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Abstract

We applied the finite-size scaling method using the B-splines basis set to construct the stability

diagram for two-electron atoms with a screened Coulomb potential. The results of this method for

two electron atoms are very accurate in comparison with previous calculations based on Gaussian,

Hylleraas, and finite-element basis sets. The stability diagram for the screened two-electron atoms

shows three distinct regions: a two-electron region, a one-electron region, and a zero-electron region,

which correspond to stable, ionized and double ionized atoms. In previous studies, it was difficult

to extend the finite size scaling calculations to large molecules and extended systems because of the

computational cost and the lack of a simple way to increase the number of Gaussian basis elements

in a systematic way. Motivated by recent studies showing how one can use B-splines to solve

Hartree-Fock and Kohn-Sham equations, this combined finite size scaling using the B-splines basis

set, might provide an effective systematic way to treat criticality of large molecules and extended

systems. As benchmark calculations, the two-electron systems show the feasibility of this combined

approach and provide an accurate reference for comparison.
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I. INTRODUCTION

Weakly bound systems represent an interesting field of research in atomic and molecular

physics. The behavior of systems near a binding threshold is important in the study of

ionization of atoms and molecules, molecule dissociation, and scattering collisions. Since

the pioneering works of Bethe [1] and Hylleraas[2] confirming the existence of the negative

hydrogen ion, H−, the study of the stability of the ground state of atomic and molecular neg-

ative anions becomes an active field of research. New phenomena appear when the Coulomb

interaction is screened and the long-range electrostatic interactions turn to short-range po-

tentials. A simple model to describe the effect of the screening in the Coulomb potential

is the Yukawa potential, where an exponential decay is introduced, 1/r → exp (−r/D)/r,

where D is a positive constant. The Yukawa potential has been used in many branches of

physics, for example to describe interactions in dusty plasmas where charged dust particles

are surrounded by plasma [3], liquid metals [4], charged colloidal particles[5]. Two-electron

systems interacting via Yukawa potentials were the subject of recent research, studying

the bound states using the Hylleraas basis set [6–10] and B-spline expansions [11]. Also,

scattering processes were recently presented [12] using Yukawa potentials.

To examine near threshold behavior, the Finite Size Scaling (FSS) approach is needed

in order to extrapolate results obtained from finite systems to the complete basis set limit.

FSS is not only a formal way to understand the asymptotic behavior of a system when the

size tends to infinity, but a theory that also gives us numerical methods capable of obtain-

ing accurate results for infinite systems by studying the corresponding small systems[13–

24]. Applications include expansion in Slater-type basis functions[22], Gaussian-type basis

functions[25] and recently, finite elements[26].

Here, we combine FSS with the B-splines expansion to calculate the stability diagram for

two-electron atoms with a screened Coulomb potential. The B-spline functions Bi(r), i =

1, ns form a basis for piecewise polynomial functions that are polynomials of degree (ks− 1)

in each interval and whose derivatives up to order (ks − 2) are continuous at the interior

knots, have been increasingly used in atomic and molecular physics[27–31]. Our results

show the B-splines functions are very efficient in performing FSS to calculate the critical

parameters and the stability diagram.

The paper is organized as follows. In Section II we present FSS with a B-splines basis
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followed by the two-electron atom, as a benchmark calculation in Section III. In Section IV,

we present our main results for the screened two-electron atoms. Finally, in Section V we

discuss our results and conclusions.

II. FINITE SIZE SCALING (FSS) WITH B-SPLINES

Here, we briefly introduce the finite size scaling (for more details, see Ref. [22]) and how

to perform calculations using B-splines. The finite size scaling method is a systematic way

to extract the critical behavior of an infinite system from analysis on finite systems [22]. It

is efficient and accurate for the calculation of critical parameters for few-body Schrödinger

equation.

In our study, we have Hamiltonian of the following form:

H = H0 + Vλ (1)

where H0 is λ-independent and Vλ is the λ-dependent term. We are interested in the study of

how the different properties of the system change when the value of λ varies. A critical point,

λc, will be defined as a point for which a bound state becomes absorbed or degenerate with a

continuum. We also define a critical exponent α by the asymptotic behavior of the ionization

energy E(λ) − Eth ∼ (λ − λc)
α, where we assume that the threshold energy, Eth, does not

depend on λ. In the first example, the He-like atoms, we have only one parameter, λ while

for the second case, the screened two electron atoms, we have two parameters, λ1 and λ2.

