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Abstract

We study the Hamiltonian dynamics of the spherical spin model with fully-connected two-body interactions
drawn from a zero-mean Gaussian probability distribution. In the statistical physics framework, the potential
energy is of the so-called p = 2 spherical disordered kind, closely linked to the O(N) scalar field theory. Most
importantly for our setting, the energy conserving dynamics are equivalent to the ones of the Neumann integrable
system. We take initial conditions from the Boltzmann equilibrium measure at a temperature that can be
above or below the static phase transition, typical of a disordered (paramagnetic) or of an ordered (disguised
ferromagnetic) equilibrium phase. We subsequently evolve the configurations with Newton dynamics dictated
by a different Hamiltonian, obtained from an instantaneous global rescaling of the elements in the interaction
random matrix. In the limit of infinitely many degrees of freedom, N →∞, we identify three dynamical phases
depending on the parameters that characterise the initial state and the final Hamiltonian. We obtain the global
dynamical observables (energy density, self correlation function, linear response function, static susceptibility,
etc.) with numerical and analytic methods and we show that, in most cases, they are out of thermal equilibrium.
We note, however, that for shallow quenches from the condensed phase the dynamics are close to (though not
at) thermal equilibrium à la Gibbs-Boltzmann. Surprisingly enough, in the N → ∞ limit and for a particular
relation between parameters the global observables comply Gibbs-Boltzmann equilibrium. We next set the
analysis of the system with finite number of degrees of freedom in terms of N non-linearly coupled modes. These
are the projections of the vector spin (or particle’s position on the sphere) on the eigenvectors of the interaction
matrix, the most relevant being those linked to the eigenvalues at the edge of the spectrum. We argue that in a
system with infinite size the modes decouple at long times. We evaluate the mode temperatures and we relate
them to the frequency-dependent effective temperature measured with the fluctuation-dissipation relation in the
frequency domain, similarly to what was recently proposed for quantum integrable cases. Finally, we analyse
the N − 1 integrals of motion, notably, their scaling with N , and we use them to show that the system is out
of equilibrium in all phases, even for parameters that show an apparent Gibbs-Boltzmann behaviour of global
observables. We elaborate on the role played by these constants of motion in the post-quench dynamics and we
briefly discuss the possible description of the asymptotic dynamics in terms of a Generalised Gibbs Ensemble.
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1 Introduction
In the past decade, atomic physics experiments have been able to test the global coherent quantum dynamics

of interacting systems. This achievement has boosted research on the dynamics and possible equilibration of
many-body isolated systems [1]. Some of the quantum instances realised in the laboratory are low dimensional
and considered to be integrable. Therefore they are not able to act as a bath on themselves and questions on how
to describe their asymptotic dynamics pose naturally. With the aim of describing their asymptotic states, the
Generalised Gibbs Ensemble (GGE), an extension of the canonical Gibbs-Boltzmann density operator that aims
to include the effect of all relevant conserved charges, was proposed [2, 3] (see, e.g., the review articles [4, 5, 6]).

Similar equilibration problems can arise in classical isolated systems. A first study of the dynamics of isolated
interacting mean field disordered models appeared in [7]. We continue developing this project and we analyse,
in this paper, the quench dynamics of a classical integrable system with (weak) frozen randomness. Both models
belong to the class of p spin spherical disordered models with, however, properties that render their constant
energy dynamics very different, as we will show here.

The spherical fully-connected p-spin disordered models are paradigms in the mean-field description of glassy
physics. They are solvable models (in the thermodynamic limit) that successfully mimic the physics of (fragile)
glasses for p ≥ 3 and domain growth for p = 2. The connection between the p = 2 model, in its classical and
quantum formulations, with coarsening phenomena is made via its relation to the celebrated O(N) λφ4 model
in the infinite N limit. Furthermore, the model has recently appeared in a semiclassical study of the Sachdev-
Ye-Kitaev model [8]. The literature on the static, metastable and stochastic dynamics of the p spin spherical
systems is vast. Numerous aspects of their behaviour are very well characterised, even analytically (see, e.g., the
review articles [9, 10, 11]).

In Ref. [7] we studied the Hamiltonian dynamics of the p = 3 spherical disordered spin model. By adding a
kinetic term to the standard potential energy we induced energy conserving dynamics to the real valued spins.
In this setting, the dynamics correspond to the motion of a particle on an N − 1 dimensional sphere under the
effect of a complex quenched random potential [12, 13, 14]. Here we will focus on the Newtonian dynamics of
the particle under conservative forces arising from a quadratic potential, the p = 2 case.

The Hamiltonian p = 2 disordered model turns out to be equivalent to the Neumann integrable system of
classical mechanics [15], the constrained motion of a classical particle on SN−1 under a harmonic potential, for
a special choice of the spring constants. The only difference is that in the p = 2 model one imposes the spherical
constraint on average while in Neumann’s model one does strictly, on each trajectory. This difference, however,
should not be important in the N → ∞ limit. We will exploit results from the Integrable Systems literature,
notably the exact expressions of the N − 1 conserved charges in involution [16, 17, 18]. With these at hand, we
will be able to study the statistical properties in depth and construct a candidate GGE to describe the long-time
dynamics.

We perform instantaneous quenches towards a post-quench disordered potential that keeps memory of the
pre-quench one, mimicking in this way the “quantum quench” procedure in a classical setting. The change
in the potential energy landscape induces finite injection or extraction of energy density in the sample. The
subsequent dynamics conserve the total energy. We sample the initial conditions from canonical equilibrium at
a tuned temperature, choosing in this way initial configurations typical of a paramagnetic equilibrium state at
high temperature or a condensed, ferromagnetic-like, state at low temperature. The control parameters in the
dynamic phase diagram that we will establish are the amount of energy injected or extracted and the initial
temperature of the system, both measured with respect to the same energy scale.

The dynamic evolution in the different phases of the phase diagram will be pretty different, with cases in
which the infinite size system remains confined (condensed, in the statistical physics language) and cases in which
it does not. In none of them a Gibbs-Boltzmann equilibrium measure is reached, contrary to what happens in
the strongly interacting p = 3 case. The role played by the N − 1 integrals of motion on the lack of equilibration
of the infinite size system will be discussed.

The reader just interested in a summary of our results and not so much in the way in which we obtained
them can go directly to Sec. 8 where we sum up our findings and we present a thorough comparison between
the dynamics of the isolated p = 2 and p = 3 cases.

The paper is organised as follows. In Sec. 2 we recall the main features of the p = 2 spherical disordered
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model (static, metastable and relaxational dynamic properties) studied from the statistical mechanics point of
view. In the following Section we explain the relation between the disordered spin system and the integrable
Neumann model of classical mechanics. We also explain in this Section the statistical description of the long-
term dynamics of integrable systems provided by the Generalised Gibbs Ensemble proposal. In Sec. 4 we present
our analytic results for the dynamics of the model in the N → ∞ limit and in Sec. 5 we go further and we set
the analysis of the evolution of the finite N case. Section 6 is devoted to the numerical study of the N → ∞
and finite N dynamic equations. In Sec. 7 we investigate the behaviour of the N − 1 integrals of motion in
the various sectors of the phase diagram and we discuss their influence against the equilibration of the system.
Finally, Sec. 8 presents our conclusions. Several Appendices complement the presentation in the main part of
the paper.

2 Background
This Section presents a short account of the equilibrium properties and relaxation dynamics of the spherical

p = 2 disordered model, first introduced and studied by Kosterlitz, Thouless and Jones [19] as the simplest
possible magnetic model with quenched random interactions. This model, as we will explain below, shares many
points in common with the O(N) model of ferromagnetism when treated in the infinite N limit. Its static
properties have been derived with a direct calculation and using the replica trick. Its relaxational dynamics are
also analytically solvable. The reader familiar with this model can jump over this Section and go directly to the
next one where the relation with Neumann’s model and integrability are discussed.

2.1 The Hamiltonian spherical p = 2 spin model

The p = 2 spin model is a system with two-spin interactions mediated by quenched random couplings Jij .
The potential energy is

Hpot[{si}] = −1

2

N∑
i 6=j

Jijsisj . (1)

The coupling exchanges are independent identically distributed random variables taken from a Gaussian distri-
bution with average and variance

[Jij ] = 0 , [J2
ij ] =

J2

N
. (2)

The parameter J characterises the width of the Gaussian distribution. In its standard spin-glass setting the spins
are Ising variables and the model is the Sherrington-Kirkpatrick spin-glass. We will, instead, use continuous
variables, −

√
N ≤ si ≤

√
N with i = 1, . . . , N , globally forced to satisfy (on average) a spherical constraint,∑N

i=1 s
2
i = N , with N the total number of spins [19]. Such spherical constraint is imposed by adding a term

Hconstr =
z

2

(
N∑
i=1

s2
i −N

)
(3)

to the Hamiltonian, with z a Lagrange multiplier. The spins thus defined do not have intrinsic dynamics. In
statistical physics applications their temporal evolution is given by the coupling to a thermal bath, via a Monte
Carlo rule or a Langevin equation [20].

The quadratic model is a particular case of the family of p-spin models, the celebrated mean-field model for
glasses, with potential energy Hpot = −

∑
i1...ip

Ji1...ipsi1 . . . sip and p integer. Even more generally, the form
(1) is one instance of a generic random potential V ({si}) with zero mean and correlations [12, 13, 14]

[V ({si})V ({s′i})] = −NV(|~s− ~s′|/N) (4)

with V(|~s− ~s′|/N) = −J
2

2
(~s · ~s′/N)2.

Similarly to what was done in [7] in the study of the p ≥ 3 Hamiltonian dynamics, the model can be endowed
with conservative dynamics by changing the “spin” interpretation into a “particle” one. In this way, a kinetic
energy [21, 22]

Hkin[{ṡi}] =
m

2

N∑
i=1

(ṡi)
2 , (5)
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can be added to the potential energy. The total energy of the Hamiltonian spherical p-spin model is then

Hsyst = Hkin +Hpot +Hconstr . (6)

This model represents a particle constrained to move on an N -dimensional hyper-sphere with radius
√
N . The

position of the particle is given by an N-dimensional vector ~s = (s1, . . . , sN ) and its velocity by another N -
dimensional vector ~̇s = (ṡ1, . . . , ṡN ). The N coordinates si are globally constrained to lie, as a vector, on the
hypersphere with radius

√
N . The velocity vector ~̇s is, on average, perpendicular to ~s, due to the spherical

constraint. The parameter m is the mass of the particle.
The generic set of N equations of motion for the isolated system is

ms̈i(t1) + z(t1)si(t1) =
∑
j(6=i)

Jijsj(t1) , (7)

i = 1, . . . , n, where the Lagrange multiplier needs to be time-dependent to enforce the spherical constraint in
the course of time.

The initial condition will be taken to be {s0
i , ṡ

0
i } ≡ {si(0), ṡi(0)} and chosen in ways that we specify below.

We will be interested in using equilibrium initial states drawn from a Gibbs-Boltzmann measure at different
temperatures T ′.

From Eq. (7) one derives an identity between the energy density and the Lagrange multiplier. By multiplying
the equation by si(t2) and taking t2 → t1

lim
t2→t−1

m∂t21
C(t1, t2) + z(t1) = −2epot(t1) . (8)

The first term can be rewritten asm lim
t2→t−1

∂t21
C(t1, t2) = −m lim

t2→t−1

∑N
i=1 ṡi(t1)ṡi(t2) = −m

∑N
i=1(ṡi(t1))2.

Therefore
z(t1) = −2epot(t1) + 2ekin(t1) . (9)

The Lagrange multiplier takes the form of an action density, as a difference between kinetic and potential energy
densities. Using now the conservation of the total energy, ef = epot(t1) + ekin(t1),

z(t1) = 2ef − 4epot(t1) = −2ef + 4ekin(t1) . (10)

The p = 2 model belongs to a different universality class from the one of the p ≥ 3 cases, in the sense that its
free-energy landscape and relaxation dynamics are much simpler. It is, indeed, a model that resembles strongly
the large N , O(N) model for ferromagnetism. A hint on the simpler properties of its potential energy landscape
is given by the fact that the equations derived for general p simplify considerably for p = 2. For example, the
static and dynamic transitions occur at the same temperature Tc = Td, and the number of metastable states is
drastically reduced. We recall these properties in the rest of this Section.

2.2 The statics

The static properties of the p = 2 spherical model were elucidated in [19]. The trick is to project the spin
vector ~s onto the basis of eigenvectors of the interaction matrix. One calls λµ and ~vµ the µ-th eigenvalue and
eigenvector of the matrix Jij , and sµ = ~s · ~vµ the projection of ~s on the eigenvector ~vµ. In terms of the latter
the Hamiltonian is not only quadratic but also diagonal. The extrema of the potential energy landscape and
the partition function can then be easily computed. In the thermodynamic limit, N → ∞, the eigenvalues are
distributed according to the Wigner-Dyson semi-circle form [23]

ρ(λµ) =
1

2πJ2

√
(2J)2 − λ2

µ θ(2J − |λµ|) . (11)

For finite N the distance between the largest and next to largest eigenvalues is order N−1/6/N1/2 = N−2/3.
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2.2.1 The potential energy landscape

Let us label the eigenvalues of Jij in such a way that they are ordered: λ1 ≤ λ2 ≤ · · · ≤ λN . We call
their associated eigenvectors ~vµ with µ = 1, . . . , N and we take them to be orthonormal, such that v2

µ = 1. We
consider the potential energy landscape HJ({si}, z) with z taken as a variable.

In the absence of a magnetic field, all eigenstates of the interaction matrix are stationary points of the
potential energy hyper-surface,

∂HJ
∂si

∣∣∣∣
~s∗

= −
N∑

j(6=i)

Jijsj + zsi|~s∗,z∗ = 0 ∀i , ⇒ ~s∗ = ±
√
N~vµ , z

∗ = λµ , ∀µ .

These stationary points are metastable states at zero temperature, apart from two of them that are the marginally
stable ground states, and their number is linear in N , the number of spins. (The role of marginal stability in the
physical behaviour of condensed matter systems was recently summarised in [24].) These statements are shown
in the way described in the next paragraph.

The Hessian of the potential energy surface on each stationary point is

∂HJ
∂si∂sj

∣∣∣∣
~s∗,z∗

= −Jij + zδij |~s∗,z∗ = −Jij + λµδij . (12)

This matrix can be easily diagonalised and one finds Dνη = (−λν + λη)δνη. Thus, on the stationary point,
~s∗ = ±

√
N~vµ, the Hessian has one vanishing eigenvalue (for ν = µ), µ− 1 positive eigenvalues (for ν < µ), and

N − µ negative eigenvalues (for ν > µ). Positive (negative) eigenvalues of the Hessian indicate stable (unstable)
directions. This implies that each saddle point labeled by µ has one marginally stable direction, µ − 1 stable
directions and N − µ unstable directions. (In other words, the number of stable directions plus the marginally
stable one is given by the index µ labelling the eigenvalue associated to the stationary state.) In conclusion,
there are two maxima, ~s∗ = ±

√
N~v1, in general two saddles ~s∗ = ±

√
N~vI with I = µ− 1 stable directions and

N − I unstable ones, with I running with µ as I = µ− 1 and µ = 3, . . . , N , and finally two (marginally stable)
minima, ~s∗ = ±

√
N~vN . In the large N limit the density of eigenvalues of the Hessian at each metastable state

µ is a translated semi circle law [25].
The zero temperature energy of a generic configuration under no applied field is

HJ = −1

2

∑
ij

Jijsisj +
z

2

(∑
i

s2
i −N

)
= −1

2

∑
µ

(λµ − z)s2
µ −

z

2
N . (13)

At each stationary point ~s∗ = ±
√
N~vµ and z∗ = λµ this energy is

H∗µ ≡ HJ(~s∗ = ~vµ) = −1

2

∑
i

vµi
∑
j

Jijv
µ
j +

z∗

2

(∑
i

(vµi )2 −N

)
= −1

2
λµN . (14)

Here we used the notation vµi to indicate the ith component of the µth eigenvector ~vµ. The energy difference
between the minima and the lowest saddles depends on the distribution of eigenvalues, a semi-circle law for the
Gaussian distributed interaction matrices that we consider here.

A magnetic field reduces the number of stationary points from a macroscopic number to just two. Indeed,
the stationary state equation now reads

∂HJ
∂si

∣∣∣∣
~s∗

= −
N∑

j(6=i)

Jijsj + zsi − hi|~s∗,z∗ = 0 , ∀i , ⇒ s∗i = (z∗ − J)−1
ij hj

and z∗ is fixed by imposing the spherical constraint on ~s∗. One then finds two solutions for the Lagrange
multiplier that lie outside the interval of variation of the eigenvalues of the Jij matrix: |z∗| > λN . The stability
analysis shows that the stationary points are just one fully stable minimum and a fully unstable maximum. The
elimination of saddle-points by an external field has important consequences on the dynamics of the system [26].
In this paper we do not apply any external field.

The analysis of large dimensional random potential energy landscapes [27, 28, 29, 30] is a research topic in
itself with implications in condensed matter physics, notably in glass theory [31, 24], but also claimed to play a
role in string theory [32, 33], evolution [34] or other fields. The p = 2 spherical model provides a particularly
simple case in which the potential energy landscape can be completely elucidated.
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2.2.2 The free-energy density

This special (almost) quadratic model allows for the complete evaluation of its free-energy density for a
typical realisation of the disordered exchanges. The traditional derivation of the disorder averaged free-energy
density can also be done using the replica method and a simple replica symmetric Ansatz solves this problem
completely. We recall how the two methods [19, 35] work in this Section.

The partition function reads

ZJ =

N∏
i=1

∫ ∞
−∞

dsi e
β
2

∑
i6=j Jijsisj

1

2πi

∫ c+i∞

c−i∞
dz e−

βz
2 (

∑N
i=1 s

2
i−N)

where c is a real constant to be fixed below.
It is convenient to diagonalise the matrix Jij with an orthogonal transformation and write the exponent in

terms of the projection of the spin vector ~s on the eigenvectors of Jij , sµ ≡ ~s ·~vµ. This operation can be done for
any particular realisation of the interaction matrix. The new variables sµ are also continuous and unbounded
and the partition function can be recast as

ZJ =

N∏
µ=1

∫ ∞
−∞

dsµ
1

2πi

∫ c+i∞

c−i∞
dz e

∑N
µ=1 β(λµ−z)s2µ/2+βzN/2 . (15)

Assuming that one can exchange the quadratic integration over sµ with the one over the Lagrange multiplier,
and that c is such that the influence of eigenvalues λµ > c is negligible, one obtains

ZJ =
1

2πi

∫ c+i∞

c−i∞
dz e−N[−βz/2+(2N)−1 ∑

µ ln[β(z−λµ)/2]] . (16)

In the saddle-point approximation valid for N →∞ the Lagrange multiplier is given by

1 = 〈〈 kBT (zsp − λµ)−1 〉〉 (17)

and this equation determines the different phases in the model. We indicate with double brackets the sum over
the eigenvalues of the matrix Jij that in the limit N →∞ can be traded for an integration over its density:

1

N

N∑
µ=1

g(λµ) =

∫
dλµ ρ(λµ) g(λµ) ≡ 〈〈 g(λµ) 〉〉 . (18)

Let us discuss the problem in the absence of a magnetic field. The high temperature solution to Eq. (17)

zsp = zeq = T +
J2

T
(19)

can be smoothly continued to lower temperatures until the critical point

(kBTc)
−1 = 〈〈 (zsp − λµ)−1 〉〉 (20)

is reached where zsp touches the maximum eigenvalue of the Jij matrix, and it sticks to it for all T < Tc = J :

zsp = zeq = λmax = 2J T ≤ Tc . (21)

Tc is the static critical temperature. (A magnetic field with a component on the largest eigenvalue, ~h ·~vmax 6= 0,
acts as an ordering field and erases the phase transition.)

If one now checks whether the spherical constraint is satisfied by these saddle-point Lagrange multiplier
values, one verifies that it is in the high temperature phase, but it is not in the low temperature phase, where

N∑
µ=1

〈s2
µ〉 =

T

Tc
N . (22)

The way out is to give a macroscopic weight to the projection of the spin in the direction of the eigenvector that
corresponds to the largest eigenvalue:

sN = m0

√
N + δsN =

√(
1− T

Tc

)
N + δsN (23)
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with 〈δsN 〉 = 0 so that

〈s2
N 〉+

N−1∑
ν=1

〈s2
ν〉 =

(
1− T

Tc

)
N +

T

Tc
N = N . (24)

The thermal average of the projection of the spin vector on each eigenvalue vanishes in the high temperature
phase and reads

〈sµ〉 =

{
[N(1− T/Tc)]

1
2 λµ = λmax ,

0 λµ < λmax ,
(25)

below the phase transition (once we have chosen one of the ergodic components with the spontaneous symmetry
breaking of the ~s→ −~s invariance). The configuration condenses onto the eigenvector associated to the largest
eigenvalue of the exchange matrix that carries a weight proportional to

√
N . Going back to the original spin

basis, the mean magnetisation per site is zero at all temperatures but the thermal average of the square of the
local magnetisation, that defines the Edwards-Anderson parameter, is not when T < Tc:

〈m2
i 〉 = 1− T/Tc ⇒ qEA ≡ [〈m2

i 〉]J = 1− T/Tc with Tc = J . (26)

The order parameter qEA vanishes at Tc and the static transition is of second order.
The condensation phenomenon occurs for any distribution of exchanges with a finite support. If the distri-

bution has long tails, as when the model is defined on a sparse random graph [36, 37, 38], the energy density
diverges and the behaviour is more subtle [39, 40].

The disorder averaged free-energy density can also be computed using the replica trick [41] and a replica
symmetric Ansatz. This Ansatz corresponds to an overlap matrix between replicas Qab = δab + qEAεab with
εab = 1 for a 6= b and εab = 0 for a = b. When N → ∞ the saddle point equations fixing the parameter qEA

yield 0 above Tc and a marginally stable solution with qEA = 1− T/Tc and identical physical properties to the
ones discussed above below Tc.

The equilibrium energy is given by

epot
eq =

{
− J2

2T

[
1−

(
1− T

J

)2]
= 1

2
(kBT − λmax) T < Tc ,

− J2

2T
T > Tc .

(27)

We added a superscript pot since in the modified model that we will study in this paper the total energy will also
have a kinetic energy contribution. The entropy diverges at low temperatures as lnT , just as for the classical
ideal gas, as usual in classical continuous spin models.

2.3 Relaxation dynamics

The over-damped relaxation dynamics of the spherical p = 2 spin model (coupled to a Markovian bath) were
studied in [42, 43, 44, 26, 45]. One of the settings considered in these papers evolve a completely random initial
condition, {s0

i }, that corresponds (formally) to an infinite temperature initial state. The system is then subject
to an instantaneous temperature quench by changing the temperature of the bath to a final value T < +∞.
Initial conditions drawn from equilibrium at temperature T ′ < Tc, and evolving in contact with a bath at the
same temperature, T = T ′, were considered in [44] and it was shown in this paper that equilibrium at the same
temperature is maintained ever after. A quench of the dissipative system from equilibrium at T ′ < Tc to another
subcritical temperature T < Tc was also studied in [44] and it was there shown that equilibrium at the target
temperature is achieved.

The coupling to the bath is modeled with a stochastic equation of Langevin kind. This equation can be
exactly solved in the basis of eigenvectors of the interaction matrix

sµ(t) = sµ(0)e−λµt−
∫ t
0 dt
′ z(t′) +

∫ t

0

dt′ e−λµ(t−t′)−
∫ t
t′ dt

′ z(t′′) [ξµ(t′) + hµ(t′)] (28)

and the Lagrange multiplier z(t) can be fixed by imposing the spherical constraint

C(t, t) =
1

N

∑
µ

s2
µ(t) = 1 (29)
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at all times. This yields a self-consistent equation for z(t). Notably, the asymptotic solution depends on the
choice of initial state, as we expose below. The applied field hµ is used to compute the linear response function

R(t1, t2) =
1

N

N∑
i=1

δ〈si(t1)〉h
δhi(t2)

∣∣∣∣∣
h=0

=
1

N

N∑
µ=1

δ〈sµ(t1)〉h
δhµ(t2)

∣∣∣∣∣
h=0

. (30)

For quenches of initial conditions drawn from equilibrium at T ′ →∞, and evolution in contact with a bath
at temperature T > Tc, the dynamics quickly approach equilibrium at the new temperature. The Lagrange mul-
tiplier quickly converges to zeq = T +J2/T . The correlation and linear response are invariant under translations
of time and they are related by the fluctuation dissipation theorem [44, 46], see Eq. (33) below.

For quenches of initial conditions drawn from equilibrium at T ′ →∞, and evolution in contact with a bath at
temperature T < Tc, the correlation and linear response functions behave as in coarsening systems [47, 48, 49, 50],
decaying in two time regimes, one stationary for short time differences, (t1− t2)/t2 � 1, and one non-stationary
for long time differences(t1 − t2)/t2 � 1. The detailed time-dependence in the two regimes can be extracted
using the procedure sketched above. It yields the behaviour of the self correlation and linear response that scale
in the same way as these do in the O(N) model of ferromagnetism studied in the large N limit, see Sec. 2.4.
The progressive condensation of the spin “vector” in the direction of the eigenvector corresponding to the largest
eigenvalue of the interaction matrix is the equivalent of the ordering process in the O(N) model, that is to say,
the condensation on the zero wave-vector mode. Complete alignment with an overlap of order

√
N is not reached

in finite times with respect to N .
For low temperature quenches from random initial conditions, the Lagrange multiplier approaches zf = 2J

as a power law, z(t)− zf ' −3/(4t). The slow approach to the asymptotic value is determinant to allow for the
non-stationary slow relaxation. The global correlation and linear response are computed from the spin solution
sµ(t) and they can be cast as [44]

C(t1, t2) = Cst(t1 − t2) + Cag(t1, t2) , (31)

R(t1, t2) = Rst(t1 − t2) +Rag(t1, t2) , (32)

with the stationary and a non-stationary terms linked by the FDT at the temperature of the bath

Rst(t1 − t2) = − 1

T

dCst(t1 − t2)

d(t1 − t2)
, (33)

and a modified FDT at an effective temperature Teff [51, 52] selected by the dynamics,

Rag(t1 − t2) =
1

Teff(t1, t2)

∂Cag(t1, t2)

∂t2
, (34)

always with t1 ≥ t2. In the asymptotic limit, the two terms added to form C and R evolve in different regimes
in the sense that when one changes the other one is constant and vice versa. The limiting values of the two
contributions to the correlation function are

Cst(0) = 1− q , limt1−t2→∞ Cst(t1 − t2) = 0 , (35)

lim
t2→t−1

Cag(t1, t2) = q , limt1�t2 Cag(t1, t2) = 0 , (36)

with the parameter q being equal to

q = 1− T

J
. (37)

This is the correct expression of the Edwards-Anderson parameter for the equilibrium low temperature solution,
see Eq. (26), and once again one finds Tc = J from q = 0. The complete solution of the Langevin equations
allows one to deduce the exact scaling forms of the stationary and ageing contributions to the correlation and
linear response. These are

Cag(t1, t2) = fC

(
t2
t1

)
Rag(t1, t2) = t

−3/2
2 fR

(
t2
t1

)
(38)

with fC(x) and fR(x) known analytically. The behaviour of the effective temperature is special in the p = 2

model in the sense that contrary to what happens in the p ≥ 3 cases [20] it is not constant but grows with time.
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More precisely, it scales as Teff(t1, t2) ' t1/2fT (t1/t2) and it diverges asymptotically as t1/21 . This implies, in
particular, that the ageing regime does not contribute to the asymptotic potential energy that, after a quench
to T < Tc, reads

epot
asymp = −J

2

2

[
1

T
(1− q2)

]
= epot

eq (39)

and is identical to the equilibrium one, see Eq. (27), once q = 1− T/J is used.
For quenches within the ordered phase, T ′ < Tc → T < Tc, for example taking initial conditions in equilibrium

at zero temperature, sµ(0) =
√
Nδµ,N and evolving them at T < Tc, the Lagrange multiplier approaches zf = 2J

faster than any power law and the system rapidly equilibrates to the after quench conditions [44].
The same technique, based on the projection of the spin vector on the eigenvectors of Jij , can also be imple-

mented in the case in which there is inertia and the differential equation has a second order time derivative. The
dynamics are recast into the ones of harmonic oscillators coupled by a self-consistent time-dependent Lagrange
multiplier. We will use this formulation in Sec. 5. Although a full analytical solution is not possible with the
second time derivative, a performant numerical algorithm will allow us to monitor the evolution of the different
modes.

