St = Syt — Yiagu QARME, s + BusAM +24,M A,V dynpAPY | (5.73)
now yielding the brackets

AM = —XNPMAf\{Af]
Eiour = 2druN (Af‘f@uAQ}’ + ozMJ E[luJAé\][)

St = —2 Y4 g’ <2Af\14 OBy + ZME By Equii + i[l;wJA%> : (5.74)

Defining a composed parameter with its corresponding bracket
¢= (A, 20, St ) s (G G) = (M, Zrar, Sz ) (5.75)

we construct the Jacobiator

J(C1,€¢2,G) = 3 [[¢1, G2 G3) (5.76)
with components
JM = ZMIN,
Jur = 0,N1 + N (5.77)

jﬂl’l =2 O[MNV]I 5

where we defined the Nijenhuis tensors

Nr = diunXop™ AP A" Ay (5.78)
Nyt = 2Yra gar™ dywp Al (2A§V Mg + 3ZNKEQ#KA§]) . (5.79)
We then have a strong indication that the following are trivial parameters
A‘é\fivial = ZMIXI
Eul trivial = O X1 + Xul (5.80)

Euu[ trivial = 2 a[u%y][ )

where now x; is arbitrary and X,z is constrained to satisfy Z MI Xur = 0. It can be checked
that this is indeed the case. For the other set of parameters one has instead

M MI
Atrivial =7 X1
E,ultrivial = DMXI + SC\MI (581)

~

Z];UJItriviaul = QD[MSC\V}I —Yia gMAJ ]::u,l/M XJ

for a redefined but still constrained §u I
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We conclude this section by pointing out that gauged supergravities share with DFT
and EFT the interesting feature that the bracket between a generic parameter and a trivial

one, gives another trivial one

[Ctrivials €] = Crivial »
where (irivial is defined in (5.80) and

Ctrlwal (Z XI? aHXI + X,ul’ 2 8[#XV]I> ’ (582)

with
Xr = 2™ diun AN X (5.83)
Nt = —Yia g™ 2" 2 xk - (5.84)

Once again we see that there is a set of parameters that meet the hypothesis of the theorem

in subsections 2.1 and 2.2, implying that the tensor hierarchy in gauged supergravities lie

Lgauge+ﬁelds
S

within an structure.

The concrete graded spaces and products are obtained following the procedure de-
scribed in previous sections. For completion we give here some products in the L&"&°

sector, which are trivial to read from the results above. The only graded subspaces in this

case are
Xy = n=(nr, W) = (YiaC?t, =Y140,C")  vC*, (5.85)
X1+ x =1 Xar), (5.86)
Xo (=AY, Zur, S (5.87)

The product ¢1 maps Xo — X7 through inclusion. Some explicit products are

t(n) = m + Tt (5.88)
01(X) = Advial + St trivial + i,uu[ trivial » (5.89)

la(C1, G2) = A12 + Z1our + S1o1 (5.90)
(¢, x) = — Xour + K1+ K (5.91)
l3(C1, G2, G3) = _NI — Nur (5.92)

As done in a previous section, the product ¢2((, x) is defined here up to terms Ky, ’Eul

taking values in the kernel of ¢;, namely
0= ZMI/C[ + 8M/C[ + /%u] + 2(%/51,]1 . (5.93)

These can be chosen in such a way that'®

1
l(¢, x) = §5AXI + Yragu™ <ZMK~;LJXK ~ 3

D) o

ONote that the last terms proportional to the Y-tensor would vanish if the hierarchy were only projected
to the two-form field, as expected from the results in section 4.3.
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Maximal Half-maximal n = 6
Go Eq7y SL(2) x O(6,6)
Embedding tensor | 912 (2, 12) + (2, 220)
1-forms 56 (2,12)
2-forms 133 (3,1) + (1, 66)
3-forms 912 Projected out in [42]
4-forms 133 + 8645 Projected out in [42]

Table 4. Duality groups and representations of the tensor hierarchy in maximal and half-maximal
supergravities in four space-time dimensions.

which in turn implies

la(x1,x2) =0, (5.95)
03(C1 G2y x) = Y7uC'™ = 740,04, (5.96)

with
c'h = %QMAJ <A%XJ - ;YJBQNBKAf\l/[Aé\][XK> ; (5.97)

among higher products defined from higher identities. As stated by the theorem discussed
in section 2.1 no further graded subspaces are required beyond Xs. Instead, the effect of un-
projecting the tensor hierarchy is to populate X5, X; and Xy with the new representations.

