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Abstract 20 

 21 

The blaPER-2 harboring plasmid pCf587 (191,541 bp) belongs to lineage IncA/C1 and is closely 22 

related to pRA1. It contains a large resistance island including the blaPER-2 gene between two 23 

copies of ISKox2-like elements, the toxin–antitoxin module pemK-pemI, several other 24 

resistance genes inserted within a Tn2 transposon, a Tn21-like structure, and a class 1 25 

integron. pCf587 belongs into ST 13, a new pMLST.  26 
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Text 27 

 28 

Since the initial report of PER-2 (1), blaPER-2 was detected in different species including 29 

Klebsiella pneumoniae, Enterobacter cloacae, Enterobacter aerogenes, Vibrio cholerae and 30 

community-acquired enteropathogenic Escherichia coli. PER-2 has been the second most 31 

frequent ESBL (after the pandemic CTX-Ms) in Argentina (and probably Uruguay), accounting 32 

for nearly 10% and 5% of the oxyimino-cephalosporin resistance in K. pneumoniae and E. coli, 33 

respectively (2-4); it has also been sporadically reported in a few other countries (5-10). PER-1 34 

and PER-2 are the most frequently reported members of the nine-variants PER family in clinical 35 

settings (2). 36 

In contrast to blaPER-1 containing plasmids (11-13), little is known about the genetic 37 

organization of the blaPER-2 gene. We previously reported the immediate flanking sequences in 38 

plasmid pCf587 from Citrobacter freundii 33587, recovered from a urine sample in 1999 (14). 39 

To further delineate the genetic background of blaPER-2, the aim of this study was to analyze the 40 

complete sequence of pCf587 recovered almost 20 years ago.  41 

E. coli 33587-TC9 is an E. coli CAG12177 transconjugant clone harboring the pCf587 plasmid 42 

from C. freundii 33587 (14). The plasmid sequence was determined with the Illumina MiSeq 43 

platform. Full genomic DNA was sequenced by MinION (Oxford Nanopore Technologies). A 44 

hybrid de novo assembly was performed with SPAdes V3.9.0 using both generated libraries 45 

(15). Gaps were closed using a PCR-based strategy and Sanger sequencing. Gene predictions 46 

and annotation were performed on classic RAST tool (16, 17) and manually curated by BLAST 47 

online. Sequence comparisons were performed by Mauve software (18). Identification of 48 

acquired antibiotic resistance genes and the incompatibility group determination were 49 

conducted by ResFinder 3.0 (19) and PlasmidFinder (20), respectively. Alignments were 50 

constructed using ClustalW with default settings. The phylogenetic tree was produced in 51 

MEGA 7.0.26 (21) using maximum likelihood with default settings and 1,000 bootstraps. 52 
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The overall genetic organization of pCf587 is shown in Figure 1. The plasmid (191,541 bp, 53 

average G+C content of 49.97 %) contains 253 coding sequences, from which 141 have no 54 

assigned annotation. The genes involved in a type IV secretion system, the master regulators 55 

acaDC, the traI gene encoding for the MOBH121 relaxase, and the putative maintenance genes 56 

parAB, stbA(parM), and kfrA, were easily recognized (Figure 1). A large resistance island (RI-57 

pCf) was also identified (Figure 2). 58 

The in-silico analysis established that pCf587 belongs to the IncA/C group. Upon searching for 59 

closely related plasmids by nucleotide BLAST in the NCBI database, only three IncA/C plasmids 60 

with a query coverage higher than 65% were found: Enterobacter hormaechei subsp. 61 

steigerwaltii strain 34998 plasmid p34998 (73%), Aeromonas hydrophila plasmid pRA1 (66%), 62 

and K. pneumoniae subsp. pneumoniae strain KP4898 plasmid pIncAC-KP4898 (67%) (accession 63 

numbers: CP012168.1, FJ705807.1, KY882285.1). The plasmids backbone comparison revealed 64 

that pCf587 is more closely related to pRA1 (Figure 3); they have a similar overall genetic 65 

arrangement and backbone length with almost 99% nucleotide identity. 66 

IncA/C backbones are highly conserved and it has been postulated that they derive from a 67 

common ancestor (27). However, two different lineages, A/C1 and A/C2, were established 68 

based on repA genes sequence similarities (28); IncA/C2 plasmids were further split in two 69 

types (29). To date, only the primitive plasmid pRA1 (ST11) (22) and the recently incorporated 70 

