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1
 Equal contribution 

 

SIGNIFICANCE AND IMPACT OF THE STUDY 

Generally it is not evaluated if the biofungicide yeasts sprayed on vegetables alter the quality 

of the fermented products. This work focused in the importance of assessing the possible 

effects of fungicides based on yeasts used in vineyards on grape fermentative, especially on 

S. cerevisiae growth. In this context, the competition between biofungicide yeasts and S. 

cerevisiae under winemaking conditions will be investigated. 

 

ABSTRACT 

In previous researches, L. thermotolerans RCKT4 and RCKT5 were showed that inhibited 

Aspergillus growth. However, currently there are no data about their nutritional preferences, 

as a possible substrate competitor against S. cerevisiae, and their effects on fermentative 

process. In the present work we observed that the biocontrol yeasts and S. cerevisiae BSc203, 

based in the utilization of 16 carbonate sources, reveled significantly differences in the 

nutritional profile (biocontrol yeasts NS:0.25, BSc203 NS:0.56). L. thermotolerans strains 

did not occupy the same niche that BSc203 (NOI:0.44). The biocontrol agents and BSc203 

presented similar competitive attitude in terms of the sugar, ethanol, and sulphite tolerances. 

In fermentative conditions, the biocontrol yeasts found to tolerate until 12%v/v ethanol, 
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250mg ml
-1

 of total S02 and 30°Brix sugar. In mixed cultures, L. thermotolerans strains did 

not negatively affect BSc203 growth and the wine quality, except when RCKT4 was initially 

inoculated at a high proportion in the mixed culture 1MSK4 (1%BSc203/99%RCKT4), 

resulting in a lower production of CO2 and ethanol, in comparison with BSc203 pure. 

RCKT5, at a high proportion in 1MSK5 (1%BSc203/99%RCKT5), presented promising 

oenological properties. This fermentation showed lower acetic acid contents and higher total 

acidity than pure BSc203. 

Keywords: L. thermotolerans, biocontrol, S. cerevisiae, substrate competition, behavior, 

fermentations. 

 

INTRODUCTION 

Grapes are susceptible to fungal diseases, especially grey rot, downy mildew and black rot 

(Covarelli et al., 2012). Conventional approaches to fungal control have focused on chemical 

applications. However, sole reliance on this approach is not sustainable because of the 

emergence of fungicide resistance in vineyards (Leroch et al., 2011) and the adverse effects 

of chemical pesticides on the environment and human health (Komárek et al., 2010). A 

biological approach is highly desirable to control fungal growth on grapes, as this would help 

to reduce the amount of agrochemical residues on grape, wine and related products (Cabras 

and Angioni, 2000). Among the various potential antagonists, yeasts have been studied as 

fungal biocontrol agents on grapes (Nally et al., 2012; 2013; Calvo- Garrido et al., 2013; 

Ponsone et al., 2011; 2016). The major mode of action of these yeasts is the competition for 

nutrient and space (Nally et al., 2015). Few data have been published about the influence of 

yeast-based biofungicide used in vineyards on grape fermentative process (Calvo-Garrido et 

al., 2013; Guzzon et al., 2014). Generally it is not evaluated if the antifungal yeasts sprayed 

on vegetables alter the quality of the fermented products, and if these microorganisms 
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continue competing for nutrients and space, especially with S. cerevisiae in fermentative 

process. 

Some investigators have been reported that strains belonging to L. thermotolerans specie 

have been increased the acidity (Kapsopololus et al., 2007; Balikci et al., 2016), the aroma 

complexity (Escribano et al., 2018) or secondary ones as biogenic amines reduction (Benito 

et al. 2015), aroma complexity (Escribano et al., 2018) or reduction in anthocyanin loses 

during fermentation (Benito et al. 2018). 

Ponsone et al. (2011, 2016) found that two L. thermotolerans strains, RCKT4 and RCKT5, 

increased the lag phase, diminished the in vitro growth rate of Aspergillus and also decreased 

OTA accumulation in wine grapes. The use of biofungicide Lachancea yeasts in vineyards 

produce wine without presence of mycotoxins. However, it is unknown if these 

microorganisms affect the fermentative process. Previous investigations reported that some 

non-Saccharomyces were capable to persist throughout the fermentation process and compete 

with Saccharomyces for nutrients, causing a fermentative stuck (Fleet and Heard, 1992; 

Bisson, 1999). Because there is little information about the oenological behavior of 

biofungicide yeasts during grape fermentations, the aims of this study were: 1-To evaluate the 

competition for nutrients between biocontrol yeasts and S. cerevisiae: Nutritional size (NS), 

Niche Overlap index (NOI). 2-To evaluate behavior of biocontrol yeasts in fermentative 

conditions: S02, ethanol, sugar tolerances, effects on BSc203 growth, persistence time and 

wine quality in mixed cultures Biofungicide/Lachancea. 
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RESULTS AND DISCUSSION 

 

Nutritional and oenological behavior of L. thermotolerans RCKT4 and RCKT5. 

