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Centro Atómico Bariloche (CNEA) and Instituto Balseiro and
Consejo Nacional de Investigaciones Cient́ıficas y Técnicas,

(8400) Bariloche, Rı́o Negro, Argentina.

The present work analyses the propagation and degradation of information transmitted across
different complex networks topologies. The degradation of the information, coded in simple mes-
sages, is the consequence of the inclusion of errors during the transmission and manifest itself in two
different ways. The first one results in some addresses getting a wrong message, but maintaining
the global amount of information in the system. The second one consists in the collapse of the
global information into a single message. We analyze how the topology of the underlying networks
promotes or inhibits the degradation process.

INTRODUCTION

The role of complex networks as a mathematical tool
to formalize the underlying topology in several propa-
gating phenomena of social extraction has been well es-
tablished in the last years. When looking for models of
the spread of diseases, the propagation of information,
rumors or ideas, complex network provide a plethora of
alternative topologies that serve to mimic the complex
weave of the interpersonal relationships [1, 3–5]. At a
more abstract level, diffusion in general is one of the fun-
damental processes taking place in networks [6–8]. Diffu-
sive propagation on a network generates the opportunity
that agents get in touch and interchange ideas and in-
formation. Given the appropriate rules for interchange
and network topology this could lead to the appearance
of consensus among the opinions of the different agents.

Consensus formation is a widely studied in social sci-
ences. One of the main goals is to understand the emer-
gence of a system consensus involving a number of in-
teracting agents [26]. Thus problem has been studied
analytically, for instance, in [27–29], where it is pro-
posed that each agent alters its opinion according to some
weighted average of the rest of system. It is found that if
all the recurrent states of the Markov chain communicate
with each other and are aperiodic, then a consensus is al-
ways reached. In most of the existing models the update
of opinions takes place via a linear mechanism [30, 31, 33].
Moreover, they do not usually analyze the influence of
the network topology. Although see, for instance, [26],
where a complex network appears as a susbtrate of a set
of agents with linear dynamics and [32], where the topol-
ogy of the network is altered by the interactions between
the agents.

The structure of the complex networks has been ex-
tensively studied from the point of view of transfer of
information. A lot of emphasis has been put on the in-
fluence of topology, studying for instance whether scale
free networks are more efficient than regular ones (ref).
In this context it has been shown, for instance, that it is
very important whether the network consists of homoge-

neous nodes or it has a structure of routers and peripheral
nodes (ref). Another important aspect is the clustering,
because the presence or absence of loops can affect in-
formation transfer (ref). For instance, in networks with
modular structures, it has been shown that the veloc-
ity of the information propagation depends non linearly
on the the number of modules. A piece of information
will propagate faster for networks having either a small
number or a large number of modules [9].

A set of interacting agents on a network can give rise
to a dynamically changing local environments where the
process of interchange of opinions take place. In this
paper we focus on three aspects: 1) How the local in-
teraction rules control the convergence to consensus, in
particular we analyze both linear and non-linear rules.
2) What is the influence of dynamics of the agents in the
network. We first consider the the propagation of the in-
formation by considering a näıve strategy for neighboring
node selection. If the target node is not among the neigh-
bors, a neighbouring node is selected at random for the
trajectory of the agent. Then we consider a preferential
choice strategy, where the agents are more likely to move
to more connected nodes. 3) What is the effect of the
different parameters of of the network topology, such as
clustering or assortativity. In the following sections we
present the model in more details and a description of
our results.

NETWORK TOPOLOGIES

Throughout this work we have used several families of
networks with different topologies and algorithmic con-
structions, though always containing the same number of
nodes and links.

