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Abstract

We show that the representation dimension of the following classes of algebras is at most 3:
(a) Artin algebrasA such that the functor Hog(D(A), —) has finite length (or dually, Hog(—, A)
has finite length). These algebras coincide with the right (left) glued algebras, as introduced in
[I. Assem, F.U. Coelho, J. Pure Appl. Algebra 96 (3) (1994) 225]; and (b) Trivial extensions of
iterated tilted algebras.
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The concept of representatiomtension of an Artin algebra denoted by reglimA,
was introduced by M. Auslander [3] in the early 70s in an attempt to, paraphrasing him,
give a reasonable way of measuring how far A is from being representation{&eite
Section 1 below for the appropriate definitions).

For some time, this notion stayed apart from the main lines of investigation in the
representation theory of algets. Recently, its interest has revived, and many interesting
connections have been established with different problems in representation theory, as well
as with other areas. For details see, for instance, [5,8-10,12,13].

It has been shown by Auslander that an algebia representation-finite if and only if
repdimA < 2. On the other hand, O. lyama proved in [9] that the representation dimension
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of an Artin algebra is always finite, using the relationship with quasihereditary algebras.
An interesting connection with the finitistic dimension conjecture follows from the work of
Igusa and Todorov in [8], and is given by the fact that if an Artin algebra has representation
dimension at most three, then its finitistic dimension is finite.

The purpose of the present work is to calculate the representation dimension for some
classes of algebras. We will show, for instance, that it is at most three for the following
algebras:

(a) Artin algebrasA such that the functor Hog(D(A), —) has finite length (or dually,
Homy (—, A) has finite length). These algebras coincide with the right (left) glued
algebras, as introduced in [1]. The class of right glued algebras includes all the
hereditary algebras as well as all tilted algebras with complete slices in their
preinjective components.

(b) Trivial extensions of iterated tilted algebras.

For that, we shall prove a criterion which appears implicitly in the works of Auslander
[3] and Xi [12]. Also, as a consequence of this criterion, we get a better insight of
the relations between the representation dimension of an algebra which is a one-point
extensionB[M] of an algebra3, and the representation dimensiorgitself. This extends
some results of [12].

This paper is organized as follows. In the first section, after recalling some preliminary
notions needed along the work, we state and prove the above mentioned criterion. Sections
2 and 3 deal with the calculation of the representation dimension of the algebras mentioned
in (a) and (b) above, while in Section 4, we show some results concerning one-point
extension algebras.

1. Preliminaries

1.1. Throughout this paper, all our algebras are Artin algebras. For an algelwa
denote by mod its category of finitely generated left-modules and by ind a full
subcategory of mod having as objects a full set of representatives of the isomorphism
classes of the indecomposabiemodules. Also, giver € modA, we denote by adsf
the full subcategory of mod having as objects the direct sums of indecomposable
summands oM. We denote by pdM (or id4a M) the projective dimension (or injective
dimension, respectively) a¥/. Finally, we denote by gilim A the global dimension oA,
that is, the supremum of the projective dimensions of modules inanod

We recall that am-module M is agenerator(or acogeneratorfor mod A provided
for eachX € modA, there exists an epimorphiski’ — X (or a monomorphisrX — M’)
with M’ € addM.

For unexplained notions and facts needed on mhack refer the reader to [4].

1.2. The notion of representation dimension of an algebra was introduced in [3] by
Auslander. We refer to this work for the original definition. For us, it will be more
convenient to use the following chaterization, also proven in [3].
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Definition. Therepresentation dimensioof an Artin algebra is the number refim A =
inf{gl.dim(End4 M): M is a generator—cogenerator of mégd

1.3. The first aim is to show a criterion for the calculation of the representation
dimension of an algebra. From now afiwill denote an Artin algebra, and |€tbe a full
subcategory of mod. We recall that a mag : C — M is called a rightC-approximation
of the A-moduleM if C is in C and the sequenade-, C) — (—, M) — 0 is exact inC.
Moreover, we will say that an exact sequence

0—>C L 00 B 0
is aC-approximation resolution oM if C; is inC for all i and the sequence
0= (=, C) 2y . EfD oy & oy o
is exact inC. We say that is thelength of the resolution.