Nutritional Size (NS) and Niche overlap index (NOI) 

The two biocontrol yeasts assimilated the same carbon sources in vitro. From 16 carbon 

sources tested, 4 were utilized by RCKT4 and RCKT5 (NS:0.25), and 9 were utilized by S. 

cerevisiae BSc203 (NS:0.56) (Table 1). Glucose, sucrose, raffinose and arginine were used 

by all the yeasts strains tested. Proline, asparagine, alanine, fructose and melibiose were used 

only by BSc203. The biocontrol strains did not occupy the same ecology niche than BSc203 

(NOI:0.44), showing a low level of competence between biocontrol yeasts and BSc203 

(Table 1). These results suggested that biocontrol strains were not able to successfully 

assimilate a wide variety of nutrients of the wine grape, making them available to BSc203. 

The NOI between yeast-filamentous fungi (La Penna et al., 2004; Nally et al., 2015), 

bacteria-bacteria (Jaspers and Overmann, 2004) and bacteria-filamentous fungi (Nesci et al., 

2005) have been previously studied. There is only one publication about the NOI between 

yeasts the same genera (Janisiewicz, 1996). At present, this work provides new data on NOI 

between yeasts isolates from grape musts which belong to different genera. 

 

 

Tolerances to S02, sugar and ethanol  

In the present study it was observed that biocontrol yeasts were able to ferment in media with 

25 to 250mg l
-1

 SO2, but they were unable to ferment in media with 300-400mg l
-1

 SO2 

(Table 2). Comitini et al. (2011) showed that L. thermotolerans isolates assayed were less 

resistant to SO2 than RCKT4 and RCKT5. These strains did not ferment grape musts with 20-
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30mg l
-1

 SO2. The discrepancy between results may be explained by differences in the 

concentration of extracellular acetaldehyde (Nadai et al., 2016; Stanley et al., 1993).  

RCKT4 and RCKT5 were able to tolerate high ethanol (7-11%v/v) and sugar (21 and 30° 

Brix) levels (Table 2). Levels of ethanol tolerance in the present study exceeded values 

reported by Kapsopoulou et al. (2005), who observed that L. thermotolerans strains did not 

tolerate must with 9%v/v ethanol. Gobbi et al. (2013) mentioned that L. thermotolerans 

presented a high fermentation power (10.46%) too. The discrepancy between results on 

tolerances may be explained by differences in the plasma membrane fluidity, integrity of 

strains assayed (Henderson and Block, 2014) or by the strain variability in the fermentations 

power (Comitini et al., 2011). 

In general, the biocontrol agents and BSc203 presented similar competitive attitude in terms 

of the sugar, ethanol, and sulphite tolerances. The current study is the first that provides data 

on tolerance of L. thermotolerans biocontrol agents to ethanol, sugar and SO2 concentrations 

under winemaking conditions. 

 

Impact of L. thermotolerans strains on S. cerevisiae BSc203 and on the wine quality 

In pure cultures, viable cells of RCKT4, RCKT5 and BSc203 were present until the end of 

the fermentations (22d) (Figure 1 A, B). In biocontrol/BSc203 co-cultures, the survival time 

of RCKT4 and RCKT5 depended on the biocontrol strain used, and the initial ratio of the 

yeasts assayed. In general, RCKT4 persisted more time than RCKT5. In the RCKT4/BSc203 

co-cultures, RCKT4 was detected until day 5 (3MSK4), 11 (2MSK4) and 12 (1MSK4) 

(Figure 1A). RCKT5 was detected until day 2 (3MSK5), 8 (2MSK5) and 10 (1MSK5) 

(Figure 1B). Analyzing investigations, cell viability of L. thermotolerans (indicated as L.t.) 

in mixed cultures with S. cerevisiae (indicated as S.c.) was different. In 50%L.t.-50%S.c. 