5.4 Maximal and half-maximal gauged supergravity

Here we discuss how the general framework introduced in section 5.2 reproduces the tensor
hierarchy of maximal and half-maximal gauged supergravities in four space-time dimen-
sions. In table 4 we write the representations for each theory.

The general discussion in section 5.2 perfectly matches the standard formulation of the
maximal theory [43, 44], and so there is not much to say beyond the general discussion.
The formulation of the half-maximal theory [42] requires instead a closer inspection. We
can read from table 4 that the global symmetry of the ungauged maximal supergravity is
a continuous SL(2) x O(6,n). We will take the fundamental representation to have split
indices (a, M), where «, 3, are SL(2) indices and M, N, P are fundamental O(6,n) indices.
This slightly modifies the notation in section 5.2, there the whole fundamental index was
noted by M, N, P. Hopefully this will not cause confusion. The invariants of the global
group are the antisymmetric Levi-Civita tensor €,3 with the conventions ey =™~ =1
and emeﬁ7 = 55. The O(6,n) invariant tensor is nasn. Both tensors are used like metrics
to raise and lower indices. In terms of these, the generators are

(tan) p @ = 63N 1P
1) é
(tag)7 = 5(0[6/3)7. (5.98)
In order to gauge the supergravity we promote a subgroup G C Gy to local with the

help of the embedding tensor as we did in section 5.2. The precise identifications are listed
in table 5.
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General Half-Maximal
M aM
I (aB) [MN]

D

~
—_

M = M = =
A s —=ul A“ s —=p,af s —=u,MN

M M
Au ) B/U/I A,ua ) B,u,u,a67 B/,LV,MN

drvnN dys,aMBN = NMN€a(~€5)8 5 dOP,aMBN = €aBNM[ONP]N

@MI @aMﬁ’Y = f5M€6(5631) y @aMNP = faMNP + 6][\]}[]00413]

XaMBNWO = O, (tl”\)ﬁ 75](\), + O,u e (tPQ)N O(Sg

XMN
= _5g)focMNO + % (5]?455.]604N - 5]?/'5gfﬁM - nMNégfaO + 6&56575]?[.](.§M)

goM.By _— %T]MNGO“S@(;NB'Y — _%ea(ﬁev)éf(sM

ZMI
ZaM,NO _ %nMPﬁa'BGﬂPNO — %eaﬁ (f,BMNO _‘_nM[NfﬂO})

Table 5. Identification between tensors in the general structure of the tensor hierarchy (section 5.2)
and the n = 4 half-maximal gauged supergravity.

The gaugings now take the form fon and fomnp = founp), in terms of which the
quadratic constraints (5.37) take the form

foM forr =0
fo fopun =0
3fain’ farop — 2f(apunrfa0] =0
P (fo fapmn + fartfon) =0
P (farrnrfarQ"™ — fo™ farpapiging — fapn fnpQis + fapfains) = 0. (5.99)

From the table 5 and the general expressions in section 5.2 we can compute the gauge
transformations of the vector fields and two-forms

5AMaM _ DMAaM B %eaﬁ [vaewéu,w n (fﬁMNP n nMNfBP) EM,NP}
0Buvas = 2DE 0 ap — 20N ey (a€ays (MM Fu N — Ay, M A,;0N) (5.100)
0By in = 2D E v — 2eagnopingp (MO Fu T — A1,2054,,°7)
their field strengths
Far™ M = 200, Ay ™M 4 Ko p M AN AT