Definition. An A-moduleX is said to have the-resolution propertyf each A-moduleM
has an add -approximation resolution of length

Remarks. (a) The condition of the above definition can be replaced by a similar one
holding for indecomposable modulés.

(b) Clearly, the modules in add always have an adkd-approximation resolution of
length 1.

(c) Given a modulé/ in a subcategorg, one can, dually, definelaft C-approximation
of M, and aC-approximation coresolution a#/. Also, one can look at the notion of
coresolution property

1.4. Examples. (a) Let A be a representation-finite algebra, andAgt, Mo, ..., M be
a set of representatives of all isoclasses of indecompos&tedules. ClearlyX =
M1 @ --- @ M, has the 1-resolution property, since ade- modA. It is also not difficult
to see that if an algebra has a modul@/ satisfying the 1-resolution property, thdnis
representation-finite, and adfi= modA.

(b) Let H be a non-semisimple hereditary algebra anddet H @ D(H). We show
that suchX has the 2-resolution property. L&t be an indecomposablg-module not in
add X, and consider the minimal projective resolutiors0P; — Py — M — 0 of M.
Clearly, Homy (H @ D(H), M) = Homy (H, M) becausé/ is not in addX and therefore
is not injective, so the sequence

0— (H® D(H), P1) > (H ® D(H), Po) > (H ® D(H), M) — 0

is exact and we are done.
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1.5. We will see in the sequel that if a module satisfies the--resolution property
then gldim(Endy X) < r + 1. If, moreoverX is a generator—cogenerator of mégdthen
repdimA < r+ 1. This result has been used by Auslander in [3] and by Xiin [12], in order
to give bounds for the representation dimension of some classes of algebras.

In the following theorem, which is the main result of this section, we will prove that the
converse statement also holds.

Theorem. Let A be an Artin algebra. The following statements are equivalent for a positive
integerr:

() repdimA <r +1;
(b) there exists a generator—cogeneratoneddA satisfying the--resolution property.

Though, as we mentioned above, the implication=b)a) has been implicitly proven
in [3,12], for the convenience of the reader we shall provide here a complete proof of this
result. For that, it is convenient to recall some facts.

1.6. Foramoduler, denote byFy the category of all coherent functafs (addy)°P —
Ab, whereAb denotes the category of abelian groups. Recall that a fufict@addy )°P —
Ab is calledcoherentprovided there is a morphisity — Y, in addY such that the se-
guence

(= Y1) = (=, Y2) > F—=0
is exact in add’. Here we denote by—, C) the restriction of the functor

Homy (—, C) :modA — Ab
to addy. It follows from [3, Proposition, Ch. Ill, p. 104] that the categori€s and
mod(End, Y) are equivalent and so, in particular,dim(Endy Y) = gl.dim(Fy).

If an A-moduleM has an addf-approximation resolution of length then pd—, M) <
s — 1. If, moreover,Y is a generator of mod, then the converse holds. In fact, if
pd(—, M) <s—1,let

O_> (_7 Y.S‘*l)_) e > (_1Y0)_> (_1M)_>0

with ¥; € addY, be a sequence which is exact in addince, by hypothesig\ is in addy,
by evaluating the above sequencetatve infer that there exists an exact sequence

0O—-Y_1---—>Yo—>M—0

inducing the above one, proving then thidt has an add'-approximation resolution of
lengths, as desired.
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1.7. Proof of Theorerh.5

(b) = (a) Let X be a module satisfying theresolution property. We will show that
gl.dimF5 <r + 1, leading to the required result. LEtbe a functor inF5. By definition,

there exists a morphisxi” 2, X’ in addX such that
(— X" =L (- X)) > F—0 ()

is exact in addk. DenoteM = Ker f. Now, sinceX has ther-resolution property, there
exists an exact sequence

0O—-X,—»---—>X1—>M—-0
with Xi € addX such that the induced sequence
0= (= X)—> > (= X1)—> (- M)—0 ()
is exact in addX. Glueing together«) and ¢x) we end up with a sequence
0= (= X)) == (= X)—> (= X)> (= X)=> F—=0

which is exact in ad&, showing that pdF) < r + 1. Therefore, gbimF5 <r+1 and
repdimA <r + 1, as required. This proves the implication &)(a).