VIM-encoding pIncAC-KP4898 (ST12) (30) belong to the first lineage.  71 

Plasmid pCf587 repA gene has 99% nucleotide identity with pRA1 repA, with only two 72 

nucleotidic changes not resulting in amino acid changes; the tra genes are 99-100% identical to 73 

the corresponding tra genes from pRA1. Therefore, pCf587 belongs to IncA/C1, along with 74 

pRA1 and related plasmids.  75 

Other features shared with pRA1 are: (i) an ORF between traA and dsbC encoding a 1,828-aa 76 

protein (orf1828) with 99% amino acids identity; (ii) the TA hipAB; (iii) absence of tad and ata 77 
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genes from other putative TA system typical of all IncA/C2 plasmids; (iv) lack of ssb gene 78 

(present in IncA/C2 plasmids). 79 

In most A/C2 type 1 plasmids, the antimicrobial resistance island A (ARI-A) is found either 80 

embedded in or upstream of the rhs1 gene. It contains a class 1 integron, multiple 81 

transposons, a Tn21-tnp module, and a Tn21-mer module generally interrupted by IS4321 82 

which docks the resistance island at that site (29). The RI-pCf (Figure 2) has similar 83 

characteristics and location as that for ARI-A, although rhs1 is absent as expected. RI-pCf 84 

comprises: (i) a blaTEM-1B-containing Tn2 whose tnpA is interrupted by an ISAs1-like element; (ii) 85 

the TA pemKI followed by a large region with three IS1R copies, an ISAba125-like element, the 86 

aph(3’)-VIa-like and catA1-like resistance genes; (iii) a Tn21-like structure including the Tn21-87 

tnp and Tn21-mer modules whose IRtnp is interrupted by a IS4321-like element, a class 1 88 

integron carrying the aadB and sul1 resistance genes, and a zone delimited by two similar 89 

copies of ISKox2-like elements (sharing 99% nucleotide identity) carrying the blaPER-2 gene, a 90 

truncated IS1326 and an IS6100. The two ISKox2-like were found 26 bp upstream abct and 91 

3,703 bp downstream ISPa12 elements previously found as part of the blaPER-2 environment 92 

(ISPa12/blaPER-2/gst-like/abct) (14). The region between ISKox2-like and ISPa12, with no 93 

homologues in NCBI database, contains 8 ORF including a traW gene encoding a putative 94 

conjugal transfer pilus assembly protein. We postulate that ISKox2-like elements could have 95 

been involved in the recruitment of blaPER-2 and its surrounding genes from a still unknown 96 

reservoir to an ancient RI-pCf (Figure 2). A recent publication describes blaPER-2 in the 97 

chromosome of a clinical Shewanella sp. isolate Shew256 (31). The abct in Shew256 was larger 98 

than in pCf587, what may suggest that the ISKox2-like element partially interrupted pCf587-99 

abct during recruitment.  100 

Interestingly, there are no copies of IS26 in pCf587. This IS is found associated with most 101 

IncA/C plasmids previously described, including pRA1 (27) and is considered to be implicated in 102 

the evolution of ARI-A in type 1 A/C2 plasmids (29). 103 
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For pCf587, the database (https://pubmlst.org/plasmid/) could not recognize a specific ST, 104 

according to the Plasmid Multilocus Sequence Typing Scheme (pMLST) for IncA/C plasmids 105 

developed by Hancock et al (25). We built a phylogenetic tree using concatenates of the four 106 

pMLST genes (Figure 4), and observed that, as expected, pCf587 was related to ST11 which 107 

includes pRA1 as well as other IncA/C1 plasmids like the recently described ST12 (pIncAC-108 