1
_|_§€ozﬁ [fwMEwBW,J,B-F (F5M NP g MN £ B;w,NP}

1 €
Hywp.ap = 3D Bug] ap+6mmn €y acps A ™™ <a,,Ap]5N+ gXAOEP‘WAvAOAp} P> (5.101)

o 1
Hywp N = 3D, By g v +6€agnoprnng pAp ™ <8VAp]ﬁP+SX'YQéRBPAV’YQAp}é—R> :
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and the covariant derivatives
Dy =0 — A MO, Otno — A MOt s, . (5.102)

With these results we can also compute the Y74 tensor using its definition in (5.62)

Yiagu™ = Xt + 22N diw (5.103)
with components
Yapa gyr 0 = — f(aMagay (5.104)
Yos.a g™ = (Fare™" + 83y fia") e,
Ypa gyt = —%5%‘%*“3 TaiNnPIM
Yipa gyut09 = _QfVM[N[O(Sg]} + fv e — fﬂNéﬁéfi)) :

The fact that these are non-vanishing implies that in half-maximal gauged supergravity the
algebra closes because the two-forms are projected with the intertwiner ZM!. In principle
the full algebra can be obtained un-projecting and adding higher tensors through the
standard procedure.

We can now as a final check see how to relate these expressions to those in the electric
sector computed from DFT. The identifications for the gaugings are

f-m =0
f-unp =0 (5.105)
fim = fu

frmno = funo -

Then, the last two equations of (5.99) vanish trivially and the remaining constraints
reduce to

M =0
2 fpun =0 (5.106)
3fn” friop — 2fiung fo =0,

and match (5.12) exactly.
To obtain full identification the parameters must be related as

ATM =AM 5, =95, (5.107)
and the fields as follows
A M =AM B, __=-2B,. (5.108)

We call this selection the “electric” section of the theory. It turns out that by selecting
the electric gaugings (5.105), the transformations of the electric components above do not
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depend on the magnetic ones (namely, the parameters AM, éu s §u++ and éu MmN and
the fields AM_M, By, —+, By ++ and B,y disappear from the transformations of A,ﬁM
and By, —_). Then, they decouple forming a closed subalgebra. With these identifications
the gauge transformations of the effective action of DFT are recovered (5.14).

We are now in the position of understanding why the small electric sector of gauged
supergravity, consisting in vector fields and single two-form, closes exactly without projec-
tion with an intertwining tensor nor the inclusion of higher forms. The reason is that the
electric section yields the following vanishing components of the intertwining tensor

Yo_agm* =0, (5.109)

and this particular combination is responsible for the closure of the gauge algebra of the
two-form to fail.
We can also re-derive the Jacobiator starting with (5.77) for half-maximal
JaM — ZaMﬁ’yN/j’y + ZO[MNONNO
Sy = OulNap (5.110)

JumN = O0uNun,

with the Nijenhuis tensors given by

Nog = nunes(aep)s Xaoer”™ A O Ao Ay N
Nun = €agnopmnpXaqsr™C A @A A5 PT (5.111)
Then, imposing the electric section, it is easy to see that
N__ = funoApM AN A5° = 2N, (5.112)

where in the last equality we established the relation with (5.33). Finally, using that the

only non-vanishing components of the intertwining tensor are

7-MOP _ _% <fMOP n nM[OfP])

1
z MA= = _ZfM (5.113)
2 9

the following relevant components of the Jacobiator survive
1
JM = 5fM N_=JM (5.114)
Jy——=0,N__=-2J,, (5.115)

which are trivial parameters, as expected, and in the last equality we established the
relation with (5.32). This completes the embedding of the tensor hierarchy for the electric
and full half-maximal supergravity in the general structure discussed before.
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A Relating the generalized metric and the KK formulations of DFT

In this appendix we relate the degrees of freedom and parameters of the generalized metric
formulation of DFT [53] (K, d, €M) with those in the KK formulation [39] (g, By,
AM, My, ¢, €8, AM, Z,). The O(D, D) indices M,N =1,...,2D with D = n +d are
here distinguished from the O(d, d) indices M, N = 1,...,2d. The relation is given by

0465 0
NMMN = 5/'1 0 0 , oM = (0,6#,3]\4) , (A.1)
0 0 nun

such that the strong constraint in O(D, D) d,0™ = 0 becomes that in O(d, d) 9y;0™ = 0.
The parameters are related by

Sp
M=1 e |, (A.2)
AM
and the dynamical degrees of freedom by
gh —gi*C,, — g AN
Humwn = _gupcpu G + Cpucaugpg + AMPMPQAVQ CpugpaAaN + AMPMPN )
—9"P Apmr Cowg” Aort + AT Mp Muyn + 977 Ay Aon

(A.3)
where C,, = —B,,, + %AHP A,p. From here it is straightforward to reproduce the KK-
formulation from the O(D, D) covariant expressions of the generalized Lie derivative and
DFT action.

