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Abstract

We study a series of relations between physical parameters in coronal
loops of the quiet Sun reconstructed by combining tomographic techniques
and modeling of the coronal magnetic field. We use differential emission
measure tomography (DEMT) to determine the three-dimensional distribu-
tion of the electron density and temperature in the corona, and we model
the magnetic field with a potential-field source-surface (PFSS) extrapolation
of a synoptic magnetogram. By tracing the DEMT products along the ex-
trapolated magnetic field lines, we obtain loop-averaged electron density and
temperature. Also, loop-integrated energy-related quantities are computed
for each closed magnetic field line. We apply the procedure to Carrington
rotation 2082, during the activity minimum between Solar Cycles 23 and 24,
using data from the Extreme Ultraviolet Imager on board the Solar Ter-
restrial Relations Observatory (STEREO) spacecraft. We find a scaling law
between the loop-average density N and loop length L, Nm ∼ L−0.35, but we
do not find a significant relation between loop-average temperature and loop
length. We confirm though the previously found result that loop-average
temperatures at the equatorial latitudes are lower than at higher latitudes.
We associate this behavior with the presence at the equatorial latitudes of
loops with decreasing temperatures along their length (“down” loops), which
are in general colder than loops with increasing temperatures (“up” loops).
We also discuss the role of “down” loops in the obtained scaling laws of heat-
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ing flux versus loop length for different heliographic latitudes. We find that
the obtained scalings for quiet-Sun loops do not generally agree with those
found in the case of AR loops from previous observational and theoretical
studies. We suggest that to better understand the relations found, it is nec-
essary to forward model the reconstructed loops using hydrodynamic codes
working under the physical conditions of the quiet-Sun corona.

Keywords: Sun: Corona, Sun: UV radiation, Magnetic fields

1. Introduction

The study of the energy balance of the magnetically closed corona pro-
vides clues on the mechanisms that maintain this region of the solar atmo-
sphere two orders of magnitude hotter than the photosphere. The magnetized
and rarefied coronal plasma imply that transport phenomena are strongly
inhibited in directions perpendicular to the magnetic field lines. This is par-
ticularly evident in active regions (ARs), in which the plasma is structured
in the form of loops and arcades as observed in extreme-ultraviolet (EUV)
and soft X-ray (SXR) images obtained with space telescopes. Loops can be
thought then, as individual one-dimensional (1D) atmospheres with more or
less independent evolutions.

Seminal studies (Rosner et al., 1978; Vesecky et al., 1979) found that X-
ray observations are consistent with loops in equilibrium, assuming energy
balance between heating and thermal and radiative losses. Several scaling
laws deduced from these studies were used to determine whether loops are
in equilibrium or not. For instance, Vesecky et al. (1979) found that in
quasi-static equilibrium the three terms of the balance equation should be
approximately equal. It can be easily demonstrated (see, e. g., López Fuentes
et al., 2007) that this condition implies a scaling law between density and
temperature, N ≈ T 2. However, these results are based on X-ray loops
with temperatures well above 2 MK (usually called ”hot loops”, see, e. g.,
Reale, 2014). Later analysis based on EUV data, showed that warm loops
(with temperatures around 1.2 MK) are too dense to be in static or quasi-
static equilibrium (Aschwanden et al., 2001; Winebarger et al., 2003). All
the mentioned results correspond to observations of AR loops.

Regarding the energy input needed to maintain observed coronal condi-
tions, the review by Withbroe and Noyes (1977) provided estimations based
on phenomenological models of the order of 107 erg cm−2 s−1 for ARs and
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3×105 erg cm−2 s−1 for the quiet Sun (also see, Hahn and Savin (2014); Mac
Cormack et al. (2017)). These estimations are still used as canonical values.

One way to test different coronal heating models has been to study the
presence of scaling laws between observed physical parameters of ARs coro-
nal loops, such as temperature, density, length and magnetic strength, and
compare them with the predictions of the models (see, e.g., Fisher et al.,
1998; Mandrini et al., 2000; Jain and Mandrini, 2006; Pevtsov et al., 2003).

Since magnetic loops are the basic observable blocks of the coronal struc-
ture and they are most conspicuously observed in ARs, most efforts to under-
stand the energy input and coronal dynamics have been focused on studying
AR coronal loops (see, e.g., the reviews by Reale, 2014; Klimchuk, 2015).
Due to a lower intensity and apparent uniformity in EUV and SXR observa-
tions, the situation is quite different in the quiet-Sun corona, where a direct
identification of loops is normally not possible. For this reason, quiet-Sun
studies have been much scarce. In the case of quiet-Sun loops, it is necessary
to reconstruct the location of magnetic field lines and the plasma parameters
along them by other means (see, e.g., Hahn and Savin, 2014).