2.4 Relation with the O(N) λφ4 model in the large N limit

The λφ4 scalar field theory in d dimensions is defined by the Hamiltonian

H =

∫
ddx

[
1

2
(∇φ)2 +

r

2
φ2 +

λ

4
φ4

]
, (40)

where r and λ are two parameters. This model is the Ginzburg-Landau free energy for the local order parameter
of the paramagnetic-ferromagnetic transition controlled by the parameter r going from r > 0 to r < 0. When
the field is upgraded to a vector with N components and the limit N → ∞ is taken the quartic term, first
conveniently normalised by N , can be approximated by λ

4N
φ4 7→ λ

4N
〈φ2〉φ2. The quantity z(t) = 〈φ2〉 is not

expected to fluctuate and plays the role of the Lagrange multiplier in the spherical disordered model. Once
this approximation made, the model becomes quadratic in the field and its statics and relaxation dynamics can
be easily studied. The only difficulty lies in imposing the self-consistent constraint that determines z(t). The
condensation phenomenon that we discussed in the disordered model is also present in the field theory and it
corresponds to a condensation on the zero wave vector mode. In the dynamic problem this corresponds to the
progressive approach to the homogeneous field configuration [9].

The conserved energy dynamics of the λφ4 model, especially after sudden quenches, has been studied by a
number of groups. Details on the behaviour of the scalar problem, as well as a review of general equilibration
and pre-equilibration issues can be found in J. Berges’ Les Houches Lecture Notes [53], see also [54]. The
dynamics of the large N limit of the O(N) model was analysed in [55, 56, 57, 58, 59, 60]. More recent works use
renormalisation group techniques to study the short time dynamics [61, 62] at the dynamic phase transition.

3 Neumann’s model, integrability and equilibration
In this Section we explain the relation between the Hamiltonian p = 2 disordered model and the integrable

model of Neumann [15]. We start by recalling some basic properties of classical integrable systems in the sense
of Liouville [63, 64]. We then recall the definition of Neumann’s model and we compare it to the p = 2 one.
Finally, we explain the ideas behind the Generalised Gibbs Ensemble. Later, in Sec. 7, we will use this formalism
to analyse certain aspects of the long time dynamics of the system, and we set the stage for a future study of
the eventual approach to a GGE ensemble.

3.1 Integrable systems

In classical mechanics, systems are said to be Liouville integrable if there exist sufficiently many well-behaved
first integrals or constant of motions in involution such that the problem can then be solved by quadratures [63,
64], in other words, the solution can be reduced to a finite number of algebraic operations and integrations. In
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more concrete terms, an integrable dynamical system consists of a 2N -dimensional phase space Γ together with
N independent functions1 O1, . . . , ON : Γ→ R, such that the mutual Poisson brackets vanish,

{Oj , Ol} = 0 for all j, l . (41)

We will assume henceforth that the Oi do not depend explicitly on time and that dOi/dt = 0 is equivalent to
{H,Oi} = 0. Conventionally, the first function O1 is the Hamiltonian itself and the first constant of motion is
the energy. All other Oi with i 6= 1 are also constants of motion since their Poisson bracket with H vanishes.
The dynamics of the system can then be seen as the motion in a manifold of dimension 2N −N = N in which
all configurations share the initial values of all the conserved quantities Oi(t) = Oi(0). Under these conditions
Hamilton’s equations of motion are solvable by performing a canonical transformation into action-angle variables
(Ii, φi) with i = 1, . . . , N such that the Hamiltonian is rewritten as H̃(I) and

Ii(t) = Ii(0) , φi(t) = φi(0) + t
∂H̃(I)

∂Ii
= φk(0) + t ωi(I) . (42)

The action functions Ii are conserved quantities and we collected them in I in the dependence of the frequencies
ωi and the Hamiltonian H̃. The remaining evolution is given by N circular motions with constant angular
velocities. Both deciding whether a system is integrable and finding the canonical transformation that leads to
the pairs (Ii, φi) are in practice very difficult questions. Whenever the system is integrable, and one knows the
action-angle pairs, the statement in Eq. (42) is part of the Liouville-Arnold theorem [65].

3.2 Neumann’s model and its integrals of motion

The model proposed by Neumann in 1850 describes the dynamics of a particle constrained to move on the
N − 1 dimensional sphere under the effect of harmonic forces [15]. The Hamiltonian is

H =
1

4N

∑
k 6=l

L2
kl +

1

2

∑
k

akx
2
k (43)

where the Lkl are the elements of an angular momentum anti-symmetric matrix

√
mLkl = xkpl − pkxl , (44)

and pk and xk are phase space variables with canonical Poisson brackets {xk, pl} = δkl. The global spherical
constraint

N∑
k=1

x2
k = N (45)

ensures that the motion takes place on SN−1. Using the fact that Lkk = 0 to rewrite the double sum in the first
term in H as an unconstrained sum, and replacing Lkl by its explicit form in terms of xk and pk, one derives
m
∑
k 6=l L

2
kl = m

∑
k,l L

2
kl = 2

∑
k x

2
k

∑
l p

2
l − 2

∑
k xkpk

∑
l xlpl. Imposing next the spherical constraint, that

also implies
∑
k xkpk = 0, the sum simply becomes∑

k 6=l

L2
kl =

2N

m

∑
k

p2
k . (46)

We note that we added a factor 1/N in ifront of the kinetic energy in Eq. (43) in order to ensure that the two
terms in N be extensive and the thermodynamic limit non-trivial.

It is quite clear that Neumann’s model is therefore identical to the Hamiltonian p = 2 model once the latter
is written in the basis of eigenvectors of the interaction matrix Jij .

The N − 1 integrals of motion of this problem were constructed by K. Uhlenbeck [16] and more recently
rederived by Babelon & Talon [18] with a separation of variables method. In a notation that is convenient for
our application they read

Ik = x2
k +

1

N

∑
l(6=k)

L2
kl

ak − al
= x2

k +
1

mN

∑
l( 6=k)

x2
kp

2
l + x2

l p
2
k − 2xkplxlpk

ak − al
(47)

1In the sense that the gradients ~∇Oi are linearly independent vectors on a tangent space to any point in Γ
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and satisfy
∑
k Ik = N and 1

2

∑
k akIk = H. In the definition of our Hamiltonian and equations of motion we

used a convention such that ak 7→ −λµ (note the minus sign). After a trivial translation to the variables of the
p = 2 spherical model we then have

Iµ = s2
µ +

1

mN

∑
ν(6=µ)

s2
µp

2
ν + s2

νp
2
µ − 2sµpνsνpµ

λν − λµ
, (48)

∑
µ Iµ = 1 and

∑
µ λµIµ = −2H.

3.3 Statistical measures for integrable systems

Let ~X = (x1, p1, . . . , xN , pN ) be a generic point in phase space. The fact that the microcanonical measure

ρGME( ~X) = c−1
N∏
j=1

δ(Ij( ~X)− ij) , (49)

with c =
∫
d ~X

∏N
j=1 δ(Ij(

~X)− ij) be sampled asymptotically is ensured by the Liouville-Arnold theorem [65], if
the frequencies of the periodic motion on the torus are independent, that is, ~k · ~ω = 0 for ~k = (k1, . . . , kN ) with
integer kj has the unique solution ~k = 0. One can call this ensemble the Generalized Microcanonical Ensemble.

In principle, the Generalized Canonical Ensemble, commonly called Generalized Gibbs Ensemble (GGE), can
now be constructed from the Generalized Microcanonical Ensemble following the usual steps. The idea is to
look for the joint probability distribution of N extensive (as for the Hamiltonian in the usual case) constants of
motion of a subsystem P (i1, . . . , iN )di1 . . . diN . As in cases with just one conserved quantity, it is convenient to
interpret P as a probability over position and momenta variables, and write

PGGE( ~X) = Z−1
GGE(λ1, . . . , λN ) e−

∑
j ζjIj(

~X) . (50)

This form can be derived under the same kind of assumptions used in the derivation of the canonical measure from
the microcanonical one, that is (i) independence of the chosen subsystem with respect to the rest, in other words,
the factorisation of the density of states g({i1, . . . , iN}) = g({i(1)

1 , . . . , i
(1)
N })g({i(2)

1 , . . . , i
(2)
N }), (ii) additivity of

the conserved quantities i(2)
j = ij − i(1)

j , (iii) small system 1 (i
(1)
j � i

(2)
j ), (iv) constant inverse ‘temperatures’

ζj ≡ ∂ijS2({i1, . . . , iN}) = kB∂ij ln g2({i1, . . . , iN}). An inspiring discussion along these lines appeared in [66].
The conditions just listed imply a locality requirement on the ijs, otherwise (ii) and (iii) would be violated. This
is similar to the requirement of having short-range interactions to derive the equivalence between the canonical
and microcanonical ensembles in standard statistical mechanics.

In quenching procedures, the parameters ζj should be determined by requiring that the expectation value
of each conserved quantity Ij calculated on ρGGE matches the (conserved) initial value Ij(0+) (right after the
quench):

Ij(0
+) =

∫
d ~X Ij( ~X)PGGE( ~X) . (51)

The ζj are then the Lagrange multipliers that enforce this set of N constraints.
In the p = 2 or Neumann model a set of conserved quantities in involution are the Iµ defined in Eq. (48).

We will study them in Sec. 7.
We note that if the Lagrange multipliers became, under some special conditions −λµβf/2, with λµ the

eigenvalues of the random interaction matrix, the GGE measure would be

PGGE( ~X) = Z−1
GGE e−βf

(−1)
2

∑
µ λµIµ = Z−1

GGE e−βfH = PGB( ~X) , (52)

the Gibbs-Boltzmann one.

3.4 Averages in the long time limit

Take now a generic function of the phase space variables A( ~X) that does not depend explicitly on time and
is not conserved. Birkhoff’s theorem [67] states that its long-time average exists and reaches a constant,

A ≡ lim
τ→∞

1

τ

∫ tst+τ

tst

dt′A( ~X(t′)) = cst (53)
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for τ sufficiently long and tst a reference transient time. We will use this fact at various points in our study.
The claim of equilibration to a Generalised Gibbs Ensemble is that the long time averages should also be

given by the averages over the statistical measure PGGE:

A =

∫
D ~X A( ~X) PGGE( ~X) . (54)

Which are the observables for which this result should hold is an interesting question that needs to be answered
with care.

The GGE proposal [2, 3] and most, if not all, of its discussion appeared in the treatment and study of quantum
isolated systems and, especially, the dynamics following an instantaneous quench performed as a sudden change
in a parameter of the system’s Hamiltonian. A series of review articles are [4, 5, 6]. The main motivation for our
research project is to ask similar questions in the classical context, with the aim of disentangling the quantum
aspects from the bare consequences of isolation and integrability.

3.5 The GGE temperatures and the fluctuation dissipation theorem

The fluctuation-dissipation theorem (FDT) [68] is a model independent equilibrium relation between the
time-delayed linear response of a chosen observable and its companion correlation function. In Gibbs-Boltzmann
equilibrium this relation is independent of the specific system and observable and it only involves the inverse
temperature of the system. For classical systems it admits simple expressions in the time and frequency domains2

RAB(t1 − t2) = β∂t2CAB(t1 − t2)θ(t1 − t2) or ImR̂AB(ω) = −βωĈAB(ω) . (55)

Out of canonical equilibrium, the fluctuation-dissipation relations (FDR) between the linear response and
the correlation function have been used to quantify the departure from equilibrium [20]. Indeed, the possibly
time and observable dependent parameter that replaces β in far form equilibrium systems yields an effective
temperature that in certain cases with slow dynamics admits the interpretation of a proper temperature [51, 52].
Specially useful for our purposes is the fluctuation dissipation relation (FDR) in the frequency domain

ImR̂AB(ω)

ωĈAB(ω)
= −βABeff (ω) (56)

that concretely defines the frequency dependent, and also possibly observable dependent, inverse effective tem-
perature βABeff .

It was shown in [69, 70] that the Lagrange multipliers ζj of the GGE, seen as inverse temperatures βj , of a
number of isolated integrable quantum systems which reach a stationary state can be read from the FDR’s of
properly chosen observables

βj = βeff(ωj) for all j . (57)

In this paper we will show that this statement also applies to the classical integrable system that we analyse.

4 Analytic results for the dynamics of the infinite size system
We now enter the heart of our study and we consider the dynamics of the isolated system after different kinds

of quenches. In this Section we use an analytic treatment of the global dynamics in the thermodynamic limit.
Long time regimes will be considered only after the diverging number of degrees of freedom:

lim
t→∞

lim
N→∞

(58)

4.1 Dynamical equations

We start by giving a short description of steps that lead to the dynamic equations that couple linear response
and correlation function and fully characterise the evolution of the model in the N →∞ limit.

2When dealing with the numerical data we used a Fourier transform convention such that R(ω, t2) =
∑
k R(tk + t2, t2)eiωtk and

C(ω, t2) =
∑
k(C(tk + t2, t2) − q) cos(ωtk) with tk the discrete times on which we collect the data points. The Fourier transform of

the correlation is computed for tk > 0 only, taking advantage of the long-time stationarity property Cst(−t) = Cst(t). For this reason,
there is no factor 2 in the left-hand-side of the FDT in the frequency domain.
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4.1.1 The Schwinger-Dyson equations

In the N →∞ limit, the only relevant correlation and linear response functions are

Cab(t1, t2) = N−1
N∑
i=1

[〈sai (t1)sbi (t2)〉] , (59)

Cab(t1, 0) = N−1
N∑
i=1

[〈sai (t1)sbi (0)〉] , (60)

Rab(t1, t2) = N−1 δ

δhb(t2)

N∑
i=1

[〈sa(h)
i (t1)〉]

∣∣∣∣∣
h=0

, (61)

for t1, t2 > 0, where the infinitesimal perturbation h is linearly coupled to the spin H 7→ H − h
∑N
i=1 si at

time t2 and the upperscript (h) indicates that the configuration is measured after having applied the field h.
Since causality is respected, the linear response is non-zero only for t1 > t2. The square brackets denote here
and everywhere in the paper the average over quenched disorder. The angular brackets indicate the average
over thermal noise if the system is coupled to an environment, and over the initial conditions of the dynamics
sampled, say, with a probability distribution. When the coupling to the bath is set to zero, as we do in this
paper, the last average is the only one remaining in the angular brackets operation. The meaning of the indices
a, b is given in the next paragraph.

The dynamical equations starting from a random state are well-known and can be found in Refs. [71, 20, 72,
73]. They are usually derived from the dynamical Martin-Siggia-Rose-Janssen-deDominicis generating function.
The method has been modified to take into account the effect of equilibrium initial conditions in [74] and it
was applied to the relaxational p spin model in [75, 76]. The average over disorder now becomes non-trivial and
needs the use of the replica trick. The scripts a, b indicate then the replica indices a, b = 1, . . . , N . For initial
conditions in equilibrium the replica structure is replica symmetric (see Sec. 2.2 and [19]), with

Qaa = 1 and Qa6=b = qin (62)

and qin in the paramagnetic state while qin 6= 0 in the condensed phase. This structure has an effect on the
equation for the time-dependent correlation function that will keep the initial replica structure. There will be
two kinds of correlations with the initial condition

C1(t, 0) and Ca6=1(t, 0) , (63)

where we singled out the replica a = 1. Since there is no reason to think that the replicas that are not a = 1

behave differently, we follow the dynamics of
C2(t1, t2) (64)

as a representative of this group. The interpretation of the correlations C1(t1, t2) and C2(t1, 0) can be given in
terms of real replicas. The former is the self-correlation between the configuration of one replica of the system
{si}(t2) and the same replica evolved until a later time t1, {si}(t1). For this reason, we will eliminate the
subscript 1 and call C1(t1, t2) 7→ C(t1, t2) in most places hereafter. The latter is the correlation between one
replica of the system {σi}(0) at the initial time 0 and another replica of the system evolved until time t1 and
represented by {si}(t1). Although we could also write an evolution equation for the two-time C2(t1, t2) we do
not need it here since only C2(t1, 0) intervenes in the other equations.
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In the N →∞ limit one derives the dynamical equations that read

(
m∂2

t1 + z(t1)
)
R(t1, t2) = J2

∫ t1

t2

dt′R(t1, t
′)R(t′, t2) + δ(t1 − t2) , (65)

(
m∂2

t1 + z(t1)
)
C(t1, t2) = J2

∫ t1

0

dt′R(t1, t
′)C(t′, t2)

+J2

∫ t2

0

dt′R(t2, t
′)C(t1, t

′) +
JJ0

T ′

∑
a

Ca(t1, 0)Ca(t2, 0) , (66)

(
m∂2

t1 + z(t1)
)
Ca(t1, 0) = J2

∫ t1

0

dt′ R(t1, t
′)Ca(t′, 0) +

JJ0

T ′

∑
b

Cb(t1, 0)Qab , (67)

z(t1) = −m∂2
t1C(t1, t2)|

t2→t−1
+ 2J2

∫ t1

0

dt′R(t1, t
′)C(t1, t

′)

+
JJ0

T ′

∑
a

(Ca(t1, 0))2 . (68)

The border conditions are

C1(t1, 0) = C(t1, 0) implying C1(0, 0) = C(0, 0) = 1 ,

C2(0, 0) = Q1,2 implying C2(0, 0) = qin .
(69)

Note that the initial condition is not the same for all Cb(t1, 0). It is equal to 1 for b = 1 and equal to qin for
b 6= 1. One can check that these equations coincide with the ones in [75, 76] when inertia is neglected, p = 2 and
J = J0, and a coupling to a bath is introduced. With respect to the equations studied in [7], they correspond
to p = 2 and they have the extra ingredient of the influence of equilibrium initial conditions with a non-trivial
replica structure, allowing for condensed initial states in proper thermal equilibrium.

The sums over the replica indices appearing in Eqs. (66), (67) and (68) can be readily computed in the n→ 0

limit; they read

JJ0

T ′

∑
a

Ca(t1, 0)Ca(t2, 0) =
JJ0

T ′
[C1(t1, 0)C1(t2, 0) + (n− 1)C2(t1, 0)C2(t2, 0)]

→
n→0

JJ0

T ′
[C1(t1, 0)C1(t2, 0)− C2(t1, 0)C2(t2, 0)] , (70)

JJ0

T ′

∑
b

Cb(t1, 0)Q1b =
JJ0

T ′
[
C1(t1, 0) 1 + (n− 1)Cb(6=1)(t1, 0)qin

]
→
n→0

JJ0

T ′
[
Ca(t1, 0)− Cb(6=1)(t1, 0)qin

]
, (71)

JJ0

T ′

∑
b

Cb(t1, 0)Q(a6=1)b =
JJ0

T ′
[
C1(t1, 0)qin + C2(t1, 0) 1 + (n− 2)Cb(6=(1,2))(t1, 0)qin

]
→
n→0

JJ0

T ′
[qinC1(t1, 0) + (1− 2qin)C2(t1, 0)] . (72)

Consequently, the terms induced in the equation for C(t1, t2) and C2(t1, 0) are different.
With inertia and no coupled bath, the equal-time conditions are

C(t1, t1) = 1 ,

R(t1, t1) = 0 ,

∂t1C(t1, t2)|
t2→t−1

= ∂t1C(t1, t2)|
t2→t+1

= 0 ,

∂t1C2(t1, t2)|
t2→t−1

= ∂t1C2(t1, t2)|
t2→t+1

= 0 , (73)

∂t1C2(t1, 0)|t1→0+ = 0 ,

∂t1R(t1, t2)|
t2→t−1

=
1

m
,

R(t1, t2)|
t2→t+1

= 0 ,

for all times t1, t2 larger than or equal to 0+, when the dynamics start.
We found convenient to numerically integrate the integro-differential equations using an expression of the

Lagrange multiplier that trades the second-time derivative of the correlation function into the total conserved
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energy after the quench. Following the same steps explained in [7] we deduce

z(t1) = 2e(t1) + 4J2

∫ t1

0

dt′ R(t1, t
′)C(t1, t

′) +
2JJ0

T ′
[
C2(t1, 0)− C2

2 (t1, 0)
]
, (74)

where we used Eq. (70) evaluated at t1 = t2. It seems that we have simply traded z(t1) by e(t1). Indeed, taking
advantage of the fact that for an isolated system e(t1) = ef , a constant, the numerical solution of the evolution
equations becomes now easier since it does not involve the second time derivative of the correlation function. In
practice, in the numerical algorithm we fix the total energy ef to its post-quench value derived in Sec. 4.3, and
we then integrate the set of coupled integro-differential equations with a standard Runge-Kutta method.

In short, the set of equations that fully determine the evolution of the system from an initial condition in
canonical Boltzmann equilibrium at any temperature T ′ are(

m∂2
t1 + z(t1)

)
R(t1, t2) = δ(t1 − t2) + J2

∫ t1

t2

dt′R(t1, t
′)R(t′, t2) , (75)

(
m∂2

t1 + z(t1)
)
C(t1, t2) = J2

∫ t1

0

dt′R(t1, t
′)C(t′, t2) + J2

∫ t2

0

dt′R(t2, t
′)C(t1, t

′)

+
JJ0

T ′
[C(t1, 0)C(t2, 0)− C2(t1, 0)C2(t2, 0)] , (76)(

m∂2
t1 + z(t1)

)
C2(t1, 0) = J2

∫ t1

0

dt′ R(t1, t
′)C2(t′, 0) +

JJ0

T ′
[qinC(t1, 0) + (1− 2qin)C2(t1, 0)] , (77)

z(t1) = −m∂2
t1C(t1, t2)|

t2→t−1
+ 2J2

∫ t1

0

dt′R(t1, t
′)C(t1, t

′)

+
JJ0

T ′
[C2(t1, 0)− C2

2 (t1, 0)] . (78)

High and low temperature initial states are distinguished by qin = 0 for T ′ > J0, and qin = 1−T ′/J0 for T ′ < J0,
respectively. The equation for C(t1, 0) is just the one for C(t1, t2) evaluated at t2 = 0 so we do not write it
explicitly.

4.2 Constant energy dynamics

In order to ensure constant energy dynamics we set J = J0 and m = m0 in this Subsection. We verify that
the equations consistently conserve the equilibrium conditions. Moreover, we derive a number of properties of
the linear response function that will be useful in the analysis of the instantaneous quenches as well.

4.2.1 Consistency with equilibrium parameters

The equation for C2(t, 0) admits the solution C2(t1, 0) = qin = cst in the case in which no quench is performed.
Indeed, setting C2(t1, 0) = qin in Eq. (77) one has

z(t1)qin = J2qin

∫ t1

0

dt′R(t1, t
′) +

J2

T ′
[qinC(t1, 0) + (1− 2qin)qin] . (79)

This equation has the solution qin = 0, the one of the paramagnetic phase, and a non-vanishing qin 6= 0 solution
relevant in the ordered phase. Let us now focus on the case qin 6= 0. Using FDT, a property of equilibrium, the
integral can be performed, the contribution from t′ = 0 cancels the first term in the square brackets, and the
one from t′ = t1 combines with the second term in the square bracket; the ensuing equation simplifies to read

z(t1) =
2J2

T ′
(1− qin) = zf . (80)

Therefore, z(t1) is also a constant. The equation for z(t1), using FDT, becomes

z(t1) = T ′ +
J2

T ′
[C2(t1, t1)− C2(t1, 0)] +

J2

T ′
[C2(t1, 0)− q2

in]

= T ′ +
J2

T ′
(1− q2

in) = zf . (81)

The two equations yield the low-temperature values zf = 2J and qin = 1− T ′/J .
In equilibrium C2(t, 0) and z(t1) remain constant and equal to their initial values, qin and zf .
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4.2.2 The linear response in the frequency domain

Knowing that z(t1) remains constant in equilibrium, one can easily analyse the response equation in Fourier
space. The equation that determines its dynamical evolution is transformed into

R̂(ω) =
1

−mω2 + zf − Σ(ω)
. (82)

For this model Σ(ω) = J2 R̂(ω) and then

R̂(ω) =
1

2J2

[
(−mω2 + zf )±

√
(−mω2 + zf )2 − 4J2

]
. (83)

R̂(ω), and also R(t), are independent of temperature for T ′ < Tc = J while they depend on temperature through
zf for T ′ > Tc = J .

The terms under the square root can be more conveniently written as functions of the special values

mω2
± = zf ± 2J (84)

and the linear response is recast as

R̂(ω) =
1

2J2

[
−mω2 + zf ±m

√
(ω2
− − ω2)(ω2

+ − ω2)

]
. (85)

The imaginary and real parts of R̂(ω) are then

ImR̂(ω) =
1

2J2

{
−m

√
(ω2 − ω2

−)(ω2
+ − ω2) for ω− ≤ ω ≤ ω+

0 otherwise
(86)

ReR̂(ω) =
1

2J2


zf −mω2 −m

√
(ω2
− − ω2)(ω2

+ − ω2) for ω ≤ ω−
zf −mω2 for ω− ≤ ω ≤ ω+

zf −mω2 +m
√

(ω2 − ω2
−)(ω2 − ω2

+) for ω+ ≤ ω
(87)

(note the unusual choice of sign for the imaginary part that we adopted.) In terms of the physical parameters,
R̂(ω) is real for | − mω2 + zf | > 2J . In the low temperature phase, since zf = 2J , this implies ω− = 0 and
the imaginary part of the linear response is gapless. One can easily check that |R̂(ω)|2 = 1/J2 in the interval
ω− ≤ ω ≤ ω+. Away from this interval the modulus of the linear response is a complicated function of the
frequency.