B Checking some L., identities

Here we check some non-trivial identities for section 3.3. We first identify the terms that
are non vanishing and construct the possible lists of arguments from them.

All identities that include at least one E € X _5 hold true. The argument is very
similar to the one presented in [1701.08824], but there are some differences. Each term of
an Lo, relation is of the form £;(...¢;(...)), where ... represents a list of arguments. The
only non vanishing products involving an E € X_4 are l2(E, () and ¢3(E, ¢, V), see (3.78).
If we consider that there is an £ in the second list ¢;(...¢;(E,...)) then the possibilities are:

6i(.. . 6a(B, 1)) = (G, E) or £3(G, U, E), (B.1)
%,—/
=FeX_o

G(o . l3(E G, 01)) = €a(Co, B) or £3(Ca, Uy, E). (B.2)
————

EEAGX,Q

— H8 —



From this we learn that the possible lists are ({1, E, (2), (1, F, (2, V), or (E, (1, V1, (2, V).
If instead we consider that there is an E in the first list 4;(E,...¢;(...)), then the possi-

bilities are:

KQ(E,KJ'(. . )) = gQ(E,gl(X» or gQ(E,KQ(Cl, CQ)),
€Xo

C3(E,C1,05(...)) = £3(E, (1, £1(C2)) or £3(E, ¢, 02(¢2, 1)),
X,

£3(E, \I/,gj(. . )) = gg(E, \I/,Kl(x)) or Eg(E, W,EQ(CI, CQ)) .
€Xo

(B.3)

There are lists of arguments that are the same to those of the previous case and we have
the new ones (x, F) and (x, ¥, E).
Now we consider the list (F,x), for which the identity reads:

G(6(E, x)) = la(0(E), x) + f2(6(x), E) , (B.-4)
which holds because ¢5(FE, x) =0, ¢1(E) = 0 and

EQMXABMV - 0,

l5(Dx, E) = ~
2( {AB"W (8M6MX — 8M8MX) + »CaMXAcA'uM =0.

Now we consider the list (x, U, E') with its corresponding identity:

0 ; gl (53(X7 \I’a E)) - 62 (EQ(Xu E)a \Ij) + 62 (62(X7 \Il)a E) - 62 (62(\117 E)a X)
+ £3 (él(E)7X7 l:[j) - 63 (EI(X)a Ea \Ij) - €3 (gl(\p% Ea X) ’ (B6)
0< 03 (01(x), B, U) = 63 (Dx, B, W) = Lon, AB* Ayng + AB* Lo AFar = 0.

The remaining lists, ((1, E,(2), ((1, E,(2,¥), or (E, (1, ¥y, 2, Vs), also satisfy the
identities as can be seen from the closure of gauge transformations over field equations

[5<1 ’ 5C2] ‘/_'- = _5[C1,<2]‘F . (B?)

Expanding in powers of ¥ we arrive at the L., relations over the list of the form
(C1,¢2, E,9™), with n > 0. To lowest order in U we get

a(Ca, o (C1, F)) +3(C2s Fy 1(C1)) —L2(Cr, b2(Co, F)) = £3(Cr, F o i (G2)) = —2(€2(Cr, G2), F) -
(B.8)
This is the Lo, relation needed for the list (1, E, (2), once one takes into account that the
missing term ¢4 (¢3((1, (2, F)) expected in such identity does not appears as it was set equal
to zero. The linear order yields