In this work, we use differential emission measure tomography (DEMT)
along a full solar rotation, to reconstruct the 3D distribution of the tem-
perature and electron density in the coronal volume between 1.02 and 1.225
R� (Vásquez, 2016). Since we use one EUV image every six hours to ob-
tain a global description of the corona, the tomographic technique does not
resolve the shorter timescales of the coronal dynamics. Furthermore, given
the height limits imposed on the tomography, low-lying structures such as
coronal bright points are left out of the analysis. Thus, in this paper, we
only study the large scale Quiet Sun corona. The DEMT results are com-
bined with a potential magnetic field model (PFSS) that extrapolates the
global solar magnetic field from observed synoptic magnetograms. In this
way, we obtain the loop-average temperature and density of the plasma in
each closed field line integrated from the magnetic model. Also, we find a
loop-integrated equation derived from the energy balance between a heat-
ing term, radiative cooling and conductive flux (Mac Cormack et al., 2017).
This allows derivation of the energy input flux required at the coronal base to
maintain thermodynamically stable coronal structures. With the objective
of finding statistical relations and identifying possible scaling laws between
observed and inferred coronal parameters, we apply this procedure to the
particular case of Carrington rotation 2082, that occurred at the minimum
between Solar Cycles 23 and 24 with no relevant ARs on the Sun during that
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rotation.
In Section 2 we present a description of the tomographic technique, the

potential model and the energy balance model used to describe energy fluxes
along reconstructed loops, as well as the data used and the methodology
followed. In Section 3 and its subsections we present and analyze our results
in terms of the studied loop parameters and we discuss and conclude in Sec-
tion 4.

2. Method and Data

2.1. Tomographic Technique and PFSS Model

The differential emission measure tomography (DEMT) is a technique
developed by Frazin et al. (2009) and used in several works focused on the
study of coronal plasma properties during minima of solar activity cycles
(Nuevo et al., 2015; Lloveras et al., 2017; and the review by Vásquez, 2016).
The technique divides the corona in a spherical grid that covers all latitudes
and longitudes between 1.025 R� and 1.225 R�. Using a series of EUV
images from different filter bands of the instrument used, covering a full
solar rotation, it obtains a 3D distribution of the emissivity in the coronal
volume of interest. The tomographic emissivities in each computational cell
are then used to determine its local differential emission measure (LDEM),
which describes the temperature distribution of the electron plasma within
the specific voxel. The method relies on a parametric-modeling technique,
finding the LDEM that best predicts the tomographic data.

Previous works (Nuevo et al., 2015) showed that LDEMs can be mod-
eled using Gaussian functions determined by three parameters: area, mean
temperature, and standard deviation of the Gaussian curve. The three pa-
rameters can be interpreted as follows. The area of the Gaussian relates to
the electron density of the plasma in the voxel, the mean value corresponds
to the mean temperature, and the standard deviation is an indication of
how multi-thermal the plasma in the voxel is; the larger the width the more
diverse the temperatures within the voxel. By computing the moments of
the LDEM, we obtained the mean electron density and temperature in each
voxel. Then, a 3D distribution of the mean electron and temperature of the
global corona is constructed.

To obtain the coronal magnetic field we use a potential-field source-
surface (PSFF, see Schrijver and De Rosa, 2003) model that extrapolates
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the magnetic field from photospheric synoptic magnetograms obtained with
the Michaelson Doppler Imager (MDI) on board SOHO, used as boundary
condition. To perform the reconstruction we select the starting points at the
center of each tomographic voxel, at uniformly spaced heights, every 0.02
R�, within 1.025 and 1.225 R� and every 2° in latitude and longitude. Thus,
we obtain a magnetic field reconstruction that covers the whole volume that
contains DEMT results. The source surface is set at 2.5 R�, a height of
≈ 1045 Mm above the photosphere. Magnetic field lines are integrated using
the PFSS Solarsoft package (Schrijver and De Rosa, 2003) and associated to
individual loops. In order to combine the magnetic field reconstruction with
the 3D distribution of the plasma parameters, we use the DEMT results in
the voxels crossed by each loop within the tomographic limits (1.025 to 1.225
R�). Since the resolution of the field line is higher than the tomographic
resolution, given a magnetic field line, we only keep one data point of the
loop on each tomographic voxel that it crosses. We choose the middle point
of the loop segment crossing the voxel. Then, we associate to that point
the DEMT products (electron density and mean temperature) of the corre-
sponding voxel. Thus, each magnetic loop is formed by as many data points
as tomographic voxels it crosses.

In this work, we only analyze closed magnetic loops within the tomo-
graphic limits. As in previous works (Mac Cormack et al., 2017; Lloveras
et al., 2017), these loops are separated in two legs, from the coronal base to
the apex of the loop. Since we have the plasma parameters traced along each
leg, we can apply one fit for each one, to ensure a good characterization of
the thermal properties along the loops. In the case of the density, we observe
a strong variation with height which is consistent in general with an expo-
nential behaviour associated to a certain height-scale. We therefore use an
exponential least-square fit whose quality is characterized by its coefficient
of determination r21. It is worth noting that we use an exponential fitting
only for practical reasons, and that we are not assuming, in principle, that
the reconstructed loops are necessarily in equilibrium. For the temperature,
the variation with height is much smoother, so we use a linear fit. In this
case, we use the Theil-Sen estimator, which is more robust than the regular
least-square fit, for its treatment of the relative weight of outliers data. To

1r2 ≡ 1−Sres/Stot, where Sres is the sum of the squared residuals and Stot is the sum
of data deviations from the mean.
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determine the success of the temperature fit, we consider which percentage of
data along the loop falls within the uncertainty interval of the temperature
calculation of the tomography (≈ 5− 10%, see Lloveras et al. 2017). In this
way, we obtain the variation of electron density and temperature along each
loop, as well as the height scales and gradients needed to compute the en-
ergy flux, along the loops. In the next section we present the energy balance
model used to compute this energy flux.