(@) = (b) Suppose regimA = s < r + 1. Then there exists a modulé such that
A ® D(A) is in addX and gldim(Ends X) = s. By the above remarks, gimF5 = s.

We claim thatX has the(s — 1)-resolution property. In fact, le € modA not in addx,

and consider a minimal injective copresentation>OM — Io Jo, I, of M. Hence, for

F = Coker(—, fo), we have that
0= (— M) = (= Io) &=L (—. 1) > F >0 ()

is exact. SinceX is a cogenerator of matl we get thatlp, /1 are in addX, thusF € Fy.
Now, M is not in addX, so (—, M) is not projective. Since glimF5 = s we then infer
that

pd(—, M) =pd(F) —2<s — 2.

As observed before the proof of the theorem, this implies fahas a right add -
approximation of length smaller than- 1 < r. This ends the proof of the theorem.

1.8. Corollary. Let A be an Artin algebra. ThenepdimA = r 4 1 if and only if there
exists a generator—cogeneratorimiodA satisfying ther-resolution property but there is
none satisfying the-resolution property fos < r.

1.9. Corollary. Let A be a representation-infinite algebra. Thesp.dim A = 3 if and only
if there exists a generator—cogeneratomobdA satisfying the2-resolution property.
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2. Glued algebras

2.1. We will prove in this section that the algebras for which the length of
Homy (D(A), —) is finite (or dually the length of HopX—, A) is finite) have represen-
tation dimension at most three. These algsbwere studied by Assem and Coelho, who
introduced in [1] the right (left) glued algebras, which coincide with them. We refer the
reader to this work for their original definition. We will prove the result for right glued
algebras, the corresponding result for left glued algebras follows by duality. We shall use
here a characterization whose proof can be found in [1,2]. Gignhe ind A, we say that
X is apredecessor of or thatY is asuccessor o provided there exists a sequence
X =Xo— X1 — ---— X; =Y of non-zero morphisms between indecomposable mod-
ules. For a given algebr4, define the subcategory

L4 ={X eindA: for each predecess@rof X, pd, ¥ < 1}.
Theorem [1,2]. The following statements are equivalent for an Artin algelra
(a) Aisaright glued algebra
(b) the length oHom4 (D(A), —) is finite
(c) all but finitely many indecomposable-modules have projective dimension at most
one
(d) L4 is cofinite inind A.

Clearly, the class of right glued algebras includes all the representation-finite ones.
Not so immediate, but it also includes all the tilted algebras with complete slices in a
preinjective component. Further examples can be found in [1].

2.2. Our main result of this section is the following.

Theorem. Let A be a representation-infinite right glued algebra. Threp.dimA = 3.
Proof. By 1.7, it is enough to exhibit a gerator—cogenerator of madsatisfying the 2-
resolution property. Sinca is right glued, the sets =indA \ L4 is finite. Also, by [2,
(1.5)], the set

Xo={Y € L4: Y is a successor of an injective in iAd
is finite. So, the set

X =X1U{P: Pisaprojectivein indi} U X>

is finite, say X = {X1,..., X,}. Write X = X1 @ --- & X,. Clearly, such module
is a generator—cogenerator of mbdand we claim that it satisfies the 2-resolution

property. Let nowM be an indecomposablé-module not in adtX). ThenM € L4,
Homy (X1, M) = 0 becauseL, is closed under predecessors, and HoAy, M) = 0



F.U. Coelho, M.I. Platzeck / Journal of Algebra 275 (2004) 615-628 621

becauseY; is closed under successors. Moreover, sihte L4 and is not projective,
pd, M =1.

Let now 0— P; EiN Po 2o, M — 0 be the minimal projective resolution @f in
modA. We will prove that this sequence is an addhpproximation resolution oM.
This amounts to prove thaX, Py) — (X, M) — 0 is exact for each indecomposable=
addX. This clearly holds ifX is projective, and it also holds X is not projective, since
then Homy (X, M) =0, as observed above. Thus the proof of the theorem is complete.

2.3. The following result is the dual of Theorem 2.2. We leave the details of the proof
to the reader.

Theorem. Let A be a representation-infinite left glued algebra. ThepdimA = 3.