The zero frequency linear response

R̂(ω = 0) =

∫ ∞
0

dτ R(τ) =
1

2J2

[
zf ±

√
z2
f − 4J2

]
, (88)

with τ a time delay, must be a real quantity and this form is a manifestation of the condition zf ≥ 2J . The
static susceptibility is then given by

χst =

{
1/J for T ′ < Tc = J

1/T ′ for T ′ > Tc = J
(89)

with the result in the second line being ensured by the choice of minus sign in front of the square root. The
frequency-dependent linear response can then be transformed back to real-time and thus get its full time-
evolution.

In the lower limit of the spectrum the imaginary part of the linear response goes as

ImR̂(ω− + ε) ∼


− 1

J

√
m

J
ε at T < Tc

− (2mJω−)1/2

J2

√
ε at T > Tc

as ε→ 0+ (90)

while in the upper limit it vanishes as

ImR̂(ω+ − ε) ∼ −
(2mJω+)1/2

J2

√
ε as ε→ 0+ (91)

with the corresponding ω± at T > Tc or T < Tc.
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4.2.3 The correlation functions

The FDT in the frequency domain ImR̂(ω) = −βωĈ(ω) implies that Ĉ(ω) should vanish in the same frequency
intervals in which the linear response is real. In the ω = 0 case the linear response is real and the FDT as written
above only imposes that Ĉ(ω = 0) =

∫∞
−∞ dtC(t) must be finite. One has to bear in mind that in the cases in

which the correlation function approaches a non-vanishing constant q asymptotically the Fourier transform to
be computed is the one of Cst(t1− t2) = C(t1− t2)− q with respect to t1− t2 and the integral should then yield
Cst(ω = 0) =

∫∞
−∞ dtCst(t) = 1− q; more details are given in App. A.

Consistently with the FDT constraints discussed in the previous paragraph, the time-dependent equation for
Cst(t1 − t2) = C(t1 − t2) − qin can be treated following the steps explained in [9] and App. A.1.3 (that do not
assume FDT) and one finds

Cst(ω) = J2Cst(ω)|R̂(ω)|2 . (92)

This equation has two solutions, either Cst(ω) = 0 or |R̂(ω)|2 = 1/J2. The latter holds for frequencies in the
interval ω ∈ [ω−, ω+]. Outside of this interval Cst(ω) must vanish.

By taking the derivative of Eq. (76) with respect to t2 one readily checks that it equals Eq. (75) if the FDT
between R and C is satisfied for all times and ∂t2C2(t2, 0) = 0 implying

C2(t2, 0) = qin . (93)

This last condition is a property of equilibrium as we have already discussed.
Having established that C2 is a constant, Eq. (77) enforces qin = 0, the high temperature initial value, or

zf =
J2

T ′
[1− C(t1, 0)] +

J2

T ′
[C(t1, 0) + (1− 2qin)] = 2J , (94)

the low temperature Lagrange multiplier.
Concerning the correlation function C(t1, 0), we write it as C(t1, 0) = Cst(t1, 0) + q0 allowing for a non-

vanishing asymptotic value, q0, and taking Cst(t1, 0) such that it vanishes in the long t1 limit. The equation (76)
evaluated at t2 = 0 is then rewritten as(

m∂2
t1 + zf

)
[Cst(t1, 0) + q0] = J2

∫ t1

0

dt′ R(t1, t
′)[Cst(t

′, 0) + q0] +
J2

T ′
[Cst(t1, 0) + q0 − q2

in] . (95)

This equation has three terms that do not depend on Cst(t1, 0) explicitly

zfq0 − J2q0 lim
t1→∞

∫ t1

0

dt′ R(t1, t
′)− J2

T ′
(q0 − q2

in) (96)

and their sum should vanish in the long t1 limit. It trivially does for high temperature initial states since
q0 = qin = 0 and, in equilibrium at low temperatures, we can assume q0 = qin, use FDT, and find

zf =
2J2

T ′
(1− qin) = 2J (97)

confirming the assumption q0 = qin. The remaining equation fixes the time-dependence of C(t1, 0).

4.3 The energy before and after a quench

For the sake of completeness, we compute the energy variation due to a simultaneous change of the mass
m0 → m and the variance of the interaction strengths J0 → J . In the applications and numerical tests we will
focus on the latter changes only.

The kinetic energy density before the quench is

ekin(0−) =
1

N

N∑
i=1

m0

2
(ṡi(0

−))2 =
T ′

2
, (98)

the last equality being due to the fact that we take equilibrium initial conditions at temperature T ′. The
potential energy density before the quench depends on the system being paramagnetic or condensed initially:

epot(0
−) = − J2

0

2T ′
[
1− q2

in(T ′/J0)
]

= − J2
0

2T ′

[
1−

(
1− T ′

J0

)2
]

condensed

epot(0
−) = − J2

0

2T ′
paramagnetic

(99)
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The kinetic energy density right after the quench is

ekin(0+) =
1

N

N∑
i=1

m

2
(ṡi(0

+))2 (100)

and, since the velocities do not change in the infinitesimal interval taking from 0− to 0+,

ekin(0+) =
1

N

N∑
i=1

m

2
(ṡi(0

+))2 =
1

N

N∑
i=1

m

2
(ṡi(0

−))2 =
m

m0

T ′

2
. (101)

The post-quench potential energy density can be estimated from the relation between the Lagrange multiplier
and the energy

epot(0
+) = −1

2
z(0+) + ekin(0+) (102)

and the equation for z(t1) (see Sec. 4.1)

z(t1) = −m lim
t2→t−1

∂2
t1C(t1, t2) +

JJ0

T ′
[C2(t1, 0)− C2

2 (t1, 0)] . (103)

Thus
epot(0

+) = −JJ0

2T ′
lim

t1→0+
[C2(t1, 0)− C2

2 (t1, 0)] . (104)

Assuming that the spin configuration did not change between the infinitesimal time step going from 0 to 0+,

epot(0
+) = −JJ0

2T ′

[
1−

(
1− T ′

J0

)2
]

condensed

epot(0
+) = −JJ0

2T ′
paramagnetic

(105)

All the values just derived imply the changes in the total energy

∆etot = ∆ekin + ∆epot =

(
m

m0
− 1

)
T ′

2
− J0(J − J0)

2T ′

[
1−

(
1− T ′

J0

)2
]
,

∆etot = ∆ekin + ∆epot =

(
m

m0
− 1

)
T ′

2
− J0(J − J0)

2T ′
,

(106)

respectively.
We will concentrate on potential energy quenches only, and we will trace the phase diagram using the

parameters

y =
T ′

J0
x =

J

J0
. (107)

x > 1 corresponds to energy extraction and x < 1 to energy injection. We will show that the parameter space
is split in several sectors displaying fundamentally different dynamics.

4.4 Asymptotic analysis of the quench dynamics

We now study the full set of equations (75)-(78), derived in the N →∞ limit, that couple the correlation C
and linear response R functions. Using a number of hypotheses that we carefully list below, and that are not
always satisfied by the actual evolution found with the numerical integration, we deduce some properties of the
Lagrange multiplier, linear response and correlation function, in the long time limit. In this Section we state the
assumptions, we summarise the results, and we leave most details of how these are derived to App. A.

Consider the system in equilibrium at T ′ with parameters J0, m0 and let it evolve in isolation with parameters
J, m. We will assume that the dynamics approach a long times limit in which one-time quantities, such as the
Lagrange multiplier, reach a constant. Later we will further suppose that (in most cases) the correlation function
becomes, itself, invariant under time-translations. Finally, we will explore in which circumstances a fluctuation-
dissipation theorem (FDT) can establish with respect to a temperature Tf for all time-delays, in stationary
cases, or for correlation values that are in the stationary regime, when we look for ageing solutions.

These assumptions are not obvious and, as we will show analytically in some cases and numerically in the
next Section, do not apply to all quenches. Still, we find useful to explore their consequences and derive from
them a set of relations between the control parameters for which special behaviour arises, that we will later put
to the numerical test.
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4.4.1 Asymptotic values in a steady state

Let us assume that the limiting value of the Lagrange multiplier is a constant

lim
t1→∞

z(t1) = zf . (108)

The limit of the correlation function can be zero if the system decorrelates completely at sufficiently long
time-delays or non-zero if it remains within a confined state. We therefore call

q = lim
t1−t2→∞

lim
t2→∞

C(t1, t2) (109)

the asymptotic value of the full two time correlation, or its stationary part in possible ageing cases, after the
quench. Similarly,

q0 = lim
t1→∞

C(t1, 0) , (110)

q2 = lim
t1→∞

C2(t1, 0) . (111)

4.4.2 The linear response function

The equation for the linear response function does not depend explicitly on the pre-quench parameters, it
does only on the post-quench mass m and interaction strength J . (An implicit dependence on the initial state
is not excluded, since the value taken by the Lagrange multiplier may depend on it.) The analysis that we
developed for the constant energy dynamics applies to the sudden quench case too. The solution of the response
equation in Fourier space yields

R̂(ω) =
1

2J2

[
(−mω2 + zf )±

√
(−mω2 + zf )2 − 4J2

]
. (112)

with the zero frequency value

R̂(ω = 0) =
1

2J2

(
zf −

√
z2
f − 4J2

)
. (113)

From the numerical solution of the full equations that we will present in Sec. 6 we infer that for m = m0 and
J 6= J0

zf =

{
2J x > y ,

T ′ + J2/T ′ x < y ,
(114)

with, we recall, x = J/J0 and y = T ′/J0. Replacing in Eq. (113) one notices that the minus sign has to be
selected for x < y at low frequency and

χst ≡ R̂(ω = 0) =

{
1/T ′ x < y ,

1/J x > y ,
(115)

where we called χst, as a static susceptibility, the zero frequency response. After the quench ImR̂(ω) is non-zero
in a finite interval of frequencies [ω−, ω+] with mω2

± = (zf ± 2J) as in Eq. (84) and zf taking the values in
Eq. (114). Therefore, ImR̂(ω) is gapless for x > y and it is gapped for x < y.

These results are exact and do not assume anything apart from a long-time limit in which zf is time-
independent and given by Eq. (114). We have verified them with the complete numerical solution of the N →∞
dynamic equations, see Sec. 6, on all sectors of the phase diagram. We can now Fourier back to real time to get
the full time dependence of the linear response function. In the numerical Section we will compare this functional
form, named Rst, to the outcome of the full integration of the dynamic equations.

4.4.3 The asymptotic kinetic and potential energies

From the relation between z and the energies, the conservation of energy, and Birkhoff’s theorem,

z = 2ekin − 2epot , etot(0
+) = ekin + epot , (116)
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where the overlines represent a long-time average defined in Eq. (53). Note that the Lagrange multiplier takes
the form of an action density, as a difference between kinetic and potential energy densities.

Using these relations one derives the parameter dependence of the kinetic and potential energies in the four
relevant regions of the phase diagram parametrised by x = J/J0 and y = T ′/J0.

(I) y > 1 and x < y (qin = 0, zf = T ′ + J2/T ′, χst = 1/T ′)

4ekin = −JJ0

T ′
+ 2T ′ +

J2

T ′
= J0

(
−x
y

+ 2y +
x2

y

)
4epot = −JJ0

T ′
− J2

T ′
= J0

(
−x
y
− x2

y

) (117)

(II) y > 1 and x > y (qin = 0, zf = 2J , χst = 1/J)

4ekin = −JJ0

T ′
+ T ′ + 2J = J0

(
−x
y

+ y + 2x

)
4epot = −JJ0

T ′
+ T ′ − 2J = J0

(
−x
y

+ y − 2x

) (118)

(III) y < 1 and x > y (qin 6= 0, zf = 2J , χst = 1/J)

4ekin = T ′ +
T ′J

J0
= J0 (y + yx)

4epot = T ′ +
T ′J

J0
− 4J = J0 (y + yx− 4x)

(119)

(IV) y < 1 and x < y (qin 6= 0, zf = T ′ + J2/T ′, χst = 1/T ′)

4ekin =
JT ′

J0
− 2J + 2T ′ +

J2

T ′
= J0

(
xy − 2x+ 2y +

x2

y

)
4epot =

JT ′

J0
− 2J − J2

T ′
= J0

(
xy − 2x− x2

y

) (120)

The minimum potential energy density, epot = −J is realised for T ′ = 0 in Sector III.
We stress that we have found these results without using FDT and they can therefore hold out of thermal

equilibrium. We will investigate later which other conditions impose the use of FDT, a strong Gibbs-Boltzmann
equilibrium condition.

4.4.4 Kinetic temperature from the kinetic energy density

We can identify a kinetic temperature from the kinetic energy densities derived in the previous Subsection
by simply imposing Tkin = 2ekin. This operation leads to

T
(I)
kin = −JJ0

2T ′
+ T ′ +

J2

2T ′
, T

(II)
kin = −JJ0

2T ′
+
T ′

2
+ J ,

T
(III)
kin =

T ′

2

(
1 +

J

J0

)
, T

(IV)
kin =

JT ′

2J0
− J + T ′ +

J2

2T ′
,

(121)

in the four Sectors of the phase diagram distinguished in the previous Subsection.

4.4.5 Final temperature under thermal equilibrium assumption

In App. A.3.1 we explain how we can exploit the conservation of the total energy, under the assumption that
the asymptotic kinetic and potential energies take the form of Gibbs-Boltzmann equilibrium paramagnetic and
condensed equilibrium phases at a single temperature Tf to fix its value. This means that we require 2ekin = Tf

and

epot =


− J2

2Tf
paramagnetic or

− J2

2Tf
(1− q2) condensed or two-step ,

(122)
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with q = 1− Tf/J . For x > y we find

Tf
J0

=



J2

J0

[
J − T ′

2
− JJ0

2T ′

]−1

for 1 ≤ y (IIa) ,

J

J0
+

T ′

2J0
− J

2T ′
= x+

y

2
− x

2y
for 1 ≤ y (IIb) ,

T ′

2J0

(
1 +

J

J0

)
=
y

2
(1 + x) for y ≤ 1 (III) .

(123)

The roman numbers between parenthesis refer to the cases listed in Eqs. (117)-(120) and to the four sectors in the
phase diagram in Fig. 5. The difference between (IIa) and (IIb) is that in the first case we used a paramagnetic
potential energy and in the second case a condensed one at Tf . The values for x < y are given in App. A.3.1.
One can check that in the cases (IIb) and (III) Tf = Tkin, the kinetic temperatures given in Eq. (121). Instead,
final and kinetic temperatures do not coincide in (IIa) nor in (I) and (IV). This fact excludes the possibility of
reaching Gibbs-Boltzmann equilibrium in (I) and (IV), that is, for x < y and it leaves the possibility open in
(II) and (III) at the price of considering a potential energy density with a non-vanishing q = 1− Tf/J .

Limits of validity

The two bounds
0 ≤ Tf ≤ J (124)

serve to find special curves on the phase diagram. The first bound is natural since we do not want to have a
negative kinetic energy. The second one ensures that q ≥ 0. The implications of these bounds, that are examined
in App. A.3.2, are

y ≤


√
x for y ≥ 1 ,

2x

x+ 1
for y ≤ 1 .

(125)

They mean that an asymptotic state with a single temperature Tf , or a double regime with temperature Tf for
C : 1 → q and Teff → ∞ for C : q → 0, could only exist below the piecewise curve y(x). One can simply check
that the piece for y ≤ 1 lies in Sector IV, since y < x, and it is therefore irrelevant given that we have already
shown that there cannot be a single temperature scenario in this Sector. The limit then moves to x = y for
y < 1. Parameters on the special curve y =

√
x will play a special role, as we will show below.

Particular values

For the moment, a single temperature scenario for the global observables in the N →∞ limit seems possible
for y < 1 and x > y (III), and below the curve y =

√
x for y > 1 in II. It is instructive to work out the limiting

values of Tf/J0 and q = 1− Tf/J on the borders of the region y < 1 and y < x (III) of the phase diagram, and
the no-quench case x = 1:

Tf
J0

=



0 y = 0
x(x+ 1)

2
x = y

x+ y

2
y = 1

y x = 1

q =



1 y = 0
1− x

2
x = y

x− 1

2x
y = 1

1− y x = 1

(III) (126)

These values match at x = y = 1. q is larger than zero on the lines x = y and y = 1 that mark the end of what
we call Sector III. Moreover, the approximate asymptotic analysis of the mode dynamics of the finite N system
will lead to Tµ = Tf in Sector III, see Eq. (183).

On the limiting curve in Sector II, y =
√
x for y > 1, Tf = J and q = 0.

As one could have intuitively expected, Tf > T ′ for energy injection quenches (x < 1) and Tf < T ′ for energy
extraction quenches (x > 1).
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4.4.6 Results under FDT at a single temperature

We now add one assumption to the analysis: that the FDT, at the single temperature Tf , relates the linear
response to the correlation

R(t1 − t2) = − 1

Tf

dC(t1 − t2)

d(t1 − t2)
θ(t1 − t2) . (127)

Static susceptibility

The values of the zero frequency linear response

R̂(ω = 0) =

∫ ∞
0

dτ R(τ) =
1

Tf
(1− q) , (128)

where one must recall that τ is a time-difference, force

R̂(ω = 0) =


1/T ′ for x < y ⇒ Tf = T ′ if q = 0 (I) & (IV)
1/J for x > y ⇒ Tf = J if q = 0 (IIa)
1/J for x > y ⇒ Tf = J/(1− q) if q 6= 0 (IIb) & (III)

(129)

The result in the last line, valid for (IIb) and (III), does not put any additional constraint on Tf . Instead, the other
conditions in the first two lines are incompatible with the expressions imposed by the energetic considerations.
They corroborate the impossibility of having a single Tf in (I) and (IV) or with q = 0 in (II).

Limits of validity of the single temperature scenario

As explained above and in App. A.3.3, the consistency between the static susceptibility values and the Tf
derived from conservation of energy impose that FDT with a single temperature may only hold for x > y and
y < 1 (sector III) or below the special curve y =

√
x, for y > 1 (lying inside sector II). Whether this is realised

or not needs to be investigated numerically.

4.4.7 Two step (possibly ageing) Ansatz

One can also look for a two step solution with similar characteristics to the ageing one found for dissipative
dynamics [44] and summarised in Sec. 2.3. Asking for the relation between correlation and linear response in
Eq. (127) to hold in a stationary regime of relaxation in which C decays from 1 to q, and that the effective
temperature Teff characterising the second regime of decay from q to 0 diverges, one recovers

zf = 2J , χst =
1

J
, q = 1− Tf

J
and q0 = q2 = 0 (130)

with the same Tf and q 6= 0 as in Eq. (123).

4.4.8 The correlation function

From the analysis of the equation ruling the two-time correlation function, assuming stationarity and hence
a dependence on time-difference only, one deduces (the details of the derivation are given in App. A.1.3, see
also [9] for a general treatment)

Ĉst(ω) = J2Ĉst(ω)|R̂(ω)|2 (131)

where Ĉst(ω) is the Fourier transform of the time-varying part (subtracting the possible non-vanishing asymptotic
value q). Note that the relation between the correlation and the linear response is the same as the one that we
derived in the constant energy no-quench problem. It implies

Ĉst(ω) 6= 0 and |R̂(ω)|2 = 1/J2 or Ĉst(ω) = 0 , (132)

independently of the control parameters. Below we check numerically that these relations are satisfied in various
quenches. In particular, from the analytic form of R̂(ω) one can easily see that |R̂(ω)|2 = 1/J2 in the frequency
interval in which the linear response is complex.

Importantly enough, we cannot yield an explicit analytic form of Ĉ(ω) since it is factorised on both sides of
the identity (131). We are forced to go back to the full set of dynamic equations and solve them numerically to
get insight on the behaviour of C(t1, t2).
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4.4.9 Numerical results preview

We will see that a state with a single Tf characterising the fluctuation-dissipation relation is reached numer-
ically in the following two cases only:

(1) the dynamics are run at constant parameters (no quench), x = 1;
(2) the special relation y =

√
x between parameters holds and y > 1 (within sector II).

In all other cases no equilibrium results à la Gibbs-Boltzmann are found for the global observables (correlation
functions, linear response functions, kinetic and potential energies) but a different statistical description, of a
generalised kind, should be adopted. In particular, in Sector III where the conditions derived from the energy
conservation and static susceptibility allowed for a single temperature scenario, the full solution of the complete
set of questions will prove that this is not realised. A detailed explanation is given in the numerical section of
the paper and in the analysis of the N − 1 integrals of motion presented in Sec. 7.

We recall that the p ≥ 3 strongly interacting case behaves very differently [7]. On the one hand, equilibrium
towards a proper paramagnetic state, and within confining metastable states, were reached in two sectors of its
dynamic phase diagram. On the other hand, an ageing asymptotic state in a tuned regime of parameters was
also found for more than two spin interactions in the potential energy. In the p = 2 integrable model we do not
find an ageing asymptotic state. Moreover, Gibbs-Boltzmann equilibrium is achieved in the two very particular
cases listed above only.

5 Analytic results for the dynamics of the finite size system
In this Section we describe how the finite system size dynamics can be solved by using a convenient basis in

which the evolution becomes the one of harmonic oscillators coupled only through the Lagrange multiplier. We
show that these oscillators decouple under the assumption z(t)→ zf allowing for a simple approximate solution
of the problem that can, however, be relevant for N →∞ only. We then explain a way to numerically solve the
dynamics for finite N .

5.1 Newton equations in a rotated basis

Take a system with finite N . The post-quench matrix Jij has µ = 1, ..., N eigenmodes with eigenvalues λµ.
If we denote

sµ(t) = ~s(t) · ~vµ (133)

the projection of the spin vector in the direction of the µ-th eigenvector of Jij , the N rotated equations of motion
read

ms̈µ(t) + (z(t)− λµ)sµ(t) = 0 . (134)

This set of equations has to be complemented with the initial conditions sµ(0) and ṡµ(0). They are very similar
to the equations for a parametric oscillator, the difference being that, in our case, the time-dependent frequency
depends on the variables via the Lagrange multiplier. Furthermore, they are identical to the equations of the
Neumann’s integrable classical system [15], see Sec. 3.2.

Once the equations of motion for the sµ are solved, we can recover the trajectories for ~s using ~s(t) =∑
µ sµ(t)~vµ. In particular, the correlation function is given by

CJ(t1, t2) =
1

N

∑
µ

〈sµ(t1)sµ(t2)〉 , (135)

where the subscript J means that the result depends, in principle, on the interaction matrix chosen, and the
angular brackets represent an average over initial conditions. One could then perform the disorder average or
analyse the self-averageness properties of the correlation in different time regimes. The J dependence should
disappear in the N →∞ limit.

Since we are interested in an uniform interaction quench, it is easy to see that

λ(0)
µ =

J0

J
λµ . (136)
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5.2 Behaviour under stationary conditions

Let us assume that the system reaches stationarity and that the Lagrange multiplier approaches a constant

lim
t→∞

z(t) = zf . (137)

In order to simplify the notation, in the rest of this section we will measure time with respect to a reference
time tst for which the stationary regime for z(t) has already been established. (We insist upon the fact that this
assumption can only hold for N →∞.)

The equation of motion of each mode becomes

ms̈µ(t) + (zf − λµ)sµ(t) = 0 (138)

and can be thought of as Newton’s equation for the mode Hamiltonian

Hµ =
1

2
mṡ2

µ +
1

2
mω2

µs
2
µ (139)

with ω2
µ ≡ (zf − λµ)/m. This equation has three types of solutions depending on the sign of ω2

µ:

ω2
µ > 0 sµ(t) = sµ(tst) cos [ωµ(t− tst)] +

ṡµ(tst)

ωµ
sin [ωµ(t− tst)] ,

ω2
µ = 0 sµ(t) = sµ(tst) + ṡµ(tst)(t− tst) ,

ω2
µ < 0 sµ(t) = 1

2

(
sµ(tst)− ṡµ(tst)

|ωµ|

)
e−|ωµ|(t−tst) + 1

2

(
sµ(tst) +

ṡµ(tst)

|ωµ|

)
e|ωµ|(t−tst) ,

(140)

that is to say, oscillatory solutions with constant amplitude in the first case, diffusive behaviour in the interme-
diate case and exponentially diverging solutions in the last case. We insist upon the fact that the initial time
here is taken to be tst the time needed to reach the stationary state.

If the Lagrange multiplier approaches, then, a value that is larger than λN , all modes oscillate indefinitely.
In Gibbs-Boltzmann equilibrium in the PM phase, zeq > λN and such a fully oscillating behaviour is expected.
In equilibrium in the low temperature condensed phase zeq = λmax = λN for N → ∞ and the µ = N mode
should grow linearly in time while all other modes should oscillate with frequency ωµ =

√
(zf − λµ)/m. The

amplitude of each mode is determined by the initial conditions, that are actually matching conditions at time
tst, when stationarity is reached in this case. (Recall that λN−1 is at distance N−2/3 from λN [23]. This means
that, under the assumption zf → λN , zf −λN−1 = λN −λN−1 ' N−2/3 and there will be almost diffusive modes
close to the largest one in the large N limit.) However, the simulations at finite N show that for finite N , zf
is always greater than λN and all modes are oscillatory. For “condensed-type" dynamics zf will still be greater
than λN , although very close to it. The diffusive behaviour of the Nth mode (in the N → ∞ limit) would be
obtained as the limit of zero frequency of a (finite N) oscillating Nth mode.

5.3 Mode observables

At variance with the N → ∞ approach, the finite size study allows to access the details of the dynamics of
each mode. In this section we define some mode-observables that will provide valuable information. Of particular
interest are the mode energies, which can be defined as

εkin
µ (t) =

m

2
〈ṡ2
µ(t)〉 ,

εpot
µ (t) =

1

2
(z(t)− λµ)〈s2

µ(t)〉 ,

εtot
µ (t) = ekin

µ (t) + epot
µ (t) .