Regular Small World networks: We consider first reg-
ular networks with a tuned degree of disorder, and con-
sequently different degrees of clustering and mean dis-
tance. This networks were built using a modified algo-
rithm based on the originally proposed in [17] to con-
strain the resulting networks to a subfamily with a delta
shaped degree distribution. We call this family of net-
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works the k-Small World Networks (k-SWN) [18], where
2k indicates the degree of the nodes. The building proce-
dure starts with an ordered regular network whose order
is broken by exchanging the links of two pairs of con-
nected nodes in a sequential way. Starting for example
from an ordered ring network, each link is subject to the
possibility of being exchanged with probability pd. If the
exchange is accepted, we randomly choose another link
to switch the partners in order to get two new pairs of
coupled nodes. Double links are always avoided, thus if
there is no way to avoid a double link with the present
selection of node, a new choice is done. In this way all
the nodes preserve their degree while the process of re-
connection assures the introduction of a certain degree of
disorder. It must be stressed that the dependence with
pl of the clustering coefficient and path length is quali-
tatively similar to the one is observed as a function of pl
in Small World Networks [17]. In this way we can eval-
uate the effects of clustering and distance independently
of the degree distribution.

Small World Networks: To include the possible ef-
fects of the degree distribution on the analyzed dynamics
we consider then, the usual algorithm described in [17],
where only one link is rewired at a time, maintaining the
attachment to one of the adjacent nodes and randomly
connecting the other extreme. These networks not only
posses different degrees of clustering and mean distance
but also different binomial degree distributions, linked to
the disorder parameter pl. We we refer to this networks
as SWN.

Scale free networks: Finally, we are interested in
studying networks with a degree distribution closely re-
lated to those frequently observed in real contexts. Thus
we consider Scale Free Networks (SFN) [19] with different
degrees of assortativity, following the prescription pre-
sented in [20] with a slight modification to obtain net-
works with tunable positive or negative assortativity. In
order to get positive assortativity, the algorithm consists
in departing from a random network with the desired de-
gree distribution and sequentially rearranging the nodes
at the ends of a pair of randomly chosen links. At each
step two links of the network are chosen at random. The
corresponding four nodes are ordered with respect to
their degrees and the original links are deleted. Then,
with probability pa, a new link connects the two nodes
with the smaller degrees and another connects the two
nodes with the larger degrees. Otherwise, the links are
randomly rewired. As double connections are forbidden,
if the rewiring indicates connecting already connected
nodes, the change is discarded and the original links are
reestablished. If instead of connecting the nodes with
the highest and lowest degrees between them we connect
the node with the highest degree with the node with the
lowest degree, and the other two between them we obtain
networks with negative assortativity. The parameter pa
governs the final degree of assortativity.

Incluir una figura

DYNAMICS OF CONSENSUS FORMATION

We have Np agents that travel from an initial node
to a final node of the network. These nodes are chosen
randomly with uniform distribution among the N net-
work nodes. Each agent has an opinion that is indexed
by an integer number between 1 and Nc. In the initial
condition the opinion of each agent is chosen randomly
with the constraint that there is each opinion appears the
same number of times. The number of agents is given
by Np = 10N . The number of nodes is in the range
[1000, 10000].

At a given time there is some number of agents in a
given node. If there are Ni agents in node i, each of of
them is assigned and index j = 1, . . . , Ni according to the
order of arrival, with earlier arrivals having lower indices.
The node with the lowest index checks whether the node
where is located is a neighbor of its destination node. If
this is the case it moves in that direction and its move-
ment stops. If not, it chooses one of its neighbors follow-
ing one of two possible strategies. In one case, the node
is randomly chosen among those conforming the neigh-
borhood. The other strategy requires that each node has
information about the degree of all its neighbors. The
one with the higher degree is chosen, according to the
preferential choice strategy [12] that a priori optimizes
the possibility of reaching the target following a shorter
path. This procedure is repeated in random order for all
the nodes of the network.

This second strategy is motivated by the need to op-
timize the ability to efficiently navigate and search in
a network without a thorough knowledge of its topo-
logical properties. As we are interested in finding the
path to a target node from an initial one using only local
information, we appeal to the concept of random walk
centrality [10] (C), that characterizes those nodes which
will be much frequently visited by initially uniformly dis-
tributed random walkers. Another interesting property
is that when we consider the set of all possible random
walks between two nodes, the one reaching the node cor-
responding to a larger value of C is faster than the oth-
ers. After finding that for a Barabási-Albert scale-free
network [19], the degree of a node is directly related to
its centrality the maximum degree strategy was proposed
in [11]. In this case, each node must have information on
its neighbors degree so that the a walking agent always
moves to the neighboring node having the highest degree.
A relaxed version of this strategy was also proposed in
[12], where the authors also study the preferential choice
strategy, in which the node with the larger degree has the
higher probability to be chosen. This strategy is equiva-
lent to the former one when the probability is 1. As we
will further show, these two strategies, despite that being
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optimal for network navigation, result in different results
for consensus formation.