2.4. The above results imply Theorem 5.1 of [12]. Also, for reference, we mention the
following corollary which improves Corollary 5.2 of [12].

Corollary. Let A be a tilted algebra. If A has a complete slice in either a postprojective
component or in a preinjective component thespdim A = 3.

3. Trivial extensions of iterated tilted algebras

3.1. Along this section,H will denote a hereditary algebra. We will prove here that
the representation dimension of the trivial extensib(H) of H is at most 3. As a
consequence, we will have the same bound for the representation dimension of the trivial
extensions of iterated tilted algebras, using results by Happel [7] and by Xi in [13]. We
shall first recall some background on this construction. For further details, we refer the
reader to [6,11].

The trivial extension of an algebra is the algebral'(A) = A x D(A) defined as
follows. As a vector spacé;(A) = A® D(A), and the productis defined oy, 1) (b, g) =
(ab,ag+ fb),fora,be A, f,g € D(A). The algebrd (A) is selfinjective.

Let A be an additive category anf: 4 — A be an additive functor. Théivial
extensiond x F of A by F, defined in [6, Section 1], is the category whose objects are
the mapsx: F(A) — A such that the compositian- F(«) = 0. For objectec: F(A) - A
andg: F(B) — Bin Ax F, amorphismf:a — B is a morphismf: A — B such that
BF(f) = fa. WhenA is an Artin algebra and’ = D(A) ® 4 —:modA — modA, then
modA x F is equivalent to mod (A). For anA-moduleX and a morphisny : D(A) ®4
X — X, the T (A)-module structure is defined oXi by (a,g) - x =ax + f(g ® x), for
xeX,ae Aandg e D(A) [6, p. 19].

In the case we are primarily interested, that is, the trivial extension of the hereditary
algebraH, the modules in mo@ (H) can be seen as tripléX1, X2, f) with X1, X2 €
modH, and f: D(H) ® X1 — X» a surjectiveH-map. A morphism from(X1, X», f) to
(Y1, Yo, g) is atriple(a11, 22, @21) of morphisms in modf, a11: X1 — Y1,022: X0 — Y2
andaz1: X1 — Yz suchthatesf = g(1®a11). This description of th& (H)-modules was
given by Tachikawa in [11]. To see that the morphisms are appropriately defined we use
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the equivalence between mddH) and modd x F, considering the triples as elements in
modA x F in the following way.
The elementin mod x F corresponding to the tripleX1, X», f) is the map

(? 8) " DIH)Q(X1®X2)~DH)@X1®DH)QXo— X1P Xo

Then a morphism froniX1, X», f) to (Y1, Y2, g) corresponds to a ma@g) — (gg) in

modA x F, thatis, a map = (ot or2) 1 X1 @ X2 — Y1 @ Y such that

(2 8)(semo (2 22)-(32 )7 9

g O PUDEN a1 a2)) " \az1 a2 J\f 0O

This is satisfied precisely when > = 0 and the triple(e11, 22, @21) satisfies the above
stated condition.

Since H is hereditary thenD(H) ® X, being a homomorphic image db(H)" for
somen, is injective. Thus,D(H)X is also injective, and{ ~ D(H)X @ X/D(H)X in
modH . Observe that the triple associated to Thé!)-moduleX is (X/D(H)X, D(H) X,
f),wheref:D(H)® X/D(H)X — D(H)X is the multiplication map.

From now on, we will write the adjoint functol8(H) ® y — and Homy (D(H), —) by
F andG, respectively, and by: FG — Id andyn:1d — GF the adjunction morphisms.

Following [11], to a given indecomposahie-moduleX, two indecomposabl& (H)-
modules can be assigned as follows. Tihg{)-module (X, 0, 0), called module of the
first typeand which we shall also denote By. On the other hand, we consider a fixed
minimal injective coresolution 8> X — Io(X) 1, I1(X) — 0 of X, and assign toX
the indecomposablé (H)-module X = (G (Io(X)), [1(X), ferx))- We say thatX is a
module of thesecond typelt follows from [11] that an indecomposable nonprojective
T (H)-module can be identified either with @h-module or with a module of the second
type.

We extend the above notation to arbitraifymodulesX = X1 ® --- ® X,,, with X; in
indA by writng X = X1 & --- & X,,.