2.2. Energy balance model

In order to obtain a rough estimation of the heating injected into the
loops, we assume an energy balance situation in which all gains are compen-
sated by losses. In this way, for a coronal magnetic flux tube, the coronal
heating power (Eh) is locally balanced by the radiative (Er) and the thermal
conduction (Ec) losses (Aschwanden, 2004). Thus, if s is the position along
the flux tube, we have:

Eh(s) = Er(s) + Ec(s), (1)

where the quantities are in units of [erg sec−1 cm−3]. To compute the ther-
mal conduction power, in this particular plasma regime we use the Spitzer
model (Spitzer, 1962), in which the thermal conduction is associated to the
divergence of the conductive loss function:

Fc(s) = −κ0 T (s)5/2
dT

ds
(s). (2)

where κ0 is the Spitzer thermal conductivity κ0 = 9.2× 10−7erg sec−1 K−7/2.
Since thermal conduction is strongly confined to the magnetic field direc-

tion, the divergence is simply the derivative along the position s,

Ec(s) =
1

A(s)

d

ds
[A(s)Fc(s)] . (3)

where A(s) represent the loop area along the position s.
Assuming a quasi-isothermal plasma approximation in the quiet-Sun corona,

the radiative power can be expressed as plasma density to the second power
multiplied by a radiative loss function, Λ(T ), that accounts for the temper-
ature dependence of the radiated emission. To calculate the radiative loss
function we use the atomic database and the plasma emission model from
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CHIANTI (Del Zanna et al., 2015). We obtain the electron density from the
DEMT results. We then compute the radiative power along the flux tube as:

Er =

∫
Λ(T ) dN2

e (T ). (4)

Integrating each of the three power quantities, Eh, Er, Ec, over the volume
of the magnetic flux tube, and dividing the result by its basal area, a loop-
integrated version of the energy balance is obtained,

φh = φr + φc. (5)

where the three resulting loop-integrated quantities φ have units of energy
flux [erg sec−1 cm−2], and the equation holds now for each individual field line
(as opposed to flux tube).

Due to the null divergence condition of the magnetic field, it can be
integrated along the magnetic flux tube to obtain the following relation with
the flux tube area: A(s)B(s) = A0B0 = ALBL, where B0 and BL are the
values of the magnetic field at the footpoints of the loop in the coronal base.
Therefore, the radiative and conductive terms can be rewritten as

φr =

(
B0BL

B0 +BL

) ∫ L

0

ds
Er(s)

B(s)
, (6)

φc =
B0 Fc,L −BL Fc,0

B0 +BL

. (7)

For a fully detailed description of the energy balance model, we refer the
reader to Mac Cormack et al. (2017).

2.3. Data

In this work we use EUV images from the Extreme Ultraviolet Imager
(EUVI, Wuelser et al. (2004)) on board the Solar Terrestrial Relations Ob-
servatory (STEREO) mission (Kaiser et al., 2008). We reconstruct the solar
corona along Carrington rotation (CR) 2082 using three different wavelength
bands of the telescope: 171 Å, 193 Å, and 284 Å, which have a maximum
temperature sensitivity in the range 1.0−2.15 MK (see Nuevo et al. (2015)).
This rotation started on 5 April 2009 and finished on 3 May 2009 during the
minimum between Solar Cycles 23 and 24.
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DEMT provides an average description of the coronal state during the
data-acquisition time (half a synodic solar rotation period), and cannot tem-
porally resolve coronal dynamics. If ARs are observed during the analyzed
rotation, the DEMT results may produce artifacts such as negative density
values on the voxels covering active events. We call these voxels zero-density
artifacts (ZDAs) and they are discarded from the analysis. No significant
active regions (ARs) were observed during Carrington rotation 2082.

2.4. Method

In this work we focus on closed magnetic loops whose apexes are within
the limits of the tomographic box (≈ 14 Mm to ≈ 150 Mm). Each recon-
structed loop must satisfy certain criteria to be considered viable for analysis.
These criteria were already used in previous works (Mac Cormack et al., 2017;
Lloveras et al., 2017). First, separating the loops in two legs, each leg must
count with at least five viable voxels (without ZDAs) to ensure a good deter-
mination of the parameters, otherwise the loop is discarded. Secondly, the
coefficient of determination for the density fit, r2, must exceed 0.75 on each
leg. For the temperature, it is required that at least 50% of the data along
each leg be contained within the uncertainty interval of the tomographic tem-
perature computation. We consider that following these criteria a reliable set
of closed coronal loops is obtained. We start with ≈ 55000 loops and, after
applying these criteria, we keep ≈ 30000 loops with reliable data.

In previous works, it was found a dependence of the temperature on the
latitude where the loop was located (Nuevo et al., 2015; Lloveras et al., 2017).
They observed that structures at latitudes close to the equator (−20, 20°)
had cooler temperatures than loops at middle latitudes (|20, 60|°). Consid-
ering this, we divide our loop population into three regions: south latitudes
(−20,−60)°, equator latitudes (−20, 20)°and north latitudes (20, 60)°. Here,
we consider that a loop corresponds to a certain latitude range if its two foot-
points lie on that range. Because of this selection criteria, the loops in our set
tend to be of medium and short length (less than 800 Mm) and are located
within the coronal streamer. Loops that cross the equator and surround the
streamer are not included, and neither are loops open to the interplanetary
medium (which we call “open loops”).