To perform the finite size scaling calculations, we expand the exact wave function in a finite

basis set and truncate this expansion at some order N . The finite size corresponds to the

number of elements in a complete basis set used to expand the exact eigenfunction of a given

Hamiltonian. The ground-state eigenfunction has the following expansion:Ψλ =
∑

n an(λ)φn,

where n is the set of quantum numbers. We have to truncate the series at order N, and the

expectation value of any general operator O at order N is given by:

〈O〉N =
N
∑

n,m

a(N)
n a(N)

m On,m, (2)

where On,m are the matrix elements of O in the basis set {φn}.
In this study we used the B-splines basis, the normalized one-electron orbitals are given
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by

φn(r) = Cn

B
(k)
n+1(r)

r
; n = 1, . . . (3)

where B
(k)
n+1(r) is a B-splines polynomial of order k. The numerical results are obtained by

defining a cutoff radius R, and then the interval [0, R] is divided into I equal subintervals.

B-spline polynomials [31] (for a review of applications of B-splines polynomials in atomic

and molecular physics, see ref. [33]) are piecewise polynomials defined by a sequence of

knots t1 = 0 ≤ t2 ≤ · · · ≤ t2k+I−1 = R and the recurrence relations

Bi,1(r) =







1 if ti ≤ r < ti+1

0 otherwise,
. (4)

Bi,k(r) =
r − ti

ti+k−1 − ti
Bi,k−1(r) +

ti+k − r

ti+k − ti+1

Bi,k−1(r) (k > 1) . (5)

In this work, we use the standard choice for the knots in atomic physics [33] t1 = · · · = tk = 0

and tk+I = · · · = t2k+I−1 = R. Because we are interested in FSS, we choose an equidistant

distribution of inside knots. The constant Cn in Eq.(3) is a normalization constant obtained

from the condition 〈n|n〉 = 1,

Cn =
1

[

∫ R0

0

(

B
(k)
n+1(r)

)2

dr

]1/2
. (6)

Because B1(0) 6= 0 and BI+k−1(R) 6= 0, we have N = I + k− 3 orbitals corresponding to

B2, . . . , BI+k−2. In all the calculations we used the value k = 5, and, we do not write the

index k in the eigenvalues and coefficients.

To obtain the numerical values of the critical parameters (λc, α) for the energy, we define

for any given operator O the function

△O(λ;N,N
′) =

ln
(

〈

ON
λ

〉

/ 〈O〉N ′

λ

)

ln(N ′/N)
, (7)

If we take the operator O to be H−Eth, and ∂H/∂λ, we can obtain the critical parameters

from the following function [22]

Γα(λ,N,N
′) =

△H(λ;N,N
′)

△H(λ;N,N ′)−△ ∂H

∂λ

(λ;N,N ′)
, (8)
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which at the critical point is independent of N and N ′ and takes the value of α. Namely,

for λ = λc and any values of N and N ′ we have

Γα(λc, N,N
′) = α. (9)

Because our results are asymptotic for large values of N , we obtain a sequence of pseudo-

critical parameters (λN , αN) that converge to (λc, α) for N → ∞.

III. HELIUM-LIKE ATOMS

As a benchmark for FSS using B-splines we calculate the critical parameters of the two-

electron atom with standard Coulomb potential. In this case, after a scaling with the nuclear

charge, the system has a unique parameter λ = 1/Z

H = −1

2
∇2

r1
− 1

2
∇2

r2
− 1

r1
− 1

r2
+ λ

1

|r2 − r1|
. (10)

The ground-state energy E0(λ1, λ2) and its corresponding eigenvector |ψ0(1, 2)〉 will be

calculated within the variational approximation

|ψ0(1, 2)〉 ≃ |Ψ0(1, 2)〉 =

M
∑

i=1

c
(j)
i |Φi〉 , c

(j)
i = (c(j))i ; j = 1, · · · ,M . (11)

where the |Φi〉 must be chosen adequately and M is the basis set size.

Since we are interested in the behavior of the system near the ground-state ionization

threshold, we choose as basis set s-wave singlets given by

|Φi〉 ≡ |n1, n2; l〉 = (φn1
(r1)φn2

(r2))s Y l
0,0(Ω1,Ω2)χs , (12)

where n2 ≤ n1 ≤ N . Also, we introduce a cutoff value lmax for the angular momentum

l ≤ lmax, denote χs as the singlet spinor, and the Y l
0,0(Ω1,Ω2) are given by

Y l
0,0(Ω1,Ω2) =

(−1)l√
2l + 1

l
∑

m=−l

(−1)mYlm(Ω1)Yl−m(Ω2) , (13)

i.e. they are eigenfunctions of the total angular momentum with zero eigenvalue, and the

Ylm are the spherical harmonics. Note also that Y l
0,0 is a real function since it is symmetric

in the particle index. The radial term (φn1
(r1)φn2

(r2))s has the appropriate symmetry for a

singlet state,
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(φn1
(r1)φn2

(r2))s = φn1
(r1)φn2

(r2) + φn1
(r2)φn2

(r1) . (14)

In general, the size M of a basis set defined for Eqs.(11-14) is M = N(N + 1)(lmax + 1)/2.