(141)

Note that in the analysis of the N → ∞ model the potential energy density is epot = −1/(2N)
∑
µ λµ〈 s

2
µ 〉

without the term proportional to z(t). For this reason we use here the different symbol εpot
µ for the mode

potential energies that include the term proportional to z(t). The values of these energies at t = 0− are given
by the fact that all modes are in equilibrium at the same temperature:

εtot
µ (0−) = 2εkin

µ (0−) = 2εpot
µ (0−) = T ′ . (142)
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Immediately after the quench, they are

εkin
µ (0+) =

m

2
〈ṡ2
µ(0+)〉 , εpot

µ (0+) =
T ′

2

z(0+)− λµ
z(0−)− λ(0)

µ

. (143)

In order to study the eventual thermalisation of the system, we can define an effective time dependent mode
temperature through the total mode energy

Tµ(t) ≡ εtot
µ (t) (144)

based on the fact that the modes are (quasi) decoupled. Whenever the system enters a stationary regime in
which z(t) is constant, see Section 5.2, the mode temperatures Tµ are independent of time, since the system
behaves as a collection of non-coupled harmonic oscillators. We can also define mode temperatures using the
kinetic and potential mode energies that oscillate around their mean if we take their time-average [67]

ekin,pot
µ = lim

1�τ

1

τ

∫ tst+τ

tst

dt′ ekin,pot
µ (t′) (145)

and propose
T kin,pot
µ ≡ 2εkin,pot

µ . (146)

In the stationary regime, as shown in Section 5.2, the different mode temperatures should verify

T kin
µ = T pot

µ . (147)

Other useful observables are the time-delayed mode correlation functions

Cµ(t1, t2) = 〈sµ(t1)sµ(t2)〉 (148)

and the mode linear response functions

Rµ(t1, t2) =
δ〈sµ(t1)〉h
δhµ(t2)

∣∣∣∣
h=0

(149)

that is defined and measured as follows. If we add an external field hµ linearly coupled to each mode sµ, the
equations of motion are modified into

ms̈µ + (z(t)− λµ)sµ − hµ = 0 (150)

and its solution reads
s(inhom)
µ (t) = s(hom)

µ (t) + sPµ (t) , (151)

where s(hom)
µ (t) is the solution to the Newton equation without the external field and sPµ (t) is a particular solution

of the inhomogeneous problem with initial condition sPµ (0) = 0 and ṡPµ (0) = 0. The linear response function
Rµ(t1, t2) ≡ δsµ(t1)/δhµ(t2)|h=0 of the mode µ can be defined equivalently through

sPµ (t1) =

∫ t1

0

dt2 Rµ(t1, t2)hµ(t2) . (152)

In practice, to measure the linear response function numerically we apply a small external field localised in
time hµ(t) = h0δ(t − t2) and we solve the inhomogeneous problem to obtain s

(inhom)
µ (t). Using Eq. (152) we

obtain the linear response as

Rµ(t1, t2) =
s

(inhom)
µ (t1)− s(hom)

µ (t1)

h0
, (153)

where s(hom)
µ (t1) must have been calculated independently. In thermal equilibrium the linear response and

correlation function are related by the fluctuation dissipation relation,

Rµ(t1, t2) =
1

Tµ
∂t2Cµ(t1, t2)θ(t1 − t2) . (154)

Whether the time-evolving correlation and linear response satisfy this relation, whether the mode temperatures
are the same as the ones obtained from the energy characteristics of the modes and, finally, whether they all
take the same value, are issues that we will explore.
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5.4 Kinetic and potential mode energies in the stationary state

As already mentioned, in a steady state, z(t)→ zf , the modes kinetic and potential energies are

εkin
µ (t) =

1

2
mṡ2

µ(t) , εpot
µ (t) =

1

2
mω2

µs
2
µ(t) . (155)

Clearly, neither the kinetic nor the potential mode energies are constant, but, in the steady state limit the
sum of the two, that is to say the total mode energy, is

εkin
µ (t) + εpot

µ (t) = εkin
µ (tst) + εpot

µ (tst) ≡ εtot
µ , (156)

with tst the time at which the steady state is established and t > tst.
As expected from Birkhoff’s theorem [67], the long-time averages, say taken after tst, should be constants

and one can expect them to be equal to half the total energy

εkin
µ =

1

2
εtot
µ =

1

2
m

[
1

2
ω2
µs

2
µ(tst) +

1

2
ṡ2
µ(tst)

]
,

εpot
µ =

1

2
εtot
µ =

1

2
mω2

µ

[
1

2
s2
µ(tst) +

1

2

ṡ2
µ(tst)

ω2
µ

]
.

(157)

(In practice, the average over a few periods is enough to obtain the constant value.) If one now associates a
temperature to these values, arguing equipartition of quadratic degrees of freedom, one has

Tµ = 2εkin
µ = 2εpot

µ = εtot
µ . (158)

The mode temperatures depend on the averages at the end of the transient, and the mode frequency Ω2
fµ that

itself depends on the asymptotic limit of the Lagrange multiplier zf and the eigenvalue λµ.
In the argument above we implicitly assumed that ω2

µ does not vanish. The case µ = N is tricky. If one
naively sets ω2

µ to zero from the outset 2εpot
N = ω2

µ〈s2
N 〉 apparently vanishes. The correct way of treating the

largest mode is to remember that the projection on the largest mode condenses and that 〈s2
N 〉 is proportional

to N . This will ensure that limN�1〈s2
N 〉 ∝ N , in such a way that limN→∞ ω

2
µ〈s2

N 〉 = 2εkin
µ , similarly to what

happens in equilibrium, where 〈s2
N 〉 = qinN and the Lagrange multiplier is such that (zf − λN )qinN = T ′.

We will see in the next Sections that, in some cases, the scenario described in this Section is actually realised
by the dynamics. Which are the quenches in which such a behaviour is observed will be determined by the
complete solution of Newton’s equations with the methods that we will now describe.

5.5 Initial conditions: equilibrium averages with finite N

In this section we address the calculation of equilibrium averages at finite N in order to provide suitable
initial conditions for the numerical integration of the mode dynamics explained in Sec. 5.8.

If we were to naively integrate the mode equations, we would need to draw initial vectors, ~s(0) = (s1, . . . , sN )

and ~̇s(0) = (ṡ1, . . . , ṡN ), mimicking an initial thermal state at finite temperature, be it T ′ > Tc = J0 or
T ′ < Tc = J0, for a given realisation of the N ×N interaction matrix. Averages over these initial states of the
interesting observables should then be computed. This method is computationally expensive as a large number
of initial state should be considered to get smooth and reliable results. Instead, the numerical method that
we will explain in Sec. 5.8 is such that only the averages 〈 s2

µ 〉eq and 〈 ṡ2
µ 〉eq are needed as input for the initial

conditions. We then focus on determining these averages in a finite size system in equilibrium.
The canonical equilibrium probability density of the configuration {pµ = mṡµ, sµ} at temperature T ′, for a

given realization of disorder, is

PGB({pµ, sµ}) =
1

Z
exp

[
− 1

T ′

∑
µ

p2
µ

2m
− 1

T ′

∑
µ

(z(N)
eq − λ(0)

µ )s2
µ

]
, (159)

with Z the partition function. The statistical averages are computed as integrals over this measure. The integrals
over pµ range from −∞ to ∞. The quadratic averages of the velocities are thus simply given by

〈 ṡ2
µ 〉eq =

T ′

m
∀µ, N , (160)
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just as for the infinite N case, and the initial conditions will be 〈 ṡ2
µ(0+) 〉 = 〈 ṡ2

µ 〉eq.
As long as the equilibrium value of the Lagrange multiplier be strictly larger than the maximum eigenvalue,

z(N)
eq > λ(0)

max , (161)

the weight of the coordinates sµ are well-defined independent Gaussian factors. We will see that the self-consistent
solution complies with this bound. Relying on the spherical constraint being imposed by the Lagrange multiplier,
we extend the sµ integrals to ±∞ and

〈 s2
µ 〉eq =

T ′

z
(N)
eq − λ(0)

µ

∀µ,N . (162)

The difference between the two equilibrium phases will be codified in the value of z(N)
eq , which can be obtained

as the solution of the spherical constraint equation

N∑
µ=1

〈s2
µ〉eq =

N∑
µ=1

T ′

z
(N)
eq − λ(0)

µ

= N . (163)

We solved this equation numerically to determine z(N)
eq and we found that the solution turns out to be always

greater than λ
(0)
max, for any value of the temperature and finite N . In Fig. 1 (a) we show z

(N)
eq as a function

of temperature for three values of N and a single realisation of the random matrix in each case. At high
temperatures all the curves collapse (on the scale of the figure) on the paramagnetic curve zeq = T ′ + J2

0/T
′,

irrespective of the system size. At low temperatures (inset), z(N)
eq is always larger than λ(0)

max and, as expected,
the difference between them decreases with system size.

Once the finite size Lagrange multiplier is obtained, we replace it in Eq. (162) to obtain the initial conditions
〈 s2
µ(0+) 〉 = 〈 s2

µ 〉eq for the mode dynamics.
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Figure 1: Equilibrium dynamics of the finite N system. (a) Equilibrium Lagrange multiplier at finite N . Solution
to Eq. (163) as a function of temperature using one particular realisation of disorder for each size. The non-monotonic N
dependence of the plateau is of the order of magnitude of the variation with N of the largest eigenvalue. Inset: difference
between the Lagrange multiplier and the maximum eigenvalue of the interaction matrix in the condensed region as a function
of temperature. The trend is now monotonic in N . (b) System size scaling of the Lagrange multiplier in the condensed
phase. Difference between the Lagrange multiplier, as obtained from the solution to Eq. (163), and the maximum eigenvalue
of the interaction matrix as a function of 1/N for different system sizes, using one particular realization of disorder for each
size. The dashed lines are T ′/(Nqin), with qin = 1− T ′/J0 the value of the self-overlap in the N →∞ limit.

To gain insight into the scaling with the system size, in Fig. 1 (b) we plot the difference between z(N)
eq and

λ
(0)
max for temperatures in the condensed phase as a function of 1/N . The straight dashed lines have slope T ′/qin,

where qin = 1−T ′/J0 is the N →∞ value of the self-overlap. For temperatures sufficiently below the transition,
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the finite size data, obtained for one particular realisation of the random matrix Jij , follow the infinite size
results for all system sizes analysed. For temperatures close to the transition, there appear deviations for the
smallest system sizes (largest 1/N). In conclusion, we find that for large system sizes or temperatures not too
close to the transition, the solution to Eq. (163) behaves as

z(N)
eq ' λ(0)

max +
T ′

Nqin
T ′ < J0 . (164)

Based on this, we define a finite size version of the equilibrium self-overlap

q
(N)
in ≡ T ′

N(z
(N)
eq − λ(0)

N )
, (165)

which is finite if the highest mode is macroscopically populated. For N → ∞, qin = 1− T ′/J0 for T ′ < J0 and
zero for T ′ > J0. In Fig. 2 (a) we show q

(N)
in as a function of temperature. We can observe the convergence of

the finite size results towards the N →∞ predictions as the system size is increased.
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Figure 2: Equilibrium dynamics of the finite N system. (a) Equilibrium qin at finite N . Self overlap as a function
of temperature for different system sizes, using one particular realization of disorder for each size. In this plot we check the
leading finite order of qin and its dependence on T ′ as 1 − T ′/J0 far from the transition. Close to the transition there are
finite N corrections. (b) System size scaling of the Lagrange multiplier in the paramagnetic phase. Difference between the
Lagrange multiplier, as obtained from the solution of Eq. (163), and the largest eigenvalue of the interaction matrix as a
function of 1/N for different system sizes, using one particular realisation of disorder for each size. The non-vanishing value
at 1/N � 1 corresponds to z(N→∞)

eq − 2J0.

Finally, we investigate the finite N corrections to z(N)
eq in the paramagnetic phase, T ′ > J0. We find that a

linear scaling in 1/N also applies here, but the value of z(N)
eq − λ(0)

max at N →∞ does not vanish and it is given
by T ′ + J2

0/T
′ − 2J0. Then, in the paramagnetic phase we find

z(N)
eq − λ(0)

max ' z(N→∞)
eq − 2J0 +

s(T ′)

N
T ′ > J0 (166)

where s(T ′) = s is the slope of the dashed lines that we obtained from a fit and turns out to be independent of
temperature (all the dashed curves are parallel straight lines).

Using the definition in Eq. (165), we can express the Lagrange multiplier as z(N)
eq = λ

(0)
max + T ′/(Nq

(N)
in ), and

we can verify that the potential energy of the highest mode (note that we included the term proportional to the
Lagrange multiplier and we therefore compute εpot

N instead of epot
N )

εpot
N =

1

2
(z(N)

eq − λ
(0)
N )〈 s2

N 〉eq =
T ′

2
, (167)

assumes the correct value in equilibrium, i.e., the one consistent with the equipartition theorem, if

〈 s2
N 〉eq = q

(N)
in N . (168)
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5.6 Energy variation at the quench

We here compute the finite-N equilibrium values of the Lagrange multiplier, kinetic and potential mode
energies using the finite size averages for 〈 s2

µ 〉eq and 〈 ṡ2
µ 〉eq proposed in the previous Section, and we compare

them with the equilibrium N →∞ results obtained in Sec. 2.2.1. Analogously to the N →∞ results in Sec. 4.3,
these equilibrium values define the initial condition for the interaction quench and, therefore, set the values of
the observables at t = 0+.

5.6.1 Pre-quench energies

We begin with the kinetic energy right before the quench,

e
(N)
kin (0−) =

m

2N

N∑
µ=1

〈 ṡ2
µ 〉eq =

T ′

2
. (169)

It coincides with the infinite-N mean-field result.
Next we analyze the pre-quench potential energy,

e
(N)
pot (0−) = − 1

2N

N∑
µ=1

λ(0)
µ 〈 s2

µ 〉eq = − T ′

2N

(
N∑
µ=1

λ
(0)
µ − z(N)

eq

z
(N)
eq − λ(0)

µ

+ z(N)
eq

N∑
µ=1

1

z
(N)
eq − λ(0)

µ

)
=
T ′

2
− z

(N)
eq

2
, (170)

where we used Eq. (163). In the equilibrium condensed phase we can rely on z
(N)
eq = λ

(0)
max + T ′/(Nq

(N)
in ) to

obtain

e
(N)
pot (0−) = −λ

(0)
max

2
+
T ′

2
− T ′

2Nq
(N)
in

. (171)

The N →∞ result is epot(0
−) = −J0 + T ′/2, consistent with Eq. (171), since limN→∞ λ

(N)
max = 2J0.

In the paramagnetic phase q(N)
in � 1 and the third term in Eq. (171) induces important corrections. In this

case, using Eq. (166) we can write

e
(N)
pot (0−) ' − J2

0

2T ′
−

(
λ

(0)
max

2
− J0

)
− s(T ′)

2N
(172)

and one readily recovers the N →∞ limit epot(0
−) = −J2

0/(2T
′).

5.6.2 Post-quench energies

Now we will compute the values of the kinetic and potential energy, and the Lagrange multiplier after an
interaction quench

λ(0)
µ → λµ =

J

J0
λ(0)
µ . (173)

The kinetic energy is not affected by the quench in the interaction and, just as in the N →∞ limit (see Sec. 4.3),
we have that

e
(N)
kin (0+) = e

(N)
kin (0−) =

T ′

2
. (174)

For the potential energy it is enough to note that

e
(N)
pot (0+) = − 1

2N

N∑
µ=1

λµ〈 s2
µ 〉eq = − 1

2N

J

J0

N∑
µ=1

λ(0)
µ 〈 s2

µ 〉eq =
J

J0
e

(N)
pot (0−) . (175)

Using that z(N)(0+) = 2(e
(N)
kin (0+)− e(N)

pot (0+)) = T ′ − 2J/J0 e
(N)
pot (0−) it is now easy to find the initial value

of the Lagrange multiplier. When the initial conditions are taken from the condensed phase, q(N)
in = O(1), and

we can write
z(N)(0+) = λmax + T ′

(
1− J

J0

)
+

JT ′

NJ0q
(N)
in

. (176)

For initial states in the paramagnetic phase

z(N)(0+) ' JJ0

T ′
+ T ′ + (λmax − 2J) +

J

J0

s(T ′)

N
. (177)
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5.7 Independent harmonic oscillators in the asymptotic limit

We now use the results in App. B concerning the quench dynamics of a harmonic oscillator in the context of
our non trivial problem. In equilibrium at time t = 0− the initial frequencies of the modes are

ω2
0µ = [zeq(T ′, J0)− λ(0)

µ ]/m . (178)

In the asymptotic limit after the quench we identify the frequencies with

ω2
µ = [zf − λµ]/m (179)

where we assumed that the Lagrange multiplier reached the constant zf = limt→∞ z(t).
The analysis of the harmonic oscillator does not need any long-time assumption to set its spring constant, or

frequency, to a constant value. In our problem, the dynamics may approach the ones of independent harmonic
oscillators with constant spring constants only asymptotically. During the transient evolution the mode energies
vary. In reality, we do not know the values they take at the end of the transient regime. We can make a rough
approximation in which we assume that zf is reached instantaneously after the quench, z(0+) = zf , so that we
can use

〈p2
µ(0+)〉/m ≈ mω2

µ〈s2
µ(0+)〉 ≈ T ′ (180)

instead of the unknown values at the end of the stationary regime.
Under these assumptions the final mode temperatures are

T fµ =
T ′

2

(
ω2
µ

ω2
0µ

+ 1

)
=
T ′

2

(
zf − λµ

zeq(T ′, J0)− λ(0)
µ

+ 1

)
, (181)

see App. B for the details of the derivation. It is convenient to replace the post-quench eigenvalues λµ by their
expression in terms of the pre-quench ones and the quench parameter x = J/J0, λµ = xλ

(0)
µ . We can then

distinguish the four cases (I)-(IV) depending on the values of

y =
2T ′

λ
(0)
N

and x =
λN

λ
(0)
N

=
J

J0
. (182)

They are

2T fµ
T ′

=



T ′ +
λ2
N

4T ′ − λµ

T ′ +
(λ

(0)
N

)2

4T ′ − λ
(0)
µ

+ 1 for y > x and y > 1 (I)

λN − λµ

T ′ +
(λ

(0)
N

)2

4T ′ − λ
(0)
µ

+ 1 for x > y and y > 1 (II)

λN − λµ
λ

(0)
N − λ

(0)
µ

+ 1 for x > y and y < 1 (III)

T ′ +
λ2
N

4T ′ − λµ
λ

(0)
N − λ

(0)
µ

+ 1 for y > x and y < 1 (IV)

(183)

Several comments are in order. The expression for x > y and y < 1 (sector III) is the same as the one that we
derived from the analysis of the N →∞ Schwinger-Dyson equations, see Eq. (123), simply T fµ = T ′(x+ 1)/2 =

Tf = T
(III)
kin . The no-quench case x = 1 in realised in Sectors I and III and one rapidly checks that T fµ = T ′ in

both cases. On the curve y =
√
x the mode temperature do not take the same value. We will argue later that

the approximation used in the Section yields a qualitatively erroneous result in this case. Continuity between
sectors I and IV on the one side, and II and III on the other, are ensured setting y = 1 that is to say T ′ = λ

(0)
N .

Finally, continuity across the dynamic transition at y = x or

T ′dyn =
λN
2

(184)

is also verified.
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We would like to know which is the condition satisfied by zf under this approximation. In order to obtain
such equation, we first note that the time-dependent spherical constraint imposes that

N∑
µ=1

〈s2
µ(t)〉 = N . (185)

In particular, this implies that
N∑
µ=1

〈s2
µ(t)〉 = N . (186)

Inserting the approximation in Eq. (180) in the time-averaged spherical constraint, we find an equation for z(N)
f

T ′

2m

N∑
µ=1

(ωµ)−2

[(
ωµ
ω0
µ

)2

+ 1

]
=
T ′

2

N∑
µ=1

[
1

z
(N)
eq − λ(0)

µ

+
1

z
(N)
f − λµ

]
= N . (187)

Since z(N)
eq is chosen in such a way that

N∑
µ=1

T ′

z
(N)
eq − λ(0)

µ

= N , (188)

we find that the equation for z(N)
f simplifies to

N∑
µ=1

T ′

z
(N)
f − λµ

= N . (189)

In other words, under this approximation, z(N)
f is the equilibrium Lagrange multiplier for a system in equilibrium

at temperature T ′ with variance of the disorder distribution equal to J . In the N →∞ limit zf = 2J if T ′ < J

and zf = T ′ + J2/T ′ if T ′ > J .
We will put these predictions to the test in Sec. 6 using the numerical solution to the finite N evolution

equations with the numerical method that we describe in the next Subsection. In various regions of the phase
diagram these a priori approximate forms are in strikingly good agreement with the numerical data. In others
they are not and we discuss why this is so.

5.8 Exact solution of the mode dynamics

One possible approach to solve the dynamics of each mode starting from canonical equilibrium initial con-
ditions is to take a large ensemble of initial configurations drawn from the Gibbs-Boltzmann distribution, nu-
merically integrate the Newton equations Eq. (134) for each initial condition, and then calculate the observables
averaging over the trajectories corresponding to the different initial states. Such approach is feasible but com-
putationally very demanding. In this Section we describe a more convenient method to solve the dynamics for
each mode that uses heavily the tools developed to treat a paradigmatic problem in classical mechanics, the one
of parametric oscillators [77, 78, 79].

In order to solve Eq. (134) we propose an amplitude-phase Ansatz [77, 78, 79, 80]

sµ(t) =
A√

Ωµ(t)
exp

[
−i
∫ t

0

dt′ Ωµ(t′)

]
. (190)

Inserting this Ansatz in the µth mode Newton equation, we obtain an equation for the mode and time dependent
auxiliary function Ωµ(t),

1

2

Ω̈µ(t)

Ωµ(t)
− 3

4

(
Ω̇µ(t)

Ωµ(t)

)2

+ Ω2
µ(t) = ω2

µ(t) , (191)

where ω2
µ(t) ≡ (z(t)− λµ)/m. The last equation has to be complemented by the initial values ωµ(0) and Ω̇µ(0).

If we choose
Ω̇µ(0) = 0 , (192)

we find that the projection of the spin configuration is

sµ(t) = sµ(0)

√
Ωµ(0)

Ωµ(t)
cos

(∫ t

0

dt′ Ωµ(t′)

)
+

ṡµ(0)√
Ωµ(t)Ωµ(0)

sin

(∫ t

0

dt′ Ωµ(t′)

)
, (193)
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which is reminiscent of the general solution of the harmonic oscillator problem, see Eq. (140), here with a
time-dependent “frequency” Ωµ(t).

We still have to specify the initial condition for Ωµ(0). A possible choice is

Ω2
µ(0) = z(0)− λµ (194)

that enforces Ω̈µ(0) = 0 [80]. However, this choice is consistent with real Ωµ(t) only if z(0) − λµ ≥ 0, which is
verified uniquely for J ≤ J0, i.e., uniquely for energy injection. An initial condition ensuring real and positive
Ωµ(t) for all µ for any quench is

Ω2
µ(0) = λN − λµ . (195)

We choose this initial condition for the numerical calculations.
In order to solve for Ωµ(t) we consider the equal-times mode correlation function

Cµ(t, t) = 〈s2
µ(t)〉 = 〈s2

µ(0)〉 Ωµ(0)

Ωµ(t)
cos2

(∫ t

0

dt′ Ωµ(t′)

)
+

〈ṡ2
µ(0)〉

Ωµ(0)Ωµ(t)
sin2

(∫ t

0

dt′ Ωµ(t′)

)
+
〈sµ(0)ṡµ(0)〉

Ωµ(t)
sin

(∫ t

0

dt′ Ωµ(t′)

)
cos

(∫ t

0

dt′ Ωµ(t′)

)
, (196)

in terms of which we write the potential energy as

epot(t) = − 1

2N

∑
µ

λµCµ(t, t) . (197)

Replacing this equation in z(t) = 2ef − 4epot(t), we find an expression of the Lagrange multiplier as a function
of the mode correlations at equal times

z(t) = 2ef +
2

N

∑
µ

λµCµ(t, t) . (198)

Finally, we note that the system conformed by Eqs. (191), (196) and (198) is closed and allows to find the
time evolution of the Lagrange multiplier and the auxiliary functions Ωµ(t). This set of equations is amenable
to numerical integration. Once we obtain Ωµ(t), the most interesting observables can be calculated using the
general solution in the form given in Eq. (190). The advantage of this method is that we do not need to draw
initial states {sµ(0), ṡµ(0)} but we only have to specify the initial averages 〈s2

µ(0)〉 and 〈ṡ2
µ(0)〉 that we will take

to be the ones enforced by equilibrium at T ′, that is to say, the forms given in Eqs. (160) and (162).

6 Numerical results
This Section summarises what we found numerically by solving the N →∞ Schwinger-Dyson equations that

couple the global correlation and linear response C and R (see Sec. 4), and the finite N ones acting on the mode
projections sµ (see Sec. 5). Some general considerations about the numerical algorithm used to integrate the
N →∞ equations are given in App. C.

The finite N results are consistent with the infinite N ones and help us understanding the mechanism whereby
the dynamics take place. We chose to start this Section with the summary of the dynamical phase diagram and
the behaviour of the quantities that determine it. Later, we give further details on the dynamics at constant
energy (no quench) and in each of the dynamic phases identified after sudden quenches.

We signal here that we will make a special effort to show, in each case considered, that an asymptotic state
characterised by the single temperature Tf that the naive asymptotic analysis of the dynamic equations predicts
is not attained. The investigations that lead to this conclusion are very instructive not only because they prove
the lack of Gibbs-Boltzmann equilibrium but also because they lead to the evaluation of the mode temperatures
that will play a role in the statistical description of the steady states.
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6.1 The phase diagram

The phase diagram is determined by the asymptotic behaviour of the zero frequency linear response or
susceptibility, χst = R̂(ω = 0), and the asymptotic value of the Lagrange multiplier. We determine their values
through the variation of the parameter J/J0 for fixed T ′/J0. In the phase diagram presented in Fig. 5 and the
ensuing discussion we call y = T ′/J0 the vertical axis and x = J/J0 the horizontal one. The former determines
the initial state and the latter the kind of quench performed with injection of energy for x < 1 and extraction of
energy for x > 1.

We study separately parameters in four Sectors of the phase diagram, although the final results will allow
us to distinguish three different phases. The Sectors are indicated with Roman numbers and the phases with
different colours or shades in Fig. 5. We also mark the line x = 1 (equilibrium dynamics) and the curve y =

√
x

with y > 1 where special dynamics are found.
We recall that dynamic phase transitions have been found in the quench dynamics of quantum isolated

systems, see, e.g. [81, 82, 56, 57, 58, 83, 84, 61]. Here, and in [7], we see dynamic phase transitions arise in the
Newtonian dynamics of isolated classical interacting systems.

In Fig. 3 (a) we check the prediction (115) for the zero frequency linear response function. We plot T ′R̂(ω = 0)

against J/T ′ and we see the change in behaviour from R̂(ω = 0) = 1/T ′ to R̂(ω = 0) = 1/J at xc(y) = y, that
is T ′ = J .
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Figure 3: The zero frequency linear response, computed from the Schwinger-Dyson N → ∞ equations, for several
choices of initial conditions given in the key, with both y < 1 (condensed) and y > 1 (paramagnetic) cases, together with the
analytic prediction in Eq. (115) plotted with a dashed line.

The change in R̂(ω = 0) is accompanied by a change in the asymptotic value of z as a function of the quench
parameter x = J/J0. This fact is confirmed numerically in Fig. 4 where data for N →∞ and N finite are shown
in panels (a) and (b), respectively.