3.2. GivenX, Y €indH, there is naturally a morphism
I/f . HomT(H) (i, )7) — Homy (X, Y)

defined by the commutative diagram

00— x Io(X) —~ 1(x) ——= 0
lwm l laz (%)
0 Y Io(Y) —= 1Y) —=0

for @ = (a1, a2, a21) : X — Y, where the middle vertical mapa’so(y)F(al)s;o%X).
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Theny is surjective, functorial ik andY, and induces an isomorphism
¥ :Homy p) (X,Y) — Homy (X, Y)
as follows from the following lemma. Recall that
Hom(X, Y) =Hom(X,Y)/P(X,Y),

whereP (X, Y) denotes the set of morphisms frafrto Y which factor through a projective
module.

Lemma. Let o = (a1, a2, a21) : (X1, X2, ) — (Y1, Y2, g) be a morphism irmodT (H)
and assume that there exigts X, — F(Y1) such thatF(a1) = pf. Then

(@) (0,0, a21) : (X1, X2, f) — (Y1, Yo, g) factors through the projective modwé& (Y>),
Y, SYz);
(b) (o1,02,0): (X1, X2, f) — (Y1, Y2, g) factors through(Y1, F (Y1), id);
(c) if Y1 is a projectiveH -module ther factors through a projective module.
Proof. (a) Observe thaf0, 0, 1) is the composition of
(0,0,021) : (X1, X2, f) = (G(Y2), Yz, ¢y,)
and
(0,id, 0): (G(Y2), Y2, €y,) — (Y1, Y2, g).

(b) SinceF («1) = pf, using thatf is surjective we get that, = gp. Then we can write
(01, a2,0) = (id, g, 0) (a1, p, 0).

Finally, (c) follows from (a) and (b), observing thari, F(Y1),id) is projective in
mod7 (H) whenY is projective in mod?. 0O

3.3. The main result of this section is the following.

Theorem. Let H be a hereditary Artin algebra. Thaepdim7 (H) < 3.

Proof. Let X = H & D(H) ®T(H)® H be in modl'(H). We shall prove that the
generator—cogenerator modwesatisfies the 2-resolution property. Lt € ind T (H).

Case 1. N = N’ is a module of the first type (that i&]' € modH). As seen in (1.4)(b),
H & D(H) satisfies the 2-resolution property in méd and so, there exists an exact
sequence

0>Y,>V1 S N>0
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with Y1, Y2 inadd H @ D(H)) and such that
O— p(—.Y2)> (-, Y1)—> g(-,N)—0

is exactin addH & D(H)). Clearly, also

0= r(my(—, Y2) > 7ty (=, Y1) = 7(1)(—, N) = 0 (*)
is exact in addH @ D(H)) (as T (H)-modules). Sincel (H) is projective, then ) is
also exact in add"(H)). The proof will be complete in th|s case once we prove that
HomT(H)(H —) preserves the exactness of0Y,; — Y1 £, N = 0. So, letP be an
indecomposable projectivé-module. Ther? = (Q, I1(P), herypy), Wwhere

0> P— Ip(P) L 1,(P)—> 0

is a minimal injective resolution, an@ = G (Io(P)). Observe that a may : P— Nis
given by(ap, 0, 0), whereag: Q — N. Since( is projective, there exis{8: Q — Y3 such

thatgB = ao, and(B,0,0): P — Y1 lifts £, as desired.

Case 2. N’ is not a module of the first type (i.eN’ ¢ modH). So N’ = N, for some
N eind H. As above, consider an exact sequence

0—Y,— Y1— N—0 withYy, Yo €addH ® D(H)), (%)

which remains exact under HoptH @ D(H), —). Let I, I1 be injective modules so that

0 0 0
0 Yo Y1 N 0
0 — Iop(Y2) — Ip — Ip(N) ——= 0 (%)

0—— Nn(Y2) —= I —— I(N) —=0

0 0 0

is exact and commutes. Observe tligt= IO(Yl) &1, I1=1(Y1) &I, wherel is an
injective module andf : Io — I1 is f = (f ) in the above decomposition with being
an isomorphism. Clearly, we get a sequence

0>Yo>Y1®Q0—>N—>0 *)
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with Q = (G(I), I, ¢;), which is projective in mod' (H). To prove that this sequence is
exact, we observe two facts:

(a) The exact sequence-9 Ip(Y2) — Ip — Ip(N) — 0 splits, and therefore it remains
exact undei.