Once we have reconstructed and selected the loops in each region, we com-
pute loop-average properties for each of them. Each loop is characterized by
its length, loop-average density, temperature, and pressure along their length
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(starting from ≈ 14 Mm above the photosphere), loop-average magnetic field
(starting from the photosphere) and loop-integrated energy flux quantities
obtained with the energy balance model (see Section 2.2) at ≈ 14 Mm of
height. We average the magnetic field starting from the photosphere instead
of a height of ≈ 14 Mm, in order to obtain a more substantial variation of
the mean magnetic field for different loops in the set, since the field varies
much less along coronal heights.

Since we have large samples of loops (of the order of 5000 on each region),
to simplify the analysis we proceed to separate them in small length bins,
obtaining loop-average values of the parameters of interest within each bin.
In each region, there is a distribution of loop lengths ranging from ≈ 100 Mm
to ≈ 800 Mm. We divide the loop length range in 35 non-uniform bins, set so
that each one contains the same number of loops to have the same statistical
noise. We have verified that our results do not change significantly if we vary
the number of bins. On each bin we compute the median of the parameters
of interest and an estimated error. The error is obtained from the median of
the differences between individual loop-averages and the median of the bin.
We consider that following this procedure we obtain more robust fits for the
analysis of the relations between loop parameters. We present our results in
the next section.

3. Results

3.1. Loop length distribution

Fig. 1 shows the distribution of loop lengths L on each latitude region.
The gray line represents the total population of analyzed loops. As already
mentioned, the loops in the selected set are relatively short and are located
within the streamer. The median length is ≈ 300 Mm at all latitudes. How-
ever, it can be noticed that there is a substantial population of shorter loops
around a length of ≈ 150 Mm in the equatorial region.

In previous works (Huang et al., 2012; Nuevo et al., 2013), two classes of
loops have been identified according to the temperature variation along the
coronal part of their length. Magnetic structures whose temperature increase
or decrease with height were classified as up or down loops, respectively. In
an up loop, the temperature is higher at the apex than at the coronal base,
and the opposite in a down loop. In those articles, the authors found that
down loops are mainly located at the equatorial region. Serio et al. (1981)
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Figure 1: Frequency histograms of loop length, L, for the different latitude regions: south
(−20,−60)°(left panel), equator (−20, 20)° (middle panel) and north (20, 60)° (right panel).
The gray line indicates the total number of loops with both footpoints in the indicated
latitude. Green, blue, and red histograms correspond to isothermal, up, and down loops
respectively. In all cases, the median value, m, and the standard deviation, σ, are indi-
cated.

were the first to analyze these structures, finding a temperature inversion
along the coronal part of the loops. They also found that for down loops to
be thermodynamically stable their length should be less than 3 times their
density scale height. This conclusion is consistent with our results, since
down loops tend to be shorter while up loops have more evenly distributed
lengths.

In this work, we classify up and down loops according to the following
criteria. We consider that a loop is up if its temperature gradient is positive
in both legs and the temperature variation between the foot and the apex is
greater than the median of the standard deviation of the temperature dis-
tributions (the LDEMs) in the voxels that are crossed by the leg. If both
legs meet the criteria, the loop is called up. In this way, it is ensured that
the temperature variation is substantial, because it must be larger than the
characteristic standard deviation of the plasma thermal distribution. This
variation is also much larger than the typical error of the tomographic method
(Lloveras et al., 2017). Similarly, for a loop to be called down, the temper-
ature gradient must be negative in both legs of the loop and the absolute
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value of the variation between the foot and the apex must be greater than
the median of the width of temperature distributions. Finally, a loop is
called isothermal if the temperature variation between the foot and the apex
is less than the median of the thermal widths. These criteria must also be
met in both legs of the loop. In all cases in which one leg meets one of the
criteria, and the other one another, the loop is not labeled with any of these
definitions.

It is worth to clarify that these loops are not properly isothermal, since
the existence of a width in the thermal distribution of the voxels, and there-
fore the loops that cross them, are indicative of a multi-thermal plasma.
However, it can be assured that their temperatures do not vary beyond the
range determined by the median of the thermal widths. In the same sense,
according to our criteria, up and down loops are considered such, if their tem-
perature variations along the loop length is larger than the range determined
by the loop-average thermal width, i.e., the temperature variation is beyond
the normal multi-thermality of the plasma. To class loops as isothermal, up
or down, previous works (Lloveras et al., 2017), considered variations larger
or smaller than the range defined by the error interval of the tomographic
procedure. The criteria applied here are more strict in terms of relevant
variations of temperature along the loops.

In Fig. 1 we show histogram distributions of isothermal loops (green
histogram), up loops (blue histogram) and down loops (red histogram), sep-
arated by heliographic latitude region. We observe that in each latitude there
is a large population of isothermal loops that follow the behaviour of the full
set. We note that the largest population of down loops is found around equa-
torial latitudes. These loops have dominantly short lengths between ≈ 100
Mm and ≈ 400 Mm, as expected. up loops, on the other hand, dominate the
south and north latitudes, with lengths between ≈ 200 Mm and ≈ 700 Mm.