For the radial orbitals we used normalized B-splines polynomial of order k

φn(r) = Cn

B
(k)
n+1(r)

r
; n = 1, . . . , N = k + I − 3 . (15)

The calculations in this sections were done with k = 5, R = 30, and lmax = 3.

In order to calculate the Hamiltonian matrix elements, we expand the electronic Coulomb

interaction in spherical harmonics

1

|r2 − r1|
=

∞
∑

l=0

4π

2l + 1

rl<
rl+1
>

l
∑

m=−l

Y ∗
l,m(Ω1) Yl,m(Ω2), (16)

Because the cutoff lmax, the matrix elements of this expansion are nonzero only for l ≤
2lmax.

In our previous studies, the critical behavior of the two-electron atom was obtained

by using FSS approach with Hylleraas [34] and Gaussian basis sets [35]. The FSS was

performed with a finite small basis-set and then increased the number of basis functions N

in a systematic way. The B-splines basis-set, in this sense is different. When N is changed,

we are not adding new functions, but the complete basis-set is changed in a way which is

similar to the finite-element method [36].

Figure 1, shows the results for the plot ΓN as λ varies for different values of N . Successive

curves cross at pseudocritical points. In Figures (2) and (3), we observed the behavior of the

pseudocritical parameters, λN and αN as a function of 1/N . The two curves converged to

the exact values, in complete agreement with our previous [17, 22, 25] and recent results[37].

The numerical values are shown in table I. These accurate results indicate that FSS can

be combined with B-spline basis to obtain critical parameters for the few-body Schrödinger

equation.

IV. THE SCREENED TWO-ELECTRON ATOM

The Hamiltonian, in atomic units, takes the form,

H = −1

2
∇2

r1
− 1

2
∇2

r2
− Z e−r1/D

r1
− Z e−r2/D

r2
+
e−|r2−r1|/D

|r2 − r1|
, (17)
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FIG. 1. (color-online) ΓN vs. λ for two-electron atoms, for N = 20, · · · , 50.
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FIG. 2. λN vs. 1/N for N = 20, · · · , 55 for the two-electron atom. The red point is the value of λc

from ref.[34] .

where Z is the nuclear charge and D > 0 the Debye screening length. The Hamiltonian takes

a form more convenient to our purposes after scaling with D, r → r/D and H → D2H
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FIG. 3. (color-online) Critical exponent αN vs. 1/N for N = 20, · · · , 55 for the two-electron atom.

The red point is the exact value α = 1.

This work FSS (Hylleraas) [22] Ref [37] exact

λc 1.09776 1.0976 1.09788 −

α 0.9947 1.04 − 1

TABLE I. Comparison of λc and α for the ground-state energy of the two-electron atom.

H = −1

2
∇2

r1
− 1

2
∇2

r2
− λ1

(

e−r1

r1
+
e−r2

r2

)

+ λ2
e−|r2−r1|

|r2 − r1|
, (18)

where λ1 = Z D, and λ2 = D. The numerical results are obtained using the same basis set

as the Coulomb case described in section III, except the value of the cutoff radius, that for

the Yukawa potential we set as R = 20.

For the Yukawa potential we use the Gegenbauer’s expansion in spherical harmonics

e−|r2−r1|

|r2 − r1|
=

∞
∑

l=0

4π
Il+1/2(r<)√

r<

Kl+1/2(r>)√
r>

l
∑

m=−l

Y ∗
l,m(Ω1) Yl,m(Ω2), (19)

where Il+1/2 and Kl+1/2 are the modified Bessel functions of the first and second kind,

respectively [38].

Since Eth does not depend on λ2, we calculate the scaling function ΓN for given values
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of λ1 as a function of λ2. Figure 4, show the results for the plot ΓN(λ1 = 1.5;λ2) as λ2

varies for different values if N . All the curves cross very close to the critical point. In Figure

5 we present the phase diagram for the screened two-electron atoms with three distinct

phases: two-electron phase (2e−), one-electron phase (1e−) and zero-electron phase (0e−),

corresponding to stable, ionized and double ionized atoms.