KP4898) (30), and p34998, all separate from the rest of the STs including the IncA/C2 lineage 109 

(type 1 and type 2). The pMLST alleles of pCf587 were assigned as ST13, and the core gene 110 

PMLST (cgPMLST) ST13.1. 111 

IncA/C plasmids are high-molecular size, low-copy number plasmids initially described in fish 112 

pathogens as A. hydrophila and Vibrio spp. around 1970 (22-24), and are now disseminated 113 

among Enterobacteriaceae (25, 26). 114 

Currently, IncA/C plasmids are considered as an important healthcare problem (32), and 115 

responsible for dissemination of blaCTX-M, blaCMY, blaNDM, blaIMP, and blaVIM, and blaKPC genes, 116 

among others (25, 26). 117 

It is noteworthy that IncA/C1 plasmids like pCf587 could have been circulating among 118 

pathogens in Argentina since at least the late 90s, and even so, their dissemination seems to 119 

be not as proficient as other resistance plasmids like IncA/C2 involved in mobilization of CTX-M 120 

or metallo-β-lactamases, which are much more widespread enzymes. The presence of efficient 121 

TA-systems in their backbone may provide some stability even in the absence of selective 122 

pressure. This plasmid lineage may also have a role in mobilization of other (still unrecognized) 123 

resistance markers, as shown by the recent finding of some MBL associated with similar 124 

backbones in recent isolates (30) (Elena et al. unpublished results). 125 

Even if further studies on the mechanisms involved in blaPER-2 mobilization are still needed, this 126 

study provides some insights on the genetic elements that could have facilitated the 127 

recruitment of blaPER-2 in IncA/C1 plasmids. 128 

 129 
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Nucleotide sequence accession number 130 

The annotated complete sequence of pCf587 plasmid has been deposited in GenBank under 131 

accession number MG053108. 132 
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Figure 1. Schematic representation of the genetic organization of pCf587. The two outer rings 248 

show the coding sequences (CDSs) on the forward and reverse strand of the plasmid. Each CDS 249 

is color-coded by its predicted function as shown in the figure. The grey arc depicts the 250 

resistance island (RI-pCf) with the IS identified on the plasmid. The two inner rings represent 251 

the GC plot and GC skew graph, respectively. For both plots, magenta and olive green indicate 252 

the measures below and above the average, respectively. 253 

 254 

Figure 2. Schematic representation of the pCf587 resistance island (RI-pCf).. Color codes 255 

match those used in Figure 1. The elements highlighted in the figure are further discussed in 256 

the text. The box indicates the close environment of the blaPER-2 gene. Direct repeats 257 

bracketing the postulate ISKox2-like-madiated transposition event of blaPER-2 and its 258 

surrounding genes are shown in capitals. Inverted repeats from ISKox2-like are marked with 259 

yellow (IRL) and orange (IRR) rectangles. 260 

 261 

Figure 3. Local collinear blocks (LCBs) comparison between pCf587, pRA1, p34998 and 262 

pIncAC-KP4898 by MAUVE software. Each LCB represents regions with homologous sequences 263 

without rearrangements. Same LCB are identified with the same color. The height of each LCB 264 

is proportional to the identity level between them. Grey and red lines indicate the plasmids 265 

backbone and the resistance islands respectively. The dotted grey line indicates an insertion in 266 

the p34998 backbone. The black arrow indicates the position of a deletion on pIncAC-KP4898 267 

backbone. The repA gene of each plasmid is identified. 268 

 269 

Figure 4. Phylogenetic relationships between pCf587, p34998 and the different IncA/C STs to 270 

date, based on maximum likelihood and Bayesian methods. The tree was created based on 271 

the alignment of concatenated gene sequences of repA, parA, parB and 053.  272 
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