In order to analyze the behavior of the loop-average parameters as a func-
tion of length, for each latitude we separate the loop lengths in 35 bins, as
described in Section 2.4. In the following sections we present the results for
the different loop parameters.

3.2. Density and pressure

Fig. 2 shows logarithmic plots of density versus length. Each pink point
in the data cloud corresponds to the loop-average density Nm of each ana-
lyzed loop and the bold-dark bullets correspond to the median of the loop-
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average densities per bin as a function of loop length median per bin. The
accompanying error bars correspond to the standard deviation of the density
distribution within each bin. A decreasing behavior is observed as expected,
since the plasma is denser near the coronal base, so longer loops tend to have
lower loop-average densities than short ones. We also note that, for the three
latitude regions, the slopes found are very similar, ≈ −0.35, implying a scale
law of the type Nm ≈ L−0.35. In all cases the coefficient of determination, r2,
is equal or higher than 0.85.

Due to the validity of the ideal gas approximation in the quasi-isothermal
corona, the behavior of the loop-average pressure is very similar to that of the
density. We obtain in this case similar slopes, ≈ −0.3 in the three latitudes,
all of them with a coefficient of determination, r2, higher than 0.85.

3.3. Temperature and magnetic field

Studying the temperature as a function of length, we do not find the
same clear dependence as for density and pressure. However, analyzing each
latitude region separately, we find that the loop-average temperature Tm in
equatorial latitudes is lower than in the north and south latitudes. This is
consistent with previous solar minima studies showing that down loops are
mainly located at low latitudes (Nuevo et al., 2013; Lloveras et al., 2017).
Fig. 3 shows the loop-average temperature of each loop as a function of loop
length. The accompanying error bars are the loop-average width of the tem-
perature distributions obtained from the LDEM widths. The red solid line is
the median of all loop-average temperatures in the latitude region, and the
width of the blue shaded area around the temperature median corresponds
to the median of all the loop-average thermal widths WTm. In the upper left
corner of the panels, we indicate the percentage of loops whose loop-average
temperatures lie within the blue shaded area. Therefore, we associate the
blue area with the typical temperature and thermal width of the loops in
each latitude region. It can be seen that the loop-average temperature in
equatorial latitudes is ∼ 15% lower than in middle-latitudes, as it has been
observed in previous works (Mac Cormack et al., 2017).

In Fig. 4 we show the loop-average magnetic field Bm as a function of
loop length. The solid lines represent the median of the magnetic field in
the corresponding latitude region, and the blue shaded area corresponds to
the median of the differences between each individual loop value and the
magnetic field median. It can be seen that the loop-average magnetic field
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has a similar behavior to the temperature. We find median values that are
≈ 20% smaller in equatorial latitudes that in south and north latitudes. Also,
a decreasing behavior is observed as a function of length, which indicate that
the longer the loop, the smaller the loop-average magnetic field. Looking
for a scaling law of the type Bm ∼ L−r, we obtained r values in the range
≈ [0.15, 0.55] in the three latitude ranges. However, the fit quality parameters
vary between 0.45 and 0.8 in the three latitude regions.

Although we did not find a clear relation between temperature and mag-
netic field of the loops, the similar dependence on latitude found in both cases
motivated us to perform the following analysis. We divide both datasets in
bins of 4°of latitude and we compute the median of Tm and Bm in each bin.
Since both loop legs do not necessarily lie in the same bin, we do this analysis
by leg and not by loop, so we include on each latitude bin all the loop legs
whose footpoint lies in that latitude. In Fig. 5 we show a logarithmic plot of
the median temperature as a function of the median magnetic field for each
latitude bin. A linear fit provides a slope of ≈ 0.2, suggesting a scale-law of
the type Tm ≈ B0.2

m .

3.4. Temperature distribution width

The left panels of Fig. 6 show the loop-average temperature distribution
width WTm as a function of loop length L, in each latitude range. We find
a similar behavior of the temperature distribution width as a function of
length in each region, with slopes of ≈ −0.20. But when we perform the
study of the populations separated by the loop types as described in Section
3.1, we find that the loop-average temperature distribution width for up
loops is smaller than for down loops in all latitude regions, as it can be seen
in the right panels of Fig. 6. Given the condition that the temperature
variation along the loops must be larger than the loop-average temperature
distribution width to be considered non-isothermal, this makes that up loops
to tend to present smaller temperature variation along their lengths, so their
temperature gradients tend to be smaller than those of the down loops. This
will be more evident in Section 3.5 where we analyze the effect of the thermal
conduction on the energy balance of the loops. In Fig. 6 we can also see
similar distributions of temperature width for the total sets of loops (gray
line), with a median value of ≈ 0.27MK in all latitude regions.
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3.5. Energy fluxes
Fig. 7 shows the statistical distribution of the loop-integrated conductive

flux, Φc, for each latitude region. We observe that for loops in equatorial lat-
itudes, the loop-integrated conductive flux is predominantly negative, while
in the other latitudes we see a more symmetrical distribution around zero.
This is due to the larger presence of down loops (the red area of the his-
togram) at the equator (see Mac Cormack et al., 2017). Due to the strong
dependence of the conductive flux on the temperature gradient along the
loops (Eq. 3), we infer that down loops have larger gradients than up loops,
producing a distribution of conductive flux displaced towards the negative
side, then an input of heat from the loop footpoints. We associate this with
the temperature distribution width studied in Section 3.4, where we have
seen that down loops have larger temperature widths than up loops. Since
we used the temperature widths as the threshold to classify up and down
loops, the temperature differences between the loop base and the apex tends
to be larger for down loops than for up loops. Thus, the gradient is also larger
(and negative) producing a negative tail on the conductive flux distribution.