Local interaction between agents

We propose the following rules for the interaction be-
tween agents. The change of opinion will happen with
probability ρ. In the present study we analyze two pos-
sibilities, namely:

• Linear: An agent, instead of keeping its original
opinion, takes a different one, randomly chosen
among the opinions of the other agents in the same
node.

• Quadratic: An agent, instead of keeping its orig-
inal opinion, takes two opinions randomly chosen
among the one of the other agents in its node, If
they are the same, then this will be the new opin-
ion, otherwise, the original opinion is kept.

Characterization of consensus formation

These mechanisms for interaction lead to a global mod-
ification of the probability distribution of the opinions.
This effect can be quantified using the Kullbak-Leibler
distance [23]. Given two probability distributions P and
Q it is defined by

DKL =
∑
k

P (h) log
P (h)

Q(h)
(1)

If the initial distribution is Q(h) = 1/Nc then the maxi-
mum value the Kullback-Leiber distance can take is when
the distribution P (h) is concentrated in only one point:
P (h) = δh,h0 , in which case DKL = log(Nc). In other
words consensus is maximized when DKL increases. Let
us remark that the probability distribution is measured
over the agents that have reached their target destina-
tions.

Probability distribution of contents in the linear case

We now prove that in the linear case the interactions
between agents cannot alter the distribution probability
of opinions. Let us denote by P (k) the probability of
having an agent with opinion k. The probability that
this opinion is altered from k to l is P (k → l) = ρP (l).
Similarly P (l → k) = ρP (k). The probability of having
an agent with opinion k (resp. l) in the first position of
the node is P (k) (resp. P (l)). Therefore the number of
agents that change their content from k to l is in aver-
age NpP (k)P (k → l) = NpρP (k)P (l) that is exactly the
number of opinions that change from l to k. This implies

that the Kullback-Leibler distance should not be affected
by the interaction and consensus can never be achieved.

NUMERICAL RESULTS

Although different network topologies were used
throughout our simulations, all of them consisted in
N = 10000 nodes and a mean degree Km = 6. We
will discuss each topology separately and contrast the
obtained results whenever the comparison is relevant.

Terminated dynamics

k-SWN

As mentioned before, we took N = 105 an Km = K =
2k = 6, and with the disorder parameter pd ranging be-
tween 0 and 1. In order to characterize the formation
of consensus we started by analyzing the change in the
initially uniform distribution of messages. As expected,
when the underlying dynamics is linear, there is a slight
departure from the initial distribution due to unavoidable
fluctuations. On the contrary, when nonlinear dynamics
are considered the situation changes dramatically. This
can be observed in Fig.(1), where we show the final distri-
bution of opinion for the linear and quadratic dynamics,
for two limiting extreme cases, pd = 10−3 and pd = .9
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FIG. 1: Final distribution of opinions for two different dy-
namics and two disorder parameters of k-SWN’s: a) Linear,
pd = 10−3, b) Quadratic, pd = 10−3, c) Linear, pd = 0.9, d)
Quadratic, pd = 0.9

As mentioned before, the departure of the distribution
of opinions from the initial one can be measured through
the K-L distance, As the network disorder increases, the
K-L distance decreases. One obvious reason is that as
the mean path between nodes is smaller for disordered
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networks, a given agent takes less time to reach its tar-
get. This effect can be observed in Fig. 2a, where the
values of the K-L distances is plotted against the average
path length L. However, L is not the only quantity that
changes as a function of pd. The clustering coefficient C
also decreases as the disorder grows and can be affecting
the behavior of the K-L distance. The plot in Fig 2b
shows the change in the K-L distance as a function of C.
In both cases we observe two different regimes with slow
and fast rates of change respectively. The fast change
regime in Fig. 2a corresponds to a fast change in C as
a function of L. The analogous situation is observed in
Fig. 2b. We conclude that not only the change in path
length contribute to the difference in the K-L distance
but also the change in clustering.