For x < y, the numerically estimated zf (x) for fixed y in the case N →∞ (a) were fitted with the polynomial
function f(x) = a x2 + b x+ c. We obtained very good results with a ' 1/y, b ' 0 and c ' y (the precision of the
fit is really very high in terms of reduced χ2). These results strongly suggest the following functional dependence
of zf on the parameters x and y,

zf (x, y) = J0


x2

y
+ y for x ≤ y ,

2x for x ≥ y .
(199)

To get a visual confirmation of this argument, in Fig. 4 (a) we plotted the functions f(x) = x2/y + y for x < y,
one for each one of the values of y that the numerical data refer to. The agreement between the data and the
prediction is very good.
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Figure 4: Estimated asymptotic value of z(t) as function of J/J0, for different values of T ′/J0, as indicated in the keys.
(a) N → ∞ results. The dashed curved lines are functions of the form f(x, y) = y + x2/y for x < y where x = J/J0 and
y = T ′/J0. We also show the diagonal 2x to let the reader see the crossover between the two regimes. (b) Finite size system
with N = 1024. The straight dashed line is Jλmax, the other curves are T ′+λ2

max/(4T
′), the finite size version of the infinite

N fits.

The analysis of the finite N data was done along the same lines, see Fig. 4 (b), with the difference that
the data for x < y were fitted by T ′ + λ2

max/(4T
′) and the ones for x > y with Jλmax finding again very good

agreement. (We found an appreciable deviation in the fit for x > y had we used 2J instead of Jλmax. Regarding
the results for x < y we could have used T ′+J2/T ′ with a similar quality for the fit.) Remarkably, the functional
dependence proposed in Eq. (199) is the one predicted by the independent harmonic oscillators approximation
in Eq. (189).

By using the change in the dependence of R̂(ω = 0) and zf on the quench parameter x = J/J0 as a criterium
to track the dynamical phase transition, we obtained the numerical estimates of the critical curve xc(y). In
Fig. 5 we show the data for xc(y) (with error bars) for some values of the control parameter y. The data strongly
suggest that there is a linear relation between the critical value xc and the parameter y for any y; in short, we
confirm xc(y) = y.

Concerning the long-time behaviour of C(t1, t2), it is useful to distinguish the cases y < 1 and y > 1, that is,
quenches that start from equilibrium in the condensed phase from quenches that start from equilibrium in the
paramagnetic phase.

We observe the following trends:

• For x < xc(y), C(t1, t2) tends to be stationary, though within the time scales of the numerics it has not
reached this limit yet when y is too small. In most instances, C(t1, t2) oscillates around 0, exceptions being
the critical quench and the case with both y > 1 and x > 1 where zero is approached asymptotically from
below. The time average of C computed on intervals far from the initial transitory regime vanishes in all
cases suggesting an effective q = 0.

• For x ≥ xc(y), C(t1, t2) is rapidly stationary and one very clearly identifies the asymptotic constant
q = lim

t2�t0
t1−t2�t0

C(t1, t2). For y < 1 it is different from zero while for y > 1 it equals zero. The asymptotic

q0 = limt2�t0 C(t1, 0) is different from q in the cases in which both are non-vanishing.

These facts can be appreciated in Fig. 6 where we display the decay of the correlation function for several
choices of the parameters in different regions of the phase diagram, marked with crosses in Fig. 5.

Having announced the main features of the dynamics after different types of quenches, in the rest of this
Section we will support these claims with the detailed study of all relevant observables.
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Figure 6: The time-delayed correlation function C(t1, t2) from the numerical integration of the Schwinger-Dyson
equations, for different values of the parameters y = T ′/J0 and x = J/J0, as indicated above the plots. Crosses accompanied
by the labels (a)-(j) are marked at the corresponding location in the phase diagram in Fig. 5. In the first row x ≤ y while in
the second x > y. The first three panels in both rows correspond to y < 1 and the last two to y > 1. The third panel in the
first row is on the critical line x = y.

6.2 Constant energy dynamics

We first checked that for J = J0 and m = m0, that is to say ∆e = 0, and for all initial conditions, the system
has stationary evolution and the total energy as well as other conserved quantities are indeed conserved. As the
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dynamics of generic Hamiltonian systems is hard to control numerically, we included this analysis to validate
our algorithms. Moreover, this study allowed us to know which is the order of the numerical error incurred into.
A time discretisation step δ = 0.001 in the integration of the N →∞ Schwinger-Dyson equations was sufficient
to assure numerical convergence of our results. In the integration of the finite N problem we found a weak
dependence on δ but the value δ = 0.001 gave acceptable results.

We studied the equilibrium dynamics for initial paramagnetic configurations (T ′ > J0) and condensed ones
(T ′ < J0). We present and discuss the results in two Subsections. As already said, they serve as benchmarks for
the more interesting quenching cases that we put forward later.

6.2.1 Dynamics in the paramagnetic phase

In this Section we use parameters in the paramagnetic (PM) equilibrium phase. We fix J0 = m0 = m = 1,
we equilibrate the initial conditions at T ′ = 1.25 and we evolve with parameters J = J0 = 1 and m = m0 = 1

(no quench). In Figs. 7 and 8 we show the numerical results for finite N and infinite N , respectively. The system
should remain in Gibbs-Boltzmann equilibrium in the PM phase in both cases.

In Fig. 7 we analyse the results of the numerical integration of the N → ∞ Schwinger-Dyson equations for
T ′ = 1.25 and all other parameters set to 1. The figure shows the time evolution of the correlation function (a), the
fluctuation dissipation parametric plot (b), the response function, R(t1, t2) together with −(1/T ′) ∂t1C(t1, t2) (c),
the deviation of the Lagrange multiplier from its equilibrium value (d), the potential and kinetic contributions
to the energy density (e), and two studies of the fluctuation-dissipation theorem in the frequency domain (f)
and (g).

The correlation with the initial condition, C(t1, 0), and the ones between two different times, C(t1, t2), are
identical, meaning that time translation invariance is satisfied. All the correlations relax to zero q = q0 = 0.
Moreover, the curves coincide approximately with the ones in Fig. 8 (a) which were obtained by integrating
Newton equations for finite N .

The fluctuation-dissipation relation [68] is satisfied with the temperature of the initial condition, that is
the same as the one of the final state. This fact can be proven in general for Newtonian evolution of initial
configurations drawn from Gibbs-Boltzmann equilibrium [85]. Indeed in panel (b) we display the parametric
plot χ(t1, t2) =

∫ t1
t2
dt′R(t1, t

′) vs C(t1, t2) for two waiting times t2 and, with a dashed line, the equilibrium result
−1/T ′ C finding perfect agreement within our numerical accuracy. As a further confirmation of the validity of
the fluctuation-dissipation theorem, we show the response function, R(t1, t2), and −(1/T ′) ∂t1C(t1, t2), both
plotted against t1 − t2, for two different values of t2 in panel (c). The two quantities coincide almost perfectly.
In the same panel we checked that the response function coincides with the one derived by taking the inverse
of the theoretical Fourier transform of the stationary asymptotic response, given by Eq. (83). The theoretical
curve is indicated as Rst.

The Lagrange multiplier and the potential and kinetic energies remain constant throughout the evolution of
the system and equal to their predicted values, apart from small deviations due to the numerical errors introduced
by the numerical integration scheme, see panels (d) and (f), and App. C. The plot showing z(t) proves that the
relative error in this quantity is at most of order 10−7. All these results are compatible with Gibbs-Boltzmann
equilibrium in the paramagnetic phase. We do not show the time evolution of the off-diagonal correlation with
the initial configuration, C2(t, 0), since it is identically zero at all times.

In panel (f) we show the Fourier transforms of the correlation and response functions, Ĉ(ω, t2) and R̂(ω, t2)

respectively (the transform is performed on the variable τ = t1 − t2 with t2 fixed), for two different values of t2.
Note that we are showing only the real part of Ĉ(ω, t2), since we implicitly assume that C(t2+τ, t2) = C(t2−τ, t2).
The black solid lines represent the theoretical prediction for the real and imaginary parts of the Fourier transform
of the response function in the stationary regime, R̂st(ω), given by Eq. (83), the inverse Fourier transform of
which is plotted in (c). In panel (g), the ratio −ImR̂(ω)/(ωĈ(ω)) together with the prediction 1/T ′ from FDT
indicated by a horizontal dashed line are shown. Note the deviation from the flat result at the right edge of the
frequency spectrum. This is due to the fact that the ratio approaches zero over zero and the numerical error
incurred for those large frequencies is much amplified. At the left end of the spectrum, the more interesting low
frequency regime, the oscillations are only present for the t = 0 curve.

In Fig. 8 we show results obtained by solving the dynamics of each mode in a finite N system with the
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Figure 7: Constant energy dynamics of the N → ∞ system in the PM phase. ∆e = 0 is ensured by J = J0 and
m = m0. T ′ = 1.25 > T 0

c = 1 and the initial condition is in the paramagnetic phase. (a) Dynamics of the correlation function
for various choices of the waiting time given in the key. (b) Linear-response vs. correlation parametric plot for two values
of the waiting time t2. The dashed line shows the FDT with the initial temperature. (c) The response function, R(t1, t2),
−(1/T ′) ∂t1C(t1, t2), and Rst, the (numerical) inverse Fourier transform of the theoretical prediction given by Eq. (83) with
parameters m = 1, J = 1 and zf = zeq = T ′ + J2/T ′ = 2.05, against t1 − t2, for two values of t2. (d) The difference between
the numerical Lagrange multiplier, z(t), and the expected value at equilibrium, zeq. (e) Time evolution of the kinetic energy
density, ekin (red line), the potential energy density, epot (blue line) and the total one, ef (green line). (f) Fourier transforms
of the correlation (real part) and the response, for two values of t2. The black solid lines represent the theoretical predictions
for R̂(ω), given by Eq. (83), the inverse Fourier transform of which is plotted in (c). We recall that we chose to use a
convention such that the imaginary part of R̂ is negative. (g) The ratio −ImR̂(ω)/(ωĈ(ω)) together with 1/T ′ indicated by
a dashed horizontal line.

method explained in Sec. 5.8. In panel (a) we see that the correlations with the initial condition quickly relax
to 0, as expected in the PM phase. They do with a weak size-dependence in the long time-delay tails. We only
show the correlation with the initial configuration since we have checked that the time-delayed one is stationary.
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Figure 8: Constant energy dynamics of a finite N = 1024 system in the PM phase. T ′ = 1.25 and all other
parameters are set to 1. (a) The correlation function between a configuration at time t and the initial condition for different
system sizes (grey curves) and the one for N → ∞ (red curve). (b) The kinetic, potential and total energies as a function
of time. (c) Dynamics of the Lagrange multiplier referred to the finite N equilibrium value z(N)

eq , for different discretisation
steps used in the numerical code. (d) and (e) Mode correlation for different system sizes for µ = 1 and µ = N , respectively.
(f) Mode temperatures at different times. In (a), (b), (c)-(e) δ = 0.001, the discretisation step that we adopt in all further
studies.

Also included in this panel is the same correlation function computed using the Schwinger-Dyson equation valid
in the N →∞ limit. We see perfect agreement with the finite N results at short times and small deviations at
longer times. In Fig. 8 (b) we observe that the global kinetic, potential and total energy densities are constant,
as expected. The Lagrange multiplier is studied in panel (c) where we plot it subtracting z(N)

eq , calculated as the
solution to Eq. (163) (a non-linear equation) that in the N →∞ limit yields z(N)

eq → T ′+J2/T ′. The very weak
(oscillatory) deviation from z

(N)
eq decreases with the size of the time-step used in the numerical solution of the

dynamic equations (in the N →∞ case we have a similar effect, see App. C).
The mode-by-mode analysis of the finite N dynamics is performed in Fig. 8 (d) and (e). Two panels display

the time-delay dependence of the correlation function of the first and last mode. In Fig. 8 (f) we display the mode
temperatures Tµ(t) at the initial time and after a long time evolution. The mode temperatures coincide with the
expected equilibrium value, except for the largest modes, where there is a very small deviation. These variations
represent small numerical errors due to the finite time-step discretisation used numerically, and are hard to
improve algorithmically unless by using a still smaller integration step. We have also checked (not shown) that
the mode correlations Cµ(t1, t2) and the mode response function Rµ(t1, t2) satisfy the fluctuation-dissipation
relation with a temperature given by T ′ for all modes.

6.2.2 Dynamics in the condensed phase

We now turn to the constant energy dynamics in the condensed, low temperature equilibrium phase.
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Figure 9: Constant energy dynamics in the condensed phase. Results from the integration of the Newton equations
for the individual modes at T ′ = 0.5 for a single disorder realisation. (a) Dynamics of the global correlation function with the
initial condition for different system sizes. (b) Evolution of the energetic contributions and the total energy. (c) Dynamics
of the Lagrange multiplier for different system sizes referred to the equilibrium z

(N)
eq (that is slightly larger than λmax, see

the text). (d)-(f) Mode correlation function Cµ(t1, t2), normalised by their values at equal times, for µ = 1, N − 1, N and
different system sizes indicated in the key. The mode correlations are stationary, so we only show results for t2 = 0.

In Fig. 9 we show the mode dynamics for initial conditions in equilibrium at T ′ = 0.5. From Fig. 9 (b)
we notice that the total energy is conserved and that the kinetic and potential contributions are also constant,
consistent with thermal equilibrium in the isolated system. In Fig. 9 (c) we show the Lagrange multiplier, which
should be constant in equilibrium. In the numerical solution, the Lagrange multiplier exhibits oscillations around
the initial value. Their amplitude decreases consistently with the integration step δ, implying that for δ → 0 we
recover the expected constant behaviour. The two-time global correlation C(t1, t2) is stationary for all system
sizes (not shown), so we focus on the particular case with t2 = 0. We can see from Fig. 9 (a) that, at variance
with the paramagnetic case, the dynamics of the correlation function C(t1, 0) has a strong dependence on the
system size. After a fast decay from the initial value, the correlation shows a plateau, the lifetime of which
increases with system size, approaching asymptotically the value predicted by the N → ∞ treatment that is
shown with a (red) horizontal line. The source of this size dependence is the behaviour of the largest mode
µ = N . In Fig. 9 (f) we show the time dependence of the largest mode correlation function CN (t, 0) for different
system sizes. We observe that its oscillation frequency decreases as we increase the system size. A similar finite
size effect is seen in the dynamics of the next-to-largest mode in panel (g). Since the largest modes dominate the
long-time dynamics, this effect causes the size dependence of the plateau lifetime. For N → ∞ the oscillation
frequency of the N -th mode goes to zero, allowing for the presence of an infinite plateau, see Fig. 11. The modes
lying in the middle and other end of the spectrum have almost no size dependence, as shown in (d).

Figure 10 investigates the mode kinetic and potential energies and the mode temperatures that can be
extracted from them. In Fig. 10 (c) we show the mode temperatures Tµ(t) at two measuring times, as a function
of the mode index, what we will call temperature spectrum later. We observe deviations from the expected
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identical to T ′ (grey) and they both equal 0.5. The potential and kinetic energies are equal to T ′/2 = 0.25.

behaviour T tot
µ = T ′ ∀µ only close to µ = N . To gain insight into the mode temperature deviations, in panels (a)

and (b) we show the time evolution of the kinetic, potential and total energies for the first and last modes.
For the lowest modes, the kinetic and potential energies are constant, equal, and their sum is identical to T ′,
consistently with equilibrium dynamics. However, for the modes that are closer to µ = N the energies weakly
oscillate with an amplitude that decreases with the integration step and should vanish for δ → 0. This implies
that in such limit, all mode temperatures should be equal to the equilibrium temperature, even for modes close
to the right edge of the spectrum.

We now turn to the analysis of the dynamics in the N → ∞ limit. In Fig. 11 we show the results obtained
through the numerical integration of the Schwinger-Dyson equations for the two-time correlation and response
functions, and the same choice of parameters, that is T ′ = 0.5 and J = 1. Stationarity is satisfied as well as
the FDT with the initial temperature, see (b) and (c). The main difference with the case in Fig. 7 is that the
correlation functions, both with the initial condition and with the configuration at a waiting-time t2, relax to a
non-vanishing value (a). Within numerical accuracy we observe q0 = q ' 1− T ′/J = 0.5 and this value as well
as the potential and kinetic energies (not shown) are consistent with equilibrium at T ′. Also in this case, we
checked that the response R(t2 + τ, t2), for t2 ≥ 0, coincides with the (numerical) inverse Fourier transform of
the theoretical prediction given by Eq. (83) for the Fourier transform of the stationary asymptotic R, see panel
(c).

In panel (d) we show the time-evolution of the off-diagonal correlation, C2(t, 0). In the case of equilibrium
dynamics, C2(t, 0) should be constant and equal to qin. As one can see, the value of C2(t, 0) obtained by numerical
integration is not exactly a constant function, but it approaches a constant in the long time limit which differs
from q = qin = 0.5 by a very small amount. This deviation is only due to the approximations introduced by the
numerical integration scheme. The same can be said about the behaviour of the numerical z(t), see panel (e).
Its value oscillates around the expected equilibrium value zeq = 2J = 2 at T ′ = 0.5, with oscillations amplitude
of order 10−7 for short times and decreasing with time.

We next show the Fourier transforms of the correlation and response functions, for two different values of t2
in Fig. 7 (f). Again, note that we are showing only the real part of Ĉ(ω, t2), since we implicitly assume that
C(t2 + τ, t2) = C(t2− τ, t2). The black solid lines represent the theoretical prediction for the real and imaginary
parts of the Fourier transform of the response function in the stationary regime, R̂st(ω), given by Eq. (83), the
inverse transform of which is plotted in (c). In panel (g) we display the ratio −ImR̂(ω)/(ωĈ(ω)) together with
the prediction 1/T ′ from FDT indicated by a dashed horizontal line. In all presentations we find good agreement
with the validity of FDT with the proviso that in the plot in (g) the high frequency regime is contaminated by
the numerical error, and the low frequency regime by the fact that we can perform the Fourier transform on a
finite time window only, and this causes the dependence on t2 shown in the plot.
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Figure 11: Constant energy dynamics of the N →∞ system in the condensed phase. ∆e = 0, ensured by J = J0.
T ′ = 0.5 < T 0

c = 1. (a) Stationary dynamics of the two-time correlation function. The asymptotic limit is q = 0.5, shown
as a dotted horizontal line. (b) Linear-response vs. correlation parametric plot. The dashed line shows the FDT with the
initial temperature. (c) The linear response function, R(t1, t2), and the quantity −(1/T ′)∂t1C(t1, t2), both plotted against
t1 − t2, for two values of t2. The curve indicated by Rst is the (numerical) inverse Fourier transform of the theoretical
prediction given by Eq. (83) with parameters m = 1, J = 1 and zf = zeq = 2. (d) Difference between C2(t, 0) and q. (e)
The difference between the time-dependent Lagrange multiplier, z(t), and the expected asymptotic value zeq = 2J . (f) The
Fourier transforms of the correlation and linear response functions, for two different values of t2 indicated in the key. The
black solid lines represent the theoretical prediction for the real and imaginary parts of the Fourier transform of the response
function in the stationary regime, R̂st(ω), given by Eq. (83), the inverse transform of which is plotted in (c). In panel (g),
the ratio −ImR̂(ω)/(ωĈ(ω)) together with the prediction 1/T ′ from FDT plotted with a dashed horizontal line.
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6.3 Instantaneous quenches

We shall now vary the initial temperature T ′ and the coupling J of the Hamiltonian that drives the time
evolution to consider specific instantaneous quenching processes that inject or extract energy. The aim is to
illustrate the analytical results of the previous Section and put them to the test. As we have already announced
the structure of the phase diagram, we will consider representative quenches in the four sectors, labeled I (y > 1

and y > x), II (y > 1 and y < x), III (y < 1 and y < x) and IV (y < 1 and y > x).
For each of the quenches performed we investigate if the system reaches a stationary state by checking

whether:

• The one-time quantities z(t) and eftot = limt→+∞ etot(t) approach constants that we measure and compare
to the ones predicted in Sec. 4.4.

• The kinetic and potential energy average over time to constant ekin and epot that we also compare to the
ones predicted in Sec. 4.4.

• The two-time correlation and linear response become stationary after a sufficiently long time, that is
C(t1, t2) ∼ Cst(t1 − t2) and R(t1, t2) ∼ Rst(t1 − t2) for t2 large.

• The long-time limits q0 = limt→+∞ C(t, 0) and q2 = limt→+∞ C2(t, 0) are equal or differ.

We also evaluate whether:

• The susceptibility χ(t1, t2) =
∫ t1
t2

dt R(t1, t) and C(t1, t2) satisfy the FDT relation χ(t1, t2) = (1 −
C(t1, t2))/Tf , with a single temperature Tf .

• The response function R(t1, t2) coincides with −1/Tf ∂t1C(t1, t2), for different values of t2, and with the
(numerical) inverse Fourier transform of the analytic form given in Eq. (83).

In all cases an asymptotic stationary regime is reached but it is not characterised by a single temperature.
Consequently, we study the spectrum of mode temperatures as defined from the (time-averaged) kinetic and
potential mode energies and we compare it to the global fluctuation dissipation ratio in the frequency domain in
each type of quench. This is motivated by the suggestion in [69, 70] (for quenches of isolated quantum integrable
systems) that these should be related.

6.3.1 Sector I: a paramagnetic initial condition

In this Subsection we summarise the dynamics of a system prepared in equilibrium in the paramagnetic state
y > 1 and quenched to a value of J such that y > x. This is what we called Sector I in the phase diagram. Two
cases need to be further distinguished within this Sector. For x < 1 energy is injected in the quench and this
problem is treated in Figs. 12 and 13. For y > x > 1, instead, a small amount of energy is extracted from the
system and we explain the difference that this implies in Fig. 14 and the discussion around it.

The first observation is that we confirm that, in both cases x > 1 and x < 1, R̂(ω = 0) = 1/T ′ and
zf = T ′+J2/T ′. The latter claim can be verified in Fig. 12 (d) for x > 1 and N →∞, for example. Next we check
that the dynamics approach a stationary asymptotic state in which the global one-time quantities are constant,
as seen for example in panels (d) and (e) in the same figure, and the two-time correlation and linear response
depend on the time delay only, see panels (a) and (c). The last question concerns the fluctuation dissipation
relation between linear response and correlation function. We used the parametric plot (b) to demonstrate that
the evolution does not approach a state characterised by a single temperature but, instead, χ(C) is curved and
not even single valued. Having said this, the comparison of the time-dependent R(t1, t2) and −∂t1C(t1, t2) in
panel (c) could have fooled us into the belief that the FDT holds with a single temperature. Indeed, the difference
between the two functions is not visible in this scale. The Fourier analysis in (f) demonstrates that the frequency
dependence of the real and imaginary parts of the linear response are highly non-trivial, though respecting the
limits in the frequency interval where it does not vanish derived in Sec. 4.4.2. The fluctuation-dissipation ratio
is shown in (g) and we will come back to its analysis below, where we present the mode dependent results for
finite N .

We next study the evolution under the same parameters in a single system with N = 1024 modes. In
the first four panels in Fig. 13 we display the time dependence of the kinetic and potential energies, ekin

µ (t)

44



−0.8

−0.4

0

0.4

0.8

0 20 40 60 80 100

(a)

0

0.4

0.8

1.2

1.6

−0.8 −0.4 0 0.4 0.8

(b)

−0.4

0

0.4

0.8

0 10 20 30 40 50

(
)

C
(t

1
,t

2
)

t1 − t2

t2 = 0
15
30
60
90

χ

C

t2 = 0
30
60

Tf = 1.081

t1 − t2

R(t1, t2), t2 = 30
60

−

1

Tf
∂t1C(t1, t2), t2 = 30

60
Rst

1.25

1.375

1.5

1.625

0 20 40 60 80 100

(d)

−0.25

0

0.25

0.5

0 20 40 60 80 100

(e)

z
(t
)

t

e
(t
)

t

−2

−1

0

1

2

0 1 2 3 4 5

(f)

0.25

0.5

0.75

1

0.75 1 1.25 1.5

(g)

ω
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Ĉ, t2 = 60

ReR̂

ImR̂

−
Im

R̂
/(
ω
Ĉ
)

ω

t2 = 30

45

60

75
1

Tf

Figure 12: Sector I. Energy injection on a paramagnetic initial state. T ′ = 1.25 J0, J = 0.50 J0 and ∆e = 0.20.
(a) The time-delayed correlation function satisfies stationarity for t2 � 1. The horizontal dashed line is at q = 0. (b) The
parametric plot of the linear response function, χ(t2 + τ, t2), against the correlation, C(t2 + τ, t2), for two waiting times t2.
The black dashed line shows the FDT relation with Tf ' 1.081 from Eq. (A.21). The numerical data exclude this possibility
for the full range of C. In (c) R(t1, t2) and −1/Tf ∂t1C(t1, t2) as a function of t1 − t2. In this scale we see no difference
between the two functions; the presentation is misleading, since there is a difference, see (b). (d) Time evolution of the
Lagrange multiplier, z(t), along with the constants Tf +J2/Tf ' 1.31 (below) and T ′+J2/T ′ = 1.45 (above) represented by
dashed horizontal lines. (e) From top to bottom: the kinetic energy, the total energy and the potential energy densities in
very good agreement with their expected values. (f) The Fourier transforms of the correlation and response functions with
respect to time delay. The black solid lines represent the real and imaginary parts of R̂st(ω), given by Eq. (83). In panel (g),
the ratio −ImR̂(ω)/(ωĈ(ω)) together with 1/Tf ' 0.92 that is off the data but not very far away from the constant at the
limit ω → ω+

c (recall that the downward trend close ω+
c is due to numerical inaccuracy). We note that 1/Tkin ' 0.87 is still

farther away from the high frequency limit. Results for the same parameters and finite N are shown in Fig. 13.

and εpot
µ (t). These functions oscillate as a function of time with amplitude that slowly decreases in the cases

µ = 1, µ = N −1, µ = N , while it slowly increases for µ = 2, in this time window. The total energy of each mode
shown with a solid red line displays a small downward drift towards, one may expect, a constant value. The
Lagrange multiplier shows a residual time variation around a value that is slightly above the N →∞ prediction
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Analytical

Figure 13: Sector I. Energy injection on a paramagnetic initial state. A system with N = 1024 and parameters
T ′ = 1.25 J0 and J = 0.5 J0, leading to ∆e = 0.20. (a)-(d) The time-dependent energy of four selected modes. (e) The
Lagrange multiplier compared to the N → ∞ prediction zf = T ′ + λ2

max/(4T
′). There is a small deviation most likely

due to numerical error. (f) Mode temperatures extracted from the use of equipartition, T kin,pot
µ = 2ekin,pot

µ . Inset: Detail
of the behaviour of the largest modes. (g) Comparison between the modes inverse temperatures and the inverse effective
temperature from the fluctuation dissipation relation of the N → ∞ equations in the frequency domain (both measured in
units of J0). In (f) and (g) the yellow curves are given by the approximate prediction for Tµ in Eq. (183). The frequency
interval where ImR̂(ω) 6= 0 is [ω−, ω+] with ω− ' 0.67 and ω+ ' 1.57 in this case.

but is very close to its finite N modified value T ′ + λ2
max/(4T

′) (shown with a solid horizontal line). We then
determine the mode temperatures from the equipartition of the kinetic and potential energies averaged over a
sufficiently long time window. All modes are in equilibrium with themselves in the sense that the potential,
kinetic and total mode temperatures coincide except for small deviations present in the largest modes. Panel (f)
shows the non-equilibrium temperature profile with the largest modes having higher temperature than the others.
Tf , the temperature obtained assuming a paramagnetic final state in equilibrium at a single temperature, see
Eq. (A.21), is clearly different from the mode temperatures and is not the average of them either (not shown),
confirming that under these quenches the system does not equilibrate to the paramagnetic state. Finally,
panel (g) displays the comparison between the mode inverse temperatures and the frequency dependence of the
fluctuation-dissipation inverse temperature. The agreement is very good (except at the edge of the spectrum
where both numerator and denominator vanish and it is very hard to control the limiting behaviour even in
the equilibrium case, see Fig. 7). The (yellow) continuous line is the approximate theoretical prediction in
Eq. (183) that captures the numerical behaviour rather accurately. We recall that it was derived assuming that
the Lagrange multiplier takes its asymptotic constant value immediately after the quench, at time t = 0+, and
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that the ensuing dynamics is the one of independent harmonic oscillators with mode-dependent frequencies.
As already mentioned, parameters in Sector I also permit quenches with energy extraction, realised by

x > 1. We repeated the analysis of the N →∞ equations for parameters in this regime, choosing, for example,
T ′ = 1.2 J0 and J = 1.1 J0. We do not present the data here as there are no fundamental variations with respect
to what we have already discussed for the energy injection case. Having said so, the mode temperatures do
present an interesting difference that we discuss with the support of Fig. 14. Also in this case, the temperatures
of the modes are approximately the same for the low lying modes while a mode dependence appears close to
the edge of the spectrum. However, the temperatures of the largest modes are, in this case, lower than the
temperatures of the lower modes, see panel (a) and its inset. We ascribe this feature to the fact that the quench
extracts energy from the system. In panel (b) we confront the mode inverse temperatures to the ones extracted
from the fluctuation dissipation ratio in the frequency domain and, once again, the agreement between numerical
curves for N → ∞ and finite N data is very good. Moreover, the data are also in good agreement with the
outcome of the assumption z(0+) = zf that leads to Eq. (183), shown with a yellow solid line.