We can also see, in Fig. 7, the percentage of up and down loops with
respect to the total number of loops. We see that in the equator 5% of the
loops are down loops, while there is no significant population of up loops (2%)
and that the isothermal loops are 57% of the total population. In souther
latitudes the up loop population is greater than the down loop (28% and
≈ 0% respectively), and the same behavior is observed in the north (12% of
loops are up while there is no significant population of down loops). Notice
that with the chosen criteria to classify loops and the wide temperature
distributions provided by the tomography, up and down loops are a small
fraction of the total population.

Also, we analyze the behaviour of the conductive flux as a function of
length. For north and south latitudes, the conductive flux shows no corre-
lation with length. For equatorial latitudes we find slopes around ≈ −0.9
with a coefficient of determination of r2 ≈ 0.8. This indicates that negative
conductive flux is significantly present in short loops and contributes as an
energy input flux at equatorial latitudes.

In Fig. 8 we plot the loop-integrated radiative flux as a function of length.
We obtain similar slopes for the three latitudes (≈ 0.65). This is expected,
since loop-average density has a similar behaviour in the three latitudes and
the radiative power is strongly dominated by density (see Eq. 4 and 6). As a
first approximation, we assume a direct relation between square density and
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length. Since the dependence of the density on loop length is Nm ≈ L−0.35, as
we mentioned before, we would expect to obtain the square of the observed
slope. We did not find the expected value because, as we can see in Eq. 6,
the magnetic field is also an important variable involved in this relation. In
section 4 we discuss this in more detail.

From the balance equation (Eq. 5), all losses should compensate for the
gains. But there are some loops for which the loop-integrated conductive flux
is so extremely negative (i. e. those down loops with large gradients that
we mentioned before) that the loop-integrated radiative flux is not enough
to compensate for such input of energy at the footpoints. In these loops
the loop-integrated energy input flux becomes negative, which of course does
not make physical sense. This could be due in part to an underestimation of
the radiative flux, considering that we reconstruct the coronal emission using
three filter bands, each one with a response at a particular temperature range.
It could be possible that part of the plasma is emitting at a temperature
outside the detected range, so it is not possible to reconstruct the whole
emission profile. Another possibility is that these loops are in evolution, and
what we are seeing is an average of that evolution, since the tomographic
technique does not resolve the short timescale dynamics. We find though
that these loops represent only the ∼ 2.3% of the total population, so we
decided to exclude them from the following analysis.

Fig. 9 shows the analysis for the loop-integrated energy input flux con-
sidering only the positive population. We find similar slopes for the south
and north latitudes, and a slope, within the logarithm plots, ≈ 30% larger
in the equatorial latitude. This difference is mainly due of the dominant
presence of down loops in the equatorial latitudes. It can be seen that the
difference of slope is due to the shorter loops of the equatorial set, which,
being dominated by down loops (see Fig. 1, central panel) tend to have a
larger negative conductive flux (as shown in the analysis of Figure 7), there-
fore decreasing the energy flux input and producing a larger slope for the
whole set. Both slopes, loop-integrated radiative flux and energy flux input
as a function of length, can be compared in Fig. 9. It denotes the weak
contribution of the conductive flux in southern and northern latitudes and
the remarkable presence in the equator.
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4. Conclusions

The main aim of this work was to find relations between different plasma
parameters along reconstructed quiet-Sun coronal loops. To do that, we used
a tomographic technique that provides the 3D distribution of the temperature
and electron density in the global corona, obtained from EUV observations in
three EUV bands of the STEREO/EUVI telescope integrated along one solar
rotation. To reconstruct coronal loops we integrate magnetic field lines from
a Potential Source Surface Field (PSSF) model obtained extrapolating the
magnetic field from synoptic magnetograms. Combining the DEMT results
with the geometrical location of field lines from the magnetic model we obtain
loop-averages of temperature and density for each reconstructed loop. We
applied the procedure to Carrington rotation 2082.

Our initial approach was to analyze the relation of the thermal properties
of the loops with a geometric parameter such as the loop length. Motivated
by previous results (Nuevo et al., 2013; Lloveras et al., 2017), we separated
the loops in three heliographic latitude regions, north (20 to 40 °), equator
(-20 to 20 °) and south (-40 to -20 °). Similar length distributions were
observed in the three latitude ranges, with a small population of shorter
loops (≈150 Mm) at the equator. We also separated loops according to the
temperature behaviour along them. Loops for which temperature increases
along their length are classified as up, while if the temperature decreases they
are classified as down. It was found that down loops are mostly present in
equatorial latitudes and, in general, are shorter than up loops, as it has been
already observed in previous works (Nuevo et al., 2013; Lloveras et al., 2017;
Mac Cormack et al., 2017).

For the analysis of the density, we found that, independently of latitude,
the loop-average density has a direct relation with length: Nm ≈ L−0.35.
Since radiative flux is directly related to density, as we described in Section
2.2, but also has a strong dependence with the magnetic field (Mac Cormack
et al., 2017), an approximate Φr ≈ N2

m LB
−1 relation should be expected.