mixed culture, L.t. disappeared in day 7 (Kapsopoulou et al., 2007), 15 (Comitini et al., 
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2011), and 17 (Ciani et al., 2006). In mixed 90%L.t.-10%S.c., L.t. was present until day 22 

(Gobbi et al., 2013); and in 99%L.t.-1%S.c. co-culture; L.t. was present during 22 days 

(Comitini et al., 2011). The discrepancy about survival time of L. thermotolerans in mixed 

cultures with S. cerevisiae may be to the different initial sugar concentration of the medium 

used to perform the fermentative assays (between 16 and 27% of sugar). This showed an 

important notion of how media and the characteristics of the yeast strains may pre- 

determined the selection of them. 

In RCKT4/BSc203 mixed cultures, BSc203 reached its maximum cell population on day 4 in 

3MSK4 (7.65Log10CFU ml
-1

) and 2MSK4 (7.59Log10CFU ml
-1

), and on day 6 in 1MSK4 

(6.44Log10CFU ml
-1

) (Figure 2A). These values were similar to a culture pure BSc203 

(7.69Log10CFU ml
-1

 on day 3), except for 1MSK4. In BSc203/RCKT5 mixed fermentations, 

BSc203 reached a maximum cell density: on day 4 in 3MSK5 (7.68Log10CFU ml
-1

) and 

2MSK5 (7.76Log10CFU ml
-1

), and on day 6 in 1MSK5 (7.65Log10CFU ml
-1

) (Figure 2B). 

These values were not significantly different to pure BSc203 (p≤0.068). On day 22, the 

BSc203 cell concentration in all mixed fermentations assayed was not significantly different 

to pure BSc203, except for co-culture 1MSK4 (Figure 2A). The BSc203 cell concentration in 

1MSK4 was 1.38 Log10 cycle lower than in a pure BSc203 culture (negative interference). In 

the present study, a correlation between the decrease in BSc203cell growth in 1MKT4 and 

the high cell concentration of RCKT4 (6-7Log10 CFU ml
-1

 during 12 days) was observed 

(Figure 2A). Several researchers have reported that other non-Saccharomyces yeast strains 

such as Pichia anomala and Hanseniaspora guilliermondii (Rojas et al., 2003) also decreased 

the final cell density of S. cerevisiae in mixed cultures, which is in agreement with our 

results. 
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On day 22, in pure cultures, RCKT4 and RCKT5 produced significantly lower ethanol 

concentrations (7.91 and 6.05%v/v, respectively) than BSc203 (12.81%v/v) (Table 3). 

RCKT4 and RCKT5 presented a residual sugar concentration of 22.59g l
-1

 and 29.97g l
-1

, 

respectively, whereas BSc203 completed the fermentation (residual sugar 1.91g l
-1

). The 

sugar consumption rate of BSc203 during the first three days (16g l
-1 

of sugar consumed) was 

significantly higher than that of RCKT4 and RCKT5 (6.5 and 6g l
-1

, respectively) (p≤0.05). 

As expected, all multistarter cultures with RCKT4 and RCKT5 (Table 3) showed ethanol 

values that were not significantly different to those produced by pure BSc203, ranging from 

12.81 to 12.92%v/v, except for 1MSK4. In the latter fermentation, the amounts of ethanol 

and CO2 produced were significantly lower than in pure BSc203 and the other mixed cultures 

assayed (p≤0.05). Similarly, Gobbi et al. (2013) reported that ethanol production in a mixed 

fermentation 90%L.t:10%S.c was significantly lower than in S. cerevisiae used as control. 

Fermentations in all mixed cultures assayed were completed (residual sugar≤1.96g l
-1

) except 

for 1MSK4 that presented 8.94g l
-1

 of residual sugar. 

 

Mixed cultures with L. thermotolerans presented values for total acidity, volatile acidity and 

pH that were not significantly different to those in a pure culture of BSc203 (p≤0.05), except 

for 1MSK5. In the latter culture, total acidity in wines increased 27.65% and acetic acid 

reduced 28.57% compared with pure BSc203 culture (Table 3). In agreement with these 

results, other studies showed that L.t/S.c associations significantly affected positively the final 

wine composition by enhancing total acidity and reducing the pH (Kapsopoulou et al., 2007) 

and volatile acidity (Comitini et al., 2011). The oenological industry shows great interest in 

correcting insufficient acidity (Kapsopoulou et al., 2007) and high volatile acidity (Schutz 

and Gafner, 1993) of some grape musts from warm regions as San Juan and Mendoza 

(Argentina).  
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These data suggests that at high initial concentrations, RCKT5 is a good candidate for used as 

biofungicide in wine grapes, because this strain did not affect the S. cerevisiae growth and the 

wine quality. With respect to RCKT4 interfered negatively on fermentative process, 

especially on S. cerevisiae growth and on the ethanol production.  