—l3(la(C1,C2), F, W) = La(C2, €3(C1, F, W) + £3(C2, €2(C1, F), W) + £3(C2, Fo £a(C1, V)
— L4(Co, F, 01(C1), V) — £2(C1, £3(C2, F, W) — £3(C1, 2(C2, F), W)
- £3(C17'/—-'7 62(<27\IJ)) +£4(<17‘F7 el(gb)’ql)? (Bg)
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which again is an L., relation once one considers the terms that are equal to zero. Finally
the quadratic U2 order has an extra difficulty because from (B.7) one gets the identity eval-
uated on diagonal arguments ((1, (2, E, ¥, V) instead of ({1, (2, F, U1, ¥3). However, this is
not a problem because an L, relation which holds true on diagonal arguments also holds
true on non-diagonal arguments, which can be proved using the polarization identities.

All identities that include at least one x € X3 hold true. We recall first that
there are only two non trivial products involving x: ¢1(x) and ¢2(x, (). This means that
we can have at most two x’s. If we had more than two x’s we would have had two or more
x’s in the same product which is zero. Take for example the case of three x’s:

&(xa,xb,ij(xc---)) or gz'(Xaagj(XbJSC'“))' (B.10)

Now take the list (x1, X2,.-.). A term in the identities would look like £;(x1 ... 4;(x2,.-.)).
The possibilities are:

li(x1---l2(x2,Q)) = Li(x1,---X) =0, (B.11)
———
=xeX1

tilxa - i(xa)) = La(x1, ) - (B.12)
\‘v,—/
ECEXU
The only list of arguments is then (1, x2). The identity reads
G(la(x1,x2)) = L2(£1(x1)s x2) Ha (b1 (x2), X1) = 2(Dx1,x2) +L2(Dx2,x1) =0.  (B.13)
=0
Now take the list with only one x, (x,...). If x is in the first sublist, we have
Ei(X A f]( . )) = ZQ(X, ﬁj( . )) = KQ(X, 52((:1, CQ)) .
~——

€Xo

(B.14)

One can then check that the identity for the list (x, (1, (2) holds.
Returning to the confection of lists, if y is in the second sublist, we have more possi-
bilities. In the first place we could have

l5(C,ly(x,C)), same list as before,

£1(l2(x, C2)) - (B.15)

i, 02(x, Q) =>{

Xe€X1
The last case was also checked when we discussed the pure gauge structure. In the second
place

l2(¢,¢1(x)), same list as before,
Ci(....01(x)) = < t1(£1(x)), checked when we discussed pure gauge structure, (B.16)
——
leXo lo(W,01(x)), with list (P, ).

This last case gives the following identity which is true

0 =141 (La(x, V) — L2 (£1(x), V) — L2 (£1(V), X) - (B.17)
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Finally, all identities which include at least 3 {’s and any number of ¥ hold true.
The list with only three gauge parameters was already checked when we analized the pure
gauge structure (it was our starting point). Next we could consider four gauge parameters.
The identity is €104 — €ol3 + €3ly — £4¢1 = 0 and without any ¢4, the following expression
must vanish

ESEQ - £2€3 =6 63([([17 CZL C37 €4]) - 462(£3(C[17 C27 €3)7 44]) . (B18)

Taking into account that f3 over three gauge parameters of the form ¢ = AM + =, discards
the Z, part, we get for the first term on the r.h.s. the following expression

6 3([Ap, A2y, As, Ayy) = 2 [[A[17A2](C)7A3}?é) Agynr + (A, Al A1, Ay ar -
(B.19)
On the other hand
—4 62(63(4‘[17 C?a C3)7 C4]) = EA[4 ([Alu AQ]%)A3] M) ) (B2O)

so using the Leibnitz rule for the Generalized Lie derivative and the fact that the D-
bracket can be replaced by the C-bracket because of the antisymmetrization the identity
can be proved.

Now lets take into account gauge parameters and fields: ((i, (2, (3, ¥™). We first notice
that we cannot use the products ¢1(¢), ¢2(¢, V), £3(¢, ¥, ¥), which give an element UeX .
If they were in the second product ¢; we would have

Gi(oo (o) = £3(C1, G2, 0) = 0. (B.21)

Trying to use them in the first product does not work either. For ¢;(¢) we would need the
second product to give an element of Xj:

El (£n+3(<17 €27 C37 \Ijn)) .