Considering the above relation between Nm and L and the decreasing relation
between the magnetic field and the loop length (Bm ≈ L−r), we would expect
then, Φr ≈ L0.3+r. In this way, the coefficient related to the magnetic field r
should be ≈ 0.3 which is in the range of coefficients found before. A deeper
study of this and other relations with the loop-average magnetic field will be
done in the future.

No behavior directly linked to the loop length was observed in the loop-
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average temperature, indicating that within the analyzed coronal heights
the temperature is mostly uniform. It is worth reminding though that all
expected variations must be in the temperature range within which the in-
strument has its response. Temperatures outside this range would not be
detected. Even so, we observed a dependence of the loop-average tempera-
ture on the latitude of the loops. We found that equatorial loops have an
average temperature ≈ 15% colder than those in middle latitudes. This could
be due to the widespread presence of down loops in the equatorial latitudes,
since they tend to be colder than up loops. It is also observed that up loops
tend to be less multi-thermal than down loops, which is consistent with the
observed relation WTm ≈ L−0.2, since down loops are shorter in general than
up loops. This has a direct consequence on the temperature gradients used
to compute the loop-integrated conductive flux. Down loops have negative
gradients that tend to be larger in absolute value than the gradients of up
loops, producing larger negative conductive fluxes as we discuss below.

The loop-average magnetic field presents a similar behavior to tempera-
ture in relation to latitude. Loops at the equator have a loop-average mag-
netic field that is ≈ 20% lower than at mid-latitudes. This motivated us
to perform a study of the temperature as a function of the magnetic field
separating them in latitude bins. In this case, we obtain an approximate
relation: Tm ≈ B0.2

m .
Finally, we analyzed the relation between the loop-integrated energy in-

put flux and the loop length. Since the temperature gradients are very small
in the majority of the loops (up and down loops with larger gradients are
the minority), the loop-integrated conductive flux is in most cases almost
negligible in comparison with the loop-integrated radiative flux. Then, the
calculation of the loop-integrated energy input flux is mostly determined by
the radiative flux. The case in which the conductive flux has more influ-
ence is in the equatorial latitude, where the presence of down loops is more
important. In some extreme cases of down loops, the temperature gradient
is so negative that the radiative flux is not enough to compensate for the
negative conductive flux, producing unphysical negative values of the energy
input flux, since an extra cooling term would be needed for a thermal equilib-
rium. Those loops (representing ≈ 2.3% of the total) were eliminated from
the analysis. Since down loops are mostly in the short length tail of the
distribution, the slope of the loop-integrated energy input flux as a function
of loop length is ≈ 30% larger in the equatorial latitudes, as we discussed in
Section 3.5.

17



As we mentioned in Section 1 a series of scaling laws between loop param-
eters have been found in studies based on ARs loops. None of the relations
found here is fully consistent with those results. This is somehow expected
though, because AR loops are shorter (≈ 50 Mm, six times smaller than the
average of our loops), much denser and hotter, and with magnetic fields in
excess of ≈ 100 G (one or two orders of magnitude larger than the average
value found in our loops). While a common approximation in ARs considers
loops below the plasma scale-height (≈ 100 Mm), most of our loops have
lengths that far exceed that value. Much of the scaling relations predicted
by canonical theoretical estimations (see, e.g. Rosner et al., 1978) are based
on those physical conditions and approximations. One important finding by
Vesecky et al. (1979), was that conductive and radiative losses are of the
same order of magnitude, while in our study, conductive flux is not signif-
icant for the largest part of the loop population. This may be related to
the inconsistency of our results with the scaling laws expected in the case of
static equilibrium solutions. Therefore, the question arises if our results cor-
respond to loops in equilibrium or they correspond to the averaging of loops
which are actually evolving in time. Some of these considerations have been
already discussed by us in Mac Cormack et al. (2017), where we compared
loop parameters obtained with the tomographic procedure with the results
of a 0D hydrodynamic model (Klimchuk et al., 2008) that provides mean
coronal temperature and density and that included usual assumptions for
AR plasmas. We will complement our present results with one-dimensional
hydrodynamic models that reproduce the temperature and density profiles
of the observed reconstructed loops under physical conditions present in the
quiet-Sun corona.
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Mac Cormack, C., Vásquez, A. M., López Fuentes, M., Nuevo, F. A., Landi,
E., Frazin, R. A., Jul. 2017. Energy Input Flux in the Global Quiet-Sun
Corona. Astrophys. J. 843, 70.

Mandrini, C. H., Démoulin, P., Klimchuk, J. A., Feb. 2000. Magnetic Field
and Plasma Scaling Laws: Their Implications for Coronal Heating Models.
Astrophys. J. 530, 999–1015.

Nuevo, F. A., Huang, Z., Frazin, R., Manchester, iv, W. B., Jin, M., Vásquez,
A. M., Aug. 2013. Evolution of the Global Temperature Structure of the
Solar Corona during the Minimum between Solar Cycles 23 and 24. As-
trophys. J. 773, 9.

Nuevo, F. A., Vásquez, A. M., Landi, E., Frazin, R., Oct. 2015. Multimodal
Differential Emission Measure in the Solar Corona. Astrophys. J. 811, 128.