SWN

While the construction of SW networks is similar to its
regular version and also presents an analogous behavior
in terms of the values of C and L as a function of the
disorder coefficient, there exists an apparent difference.
The degree distribution of these networks changes from
deltiform to binomial at the moment of introducing the
slightest disorder. The associated binomial distribution
is given by [24]

P (h) =

min[h,k]∑
n=0

Cn
k (1−pd)

npkd−n
(kpd)

h−k−n

(h− k − n)
exp(−kpd),

where k = Km/2 and Km is the mean degree of the
network.

So, in addition of the effects of the topology on the
formation of consensus due to the change of C and L we
need to consider the effects attributed to the change in
the degree distribution. As in the previous case, we ob-
serve a transition towards consensus that can be much
beter quantified by studying the behavior of the K-L dis-
tance. The plots in Figs. 3a and 3b show the dependence
of the K-L distance on C and L. In this case, we observe
that the growth of the K-L distance behaves differently
than the analogous situation in k-SWN for the quadratic
dynamics, the one that promotes consensus formation.
This difference could be due to the combined effect of an
increase in L and a change in the degree distribution.

Indeed, if we compare both families of networks in a
unique plot it is more evident that the spreading of the
degree distribution goes against the formation of consen-
sus. We show this in Fig 4, where we contrast the values
of the K-L distance for the same values of clustering C
and mean path length L for both types of networks. The
figure shows that for the same values of clustering or path
length, SWN networks start to fail in reaching consensus

once the degree distribution has adopted a clear binomial
profile, corresponding to lowest values of C and L.

SF Networks

So far we have studied SW networks with different
degrees of disorder. The difference between SWN and
k-SWN evidenced the effect of the heterogeneity of the
degree distribution on the dynamics, that goes against
the formation of consensus. SF networks, that can be
considered as disordered networks present a particular
degree distribution. We choose to analyze the behaviour
of the consensus emergence on these networks and com-
pare it with our previous results. But SF networks are
not only characterized by its degree distribution. Among
other properties, two networks might have the same de-
gree distribution but present different assortativities.

The assortativity a can be measured as the Pearson
correlation coefficient of degree between two neighbour-
ing nodes [25].

a =

∑
jk(Aij − kikj/2m)kikj∑
jk(kiδij − kikj/2m)kikj

, (2)

where the sumation is over each pair of nodes (i, j). A
is the adjacency matrix and kn se is the degree of node
n. When this coefficient is positive indicates a higher
occurrence of links between nodes of similar degree, while
a negative value reveals relationships between nodes of
different degree.

We choose to study the effect of this quantity in or-
der to unveil the role of hubs in the obtained results.
The calculated values of the K-L distance are low, as ex-
pected from previous results with highly disordered SW
networks. An interesting phenomenon is observed as a
function of the assortativity. We find that the optimal
result with respect ot formation of consensus corresponds
to highly assortative or disassortative networks. This can
be observed in Fig.5

Transient dynamics

Most of the features observed once the totality of
agents have arrived to the target can be explained by
analyzing the transient dynamics

Distribution of walking length

The process of consensus formation requires that the
agents change their opinion in their way to their target
destination. By studying the amount of steps a given
agent needs to make from the origin to the destiny and
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FIG. 2: K-L distance for different values of pd on k-SWNs and with linear and quadratic dynamics. a) as a function of L/Lo,
with Lo the mean path length of the ordered network. The dashed line is the value of C; b) as a function of C. The dashed
line is the value of L/Lo.
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FIG. 3: K-L distance for different values of pd on SWNs and with linear and quadratic dynamics. a) as a function of L/Lo,
with Lo the mean path length of the ordered network. The dashed line is the value of C; b) as a function of C. The dashed
line is the value of L/Lo.

knowing the probability of change of opinion at each step
we can estimate the probability that an opinion has been
altered. Fig. 6a shows the distribution of the number
of steps (or walking length) for k-SWN and SWN of dif-
ferent disorder degree. In Fig. 6b we plot the same for
SF networks. As can be observed, there is a dramatic
reduction in the number of required steps as the network
gets more disordered. The curves corresponding to highly
disordered k-SWN and SWN are very similar to those ob-
served for SF networks. Besides, the plot corresponding
to Sf networks shows a non monotonic dependence of the

assortativity. These result is consistent with what have
been already shown in the previous section. Consensus
formation is harder when the underlying network is only
barely dissortative.