 

MATERIALS AND METHODS 

 

Yeast strains 

Biocontrol yeasts: L. thermotolerans RCKT4 and RCKT5 were isolated from the grape 

surfaces from vineyards in Mendoza province, Argentina (Ponsone et al., 2011; 2016). 

Oenological yeast: S. cerevisiae BSc203 was isolated from fermentation grape must in San 

Juan province, Argentina. This yeast has proven good fermentative characteristics (Vazquez 

et al., 2014). 

Both the biocontrol strains and BSc203 were identified by restriction fragment length 

polymorphism (RFLP) (Ponsone et al., 2011; Nally et al., 2012). 

 

Media 

YEPD-agar: 10g l
-1

 Yeast Extract, 20g l
-1

 Peptone, 20g l
-1

 Dextrose, 20g l
-1

 agar. 

YEPD-MB-Phosphate Citrate Buffer-agar: 10g l
-1

 Yeast Extract, 20g l
-1

 Peptone, 20g l
-1

 

Dextrose, 0.01% Methylene Blue, 0.1M Phosphate Citrate Buffer, 20g l
-1

 agar. 

CAS-HDTMA-PIPES-YNB-Glucose-agar: 60.5mg l
-1

 CAS (Chrome Azurol S), 72.9mg l
-1

 

HDTMA (Hexadecyltrimethylammonium Bromide), 30.24g l
-1

 PIPES (Piperazine-1,4-bis(2-

ethanesulfonic acid)), 6.7g l
-1

 YNB, 1mmol l
-1

  FeCl3·6H2O in 10mmol l
-1

 HCl, 20g l
-1

 

glucose, 20g l
-1

 agar. 
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Characterization of L. thermotolerans-based biocontrol agents  

 

Nutritional profiles: NOI and NS 

Biocontrol yeasts and BSc203 aliquots (20μL, 10
6
cells ml

-1
) were inoculated on plates. Each 

plate contained one carbonate source (10mM), YNB with 20g l
-1

 agar, pH5.5. The carbonate 

sources assayed are present in wine grapes and represent the niche size: proline, asparagine, 

alanine, glutamic acid, tyrosine, arginine, lysine, methionine, glycine, malic acid, tartaric 

acid, fructose, melibiose, raffinose, rhamnose, sucrose and glucose. Plates were incubated at 

25°C for 14 days. NOI were evaluated as the ratio between the number of carbonate sources 

used in common (biocontrol agent and BSc203) and the total number of carbonate sources 

utilized only by BSc203. NOI values of > 0.9 represent competence between yeasts while 

scores of<0.9 represent occupation of separate niches. NS values were evaluated as the ratio 

between number of compounds used by each of the yeasts and number of compounds assayed 

in total (Collazo et al., 2017). 

 

Oenological behavior of the biocontrol yeasts. Tolerance to S02, ethanol and sugar 

concentrations 

Yeast tolerance towards SO2, ethanol and sugar was assayed according to slightly modified 

methods described by Parish and Carrol (1987). SO2 concentrations evaluated in the present 

study were 0, 25, 50, 75, 100, 150, 200, 250, 300, 400mg l
-1

 and added to YNB plus 10g l
-1

 of 

glucose medium (pH3.5). The ability to start fermentations at 7, 8, 9, 10, 11 and 12%v/v of 

ethanol was determined similarly. Tubes only containing YNB medium without glucose were 

used as negative controls. 

Strain resistance to osmotic-stress was examined by winemaking tests using commercial 

concentrated grape must from V. vinifera L. adjusted to 21°Brix and 30°Brix. The grape juice 
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obtained was pasteurized for 30min at 80°C. This process did not produce caramelization of 

the grape juice following the Maillard reaction (Bozkurt et al., 1999).  