Pevtsov, A. A., Fisher, G. H., Acton, L. W., Longcope, D. W., Johns-Krull,
C. M., Kankelborg, C. C., Metcalf, T. R., Dec 2003. The Relationship
Between X-Ray Radiance and Magnetic Flux. Astrophys. J. 598 (2), 1387–
1391.

Reale, F., Jul 2014. Coronal Loops: Observations and Modeling of Confined
Plasma. Living Reviews in Solar Physics 11 (1), 4.

Rosner, R., Tucker, W. H., Vaiana, G. S., Mar 1978. Dynamics of the quies-
cent solar corona. Astrophys. J. 220, 643–645.

Schrijver, C. J., De Rosa, M. L., Jan 2003. Photospheric and heliospheric
magnetic fields. Solar Phys. 212 (1), 165–200.

Serio, S., Peres, G., Vaiana, G. S., Golub, L., Rosner, R., Jan. 1981. Closed
coronal structures. II - Generalized hydrostatic model. Astrophys. J. 243,
288–300.

Spitzer, L., 1962. Physics of Fully Ionized Gases. New York: Interscience
(2nd edition).

20



Vásquez, A. M., Mar. 2016. Seeing the solar corona in three dimensions.
Advances in Space Research 57, 1286–1293.

Vesecky, J. F., Antiochos, S. K., Underwood, J. H., Nov 1979. Numerical
modeling of quasi-static coronal loops. I. Uniform energy input. Astrophys.
J. 233 (3), 987–997.

Winebarger, A. R., Warren, H. P., Mariska, J. T., May 2003. Observing
the Dynamic Corona: Diagnostics to Determine Coronal Heating. In:
AAS/Solar Physics Division Meeting #34. AAS/Solar Physics Division
Meeting. p. 10.08.

Withbroe, G. L., Noyes, R. W., Jan 1977. Mass and energy flow in the solar
chromosphere and corona. Annual Review of Astronomy and Astrophysics
15, 363–387.

Wuelser, J.-P., Lemen, J. R., Tarbell, T. D., Wolfson, C. J., Cannon, J. C.,
Carpenter, B. A., Duncan, D. W., Gradwohl, G. S., Meyer, S. B., Moore,
A. S., Navarro, R. L., Pearson, J. D., Rossi, G. R., Springer, L. A., Howard,
R. A., Moses, J. D., Newmark, J. S., Delaboudiniere, J.-P., Artzner, G. E.,
Auchere, F., Bougnet, M., Bouyries, P., Bridou, F., Clotaire, J.-Y., Colas,
G., Delmotte, F., Jerome, A., Lamare, M., Mercier, R., Mullot, M., Ravet,
M.-F., Song, X., Bothmer, V., Deutsch, W., 2004. EUVI: the STEREO-
SECCHI extreme ultraviolet imager.

21



Figure 2: Scatter plots of loop-average density (Nm) vs. length (L) in each latitude: north
(upper panel), equator (middle panel) and south (bottom panel). Small pink dots represent
the loop-average density starting from a height of ≈ 14 Mm. The bold-dark bullets
represent the median of the loop-average density within loop length bins as described
in Section 3.2. Error bars represent the median of the distances between individual loop-
averages and the median value of each bin. The continuous line is a linear fit of the median
values of the bins. The fit results are accompanied by their corresponding coefficient of
determination r2 and the median error in the panel insets.
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Figure 3: Scatter plots of loop-average temperature Tm vs. length L for three latitudes:
south (left panel), equator (middle panel) and north (right panel). Small dots represent
the loop-average temperature in each latitude from 14 Mm of height and error bars
indicate the loop-average temperature distribution width WTm. Continuous red lines are
the median of the loop-average temperatures of all loops and the blue shaded area represent
the median of the temperature distribution width of all loops. We show the percentage of
loops that are in the blue area, and that are considered “average loops”.
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Figure 4: Scatter plots of loop-average magnetic strength Bm vs. length L for three
latitudes: south (left panel), equator (middle panel) and North (right panel). Small dots
represent loop-average magnetic field starting from the photosphere. Continuous red lines
correspond to the median of the loop-average magnetic field of all loops and the blue shaded
areas represent the median of the differences between the median value of magnetic field
of all loops and the global median. We show the percentage of loops that are in the blue
shaded area, implying that they should be considered “average loops”.
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Figure 5: Red dots correspond to the plot of the Tm vs. Bm for the legs of each re-
constructed loop. Bold-dark bullets represent the median (Bm, Tm) value within bins of
4°of latitude. Error bars correspond to the median of the differences between the each
individual value and the median value of each latitude interval. The continuous line is the
linear fit obtained with the median values of each interval. In the upper inset we show the
fit results with its corresponding coefficient of determination r2 and the median error for
the temperature and the magnetic field.

25



Figure 6: Left panels: Same as Figure 2 for the loop-average temperature distribution
width WTm. Right panels: Same as Figure 1 for the temperature distribution width
WTm.
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Figure 7: Same as Figure 1 for the loop-integrated conductive flux (Φc). We show the
percentage of each loop population with respect to the total population.
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Figure 8: Same as Figure 2 for the loop-integrated radiative flux

Φr.
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Figure 9: Same as Figure 2 for the loop-integrated energy input flux Φh. Dashed-purple
line represent the linear fit of the median values of loop-integrated radiative flux in the
bins. Both fit results are accompanied by their corresponding coefficient of determination
r2.
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