The dotted line λ1 = λ
(c)
1 ≃ 0.84 corresponds to the critical value of the one-electron

Yukawa potential. Therefore, there are no bound states for λ1 ≤ λ
(c)
1 . For λ1 >∼ λ

(c)
1 the one-

body bound state is extended, and the method is applicable until the size of the one-body

state becomes of the order of the cutoff radius R. For the value R = 20, we calculate the

1e−stability line for λ1 ≥ 0.95.

Reference [32] described the three different ground-state stability diagrams that a two-

parameter Hamiltonian with short-range one-body potential could present. These cases are

(see figure 1 of this reference) (a) no 2e− − 0e− line, (b) exists a finite 2e− − 0e− line for

0 ≤ λ2 ≤ λ
(mc)
2 , (c) the 2e− − 0e− line is infinite. Also in this reference rigorous lower and

upper bound for the 2e− − 1e− stability line are established. We calculate these bounds for

the Hamiltonian Eq(18). The lower bound is shown in figure 5. For the Yukawa potential

the upper bound diverges for λ1 → λ
(c)
1 , and then it is not useful in this case.

Even our results suggest that the ground-state stability diagram is of type (a). Large

numerical instabilities could appear for λ1 → λ
(c)
1 , and then we can discard a type (c)

diagram, but we can not discard a type (b) diagram with a small value of λ
(mc)
2 .

We note that the H− atom corresponds to the line λ2 = λ1 and the He atom to the line

λ2 = λ1/2. These lines are also indicated in figure 5. The critical screening values for H−

and He are DH− ≃ 1.2969 and DHe ≃ 0.4934 respectively.

In Figure 6 we show how the critical exponent αN vs λ1 for N = 40 for the screened

two-electron atom converges to the exact value, α = 1 [32].

V. SUMMARY AND CONCLUSIONS

We have shown that the introduction of B-spline basis sets in FSS calculations is very

powerful in obtaining critical parameters and stability diagrams for few-body systems.

This basis set presents very different characteristics than the standard basis sets previ-

ously used in FSS like Hylleraas or Slater-type basis sets. B-splines are non-zero only on a

10
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FIG. 4. (color-online) ΓN (λ1 = 1.5;λ2) vs. λ2 for the screened two-electron atom, for N =

20, · · · , 50.

small interval, and changing the FSS parameter N (number of basis functions) changes the

complete basis set. In particular, we used this basis set together with FSS to calculate the

critical parameter of the helium-like atom as a benchmark, finding very accurate results.

We then applied the method to the important case of the ground-state stability diagram for

a two-electron atom interacting via a screened Coulomb potential. Also in this case, FSS

with a B-spline basis-set proves to be an excellent approach to obtain the critical behavior

for this two-parameter Hamiltonian.

Our results show that the ground-state diagram of two-electron atoms interacting via

Yukawa potentials does not present a 2e−−0e− line. That is, the systems always undergoes

a 2e−−1e− transition before losing both electrons as the screening grows. Even the numerical

results are not accurate enough to discard a small 2e− − 0e− line. We discard the existence

of an infinite 2e− − 0e− line.

We have shown in previous works that FSS combined with different basis functions

(Hylleraas, Gaussian, Slater) is a powerful method to obtain quantum critical parameters

for few-body systems [22]. However, these basis sets are not useful to calculate critical pa-

rameter for large systems, or for quantum phase transitions in infinite systems. A possible
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1
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FIG. 5. (color-online) Ground-state stability diagram for the screened two-electron atom, the

black line is the critical 2e− − 1e− line calculated with FSS with N = 40, the dot line is the

1e− − 0e− critical line, the dashed blue line is the lower bound for the 2e− − 1e− line of ref. [32].

The dot-dashed lines correspond to the Helium (dark green) and Hydrogen (light green) atoms

respectively.

way to apply FSS to study quantum phase transitions in materials is to combine FSS with

Hatree-Fock or density functional approaches. In this direction, new efficient methods to

solve the Hartree-Fock equations using B-splines expansions were recently established [39],

and numerical codes are available [27]. As a benchmark system, we started with the two

electron atoms. We show that indeed this can be done and obtained very accurate quantum

critical parameters. Then we went to a more difficult case, two-electron atoms with screened

Coulomb potentials. Getting all the stability and transition lines from two-electrons to one-

electron to zero-electrons is numerically difficult calculations. We have shown that FSS with

B-spline basis functions can construct the full stability diagram. Our work is in progress to

calculate critical parameters for large i molecular and extended systems by applying FSS

with B-spline expansions of Hatree-Fock equations.
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FIG. 6. (color-online) Critical exponent αN vs λ1 for N = 40 for the screened two-electron atom.

The exact value is α = 1.
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