These results are independent on the choice of the dy-
namics. Same aspect of our results can be understood by
observing the distribution of walking length. The higher
the number of steps, the higher is the probability of opin-
ion changes and to get a total consensus.

The distribution of walking length is directly linked
to the performance of the networks when defining the
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FIG. 5: K-L distance for different values of assortativity a on
SF networks with quadratic dynamics.

underlying paths topology. But as we will show in the
following discussion, it is not the only relevant feature.

Transient length

The transient dynamics still has more information to
reveal. So far we have only taken into account the num-
ber of steps. Some of these steps are made simultaneously
by different agents. The total time taken by the whole
process to end must be equal to the time taken by the
agent linked to the maximum number of steps. In Figs
7a and 7b we show the cumulative amount of agents that
reached destination as a function of time.
These plots reveal an interesting feature, that we have

highlighted in Fig 8. We observe that all the curves col-

lapsed when the time is scaled with a factor ts(pd) or
ts(a) that depends on the topology of the underlying net-
work. The only curve that departs from the rest is the
corresponding to the assortative SF network (dashed in
the plot), a fact that could be clearly observed in the
previous plot.

Buffer dynamics

From the moment the agents start to reach their desti-
nation, the initial distribution of the number of agents in
the nodes changes its shape, starting from a Gaussian-
like distribution to turn into one with a high number
of nodes with a low number of agents and a few very
with high number. The rate of change of this distribu-
tion depends on the topology of the network, but if we
analyze this distribution as a function of the amount of
arrived agents instead of the spent time we find that for
k-SWN they are almost the same, while this not the case
for SWN. Fig 9a shows the distribution of tje number of
agents for several networks. The curve corresponding to
all the k-SWn and to the SWN with pd = 10−3 are su-
perposed. On the contrary, SWN with different disorder
degrees present different behaviors. The last is also true
for for SF networks. as shown in Fig 9b

Opinion change dynamics

A natural question is at what stage of the dynamics oc-
cur the most part of the change of opinions. For that, we
have recorded the rate of change occurrence and plotted
it against the amount of agents that reached destination.
While k-SWN and SWN show the same dynamics for low
values of pd, they are very different for higher disorder
degrees. This is shown in Fig 10a In highly disordered
K-SWN the changes occur at the beginning of the dy-
namics (high number of mobile agents), while for SWN
it is just the opposite. I turn, SF networks behave as
highly disordered SWN, as shown in Fig 10b.

DICUSSSION

-Summary of results

-We have also considered some alternatives rules:

• Higher order n: As in the previous case, taking n
opinions from the other opinions in the node.

• Poissonian: The new opinion is take form another
agent whose index is chosen randomly number of
messages from a Poisson distribution. The mean
value of the distribution is µ = 2.
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FIG. 6: Step distribution for a) k-SWN (black) and SWN (red) , and b) SF networks
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FIG. 7: Cummulative fraction of arrived agents as a function of time for a) k-SWN (solid) and SWN (dashed) , and b) SF
networks

• Uniform: As in the previous case, with a uniform
distribution ranging from 0 and the number of mes-
sages in the node.

They tend to give qualitatively similar results to the
quadratic. Discuss cubic case

-Comparison with errors in the propagation of infor-
mation
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FIG. 9: Distribution of the number of agents per node when 40% of packages has been delivered for a) k-SWN (solid) and
SWN (dashed) , and b) SF networks

0 2x104 4x104 6x104 8x104 1x105
0

1x10-3

2x10-3

3x10-3

 

 

O
pi

ni
on

 c
ha

ng
es

Moving agents

 pd=10-2

 pd=0.9

(a)

102 103 104 105

0

1x10-2

2x10-2

3x10-2

4x10-2

5x10-2

6x10-2

 

 

O
pi

ni
on

 c
ha

ng
es

Moving agents

 a=0.4
 a=0
 a=-0.4

(b)

FIG. 10: Error occurrence as a function of mobile agents for a) k-SWN (solid) and SWN (dashed) , and b) SF networks