1

1.5

2

2.5

3

3.5

0 0.5 1

(a)

0.8

0.9

1

1.1

1.2

1.3

0.97 0.98 0.99 1

T
µ

µ/N
T pot
µ

T kin
µ

Tµ(t = 40)
Analytical

T
µ

µ/N

0.75

1

1.25

0.5 1 1.5 2 2.5

(b)

β
(ω

)

ω

[Tµ(ωµ)]
−1, N = 1024

−Im[R̂(ω)]/(ωĈ(ω)), N →∞
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Figure 14: Sector I. Energy extraction from a paramagnetic initial state. T ′ = 1.25 J0 and J = 1.1 J0 such that
y > x > 1. (a) Non-equilibrium temperature profile with the temperatures of the largest modes being smaller than the rest for
energy extraction. Inset: Zoom over the behaviour of the largest modes. (b) Comparison of the inverse mode temperatures
with the frequency-dependent effective inverse temperature of the global fluctuation dissipation relation. Also shown with a
yellow solid line is the approximate analytic prediction in Eq. (183). The frequency interval where ImR̂(ω) 6= 0 is [ω−, ω+]

with ω− = 0 and ω+ ' 2.10 in this case.

6.3.2 Sector II: large energy extraction from a paramagnetic initial state

For these parameter values the Lagrange multiplier approaches zf = 2J . We confirmed this claim with the
study of several cases in this Sector (see Fig. 3). Concerning the behaviour of the other global observables,
energies, correlation and linear response, and the mode-dependent ones, we differentiate three cases lying in
Sector II: y >

√
x, y =

√
x and y <

√
x, all with y > 1 and y < x.

y >
√
x

An example of the decay of the two-time global correlation function can be seen in panel (j) in Fig. 6. It is
stationary and it rapidly approaches zero with progressively decaying oscillations around this value. The linear
response and correlation function are not related by an FDT with a single temperature (not shown) and in this
respect there are no important differences regarding what we have just shown for energy extraction processes in
Sector I. For these reasons we chose not to show more data for these parameters.
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y =
√
x

A prediction from the asymptotic analysis of the Schwinger-Dyson equations, the fact that on the curve
y =

√
x and y ≥ 1 FDT is satisfied with Tf = J , is made explicit in Fig. 18 where the parametric plot

Tfχ(t1− t2) against C(t1− t2) is constructed for four pairs of (x, y =
√
x) given in the key. The dotted line is the

FDT prediction with Tf = J . The agreement between numerics and analytics is very good. Additional support
on the fact that the dynamics after the quench occur as in equilibrium at Tf is given in panel (b) in the same
figure where quenched and equilibrium correlations are indistinguishable. The latter are obtained by drawing
the initial conditions drawn from equilibrium at T ′ = Tf = J and running the code with the same parameter J .
Coincidence of a similar quality (not shown) is found for the other three sets of parameters used in (a).
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Figure 15: Sector II. Energy extraction from a paramagnetic initial state for parameters lying on the special curve
y =
√
x of the phase diagram. (a) Check of FDT at Tf = J for four sets of parameters on this curve. (b) Comparison between

the time-delayed correlation after a quench with T ′ = 1.75 and J = 3.065, and the equilibrium (no quench) correlation at
Tf = J = 3.0625. The agreement is perfect.

y <
√
x

We chose to show data for T ′ = 1.25 J0 and J = 2 J0, parameters that lie in the region y <
√
x of the phase

diagram where the naive analysis of the N →∞ equations allows for ageing behaviour. The N →∞ and finite
N data are shown in Fig. 16. The Lagrange multiplier and kinetic and potential energies approach their expected
asymptotic values with an oscillatory behaviour and smoothly decaying amplitude (not shown). The two-time
correlation is stationary and shows no ageing. The decorrelation from the initial configuration and from a later
configuration at time t2 behave very similarly. The time-delayed C(t1, t2) shows a rapid decay towards a value
close to 0.1 around which it oscillates once and next decays towards zero with damped oscillations (a). The
linear response function shows a similar effect in the sense of having a fast variation at short time differences and
a slower one later (c). The value of R obtained from the numerical integration agrees very well with Rst from
Eq. (83). The most interesting results concern the comparison between the linear response and the correlation
function in the parametric plot in panel (b). The very short time delay behaviour, for C close to 1 and χ close
to 0 seems to be described by the slope dictated by Tf , the value of the temperature deduced from an ageing
like asymptotic scenario. However, the curves deviate from this straight line for smaller C and larger χ. When
the correlation reaches a value close to 0.1 corresponding to its first oscillation, the parametric plot approaches a
flat form that ensures the limit χst = 1/J . This second behaviour is reminiscent of what happens in the ageing
relaxation of the same model [44].

The asymptotic analysis of the N → ∞ equations allow for an ageing solution with a diverging effective
temperature for correlation values below the plateau at q, in this region of the parameter space. (In the p = 3

model, for similar sets of parameters an ageing solution though with a finite Teff is realised [7].) The numerical
solution of the complete set of Schwinger-Dyson equations demonstrates a behaviour with some features that are
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Figure 16: Sector II. Energy extraction from a paramagnetic initial state (y <
√
x) T ′ = 1.25 > T 0

c , and post-
quench coupling J = 2 leading to ∆e = −0.4. (a) The correlation function, C(t1, t2) against t1 − t2 for different t2. C(t1, t2)

vanishes as t1 − t2 → +∞. (b) The parametric plot χ(τ, t2) against C(t2 + τ, t2), for two different values of the waiting time
t2. The black dashed line is the FDT at Tf ' 1.825 J0, see Eq. (A.22). (c) R and −1/Tf ∂t1C as a function of t1 − t2,
with the same Tf as in (b). Rst is reproduced from Eq. (83) with m = 1, J = 2 and zf = 4. Again, in this representation
the difference with −1/Tf ∂t1C is not visible, see panel (b) for a better understanding. (d) Almost all modes in the bulk of
the spectrum have the same temperature, and it is very close to Tf shown with an horizontal dashed line. Inset: Detail of
the largest modes. (e) The inverse mode temperatures (red data) and the outcome of the harmonic oscillator approximation
(yellow curve) in Eq. (183).

similar to the approximate asymptotic solution, but no signature of ageing. Indeed, the parametric plot could
be interpreted as formed by two pieces, one in which the form is non-trivial close to C = 1 and another one that
is, on average, flat, separated by the correlation value at which the first oscillation occurs. A flat piece in the
parametric plot means that the integrated response, and all other functions such as the potential energy, do not
get contributions from these time scales and it corresponds to an infinite [44] effective temperature [51, 52]. In
practice, the parametric plot is not locally flat for small values of C but, as we can see from the mode analysis
in Fig. 16 (e), the temperatures of the corresponding modes do take very large values.
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Figure 17: Sector III. Energy injection, shallow quench from condensed to condensed. T ′ = 0.50 < T 0
c and

J = 0.80. The small energy injection, ∆e = 0.15, is not sufficient to drive the system out of a condensed state. (a) Dynamics
of the correlation function. The horizontal dashed line is at q = 1 − Tf/J ' 0.44, with Tf from Eq. (A.19). (b) χ(t1, t2)

against C(t1, t2) for fixed t2 and using t1 − t2 as a parameter. The black dashed line shows the FDT with Tf = 0.45. In
(d) R, Rst from Eq. (83), and −1/Tf ∂t1C as a function of t1 − t2. (e) Time evolution of the Lagrange multiplier, z(t), and
zf = 2J = 1.6 with a dashed line. (f) From top to bottom: the kinetic energy (in good agreement with efkin = Tf/2), the
total energy (constant in time) and the potential energy (in good agreement with efpot = −J2/(2Tf )(1− q2)).

6.3.3 Sector III: initial and final condensed states

In Fig. 17 we start discussing the behaviour of the N →∞ model in Sector III. We use T ′ = 0.5 and J = 0.8,
a quench that injects a small amount of energy from the system. Panel (a) proves that the two time correlation
approaches a non-vanishing value asymptotically. The horizontal dashed line is at q = 1 − Tf/J ' 0.44, the
theoretical value derived from the assumption of equilibration à la Gibbs-Boltzmann. Further information about
the decay of the correlation functions is given in (c) where we show C(t, 0) and the off-diagonal correlation with
the initial configuration C2(t, 0) against time. C2 starts at qin = 0.5 and decreases monotonically. C(t, 0) quickly
decays from 1 with superimposed oscillations. Both curves should reach q2 = q0 6= q asymptotically and the
data are compatible with this claim.

Panel (a) in Fig. 18 shows the value of the asymptotic potential energy as a function of J/J0 for the same
three values of T ′/J0. The agreement between efpot and T

′/4 + T ′J(4J0)− 4J , the parameter dependence found
from the energy conservation and the asymptotic value of z is extremely good.

For quenches with y = T ′/J0 < 1 and x > xc(y) = y, the asymptotic values of C(t1, t2) and C(t1, 0) =
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C2(t1, 0), q and q0, respectively, do not vanish. However, it is not always easy to extract their functional
dependence on x and y, especially for parameters that get away from the shallow quenches x ' 1. Figure 18 (b)
shows q and q0 against J/J0 for three values of T ′/J0, together with the naive single temperature prediction
q = 1 − Tf/J with 2Tf = 2Tkin = T ′(1 + J/J0) drawn with black solid lines. The agreement is good close to
x = 1 though deviations are clear close to the critical line xc(y) and for large energy extraction deep inside this
parameter sector. Note that the prediction of equilibration à la Gibbs-Boltzmann is such that q 6= 0 at xc(y)

and this fact is not clear at all from the data (we have extracted q from a very short plateau in the correlation,
that continues to decrease possibly to zero, in these cases). Also shown in this plot is the asymptotic value of
q0. One clearly finds that q0 > q for x < 1 (injection) and q0 < q for x > 1 (extraction). We will come back to
the behaviour of the correlation function below.
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Figure 18: Sector III, shallow and deep quenches from condensed to condensed. The three datasets correspond
to T ′/J0 = 0.25 (red), 0.5 (green), 0.75 (blue). (a) The final potential energy as a function of J/J0. The dotted lines are
T ′/4 + T ′J(4J0) − 4J . (b) The estimated asymptotic value of the correlation function, q = lim(t1−t2)→+∞,t2�1 C(t1, t2)

(simple points), and q0 = limt→+∞ C(t, 0) (circles), against J/J0 for the three values of T ′/J0 < 1 (increasing from top to
bottom). Data are equipped with error bars. The solid lines are the equilibrium predictions for q. Notice the deviations
close to xc = y and for x far from 1. The long time limits of C(t1, t2) and C(t1, 0) are ordered according to q > q0 for J < J0

and q < q0 for J > J0.

Panel (b) in Fig. 17 shows the parametric χ(C) curve where one sees that the t = 0 (red) data are very different
from the ones for long t2. The data for long t2 suggest that FDT has established at temperature Tf . Another test
of FDT, now in the time domain, is shown in (d) with the comparison between the linear response and the time
derivative of the correlation. The other panels show the asymptotic values of the Lagrange multiplier (e) and
kinetic and potential energies (f). These yield further support to the asymptotic value of the q parameter and Tf
estimated analytically under the Gibbs-Boltzmann assumption, since they demonstrate perfect agreement with
the asymptotic contributions to the total energy. Nevertheless, we will revisit this claim below when studying
deeper quenches in the same sector.

The companion curves for finite N are in Fig. 19. First of all, panels (a)-(d) display the time dependence of
the µ = 1, N/2, N − 1, N mode energies in a system with N = 1024. While the modes µ = 1, N/2 show the
usual oscillatory behaviour of a harmonic oscillator, the largest modes µ = N − 1 and µ = N are clearly out
of equilibrium. The Lagrange multiplier is approximately constant and equal to the largest eigenvalue, within
numerical accuracy. The spectrum of mode temperatures is plotted in (f) with a zoom over the largest modes
in its inset. The profile is an equilibrium one, with Tµ being independent of µ, apart from the deviations close
to the edge of the spectrum. Finally, (g) shows a comparison between the inverse mode temperatures and the
N → ∞ frequency dependent effective temperature extracted from the FDR. N → ∞ and finite N results
coincide (except at high frequencies where the result is biased by the numerical limitations in the computation
of the Fourier transform). Higher modes (low frequency) have temperatures slightly below the temperature Tf
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Figure 19: Sector III, condensed initial conditions and small energy change. T ′ = 0.5 and J = 0.8. (a)-(d) Mode
energies in a system with N = 1024. The largest modes are neatly out of equilibrium. (e) The Lagrange multiplier. (f) Mode
temperatures, with a zoom over the largest modes in the inset. Close to equilibrium like profile apart from the deviations
close to the edge of the spectrum. (g) Comparison of the inverse mode temperatures with the ones of independent harmonic
oscillators.

while lower modes (high frequencies) have temperatures slightly above Tf , that is shown with an horizontal
yellow line. This fact is another warning concerning the claim of complete equilibration to a Gibbs-Boltzmann
measure.

Indeed, although the data for the shallow quench that we have just described might have suggested equilibra-
tion to a Gibbs-Boltzmann probability distribution, the detailed comparison of the full time-delay dependence of
the correlation function after a quench and in equilibrium (no quench) at parameters J and Tf that are the ones
that the equilibrium measure would have, prove that such a steady state is not reached by the dynamics. This
statement is proven in Fig. 20 where we display the self-correlations stemming from the two procedures for three
choices of quenches: to the critical line x = y (a case that will be further studied in the next Subsubsection),
the shallow quench, and a deep quench.

We note that the comparison of the linear response functions after a quench and in equilibrium yield identical
results. It is the correlation function the one that deviates from Gibbs-Boltzmann equilibrium.

6.3.4 Transition between Sectors III & IV

Figure 20 (a) has already shown non-equilibrium dynamics on the critical line y = x for y < 1. We give
here further evidence for this fact. In Fig. 21 we show results for T ′ = 0.5 < T 0

c and J = 0.5, that is to say,
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Figure 20: Lack of Gibbs-Boltzmann equilibration in Sector III. The time-delay correlation function after a quench
from J0 to J in Sector III (red and green curves) and in equilibrium at parameters J and Tf , the single temperature that
would correspond to Gibbs-Boltzmann equilibrium (black curves). The three panels are for J = 0.5 (quench to the critical
line), J = 0.8 (quench close to x = 1) and J = 2 (deep quench). The dotted horizontal line is q = 1− Tf/J .

point c on the phase diagram in Fig. 5. This quench injects a relatively small amount of energy into the system,
∆e ' 0.375 and takes the parameters to be on the critical line y = x.

The self correlation is shown in panel (a) of Fig. 21. Stationarity is clear for short time delays t1−t2, for t2 > 0

and there is some remanent waiting time dependence at these short t2. This double behaviour is reminiscent of
what is seen in the relaxational dynamics where a sharp separation of time-scales exists. The data suggest that
q0 = limt→∞ C(t, 0) is different from q = limt1−t2→∞ limt2→∞ C(t1, t2), although it seems hard to determine
these values from the numerics with good precision. In the event of a two step relaxation of C(t1, t2) with an
approach to a plateau at q and a further decay from it to zero, the plateau should be at q = 1 − Tf/J = 0.25,
shown with a dashed horizontal line. The data still lie below this value and we infer that they might not converge
to a plateau but simply decay to zero.

Further information about the decay of the correlation functions is given in (c) where we show C(t, 0) and the
off-diagonal correlation with the initial configuration C2(t, 0) against time. C2 starts at qin = 0.5 and decreases
monotonically. C(t, 0) quickly decays from 1 with superimposed oscillations. Both curves seem to join and slowly
and monotonically decay to zero.

The parametric plot of the linear response function, χ(t1, t2), against the correlation, C(t1, t2), for fixed t2
and using t1 − t2 as a parameter, for three different values of the waiting time t2, is shown in panel (b). The
χ(C) curve for t = 0 does not have any special form. The curves for late t2 are close to the straight line 1/Tf for
time-delays that correspond to the first oscillations of the correlation and linear response, they then oscillate, and
for longer time-delays the parametric construction becomes flat, with χ approaching, for C → 0, the expected
static susceptibility 1/J = 2. Again, this second flat regime is reminiscent of the one found for the relaxation
stochastic dynamics at and below the critical temperature [86, 87].

The fluctuation-dissipation theorem relating χ to C in a stationary regime with target temperature Tf = 0.375

obtained from Eq. (A.19), is indicated as a straight dashed line. The presentation in panel (d) confirms the
agreement between linear response and time variation of the time-delayed correlation function dictated by the
FDT at temperature Tf for C ≥ 0.2, say. However, it clearly breaks for smaller values of C. As for the other
quenches, we checked that the response R(t2 + τ, t2) coincides with the one derived by anti-transforming the
theoretical Fourier transform of the stationary asymptotic response, given by Eq. (83), Rst.

In (e) we provide a close look at the time evolution of z(t). As one can see, z(t) approaches the predicted
value zf = 2J . From the time evolution of the energy (f), we observe that the total energy is constant in time,
as it should be, while the kinetic and potential energies quickly approach their asymptotic values, which coincide
within numerical accuracy with the ones predicted in Sec. 4.4.3. These values could be mistaken for efkin = Tf/2

and efpot = −J2(1− q2)/(2Tf ), with q = 1−Tf/J = 0.25, the Gibbs-Boltzmann equilibrium predictions, though,
the system is not in equilibrium.
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Figure 21: Energy injection from condensed to the critical line y = x. T ′ = 0.50 < T 0
c , J = 0.50 and ∆e = 0.375.

(a) The correlation function and q = 1 − Tf/J = 0.25 (horizontal dotted line). (b) χ(t1, t2) against C(t1, t2), for fixed t2

and using t1 − t2 as a parameter. The black dashed line is the FDT with Tf = 0.375. (d) The curve indicated by Rst is the
(numerical) inverse Fourier transform of the theoretical prediction given by Eq. (83). (e) Time evolution of the Lagrange
multiplier, z(t), and 2J = 1 with a dashed horizontal line. (f) From top to bottom: the kinetic energy (in good agreement
with efkin = Tf/2 ' 0.187), the total energy (constant in time with value ef ' −0.125) and the potential energy (in apparent
agreement with efpot = − J2

2Tf
(1− q2) ' −0.312, though see the text for a revision of this claim).

6.3.5 Sector IV: large energy injection on a condensed state

In Fig. 22 we show results for T ′ = 0.5 < T 0
c and J = 0.25. This quench injects a large amount of energy into

the system, ∆e = 0.5625, which is sufficient to take it out of the initial condensed state. Had the system reached
an equilibrium paramagnetic state asymptotically after the quench its temperature would be Tf ' 0.320, so that
Tf/J ' 1.281, from Eq. (A.20). This, however, is not consistent within the N → ∞ analysis and, accordingly,
it is not realised dynamically.

The self correlations shown in (a) present large oscillations with weakly decaying amplitude around the
expected asymptotic value limt1−t2→∞ limt2→∞ C(t1, t2) = 0 for all values of t2. C(t1, t2) satisfies stationarity for
sufficiently late t2, as one can see from the plot where the curves for t2 coincide, within numerical accuracy. The
parametric plot of the susceptibility χ against the correlation C, shown in (b), is rather complex and very far from
linear. The FDT relating χ to C in a stationary regime with putative target temperature Tf ' 0.320 is indicated
as a straight dashed line. This behaviour is confirmed by the time evolution of the stationary response function,
R(t1, t2), see panel (d). R(t1, t2) does not coincide with − 1

Tf
∂t1C(t1, t2), with Tf the target temperature. In
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Figure 22: Sector IV. Large energy injection on a condensed state. T ′ = 0.50 < T 0
c , J = 0.25 and ∆e = 0.5625. (a)

Dynamics of the correlation function. The horizontal line is at q = 0. (b) χ(τ + t2, t2) against C(τ + t2, t2) for four waiting
times t2 specified in the key. The black dotted line is the FDT at Tf ' 0.320. (c) Comparison between C(t, 0) and C2(t, 0).
C2 starts at qin = 0.5 and oscillates around 0, even though the amplitude of oscillations is slowly decreasing with time. (d) R,
Rst and −1/Tf ∂t1C as functions of t1 − t2. (e) The Lagrange multiplier z(t), Tf + J2/Tf (dotted line) and zf = T ′ + J2/T ′

(dashed line). (f) From top to bottom: kinetic, total (constant), and potential energy densities. (g) Fourier transforms of
the correlation and response functions for two t2 indicated in the key. The black solid lines are the theoretical predictions
for the real and imaginary part of the Fourier transform of the linear response function, given by Eq. (83), with parameters
m = 1, J = 0.25 and zf = 0.625. (h) The ratio −ImR̂(ω)/(ωĈ(ω)) where the various curves correspond to different waiting
times t2. The dashed line is at 1/Tf ' 3.125 and 1/Tkin = 2.67 would be even below it.

panel (c) we also show the time evolution of the off-diagonal correlation with the initial configuration, C2(t, 0). In
contrast to the previous cases, C2(t, 0) is oscillating in time around the value q2 = 0. Panel (e) demonstrates that
z(t) is far from zf = Tf + J2/Tf relative to an equilibrium paramagnetic state but oscillates around T ′+ J2/T ′,
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consistently with our claims so far. From panel (f) we observe that the kinetic and the potential energies relax
to the predicted asymptotic values specified in Sec. 4.4.3. The Fourier transforms of the correlation and response
functions for two different values of t2, as indicated in the key, are shown in panel (g). The black solid lines
represent the theoretical prediction for the real and imaginary part of the Fourier transform of the response
function in the stationary regime, R̂st(ω), given by Eq. (83), with parameters m = 1, J = 0.25 and zf = 0.625.
They are in excellent agreement with the numerical results. In panel (h) we show the ratio −ImR̂(ω)/(ωĈ(ω)).
The dashed line is −1/Tf and is clearly off the data. The different curves were computed for various waiting
times t2 given in the key. In Fig. 23 we compare the FDR (averaged over different waiting times to get rid of
the undesired oscillations) to the mode temperatures of the finite N system. The correspondence between the
two ways of extracting the temperatures is good. The yellow line is the approximate prediction in Eq. (183)
stemming from the independent harmonic oscillator approaximation that for this kind of quench is quite far
from the numerical results though it captures the qualitative features.
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Figure 23: Sector IV. Large energy injection on a condensed state. Same parameters as in Fig. 22. Comparison
between the mode inverse temperature for a finite size system (red), the inverse temperature for the fluctuation dissipation
ratio in the infinite size limit (black curve) and the analytical expression for the mode inverse temperatures for independent
harmonic oscillators (yellow curve). All measured in units of J0. The frequency interval in which ImR̂(ω) is non-zero is
(ω−, ω+) = (1/(2

√
2), 3/(2

√
2)) ' (0.35, 1.06).

7 Integrals of motion
In Sec. 3 we recalled the relation between the p = 2 spherical disordered model and the classical integrable

model introduced by Neumann. In this Section we will present some results concerning the behaviour of the
integrals of motion. A key issue we address here is how these influence the statistical properties in the steady
state.

7.1 The integrals of motion landscape

In Sec. 2.2.1 we studied the potential energy landscape of the p = 2 disordered model and we found that it
has N extrema corresponding to ~s = ±

√
N~vµ with ~vµ the N eigenvectors of the interaction matrix Jij . These

directions turn out to be the extrema of the integrals of motion landscape as well [88]. This claim is proven
easily. Indeed,

∂Iµ
∂pη

= 0 , (200)
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where we labeled the constants of motion defined in Eq. (48) with µ, the eigenvalue index, implies the following
two conditions

0 = s2
µpη − sµpµsη for µ 6= η ,

0 =
1

mN

∑
ν(6=η)

s2
νpη − pνsνsη
λν − λη

for µ = η .

It is clear that the first relation makes the second one hold identically. Moreover, replaced in the definition of
the Iµs one finds

− 1

2
λµIµ = −1

2
λµs

2
µ (201)

that has to be extremised under the global spherical constraint on the sµ. This is just the analysis of the potential
energy landscape that we performed in Sec. 2.2.1, leading to ~s∗ = ±

√
N~vµ and z∗ = λµ for all the saddles in the

landscape.