All assays were carried out in 20ml tubes with 5ml of medium, and tubes were inoculated 

with 10
6
cells ml

-1
. All microfermentations were checked for CO2 production and considered 

positive when, after a 3d incubation period at 25°C, Dürham bells located in the tubes were 

filled up for at least one-third of their capacity (Ubeda et al., 1995). The results are expressed 

as + (ability to ferment) and - (not ability to ferment). S. cerevisiae BSc203 was used as 

positive control. 

 

Influence of L. thermotolerans strains on S. cerevisiae growth during fermentative 

process 

 

Commercial must from V. vinifera L. was pasteurized as above mentioned. The initial grape 

must composition was 22°Brix and the pH 3.5. Biocontrol strains and BSc203 were pre-

adapted in the same must at 13°Brix and pH3.5, during 12h at 22°C. Microvinifications were 

carried out in 5l glass flasks with 3l of pasteurized commercial must, and topped with Müller 

valves (Ciani and Rossini, 1987). The following mixed cultures were assayed: 

1MSK4:1%BSc203/99% RCKT4; 1MSK5:1%BSc203/99%RCKT5; 

2MSK4:50%BSc203/50%RCKT4; 2MSK5:50%BSc203/50%RCKT5; 

3MSK4:99%BSc203/1%RCKT4; 3MSK5:99%BSc203/1%L. RCKT5. Pure and mixed 

cultures were inoculated at an initial concentration of 10
6
cells ml

-1
 and were incubated at 

18°C. Pasteurized non-inoculated must was used as negative control under the same assay 

conditions. Fermentations under static conditions were monitored for CO2 release measuring 

weight loss every 24h until the end of the fermentation (constant weight). The sugar 

consumption rate was calculated as the amount of sugar consumed (g l
-1

) in 72h. 
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Fermentation samples were withdrawn every 24h and spread on Wallerstein Laboratory 

Nutrient (WLN). This medium allows putative identification of yeasts according to color of 

the colonies. On WLN, BSc203 present creamy colonies, whereas RCKT4 and RCKT5 light-

green colonies (Vazquez et al., 2014). At the end of the assay, fermented products were 

centrifuged at 11,000xg (10min, 4°C), filtered and stored at 4°C until further analysis. The 

most important wine quality parameters (ethanol, volatile acidity, total acidity, pH, residual 

sugar) were analyzed according to the official methods of the OIV (2013) and INV (2015). 

 

Statistical analysis 

In all the assays, three replicates per treatment were performed and the experiment was 

repeated twice. 

To evaluate the effects of L. thermotolerans strains on BSc203 growth and on the wine 

quality, single-factor variance analysis (ANOVA) was carried out after verification of 

variance homogeneity (Levene test, p≤0.05). Significant differences were determined using 

Tukey’s Test. SPSS version 21.0 (Chicago I. L.) was used. 
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Table 1. Nutritional profile analysis of L. thermotolerans yeasts and BSc203.  

Nutritional sources 
L. thermotolerans 

BSc203 
RCKT4 RCKT5 

A
m

in
o
 a

ci
d

s 

Proline - - + 

Lysine - - - 

Arginine + + + 

Asparagine - - + 

Alanine - - + 

Glycine - - - 

Methionine - - - 

Tyrosine - - - 

O
rg

a

n
ic

 

a
ci

d
s Glutamic acid - - - 

Malic acid - - - 

Tartaric acid - - - 

C
a
rb

o
h

y
d

r
a
te

s Fructose - - + 

Glucose + + + 

Sucrose + + + 

Raffinose + + + 

Rhamnose - - - 

Melibiose - - + 

Nutritional 

Ecology  

NS 

 

4/16=0.25 4/16=0.25 9/16=0.56 

NOI 

 

4/9=0.44 4/9=0.44  

 

REFERENCES: 

– = Not assimilate carbonate source, + = Assimilate carbonate source. 
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Table 2. Tolerance of biocontrol yeasts to different concentrations of the ethanol (7-12% 

v/v), sulfur dioxide (25-400 mg l
-1

) and sugar (21 and 30 °Brix). 

 Treatments  Yeast strains 

 RCKT4 RCKT5 BSc203 

 25 mg l
-1

* + + + 

 50 mg l
-1

* + + + 

 75 mg l
-1

* + + + 

 100 mg l
-1

* + + + 

SO2 150 mg l
-1

* + + + 

 200 mg l
-1

* + + + 

 250 mg l
-1

* + + + 

 300 mg l
-1

* - - + 

 400 mg l
-1

* 

 

 

- - + 

     

 7% v/v* + + + 

 8% v/v* + + + 

Ethanol 9% v/v* + + + 

 10% v/v* + + + 

 11% v/v* + + + 

 12% v/v* 

 

 

- - + 

     

Grape must 21°Brix + + + 

 30°Brix + + + 

 

 

REFERENCES: 

+: ability to ferment, -: not ability to ferment 

* in YNB+glucose 
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Table 3. Influence of L. thermotolerans strains on the analytical profile of wines in pure and 

mixed cultures with BSc203. Values followed by the same letter in the same column were not 

significantly different at p≤0.05. 