(b) All the maps in(x) are of the form(a1, a2, 0), with «; in modH.

Then, using that a short exact sequence is exact in F when the correspondmg
sequence i is exact [6 Corollary 1.2] we obtain thai)(ls exact. Also, each ofy, Y
belongs to ad(H @ D(H)) and therefore to adx, becausaD(H) ~ (H,0,0). We shall
now prove that Hom(H)(X —) keeps §) exact.

Let Y in addX. We proved in Lemma 3.2 that maps of the fo(@0,621): Y — N
factor through a projective module, and therefore they can be I|fte):11t@ 0 — N.
Thus it is enough to prove that maps of the fo(fp, 61,0):Y — N can be Ilfted
to Y1 @ 0 — N. Consider firsty e addH @ D(H)) and letf = (6p,0,0):Y — N
(s0, eryn)F(B0): F(Y) — Io(N)). We then have the following diagram, where=
eroN) F (00):

0
¥(g)
Y1 > 0
e 7 B
5
F(Y) j i’
80
id Iop —— Ip(N) —— 0
o v7 /
- "
FY)
It — I1(N) —=0
0

First observe thajy = e, F(0o) lifts to 6: F(Y) — N. Since y(D(H),—) keeps
the sequencex] exact, andF(Y) is injective (see (3.1)), we infer that lifts through
Y(g):Y1 — N. So j'§ = gjyn)F(6o) and 8§ = y(g)e, for somes: F(Y) - N and
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e:F(Y) = Y1. Leta = je. Then goa = go(je) = j'Y¥(g)e = j'6 = efpv) F(60). Let
a0 = G(a)ny. Then(eo, 0,0): Y — (G(p), 11, fer,) = Y1 Q lifts (6o, 0, 0), as required.

It remains to show that HomH)(ﬁ, —) keeps &) exact for each projectived -
moduleP. We have a commutative diagram

T(H)(ﬁa Y1) —— T(H)(ﬁa N)——=0

]

H(P,Y1)) ——— y(P,N) —— 0,

where the lower sequence is exact and the vertical arrows arc the isomorphisms defined
in (3.2). Then we have that the upper sequence is exact. Consequently,

~

(P.g):ran(P. ¥1@ Q) > ran (P, N)

is surjective. It follows then that

(P.g):ran (P, Y1@ Q) = ramn (P, N)

is also surjective, becauge Y1 & Q — N is an epimorphism. This ends the proof of the
theorem. O

3.4.Corallary. Let A be an iterated tilted algebra. Theepdim7 (A) < 3.

Proof. It follows from [7] that such am is derived equivalent to a hereditary algelsfa
So, by [13], repdimT (A) = repdimT (H) and the result follows using our theorem
above. O

4. One-point extension algebras

4.1. In this section we compare the representation dimension of an Artin algeéna
the representation dimension of a one point extensiab,afnder appropriate hypothesis.
More precisely, we will prove the following proposition, extending results proven in [12]
for one point extensions of finite-dimensional algebras by simple injective modules. We
refer the reader to [4] for an account on the one-point extension construction. We also
observe that a dual version of this result holds for one-point coextensions. We leave to the
reader the details of the corresponding proof.

Proposition. Let B be an Artin algebra,D a division ring, M a B — D bimodule and
A = B[M] the one-point extension & by M. Assume that the set of successora/oin
ind B is finite. Then

(@) repdimB < repdimA;
(b) if ind B is cofinite inind A thenrep.dim B = repdim A.
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Proof. (a) Let{Z1, ..., Z;} be the set of successors #f in ind B. We will consider the
A-modules as triplesD", X, f), with X in modB and f: M ® D" — X a B-morphism,
in the usual way (see, e.g., [4, Ill, 2]). We start by observing that 4npodule K can
be written in the formk = (D", Z, g) ® (0, N,0) with Z e addZ1 & --- ® Z;). In fact,
let K = (D", K1, h), and letN’ be an indecomposable summandof which is not a
successor oM. Theng(M, N') = 0 and therefor€0, N/, 0) is a summand oK .