7.2 Averaged values

In our setting we use random initial conditions and we average over them. We will therefore focus on the
averaged integrals of motion,

〈Iµ〉 = 〈s2
µ〉+

1

mN

∑
ν(6=µ)

〈s2
µp

2
ν〉+ 〈s2

νp
2
µ〉 − 2〈sµpνsνpµ〉

λν − λµ
. (202)

Right after the instantaneous quench the initial values 〈s2
µ(0+)〉 and 〈p2

µ(0+)〉 are the ones right before the
quench, 〈s2

µ(0−)〉 and 〈p2
µ(0−)〉. Under the quench the eigenvalues transform as λµ = J/J0 λ

(0)
µ . We can

therefore compute the 〈Iµ(0+)〉 using these values. Owing to the fact that the initial conditions are drawn
from an equilibrium probability density, we have 〈s2

µ(0+)p2
ν(0+)〉 = 〈s2

µ(0+)〉〈p2
ν(0+)〉 and 〈pµ(0+)pν(0+)〉 =

〈sµ(0+)sν(0+)〉 = 〈sµ(0+)pν(0+)〉 = 0 for all µ 6= ν, and 〈sµ(0+)pµ(0+)〉 = 0 for all µ. The constants are then

〈Iµ(0+)〉 = 〈s2
µ(0+)〉+

1

mN

∑
ν(6=µ)

〈s2
µ(0+)〉〈p2

ν(0+)〉+ 〈s2
ν(0+)〉〈p2

µ(0+)〉
λν − λµ

. (203)

y < 1: condensed initial states.

In the cases in which y < 1 the initial state is condensed and the integrals of motion of the modes µ 6= N

and µ = N scale very differently with N . For the modes in the bulk

〈Iµ6=N (0+)〉 =
T ′

z(0−)− λ(0)
µ

+
T ′

N

〈s2
N (0+)〉

λN − λµ
+
T ′

2

N

∑
ν(6=µ,N)

1

z(0−)− λ(0)
ν

1

λν − λµ

+
T ′

2

N

∑
ν(6=µ)

1

z(0−)− λ(0)
µ

1

λν − λµ
. (204)

This expression involves two sums that will appear again and again in the rest of this Section, and depend only
on the pre-quench parameters J0 and T ′,

S(1)
µ ≡ 1

N

∑
ν(6=µ)

1

λ
(0)
ν − λ(0)

µ

=
1

J0

1

N

∑
ν(6=µ)

1

λ
(n)
ν − λ(n)

µ

≡ 1

J0
S(1n)
µ ,

S(2)
µ ≡ 1

N

∑
ν(6=µ,N)

1

z(0−)− λ(0)
ν

1

λ
(0)
ν − λ(0)

µ

.

For µ 6= N the second sum reads

S
(2)
µ6=N =

1

z(0−)− λ(0)
µ

(
1

J0
+ S(1)

µ

)
=

1

z(0−)− λ(0)
µ

1

J0

(
1 + S(1n)

µ

)
. (205)

The superscript n means that the eigenvalues have been rescaled by J0 in such a way that they vary in the
interval (−2, 2) and S(1n)

µ is just a number. Using these definitions we find

〈Iµ6=N (0+)〉 =
T ′

z(0−)− λ(0)
µ

+
J0

J

[
T ′qin

λ
(0)
N − λ

(0)
µ

+ T ′
2
S(2)
µ +

T ′
2

z(0−)− λ(0)
µ

S(1)
µ

]
. (206)
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This expression has a rather simple dependence on J that only appears as a prefactor in front of the sum of
three terms within the square brackets. (This fact justifies the similarity of the bulk numerical values of 〈Iµ〉 in,
for example, panels (c) and (d) in Fig. 26.) In the large N limit z(0−)→ λ

(0)
N and

〈Iµ 6=N (0+)〉 =
T ′

λ
(0)
N − λ

(0)
µ

[
1 +

J0

J
+

2T ′

J
S(1n)
µ

]
. (207)
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Figure 24: Uhlenbeck’s integral of motion 〈IN 〉 for the largest mode, µ = N , as a function of system size for (a) three
quenches with T ′/J0 < 1, and (b) three quenches with T ′/J0 > 1. We observe a clear linear scaling with system size in the
case of a condensed initial state, while the result is order 1 for a PM initial state. In panel (a) the dashed lines are the slopes
predicted by Eq. (209).

For the largest mode µ = N , if y < 1, we obtain

〈IN (0+)〉 = qin

(
1 +

T ′J0

J
S

(1)
N

)
N +

T ′
2
J0

J
S

(2)
N . (208)

In the limit N →∞ we can use S(1)
N → −1/J0 and the known form of qin to find

〈IN (0+)〉 7→
(

1− T ′

J0

)(
1− T ′

J

)
N +

T ′
2
J0

J
S

(2)
N (J0) . (209)

The parameter dependence of the slope in the right-hand-side seen as a function of N is verified numerically in
Fig. 24 (a). The good match between this form and the numerics indicates that S(2)

N must be negligible with
respect to the first term that is O(N); indeed, we have checked numerically that S(2)

N is O(1).

y < 1: paramagnetic initial states.

If, instead, y > 1, there is no condensed mode and the integrals of motion are

〈Iµ(0+)〉 =
T ′

z(0−)− λ(0)
µ

(
1 +

T ′J0

J
S(1)
µ

)
+
T ′

2
J0

J
S(2)
µ

=
J0

z(0−)− λ(0)
µ

[
T ′

J0
+
T ′2

JJ0
+

2T ′
2

JJ0
S(1n)
µ

]
(210)

and all of order 1. The particular case µ = N is displayed in the panel (b) of Fig. 24, showing no dependence
on N for N >∼ 2000, as expected.

Summary.

Summarising, Fig. 24 displays the integral of motion associated to the mode at the edge of the spectrum for
y < 1 (a) and y > 1 (b). All data points were obtained using a single realisation of the random matrix. For the
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condensed initial conditions we clearly see the linear scaling with N . For the non-condensed ones the variations
show a weak N dependence for small N plus a possible variation due to the fluctuations in the realisation of the
eigenvalues. The result is distinctly finite in this case.

As for the time-evolution of these averaged quantities, we have verified (not shown) that each of them are
conserved 〈Iµ(0+)〉 = 〈Iµ(t)〉 for all µ, and that they satisfy the two constraints

∑
µ Iµ(0+) =

∑
µ Iµ(t) = N and∑

µ λµIµ(0+) =
∑
µ λµIµ(t) = −2etotN , with etot the total energy density.

7.2.1 Gibbs-Boltzmann equilibrium?

The analysis of the constants of motion should shed light on the “distance” from complete equilibration to a
Gibbs-Boltzmann probability density, especially in Sector III where shallow quenches in the N →∞ Schwinger-
Dyson formalism suggested proximity from this description. We here compare the actual values of the 〈Iµ〉 to
the ones a system in Gibbs-Boltzmann equilibrium at a single temperature Tf would have.

The modes in the bulk

In a final Gibbs-Boltzmann equilibrium state the integrals of motion should read

〈Iµ6=N 〉Tf =
Tf

zf − λµ
+
T 2
f J0

J

1

zf − λµ
S(1)
µ + Tf

qf
λN − λµ

+
Tf

2J2
0

J2
S(2)
µ , (211)

where we allowed for the condensation of the largest mode. We wish to compare this expression to the one in
Eq. (207). After some lengthy calculations, using the N →∞ values

qin = 1− T ′

J0
, zf = 2J =

J

J0
z(0−) , Tf =

T ′

2

(
1 +

J

J0

)
, qf = 1− Tf

J
, (212)

we find that the difference ∆Iµ6=N = 〈Iµ6=N (0+)〉 − 〈Iµ6=N 〉Tf is

∆Iµ 6=N = −T
′2

2

(
J0

J
− 1

)2
1

λ
(0)
N − λ

(0)
µ

S(1)
µ (213)

a finite, non-zero, value for all µ 6= N .
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Figure 25: Scaling of ∆IN in sector III. The data points at five values of N are shown with points that are joined by
coloured straight lines. The dashed black lines are the predictions of Eq. (216).

The N th mode

59



The Nth mode has a different scaling with system size. We have already computed 〈IN (0+)〉 in Eq. (209)
and we want to compare it to what it should read in equilibrium at Tf :

〈IN 〉f = qf

(
1 +

TfJ0

J
S

(1)
N

)
N +

T 2
f J

2
0

J2
S

(2)
N . (214)

The difference between the two, ∆IN ≡ 〈IN (0+)〉 − 〈IN 〉Tf , is

∆IN =

[
qin − qf + (qinT

′ − qfTf )
J0

J
S

(1)
N

]
N +

(
T ′

2 − T 2
f
J0

J

)
J0

J
S

(2)
N . (215)

The first term diverges linearly with N . We have already argued that the second one is O(1), see the discussion
after Eq. (209). Therefore, we focus on the slope of the difference, seen as a function of N . After replacing qf ,
qin and Tf by their expressions in terms of J , J0 and T ′ in the large N limit, and S(1)

N → −1/J0,

∆IN
N
→ − T

′2

4J2
0

(
J0

J
− 1

)2

. (216)

This form is validated by the numerical data in Fig. 25 for three pairs of T ′ and J , all in Sector III.
Quite clearly, the differences between the actual 〈Iµ〉 and the ones in equilibrium at a temperature Tf are

proportional to J0/J − 1, a factor that vanishes for J0 = J . Otherwise, the differences are finite for µ 6= N and
proportional to N for the last mode, making the mode-by-mode difference non-vanishing for J 6= J0. This fact
confirms, then, the lack of equilibration to a Gibbs-Boltzmann measure with a single Tf .

The special line y =
√
x

On the curve y =
√
x the asymptotic analysis for N → ∞ predicts thermalization at temperature Tf = J .

The numerical analysis of the Schwinger-Dyson equations confirms this prediction as the correlation and linear
response are linked by FDT and the time-dependence of the correlation function after an instantaneous quench
is identical (within numerical accuracy) to the one found in equilibrium at this temperature. We shall briefly
analyse the behaviour of the constants of motion in this case.

On the special line y =
√
x, T ′2 = JJ0 and Eq. (210) yields the following expression for the averaged integrals

of motion

〈Iµ(0+)〉 =
1

z(0−)/J0 − λµ

(√
J

J0
+ 1 + 2S(1n)

µ

)
, (217)

where λµ = λ
(0)
µ /J0 are the normalised eigenvalues that vary in the interval (−2, 2). From Eq. (211) with qf = 0,

zf = 2J valid in the N → ∞ limit, and using Eq. (205) the constants of motion in an equilibrium state at
temperature Tf are

〈Iµ〉Tf =
1

2− λµ

(
2 + 2S(1n)

µ

)
. (218)

We observe that the two sets of values are very similar if J is close to J0. Numerically, we find that, in the
special case T ′ = 1.25 J0 and J = 1.5625 J0, the ∆Iµ is of order of 10−2. We conclude that even in this case,
in which the asymptotic analysis predicts that the global, mode-averaged quantities, behave as in equilibrium, a
prediction that seems to be confirmed by the numerics, the constants of motion are not exactly the same in the
initial state and in the thermal state the system would reach in case of thermalisation.

In order to properly interpret these results, it is important to keep in mind that, strictly speaking, the
conserved energy dynamics of an isolated (finite size) system should keep memory of the initial conditions, even
if the system is non-integrable. In our problem, we see this information encoded in the Iµs. More so, not even
in the N →∞ limit this memory is erased as the ∆Iµs remain finite.

7.2.2 Independent harmonic oscillators

We have seen in Sec. 5.7 that the N → ∞ system decouples into independent harmonic oscillators in the
asymptotic long time limit (taken after N → ∞) since z(t) → zf . A natural idea is to check whether we can
identify the integrals of motion 〈Iµ(0+)〉 with the ones that an ensemble of harmonic oscillators with spring
constants mω2

µ = zf − λµ in equilibrium at the temperatures Tµ would have.
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Figure 26: Comparison between the averaged Uhlenbeck’s integrals of motion J〈Iµ〉 (red data points) and the mode tem-
peratures T kin

µ = 2ekin
µ (blue datapoints) of each mode in the four sectors of the phase diagram (we have checked that 2εpot

µ

yield equivalent results). We used the same vertical scale in all plots, leaving aside the values of 〈Iµ〉 close to the edge in (c)
for which, in particular, 〈IN 〉 ' 180. There is no such divergence at the edge of the spectrum in the other panels. The black
horizontal lines represent the global kinetic temperatures Tkin in the three sectors. They are located at Tkin ' 1.15 (a),
Tkin ' 1.56 (b), Tkin ' 0.45 (c) and Tkin ' 0.37 (d), according to Eq. (121). We have also checked that N−1∑

µ T
kin
µ = Tkin.

On the one hand, we note that 〈s2
µ(t)〉 and 〈p2

µ(t)〉 are not constant for harmonic oscillators but their time
averages are, so we evaluate 〈Iµ〉 finding, in this framework,

〈Iµ〉osc =
Tµ

zf − λµ
+
Tµ
N

∑
ν(6=µ)

[
Tν

zf − λµ
+

Tν
zf − λν

]
1

λν − λµ
. (219)

In the N → ∞ limit the value of zf is expected to be T ′ + J2/T ′ for x < y and 2J for y < x. Imposing the
identity between the 〈Iµ〉osc and the 〈Iµ(0+)〉 given in Eqs. (206) and (208) should yield a better estimate of the
temperatures Tµ than the one explained in Sec. 5.7. We leave this analysis aside for the moment.

On the other hand, once the oscillators have decoupled and the Lagrange multiplier stabilised, the mode total
energies, or the time-averaged kinetic and potential energies are also constants of motion. In the next Subsection
we investigate to what extent the 〈Iµ〉 are proportional to etot

µ = 2ekin
µ .
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7.2.3 The integrals of motion and the mode temperatures

Figure 26 shows the spectrum of integrals of motion J〈Iµ〉 (red data points) together with the mode kinetic
temperatures T kin

µ = 2ekin
µ (that, we have checked, are in agreement within numerical accuracy with the potential

ones T pot
µ away from the edge of the spectrum), for parameters in the four sectors of the dynamic phase diagram.

We show the data using the same vertical scale in all cases. Although the data for J〈Iµ〉 are noisier than the
ones for T kin

µ , the two are in fairly good agreement in the bulk of the spectrum, far from the edge, in all panels.
In the same figures we include the values of the global kinetic temperature, Tkin defined in Eq. (121) and we see
that the mode temperatures are very close to it again away from the edge of the spectrum and satisfying the
constraint N−1∑

µ T
kin
µ = Tkin.

The parameters in Sector II, panel (b), are on the curve y =
√
x on which the data for the global correlation

and linear response show equilibrium at a single temperature Tf = J . The blue data points for the mode kinetic
energies are precisely on this value. The integrals of motion scatter, however, quite a lot around this value.
Importantly enough, the difference ∆Iµ is very small in this case.

In sector III, panel (c), the data for J〈Iµ〉 tend to be relatively flat in the bulk of the spectrum and very
close to Tkin = Tf = T ′(1 + J/J0)/2. This result can be derived from Eq. (206) taking advantage of a simple
rearrangement of the two sums, S(2)

µ = (S
(1)
µ − S

(1)
N )/(z(0−) − λ

(0)
µ ) valid for µ 6= N . In particular, taking

λ
(0)
µ right at the middle of the spectrum, S(1)

µ = 0 by symmetry and J〈I0〉 = Tf for N → ∞. The incipient
divergence close to the right edge of the spectrum, with the deviation from this constant value, is also clear. By
using a maximal value of 8 in the vertical axes we have explicitly left aside the points for µ ' N that take much
larger values. For instance, J〈IN 〉 ' 180. The approximate mode temperatures in Eq. (183) are all identical to
Tf = Tkin in this Sector, consistently with the numerical data away from the edge. The fact that the system is
not in proper Gibbs-Boltzmann equilibrium is due to the fact that the higher lying integrals of motion do not
comply with this temperature.

The data for J〈Iµ〉 in Sector III look very similar to the ones found in Sector IV, see panel (d). Indeed, the
data almost coincide far from the edge, since they are both determined by Eq. (206) that has a weak dependence
on J (the only parameter that takes a different value in panels (c) and (d)). Close to the edge, the J〈Iµ〉
differ since in III (c) there is scaling with N while in IV (d) there is not. The mode kinetic energies are mode
independent and identical to T ′(1 + J/J0)/2 contrary to what the approximation in the last line of Eq. (183)
tells. This means that for these quenches the assumption in Eq. (180) fails.

We reckon that the kinetic temperature Tkin = 2ekin should be equal to the sum of the mode kinetic temper-
atures Tkin = 1/N

∑N
µ=1 T

kin
µ . We have checked numerically this property.

We leave a more detailed analysis of the comparison between the two and their use to build a GGE for a
future publication.

7.3 Fluctuations of the integrals of motion in the equal energy hypersurface

The fact that the integrable system reaches a state that is very close to thermal equilibrium in sector III, the
sector with the lowest total energy in the phase diagram, allows us to infer some properties of the phase space
structure of the model. Only a system for which it is possible to visit all configurations with the same energy
in the course of its dynamical evolution is capable of reaching thermal equilibrium. An integrable model cannot
achieve this goal since it is bound to wander in a region of the phase space compatible with the values that the
integrals of motion (IOM) take on the initial configuration. The dynamics is constrained inside the phase space
region composed by configurations which have the same values of the Iµs ∀µ. Such regions can be labeled with
the values of the Iµs (which also define the energy of the group of configurations since −

∑
λµIµ = 2H), and we

shall call them iso-IOMs-regions in the following.
A close-to-thermalised dynamics in an integrable system should be indicative of a substantial overlap between

the constant energy manifold and the equal IOMs region in phase space. This claim is, however, highly non-
trivial since the equal energy manifold is 2N − 1 dimensional while the iso-IOMs-region has only 2N −N = N

dimensions. In the large N limit, the equal energy manifold is huge with respect to the equal IOMs one (for
N = 2 the constant energy region is a volume and the equal IOMs-configuration is a surface).

Our hypothesis for the dynamics of the Neumann model with parameters close to x = 1 in phase III, is that
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µ/N for modes near the edge of the spectrum. (d) σ2

N/N . Note the logarithmic scale in the vertical axis
in panels (a) and (d).

the constant energy manifolds have a substantial overlap with any iso-IOMs-region that include a configuration
with the given energy. In order to test this guess, we studied the following quantity:

σ2
µ(e) =

∫ N∏
i=1

dsi dpi δ(H[si, pi]/N − e)(Iµ[si, pi]− 〈Iµ[si, pi]〉)2 , (220)

where the average is a microcanonical one given by

〈Iµ[si, pi]〉 =

∫ N∏
i=1

dsi dpi δ(H[si, pi]/N − e)Iµ[si, pi] . (221)

The quantity σ2
µ(e) measures how large are the fluctuations in the value of a given IOM Iµ in the set of

configurations with the same energy e. According to the discussion at the beginning of this Section, if, for a
given energy, we observe a small value in σµ(e), this indicates a tendency of the integrable system to thermalise.
In order to perform the averages over equal energy configurations, we replace the microcanonical average by a
canonical one, introducing a Lagrange multiplier β and a measure exp(−βH)/Z, fixing the average energy density
of the ensemble. For large N , the fluctuations of the energy average are small and we get a good approximation
to the microcanonical mean. The advantage of the canonical measure is that the 〈Iµ〉s are expressed in terms of
canonical averages of the same kind as those which we were using in the previous Sections to describe the initial
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state of the dynamics. Moreover, once z is fixed, the Hamiltonian is quadratic, and this allows one to express
the higher order average 〈I2

µ〉, which includes products of 4, 6 and 8 phase space variables, in terms of quadratic
averages 〈s2

i 〉 and 〈p2
i 〉. A straightforward numerical calculation of σ2

µ(e) is then possible. We show numerical
results in Fig. 27. In panel (a) we plot σ2

µ, the average of σ2
µ(e) in the first three fourths of the spectrum

σ2
µ =

3N/4∑
µ=1

σ2
µ(e) . (222)

We can clearly observe that it is very small for low energies and that it increases by several orders of magnitude
as we increase the energy density of the system. Such is the behaviour of σ2

µ(e) for the great majority of the
modes. In panels (b) and (c) we show the behaviour of σ2

µ(e) for µ close to N , the edge of the spectrum. We
observe that σ2

µ(e) exhibits a maximum at low energies. Finally, in panel (d), σ2
µ=N (e) is plotted. At very low

energies, σ2
N (e) is very large and scales with N . As we increase energy, σ2

µ(e) decreases abruptly until it reaches
a value that is inversely proportional to N .

Summarising, we observe that, far from the edge of the spectrum, the fluctuations in the IOMs are very small
for sufficiently low energies. This means that the low energy configurations of the model have very similar values
of the Iµs, at least for µ far from the edge of the spectrum. For modes close or at the edge of the spectrum
fluctuations can be very large. These results suggest that the iso-IOMs-regions which lie at low energies have
very similar values for the Iµs for µ far from N , and only differ in the values of the Iµs close to the edge of the
spectrum. In fact, in sector III, the sector with the lowest energies in the phase diagram, we have verified in
previous Section that the initial state and the final thermal state at temperature Tf which partially describes the
long-time dynamics have very similar values of the IOMs far from the edge of the spectrum, with discrepancies
only near the edge of the spectrum.

8 Conclusions
This paper continues our study of the conserved energy dynamics following sudden quenches in classical

disordered isolated models ruled by Newton dynamics.
In the p = 3 strongly interacting case [7] all quenches reach an asymptotic regime in which a single (or

double) temperature dynamical regime establishes. The systems either equilibrate to a paramagnetic state with
a proper temperature, they remain confined in a metastable state with restricted Gibbs-Boltzmann equilibrium
at a single temperature, or age indefinitely after a quench to the threshold with the dynamics being characterised
by one temperature at short time delays and another one at long time delays, similarly to what happens in the
relaxational case [20, 72, 71, 73, 9]. The two temperatures Tf and Teff depend on the pre and post quench
parameters in ways that were determined in [7]. For the sake of comparison, the dynamic phase diagram of the
p = 3 isolated model is reproduced in Fig. 28 (a).
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In the p = 2 model the conserved energy dynamics are quite different both from the relaxational ones [42,
43, 44, 26, 45] and the isolated p = 3 interacting case [7]. This is due to its integrability, made explicit by its
relation to the Neumann integrable model. The main results in this paper are the following.

• We identified the dynamic phase diagram according to the asymptotic behaviour of the static susceptibility,
the Lagrange multiplier imposing the spherical constraint (an action density), and the long time-delay limit
of the two-time correlation function. The phase diagram is shown in Fig. 28 (b), and it can be compared
to the one of the p = 3 isolated case shown on its left side.

• In the analysis of the Schwinger-Dyson equations we distinguished four sectors in the phase diagram
depending on the initial state (being condensed or not) and the final value of the static susceptibility. We
reduced these four sectors to three phases, indicated with different colours in the Figure, in which the
dynamic behaviour is different. Basically, they are distinguished by two “order parameters”, χst and q, the
static susceptibility and the asymptotic value of the two-time correlation.

• In none of the phases the system equilibrates to a Gibbs-Boltzmann measure. Accordingly, there is no
single temperature characterising the values taken by different observables in the long time limits, not even
after being averaged over long time intervals.

• There is one case, quenches from the condensed equilibrium state in which energy is extracted or injected
in small amounts, in which the dynamics of the global observables, those averaged over all modes, are close
to the ones at a single temperature Tf . However, a closer look into the mode dynamics and its observables
exhibits the fact that the modes are not in Gibbs-Boltzmann equilibrium. Moreover, for deep quenches in
the same sector III one clearly sees that standard thermal equilibration is not reached.

• Another special case is provided by quenches with T ′ > J0 and T ′2 = JJ0. On this special curve the global
observables satisfy thermal equilibrium properties at Tf = J .

Much has been learnt from the evolution of the system with finite number of degrees of freedom using a
formalism that allows one to show that in the infinite size and long time limit (taken after the former one) the
modes decouple and become independent harmonic oscillators. Once this regime is reached, the mode energies
can be associated to mode temperatures, via standard equipartition, and a temperature spectrum obtained.
A naive approximation to determine their dependence on the control parameters was explained and leads to a
variation from sector to sector of the phase diagram. We compared these forms with the numerical measurements
and the agreement is quite good in all cases.

Having obtained the total energies of the modes, and from them the mode temperatures, we put to the test
the recently proposed relation between them and the frequency dependent effective temperature stemming from
the fluctuation-dissipation relation of the spin observable [69, 70]. We found excellent agreement between the
two in all phases of the phase diagram.

The p = 2 spherical system turns out to be equivalent to the Neumann classical mechanics integrable model.
We stress the fact that in the field of classical integrable systems, the model of Neumann was usually defined and
studied having only a few degrees of freedom. Here, as we are interested in searching for a statistical description
of the post-quench dynamics, we dealt with the limit of large, and even diverging, number of degrees of freedom.

The N − 1 integrals motion of the Neumann model have been identified by K. Uhlenbeck [16, 18]. After a
trivial extension that allows us to deal with the large N limit, we studied their scaling properties with system size.
In cases in which the initial state is condensed, the integrals of motion associated to the edge of the spectrum also
scale with N . The distance between their values and the ones they would have taken in equilibrium at a single
temperature Tf gave us a rough measure of distance from Gibbs-Boltzmann equilibrium. Importantly enough,
in the particular case in which the global correlation and linear response behave as in thermal equilibrium at
Tf = J , that is to say, parameters on the curve T ′2 = JJ0 in sector or phase II, the integrals of motion are not
identical to the ones expected in equilibrium. This proves that not even in this case the system is able to fully
equilibrate.

The N − 1 integrals of motion could be used to build a putative Generalised Gibbs Ensemble, or they may
be a guideline to choose the ones with good scaling properties. We will investigate this problem in a sequel to
this publication.
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A Asymptotic analysis in the N → ∞ limit
In this Appendix we give additional details on the study of the full set of equations (75)-(78) that couple the

correlation C and linear response R functions derived in the N → ∞ limit. Based on a number of hypotheses
that we carefully list below, we analyse the behaviour of the model in the long times limit.

A.1 Stationary dynamics

Consider the system in equilibrium at T ′ with parameters J0, m0 and let it evolve in isolation with parameters
J, m. We will assume that the dynamics approach a steady state in which one-time quantities approach a
constant. This assumption does not apply to certain quenches of the isolated system. Still, we investigate the
consequences of the stationary assumption.

A.1.1 The asymptotic values

Let us assume that the limiting value of the Lagrange multiplier is a constant

lim
t1→∞

z(t1) = zf . (A.1)

Recalling the definitions given in the main part of the paper, the limits of the correlation functions are

q = lim
t1−t2→∞

lim
t2→∞

C(t1, t2) , q0 = lim
t1→∞

C(t1, 0) , q2 = lim
t1→∞

C2(t1, 0) . (A.2)

The linear response was analysed in the main body of the paper and, independently of the quench parameters
it is given by

R̂(ω) =
1

2J2

[
(−mω2 + zf )±

√
(−mω2 + zf )2 − 4J2

]
. (A.3)

in the frequency domain, where the Fourier transform has been computed with respect to the time difference
t1 − t2. This result only assumes a long-time limit in which zf is time-independent.

A.1.2 The parameters q0 and q2

We could estimate the asymptotic value of z(t1) taking the long t1 limit of Eq. (78); however, without the
use of FDT we cannot compute the integral involved.