(B.22)
#Xo
For /5(¢, ¥) we would need the second product to give an element of Xy or X _;:
‘62(£n+2(C17<2aC35‘Ijn_l)alll) 5 62(<1’€n+2(<2’€“3,\p71)) . (B 23)
~ —_———— .
£Xo ¢X_1
For ¢3(¢, ¥, ¥) we would need the second product to give an element of Xy or X _q:
63(671-5-1(4-174-27(37\1]”72)7\Ilu\11)7 £3(€1)£n+1(€2>c37\I]nil)a\ll) : (B 24)

ZXo EX 1

Thus, one of the products must be ¢3((1,(2,(3) = x € X;. If it was in the second product
¢; we would have

G ly(c) = b (B 03(C15 G2, G3)) = 1 (B, x) = 0. (B.25)
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If it was in the first product, we would need the second one to give a Xy element to get a
nontrivial term, but this is not the case

03(C1, G2 by (G3, 9"™))
#Xo

(B.26)

Considering more than three gauge parameters and repeating the arguments as before one
also finds that the Lo, identities are fulfilled trivially.

C Full hierarchy in four space-time dimensions

Having discussed in detail the three-form tensor hierarchy in generic gauged supergravities
we can move a step upwards and introduce the four-form field which corresponds to the
last field in the p-form chain for n = 4 space-time dimensions (some of these results can
also be found in [51]). To do this we continue by un-projecting the three-form fields

~

5’,uupl = YIAC;W,OA; i,uu[ = YIAi,uVA; Quupa[ = YIAg,quaAy (Cl)

at the expense of introducing a new projected four-form field IN)WWA and its projected

shift parameter @WPA, modifying the previous results

A S A A =
0Cup" = 3D[uzup] + gm I (3f[MVM:p}[ + AM’H“W)] + 3B[MV15AP]M

+2d]MNA[uMA,,N5Ap]P> — ém,pA (CQ)
g,ul/paA = 4D[;¢Cupa]A - gMAI (GB[MVprU}M - 3ZMJB[;WIBpU]J + 8dINPA[,uMAVNapAU]P

—I—Qd]pNXQRPA[MMAVNAPQAU}R) + D”VPUA , (03)
and satisfying

Y14 Dpwpo™ = Y140, = 0. (C.4)

Then, imposing gauge covariance of the unprojected four-form field strength tensor
5g,ul/paA = _XMBAAMg,quUB ) (05)
we find the transformation of the new field

N A
0D v po

—4D,0, 0~ WA hx g (6.7-"[u,,MprU]B +AM G —4C,, P AN
+29NBIdIPQA[uMAVNApP5AU}Q) +4vAL7 <§[MI%V/)U]J+3d]NPB[HVJApN6AJ]P) :

where we introduced the new intertwining tensor W4 which has to satisfy

WA hx g = Xy + guMVip

WAXY 4 =0,
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and the Gy-invariant tensor, hxpgys. In addition we defined
VAL — QQMA[IZJ]M

which also vanishes when contracted with Yx 4 thanks to the constraints. Due to space-
time saturation in four dimensions the field strength of the four-form field and its Bianchi
identity vanish.

It can be shown that the gauge algebra of the new system {AHM, Buur, C’m,pA, lNDWWA}

closes up to terms proportional to hx p( MgN)BI and VAT which must then be set to zero
as new constraints. In fact these are related by the equation
WA (hxpargny®') = VA dyuw, (C.6)

and the new constraints are

hxpargny " =0

VAL — 9g, AL ZJIM — (C.7)

The brackets that arise from closure of the algebra are given by

Ay = —XnpMATAY (C.8)
Eour = 2d1MNDMAf\14A§f (C.9)
Sho” = =290 (dINpAf‘f AN Fu " + 2§I[M[1DV]A§]4 ~ ZMIE 0By J> (C.10)
@12uupA _ —WAXhXBM (gNBIAf\fAé\][,H#VPI + 62[1“,[5;1)”/\3]/[) . (C.11)

To finish this chain we can unproject the 4-form
EuupoA = WAXDp,l/an ) G),u,upA = WAX@p,upX ) (012)

and introduce a new gauge parameter ®,,,,x into its transformation

ODywpox = 4D[uél/pU]X —hxpwm (6]: [WMipU]B + AMngGB - 40[#1/,035‘40]]”
+29NBIdIPQA[MMAuNApP5AU}Q) - EI;,ul/an .