Let repdimA = r + 1 and letX be a generator—cogenerator of mbdatisfying the
r-resolution propertyX = (D™, X, f) with X inmodB andf : M ® D" — X amorphism
of B-modules.

LetY = @ﬁzl Z; @ X. If follows from the description of the projective and the injective
modules in modt, [4, lll, Prop. 2.5], thatB @ D(B) is in addY becausei @ D(A) is in
addX. SoY is generator—cogenerator of mBdand we will prove that it satisfies the
resolution property, and thus refim B < r + 1 =rep.dim A. This amounts to prove that
pdz(—, N) <r — 1 for eachN in ind B, whereg(—, N) is considered as an element of
Fy, as observedin (1.6).

We will also considet; (—, N) € F5, and show that pg(—, N) < pd4(—, N) <r — 1.
This will end the proof of (a). We will prove the inequality by induction/os pd, (—, N).
We may assume thaf ¢ addy .

If k =0, then the result clearly holds. So ket 0 and consider a right -approximation
X1 — Nof N.Let0— K — X; — N — 0 be exact. Then

0— A(_aK)_) A(-,Xl)-)A(-,N)-)O

is exact in addk, and pd,(—, K) < k = pd,(—, N).

We write K = (D", K1, f) and X1 = (D%, Y, g) with ¥ € addX C addY. We have
an exact sequence-8 K1 — Y % N — 0. Moreover, as we observed abové,=
(D", Z,h) @ (0, N1,0) with Z € addZ; & --- @ Z,;) € addY. Since pd(—, N1) <
pd,(—, K) < k we can apply the induction hypothesis to conclude thgt(pd N1) < k.
Onthe other hand§y = Z @ N1, andZ € addY . So pg;(—, K1) = pdg (—, N1) < k. Thus,
to prove that pg(—, N) < k, we only need to show that the sequence

0— 5(—, K1) > (= ¥) 55 p(—,N) >0 (+)

is exact in add’. SinceN ¢ addY we have thaiV is not a successor dff and therefore
s(Z;, N)=0foreachi =1, ...,t. So we only need to prove that)(is exact in adc.

Letd:X — N be a map in mod. Then the compositioM™ ~ M ® D™ — X — N
is zero becausg(M, N) =0. S0(0,0): X = (D™, X, f) — N is a morphism in mod,
and thus it can be lifted througkiy — N, becausey (—, X1) — 4(—, N) is surjective in
addX. SinceX; = (D?,7, g), the mapd can be lifted throughy % N. This proves that
(—, @) is surjective, as desired.

(b) Let Zy, ..., Z; be the successors &1 in indB, let indA \ indB = {D1, ..., Dy},
and assume that repmB =r + 1.

Let Y be a generator—cogenerator of mibavith the r-resolution property, and let
X=Y®®D_1Di ®D_1Z.
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Let N inind A but notin addX. ThenN is in ind B. Considering again(—, N) € Fxz
andg(—, N) € F5, we will prove that pd (—, N) < pdz(—, N) < r — 1, by induction on
k =pdg(—, N). The result holds fok = 0, so we assume> 0.

Let0— K — Y1 — N — 0 be an exact sequence in mBauch thatr'; € addY and

0_) B(_sK)_>B(_7Yl)_)B(_1N)_>O

is exact in add. Since p(—, N) is not projective we have that p4—. K) < k =
pdg (—, N) and then by the induction hypothesis we conclude thg(pdK) < k.

Let D, = (D", U;, f;). Then(M,U;) #0 for all i, andU; € addZ1 & --- @ Z,).
Thenp(U;, N) = 0 and consequently(D;, N) = 0. Sincea(—, Y1) - 4(—, N) — 0 is
exact in add’, it follows that it is also exact in add. Since pd (—, K) < k we get that
pd,(—, N) < k, as desired, ending the proof of the theorem

4.2. The next result extends [12, (6.1)].

Corallary. Let B be an Artin algebra,D a division ring, M a B — D bimodule and
A = B[M] the one-point extension & by M. If M is a simple injective module then
repdimA =repdimB.
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