We are tempted to propose
q0 = q2 . (A.4)

The interpretation of this result in terms of the evolution of real replicas is that the asymptotic value of the
self-correlation between times t1 and 0, q0, is the same as the asymptotic value of the correlation between two
replicas evaluated at the same times t1 and 0 with t1 diverging.

A.1.3 The two-time correlation function

Allowing for the two-time correlation function not to decay to zero but to a finite value q, we separate this
contribution explicitly and we write C(t1, t2) = q + Cst(t1 − t2) with limt1−t2→∞ Cst(t1 − t2) = 0. We also use
limt1→∞ C2(t1, 0) = q2 leaving the possibility of there being a different asymptotic value for this quantity open.

The dynamic equation now becomes an equation on C̃ that reads

(
m∂2

t1−t2 + zf
)

(q + Cst(t1 − t2)) =
JJ0

T ′
(q2

0 − q2
2) + 2J2q lim

t1→∞

∫ t1

0

dt′R(t1 − t′)

+J2

∫ t1

0

ds R(t1 − t2 + s)Cst(−s) + J2

∫ t2

0

ds Cst(t1 − t2 + s)R(s) . (A.5)

Using the causal properties of the linear response, one can extend the lower limit of the last integral to −∞
and safely take the upper limit to infinity since we are interested in the long time limit t2 → ∞ while keeping
t1− t2 fixed. The Fourier transform of this term with respect to t1− t2 yields R(−ω)Cst(ω) that using R(−ω) =
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R∗(ω) simply becomes R∗(ω)Cst(ω). Proceeding in a similar way with the first integral one finds that it equals
R̂(ω)Cst(ω). Thus,(

−mω2 + zf − J2R̂(ω)
)
Cst(ω) =

(
−zfq +

JJ0

T ′
(q2

0 − q2
2) + 2J2 q lim

t1→∞

∫ t1

0

dt′R(t1 − t′)
)
δ(ω)

+J2 Cst(ω)R∗(ω) . (A.6)

The factor between parenthesis in the first term on the right-hand-side can be written as

−zfq +
JJ0

T ′
(q2

0 − q2
2) + 2J2 q lim

t1→∞

∫ t1

0

dt′R(t1 − t′) = 0 . (A.7)

If we now assume q0 = q2, this equation imposes

if q 6= 0 then zf = 2J and lim
t1→∞

∫ t1

0

dt′R(t1 − t′) = 1/J , (A.8)

otherwise q = 0 . (A.9)

The remaining equation, using Eq. (82) to replace the parenthesis on the left-hand-side by 1/R̂(ω) is recast as

J2Cst(ω)|R̂(ω)|2 = Cst(ω) . (A.10)

At each frequency this equation has two possible solutions

Cst(ω) 6= 0 and |R̂(ω)|2 = 1/J2 or Cst(ω) = 0 . (A.11)

In the frequency domain in which the linear response (A.3) is complex, that is ImR̂(ω) 6= 0, one can easily
check that it satisfies |R̂(ω)|2 = 1/J2. This holds for any set of parameters x, y.

In the cases in which the linear response is real, it is not always true that its square equals 1/J2. For instance,
at zero frequency in cases in which x > y, R̂(ω = 0) = 1/J , verifying that its square is 1/J2. However, for x < y,
R̂(ω = 0) = 1/T ′ and its square is different from 1/J2. In these cases, the Fourier transform of the decaying
part of the correlation, Ĉ(ω) vanishes. We have tested this statement numerically and several examples can be
seen in the main part of the paper.

A.1.4 The correlation with the initial condition

The asymptotic limit of the equation for C(t1, 0) implies

zfq0 = J2q0 lim
t1→∞

∫ t1

0

dt′R(t1 − t′) +
JJ0

T ′
(q0 − qinq2) (A.12)

where

qin =

{
1− T ′

J0
T < T 0

s

0 T > T 0
s

(A.13)

and T 0
s the critical temperature of the initial potential energy Equation (A.12) is the equivalent of Eq. (82)

in [7].
This equation admits the solution q0 = q2 = 0 or

zf = J2 lim
t1→∞

∫ t1

0

dt′R(t1 − t′) +
JJ0

T ′
(1− qin) (A.14)

if we assume q0 = q2. Recalling that qin = 1− T ′/J0, the remaining equation becomes

zf = J2 lim
t1→∞

∫ t1

0

dt′R(t1 − t′) + J (A.15)

and is consistent for zf = 2J and limt1→∞
∫ t1

0
dt′R(t1 − t′) = 1/J .
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A.2 The off-diagonal correlations in the no quench problem

In the no quench case we can check whether C2(t1, 0) = q2 = qin for all t1 is a solution of the corresponding
equation. Plugging this form in the evolution equation for C2 we find that, at t1 = 0, either qin = 0 (the
paramagnetic case) or zf (0) = 2J2/T ′(1− qin) and after replacing qin by its expression as a function of T ′/J the
correct equilibrium zf = 2J is recovered. However, for t1 = δ and later times, C2(t1, 0) cannot remain constant for
initial conditions with qin 6= 0, due to the non-trivial contribution of the term J2

∫ t1
0
dt′ R(t1, t

′)qin = J2/mqin δ.
If we assume that C2(t1, 0) approaches a constant q2 possibly different from qin, the equation for C2(t1, 0) in

the long t1 limit reads

zfq2 = J2q2 lim
t1→∞

∫ t1

0

dt′R(t1, t
′) +

JJ0

T ′
[q0qin + (1− 2qin)q2] (A.16)

We have already shown q0 = q2. Therefore, this equation has solution q2 = 0 or it becomes Eq. (A.15).
In the no quench case we can use FDT and obtain

zfq2 =
J2

T ′
q2(1− q) +

JJ0

T ′
[q0qin + (1− 2qin)q2] (A.17)

This is a new equation with no parallel in [7] since in this reference we only studied the dynamics starting from
paramagnetic-like initial states.

A.3 Energy conservation

In this Section we impose that the kinetic and potential energies of the asymptotic final state correspond to
the ones of an equilibrium paramagnetic of condensed state at temperature Tf . This means that epot = −J2/Tf

in the former case and epot = −J2/Tf (1 − q2) with q = 1 − Tf/J in the latter. We then derive, from the
conservation of the total energy, the temperature Tf as a function of the control parameters T ′, J0, J or, in
other words, x and y. Here, we will see the internal limits of validity of these assumptions. Elsewhere we will
determine where it is realised numerically.

A.3.1 Final temperature

For condensed (first line in the left) and paramagnetic (second line in the left) initial conditions going to
condensed (first line in the right) and paramagnetic-like (second line in the right) states the energy conservation
law reads

m

m0

T ′

2
− JJ0

2T ′

 1−
(

1− T ′

J0

)2

1

 =
Tf
2
− J2

2Tf

 1−
(

1− Tf
J

)2

1

− JJ0

2T ′
(q2

0 − q2
2) . (A.18)

We have already determined q0 = q2 so the last term vanishes identically. From this condition we find the
following expressions for Tf depending on the kind of quench performed:

• From condensed to condensed

Tf =
J

2

(
mJ0

m0J
+ 1

)
T ′

J0
(III) . (A.19)

• From condensed to paramagnetic

Tf =
J

2

J0

T ′

mJ0

m0J

(
T ′

J0

)2

− (1− q2
in) +

√√√√[mJ0

m0J

(
T ′

J0

)2

− (1− q2
in)

]2

+

(
2T ′

J0

)2

 (IV) . (A.20)

• From paramagnetic to paramagnetic

Tf =
J

2

J0

T ′

mJ0

m0J

(
T ′

J0

)2

− 1 +

√√√√[mJ0

m0J

(
T ′

J0

)2

− 1

]2

+

(
2T ′

J0

)2

 (I) and (IIa) . (A.21)
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• From paramagnetic to ageing

Tf = J

[
1 +

mJ0

m0J

T ′

2J0
− J0

2T ′

]
(IIb) . (A.22)

We have chosen to single out in these expression the parameters T ′/J0 and (mJ0)/(m0J) that we have used
in [7] to characterise the dynamic phase diagram of the p ≥ 3 model. In the two cases (condensed to condensed
and paramagnetic to paramagnetic) in which the no quench limit can be taken we naturally recover Tf = T ′.
In the ageing case Tf should be the temperature of the stationary regime. As we will show from the numerical
solution to the full dynamic equations, and the mode by mode analysis, not all these cases are realised.

Below we prove analytically that a state with a single Tf characterising the fluctuation-dissipation relation
can be realised for particular choices of the parameters only. Moreover, these conditions are not restrictive
enough, as the numerical solution of the full equations show that FDT is not realised for quenches allowed by
them.

A.3.2 Limits of validity

Let us consider the cases y ≥ 1 and y ≤ 1 separately.

The case y ≥ 1: Quench from a paramagnetic equilibrium state

The double condition 0 ≤ Tf ≤ J translates into

− 1 ≤ 1

2

mJ0

m0J

T ′

J0
− 1

2

J0

T ′
≤ 0 (A.23)

that in terms of x and y reads

− 1 ≤ y

2x
− 1

2y
≤ 0 (A.24)

and yields
0 ≤ y2 − x+ 2xy and y2 ≤ x . (A.25)

The first condition in Eq. (A.25) is satisfied for

0 ≤ (y − y+)(y − y−) (A.26)

with y+ and y− the two roots of the quadratic equation, that is

y± = −x±
√
x2 + x , (A.27)

a positive and a negative value. One should then have

y ≥ y+ or y ≤ y− . (A.28)

As y ≥ 1, y ≤ y− is not possible. Instead, y > y+ is trivially satisfied. The second condition in Eq. (A.25) is the
only restrictive one and reads

y ≤
√
x ≡ f(x) . (A.29)

This upper bound is the dashed line representing f(x) in the phase diagram for y > 1. Note that this curve has
no finite limit.

The case y ≤ 1: Quench from a condensed equilibrium state

Using qin = 1− T ′/J0, one has
Tf
J

=
1

2

J0

J

T ′

J0
− 1

2

T ′

J0
(A.30)

and the condition to use reads
0 ≤ y

2

(
1

x
+ 1

)
≤ 1 (A.31)

The lower bound is trivially satisfied while the upper bound implies

y ≤ 2x

1 + x
≡ g(x) for y ≤ 1 . (A.32)
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The dashed line for y < 1 in the phase diagram represents g(x).
In the condensed case the energy conservation implies

Tf = J
y(1 + x)

2x
, q = 1− y

2
− y

2x
and epot = −J

(
1− x

4y
− y

4

)
. (A.33)

We note that q vanishes on the curve y = 2x/(1 + x), that it equals one for y = 0 and that, for fixed x > 1 it
increases from (x − 1)/(2x) at y = 1 to 1 at y = 0. Moreover, q is different from zero on the lines y = x and
y = 1.

A.3.3 Consistency with FDT at Tf

We now reason as follows. We know, from the numerical analysis of the Schwinger-Dyson set of equations,
that χst = limt→∞

∫ t
0
dt′R(t− t′) = 1/T ′ for x < y and χst =

∫ t
0
R(t) = 1/J for x > y. If we evaluate the integral

of the linear response using FDT at a single temperature we obtain

χst = lim
t→∞

∫ t

0

dt′R(t− t′) = lim
t→∞

∫ t

0

dt′
1

Tf

∂

∂t′
Cst(t− t′) =


1

Tf
y > 1

1

Tf
(1− q) =

1

J
y < 1

(A.34)

Using these results we can check whether there is a set of x, y for which Tf derived in the previous Section from
the conservation of the energy is consistent with these conditions. We list below the conclusions drawn in the
four parameter Sectors of the phase diagram.

y > 1 and x < y (Sector I)

Tf can equal T ′ only for x = 1 that implies no-quench.

y > 1 and x > y (Sector II)

Only on the curve y =
√
x and y > 1 FDT holds at Tf . The validity of FDT at Tf for parameters lying on

the curve y =
√
x is verified numerically in Fig. 18. For all other values of x, y in this Sector FDT cannot be

satisfied.

y < 1 and x > y (Sector III)

In this Sector we do not find any contradiction. This reasoning suggests that the dynamics may satisfy FDT
in this Sector. The no-quench case x = 1 for y < 1 is obviously included.

y < 1 and x < y (Sector IV)

There is no solution and FDT at a single temperature is excluded.

B The harmonic oscillator
Take, as an example, a system constituted of a single point-like particle with mass m, under a harmonic

potential V (x). The dynamics of this problem is given by the familiar equation

mẍ+mω2x = 0 , (B.1)

with initial conditions x(0) = x0 and p(0) = p0.

B.1 Equilibrium initial conditions

Let us take initial conditions in canonical equilibrium within a harmonic potential V0(x). The probability
distribution of the initial conditions is

P0(x0, p0) = Z−1
0 e−β

′H0 = Z−1
0 e−β

′[
p20
2m

+V0(x0)] (B.2)
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with β′ = 1/(kBT
′) the inverse temperature, using the same notation adopted in the main part of the paper

for the initial temperature T ′. The averaged kinetic energy of the ensemble of initial states sampled with this
probability distribution function is

1

2m
〈p2

0〉 =
kBT

′

2
, (B.3)

the equipartition of the kinetic energy. We recall that angular brackets indicate average over the initial conditions
sampled as above. The averaged total energy is

〈H0〉 = − ∂

∂β′
lnZ0(β′) . (B.4)

B.2 Potential energy quench

Make now a quench in the potential that corresponds to V0 7→ V and do it so quickly that the phase space
variables do not change and remain p0, x0. By performing this abrupt change one injects or extracts a finite
amount of energy,

∆E = H(x0, p0)−H0(x0, p0) = V (x0)− V0(x0) . (B.5)

The energy surface on which the dynamics will take place is the one of the post-quench energy E(0+) =

p2
0/(2m) + V (x0).
We now focalise on V being a harmonic potential. The Newton evolution of each initial configuration is

x(t) = x0 cosωt+
p0

mω
sinωt ,

p(t) = −mωx0 sinωt+ p0 cosωt .
(B.6)

Let us call y = x(t) and z = p(t) the position and momentum at a time t. The probability density of y, z at
time t is

P (y, z, t) =

∫
dx0

∫
dp0 P0(x0, p0) δ(y − x0 cosωt− p0

mω
sinωt)

× δ(z +mωx0 sinωt− p0 cosωt) .

We use the second δ function to integrate over p0,

P (y, z, t) =

∫
dx0 P0

(
x0,

z

cosωt
+mωx0 tanωt

) 1

cosωt

× δ(y − x0 cosωt− z +mx0ω sinωt

mω cosωt
sinωt) .

The remaining δ function implies

y − z

mω
tanωt− x0 (cosωt+ tanωt sinωt) = y − z

mω
tanωt− x0

1

cosωt
= 0 (B.7)

and we use it to integrate over x0. Indeed, replacing x0 = y cosωt − z
mω

sinωt and taking care of the Jacobian
one finds

P (y, z, t) = P0

(
y cosωt− z

mω
sinωt, z cosωt+mωy sinωt

)
. (B.8)

In the case in which no quench is performed the initial potential has to be, then, harmonic V0(u) = mω2u2/2

and the equation above implies

lnZ0 + lnP (y, z, t) = − βi
2m

(z cosωt+mωy sinωt)2 − βi
2
mω2

(
y cosωt− z

mω
sinωt

)2

= − βi
2m

z2 − βi
2
mω2y2 .

The equilibrium distribution is conserved by the dynamics, as it should.
Imagine now that the quench corresponds to a change in the spring parameter of the quadratic potential

ω0 7→ ω. The equation for P (y, z) implies

lnZ0 + lnP (y, z, t) = − βi
2m

(z cosωt+mωy sinωt)2 − βi
2
mω2

0

(
y cosωt− z

mω
sinωt

)2

.
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Expanding the squares and collecting terms

lnZ0 + lnP (y, z, t) = −βi
2

(
(cos2 ωt+

ω2
0

ω2
sin2 ωt)

z2

m
+mω2(sin2 ωt+

ω2
0

ω2
cos2 ωt)y2

+2zymω(1 +
ω2

0

ω2
) cosωt sinωt

)
.

Although the measure P is still Gaussian it does not have the same covariance as the initial P0.
The averages and the variances of the position and momentum can be computed directly from the solutions

to the equations of motion. The averages vanish and for the variances one finds

σ2
x(t) = 〈x2(t)〉 = 〈x2

0〉 cos2 ωt+ 〈p2
0〉

1

m2ω2
sin2 ωt ,

σ2
p(t) = 〈p2(t)〉 = 〈x2

0〉 m2ω2 sin2 ωt+ 〈p2
0〉 cos2 ωt .

(B.9)

Replacing now the averages of the initial values 〈p2
0〉/m = mω2

0〈x2
0〉 = T ′

mω2σ2
x(t) = mω2〈x2(t)〉 = T ′

(
ω2

ω2
0

cos2 ωt+ sin2 ωt

)
,

1
m
σ2
p(t) =

1

m
〈p2(t)〉 = T ′

(
cos2 ωt+

ω2

ω2
0

sin2 ωt

)
.

(B.10)

One readily verifies that, as expected, the averaged total energy is conserved

〈E(t)〉 = mω2σ2
x(t) +

1

m
σ2
p(t) = T ′

(
1 +

ω2

ω2
0

)
for t > 0 (B.11)

since each trajectory does conserve its initial energy. The averaged total energy is, however, different from the
one right before the quench, T ′ = 〈etot(t = 0−)〉 6= 〈etot(t = 0+)〉 = T ′

(
1 + ω2/ω2

0

)
.

Time-independent values of the variances are found from the average over a long time window:

mω2σ2
x(t) =

T ′

2

(
ω2

ω2
0

+ 1

)
,

1

m
σ2
p(t) =

T ′

2

(
ω2

ω2
0

+ 1

)
, x(t)p(t) = 0 (B.12)

and from these one can identify the final temperature

Tf =
T ′

2

(
ω2

ω2
0

+ 1

)
. (B.13)

B.3 Fluctuation dissipation relations

The linear response of the harmonic oscillator defined in (B.1) to an infinitesimal perturbation modifying its
energy as H 7→ H − hx, and therefore adding a linear term in h to Eq. (B.1) instantaneously at time t2, is

R(t1, t2) =
δx(t1)

δh(t2)

∣∣∣∣
h=0

=
sinω(t1 − t2)

mω
θ(t1 − t2) (B.14)

while the product of the unperturbed position at the times t1 and t2, after a long-time average over the reference
time t2, is

C(t1, t2) = x(t1)x(t2) =
1

2

(
x2

0 +
p2

0

m2ω2

)
cosω(t1 − t2) . (B.15)

The Fourier transform with respect to the time delay, t1 − t2 → ν, of these two expressions yield

ImR̃(ν) =
π

2mω
δ(ν − ω) , (B.16)

νC̃(ν) =
πν

mω2

(
mω2x2

0 +
p2

0

m

)
δ(ν − ω) . (B.17)

Focusing on the frequency ν where both are non-zero due to the Dirac deltas, the ratio between the two yields
the ratio between the prefactors

βFDR(ν) =
2ImR̃(ν)

νC̃(ν)
=

1

mω2x2
0 +

p20
m

=
1

etot(0+)
for ν = ω , (B.18)

where etot is the total energy of the harmonic oscillator.
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B.4 The Generalized Gibbs Ensemble

The harmonic oscillator dynamics conserves its total energy etot and the GGE density function is

pGGE(x, p) = Z−1 e−βGGEH(x,p) (B.19)

with Z =
∫
dxdp e−βGGEH(x,p) the normalisation constant or partition function. The inverse temperature of the

GGE ensemble is determined by the condition

〈H〉GGE =

∫
dxdp pGGE(x, p)H(x, p) = etot(0

+) (B.20)

and with a simple calculation one finds

βGGE =
1

etot(0+)
. (B.21)

Therefore,
βFDR(ν = ω) = βGGE . (B.22)

The generalisation of this result to an ensemble of N harmonic oscillators is straightforward:

βFDR(ν = ωµ) = βGGEµ for all µ . (B.23)

C Discrete time version
Let us now consider the discrete time version of the C2(t1, 0) and z(t1) equations and look for the discretisation

needed to recover the results C2(t1, 0) = qin and z(t1) = 2J at low temperatures.
First of all, we use the Taylor expansions R(δ, 0) = δ/m and C(δ, 0) = 1− δ2T ′/m, for δ → 0.
The discretized version of Eq. (77) evaluated at t1 = nδ is given by

m

δ2
[C2((n+ 1)δ, 0)− 2C2(nδ, 0) + C2((n− 1)δ, 0)] =

−z(nδ)C2(nδ, 0) +
JJ0

T ′
[qinC(nδ, 0) + (1− 2qin)C2(nδ, 0)] + J2 δ

n∑
k=0

w
(n)
k R(nδ, kδ)C2(kδ, 0) (C.1)

where we approximated the integral by the discrete sum∫ nδ

0

dt′R(nδ, t′)C2(t′, 0) = δ

n∑
k=0

w
(n)
k R(nδ, kδ)C2(kδ, 0) (C.2)

with w
(n)
k coefficients the value pf which depend on the particular approximation used. The most common

method of approximation is the one given by the Newton-Cotes formulas, which, for example, gives for n = 1,
w

(1)
0 = 1

2
and w

(1)
1 = 1

2
(Trapezoidal rule), for n = 2, w(2)

0 = 1
3
, w(2)

1 = 4
3
and w

(2)
2 = 1

3
(Simpson’s rule), for

n = 3, w(3)
0 = 9

8
, w(3)

1 = 3
8
, w(3)

2 = 3
8
and w(3)

3 = 9
8
(Simpson’s 3

8
rule), and so on.

Consider now the equilibrium dynamics, that is, set J = J0 and assume stationarity conditions for C and R

C(t1, t2) = Cst(t1 − t2) ,

R(t1, t2) = Rst(t1 − t2) . (C.3)

Moreover, suppose that z(kδ) = z = 2J
2

T ′ (1− qin) and C2(kδ, 0) = qin for k = 0, 1, ..., n.
We want C2(t, 0) to be a constant, so we have to enforce C2((n + 1)δ, 0) = qin. Using these assumptions,

Eq. (C.1) can be rewritten as

C2((n+ 1)δ, 0) = qin + qin
δ2

m

[
−z +

2J2

T ′
(1− qin)− J2

T ′
(1− Cst(nδ)) + J2 δ

n∑
k=0

w
(n)
k Rst((n− k)δ)

]

= qin + qin
δ2J2

m

[
− 1

T ′
(1− Cst(nδ)) + δ

n∑
k=0

w
(n)
k Rst((n− k)δ)

]

= qin + qin
δ2J2

m

[
− 1

T ′
(1− Cst(nδ)) + δ

n∑
k=0

u
(n)
k Rst(kδ)

]
, (C.4)
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where we used the notation u(n)
k = w

(n)
n−k (in the case of the coefficients of the Newton-Cotes formulas, one has

w
(n)
k = w

(n)
n−k, that is, the coefficients appearing in symmetric positions in the sum are equal). Notice that, if

qin = 0, C2(t, 0) is trivially constant, being always identical to zero independently of the choice of the coefficients
w

(n)
k . To enforce C2((n+ 1)δ, 0) = qin 6= 0 we need to satisfy the following equation

δ

n∑
k=0

u
(n)
k Rst(kδ) =

1

T ′
(1− Cst(nδ)) (C.5)

that ensures that the terms between square brackets cancel identically. Take the case n = 1, for example.
Eq. (C.5) is equivalent to the condition

C(δ, 0) = Cst(δ) = 1− δ T ′u(1)
1 R(δ, 0) . (C.6)

The Taylor expansions Cst(δ) = 1− δ2T ′/m and Rst(δ)δ/m satisfy this equation when we use u(1)
1 = 1.

Take now the generic n case and suppose that the discrete version of the FDT holds, namely

Rst(nδ) = − 1

T ′
1

δ
[Cst(nδ)− Cst((n− 1)δ)] . (C.7)

Equation (C.5) reduces to

− 1

T ′

n∑
k=1

u
(n)
k [Cst(kδ)− Cst((k − 1)δ)] =

1

T ′
(1− Cst(nδ)) (C.8)

that can be rewritten as

(u(n)
n − 1)Cst(nδ) + 1− u(n)

1 +

n−1∑
k=1

[
u

(n)
k − u(n)

k+1

]
Cst(kδ) = 0 (C.9)

where we used Rst(0) = 0 and Cst(0) = 1.
As one can see, wether or not the left-hand-side indeed vanishes, implying C2((n + 1)δ, 0) = C2(nδ, 0) =

. . . = C2(0, 0) via Eq. (C.4), depends on the particular choice of the coefficients w(n)
k used to approximate the

integrals. A simple way to satisfy Eq. (C.9) is to use w(n)
k = 1, for any n, k. We adopt, therefore, this rule to

express the sums that represent the integrals.
Let us now investigate what does this discretisation rule implies for the discrete time evolution of the Lagrange

multiplier z. The discrete version of Eq. (74) evaluated at t1 = nδ, and rewritten in a way that makes zeq appear
is

z(nδ) = 2ef +
2J2

T ′
(1− q2

in) +
2J2

T ′
[
Cst(nδ)

2 − 1
]

+ 4J2 δ

n∑
k=0

w
(n)
k Rst((n− k)δ)Cst((n− k)δ)

= zeq +
2J2

T ′
[
Cst(nδ)

2 − 1
]

+ 4J2 δ

n∑
k=0

u
(n)
k Rst(kδ)Cst(kδ) (C.10)

where zeq = 2ef + 2J2

T ′ (1 − q2
in) = T ′ + J2

T ′ (1 − q
2
in) is the equilibrium value of the Lagrange multiplier (for any

qin), u(n)
k = w

(n)
n−k, and we have assumed stationarity for C and R.

To enforce z(nδ) = zeq, we need to satisfy the following equation

1

2T ′
[
Cst(nδ)

2 − 1
]

+ δ

n∑
k=0

u
(n)
k Rst(kδ)Cst(kδ) = 0 . (C.11)

If one supposes that the discrete version of the FDT, Eq. (C.7), holds then Eq. (C.11) reduces to

1

2T ′
[
Cst(nδ)

2 − 1
]
− 1

T ′

n∑
k=1

u
(n)
k [Cst(kδ)− Cst((k − 1)δ)]Cst(kδ) = 0 (C.12)

that can be rewritten as

(1− 2u(n)
n )Cst(nδ)

2 − 1 + 2u
(n)
1 Cst(δ)− 2

n−1∑
k=1

[
u

(n)
k Cst(kδ)− u(n)

k+1Cst((k + 1)δ)
]
Cst(kδ) = 0 . (C.13)
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If we choose u(n)
k = 1 for any n, k, we obtain

Cst(nδ)
2 + 1− 2Cst(δ) +

n−1∑
k=1

{
Cst(kδ)

2 − Cst((k + 1)δ)2 + [Cst((k + 1)δ)− Cst(kδ)]
2} = 0 (C.14)

that simplifies to

n−1∑
k=0

[Cst((k + 1)δ)− Cst(kδ)]
2 = 0 . (C.15)
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