In higher dimensions the new parameter would be identified with the gauge parameter of
the five-form field. Consistency requires that it vanishes under the W4X projection

WAXD ,pox = 0.
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We can finally summarize all the results for the full tensor hierarchy in generic gauged
supergravities in four space-time dimensions:

e Parameters, fields and curvatures in four-dimensions

Representation | Parameter Field Curvature
Ry AM AM FuM

Ry Sl Buu1 Mol

Ry Z? Clvp™ Gypo

Ry 5) wvpX D,pox 0

Ry D pox 0 0

e Gauge transformations
JAM =D AM — ZMIE,
8Buur = 2Dy, 2, — 2dian (AMFu ™ — ApMAYN) = ViaZ,,?
5Coup™ = 3D S + gu™ <3f[u,,Mép]I + A1 + 3By 184, M
+2d1MNA[HMAVN5Ap]P) — WAXS,,,x
SDppox = AD(8,po1x — hxpu (ﬁf[WMim]B + AMG o B — 4C,, B0 AM

+2gNBId]pQA[HMAVNApP5AU]Q) — EI\)uuan .

e Field Strengths

.FW,M = QQ[MAV]M—I—XNOMA[NNAV]O—FZMIBMV[
1
Huyp[ = 3D[pBup]I+6dIMNA[uM <8VAP]N+3XOPNAVOAP}P) +YIACHVpA (C13)

A A
Guvpo™ = 4DCypo)
+2dIPNXQRPA[

_gMAI (6B[HVI‘FP0]M _SZMJB[;WIBPU]J+8dINPA[HMAVNapA‘7]P

MMAVNApQAU]R)—i_WAXDlLVpo'X .

e Bianchi identities

2D, Dy + Fuu™ X =0 (C.14)
3D[u]:1/p]M - ZMIHWPI =0 (C.15)
4D[uHupa]] - 6dIMNf[Ml/ pro-]N - }/]Ag#ypcrA =0. (016)
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e Constraints

ZMldrnp = X(npP) M

ZMIx, =0

diiun) =0
Yiagu™ = X! + 22N dyn

YiaZM =

dI(MNgP)A] =0
WAhxpy = Xup™ + 9™ Y1
WAXy, | =0
hxpargny =0
WAXD ,pox =0

e Brackets
AM = _—XypM Ag A§]
191 = 2N DAY AY
Sip = 295 (drwp MY AY P+ 2y Dy Y ~ 2" E )
(:)12pr =—hxBMm (gNBIAf\fAé\}[HHVpI+6§[HV[B;Dp} Aé‘f)
B1oppox = — (Xarx” + WA hyanr) <hYBNAf\1/[A§][gMVpaB +86y upp1 Do AS{)

+4hXBMZMI [QWBY@y[

ywp[122)0) T — 62 71 Pv 2 oy +29NBJHJ[yupEU]I[1Aé\][

+3]:[;U/N <2dINPA€§2}pU]B _gNBJEJp[1§2]U]I>:|

e Trivial parameters

M _ 7MJ
Atrivial =7

XJ
E,u privial = Dpx1 + Yiax,”
im/A trivial = QD[HXV}A — g™ Fu™Mx s + WA x
OuvpX trivial = 3D} Xup)x + 3hx B ™ Xp)” + Xuvpx
6;},l/p0'X trivial = 4D Xvpo)x — 6 (Xmx” + WA hx anr) f[;wMXpa]Y
+ hxmBZ™ (4H pi Xo)” = Guvpo " X1) -

We then see that the symmetry for symmetries effect in gauged supergravities is a
generic feature even for dimensionally saturated tensor hierarchies.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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