Cultures 

Sugar 

consumption 

rate in 72h 

(g l
-1

) 

Ethanol 

(g l
-1

) 

Total acidity 

(g l
-1

) 

Volatile acidity 

(g l
-1

) 

Residual sugar 

(g l
-1

) 

pH  

Pure BSc203    16±0.01
a
 12.81±0.21

a
 5.17±0.12

a
 0.56±0.02

a
 1.91±0.11

a
 3.39±0.01

a
  

3MSK4     15.2±0.4
ab

 12.75±0.16
a
 5.19±0.13

a
 0.58±0.03

a
 1.9±0.11

a
 3.38±0.01

a
  

2MSK4     15.3±0.034
ab

 12.83±0.05
a
 5.21±0.21

a
 0.53±0.06

a
 1.88±0.03

a
 3.38±0.02

a
  

1MSK4     14.7±0.05
ab

 11.01±0.03
b
 5.28±0.3

a
 0.5±0.09

a
 8.94±0.11

b
 3.37±0.02

a
  

3MSK5     15.8±0.031
a
 12.83±0.08

a
 5.36±0.11

a
 0.55±0.02

a
 1.61±0.14

a
 3.39±0.02

a
  

2MSK5     14.5±0.02
ab

 12.71±0.06
a
 5.45±0.06

a
 0.5±0.02

a
 1.82±0.18

a
 3.37±0.03

a
  

1MSK5     15.1±0.03
a
 12.92±0.04

a
 6.6±0.13

b
 0.40±0.03

b
 1.96±0.02

a
 3.35±0.01

b
  

Pure RCKT4 6.5±0.04
b
 7.91±0.41

c
 6.66±0.15

b
 0.39±0.01

c
 22.59±2.01

c
 3.34±0.02

b
  

Pure RCKT5 6±0.07
c
 6.05±0.09

d
 9.43±0.4

c
 0.26±0.05

d
 29.27±2.18

d
 3.32±0.02

b
  

 

REFERENCES: 

1MSK4:1%S.c/99%RCKT4; 2MSK4:50%S.c/50%RCKT4; 3MSK4:99%S.c/1%RCKT4. 

1MSK5:1%S.c/99%RCKT5; 2MSK5:50%S.c/50%RCKT5; 3MSK5:99%S.c/1%RCKT5. 
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Figure 1. Population dynamics of RCKT4 and RCKT5 in pure and mixed cultures with  

BSc203 (3MSK4, 2MSK4, 1MSK4 [A] and 3MSK5, 2MSK5, 1MSK5 [B]). The data are 

presented as the average of three independent experiments. References: A:  100% 

RCKT4, RCKT4 in 2MSK4 (50%Sc-50%RCT4), RCKT4 in 3MSK4 (99%Sc-

1%RCKT4),  RCKT4 in 1MSK4 (1%Sc-99%RCT4). B:  100% RCKT5, 

RCKT5 in 2MSK5 (50%Sc-50%RCKT5), RCKT5 in 3MSK5 (99%Sc-

1%RCKT5),  RCKT5 in 1MSK5 (1%Sc-99%RCT5). 

 

Figure 2. Population dynamics of BSc203 in pure and mixed cultures with RCKT4 (3MSK4, 

2MSK4, 1MSK4) [A] and with RCKT5 (3MSK5, 2MSK5, 1MSK5) [B]. The data are 

presented as the average of three independent experiments. References: A 100% BSc203, 

 BSc203 in 2MSK4 (50%Sc-50%RCT4),  BSc203 in 3MSK4 (99%Sc-

1%RCKT4), BSc203 in 1MSK4 (1%Sc-99%RCT4).  

B: 100% RCKT5,  RCKT5 in 2MSK5 (50%Sc-50%RCKT5), RCKT5 in 

3MSK5 (99%Sc-1%RCKT5), RCKT5 in 1MSK5 (1%Sc-99%RCT5). 
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