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Exact electronic Green functions in a Luttinger liquid with long-range interactions

Anı́bal Iucci* and Carlos Nao´n†

Departamento de Fı´sica, Universidad Nacional de la Plata, CC 67, 1900 La Plata, Argentina
~Received 13 December 1999!

We compute the two-point~equal-time! electronic Green function in a Tomonaga-Luttinger system with
long-range electron-electron interactions. We obtain an analytical expression for a ‘‘super long-range’’ poten-
tial of the formV(x)5e2d2e/uxu12e. As a consistency check of our computational technique we also consider
the particular case of a Coulomb potential. Our result confirms the exp2C(log x)3/2 long-distance behavior first
obtained by Schulz.
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Models of one-dimensional~1D! interacting electrons are
relevant as testing grounds for new ideas and can help u
understand systems in higher dimensions. In particular t
are useful to describe the behavior of strongly anisotro
physical systems in condensed matter, such as org
conductors,1 charge transfer salts,2 and quantum wires.3

Probably the two most widely studied 1D systems are
Hubbard model4 and the so-called ‘‘g-ology’’ model.5 They
are known to display the Luttinger liquid6 behavior charac-
terized by spin-charge separation and by nonuniversal~inter-
action dependent! power-law correlation functions. In thes
models one usually considers short-range electron-elec
interactions. This picture works well for conductors in whi
the screening between adjacent chains reduces the ran
interactions within one chain.7 On the other hand, as th
dimensionality of the system decreases, charge screenin
fects are expected to become less important and the l
range interaction between electrons seems to play a ce
role in determining the properties of the system. This as
tion seems to be confirmed by experiments in GaAs quan
wires3 and quasi-1D conductors.8 From a theoretical point o
view the effects of long-range interactions have been a
recently discussed in connection to a variety of proble
such as the Fermi edge singularity,9 the insulator-metal
transition10 and the role of the lattice through umklapp sc
tering and size dependent effects.11

The effect of Coulomb forces on the single-particle Gre
function and on charge-density correlations in 1D syste
have been previously investigated in a pioneering work
Schulz12 using the conventional bosonization method.13 The
purpose of the present paper is to compute the electr
Green function in the presence of long-range interactions
ing an alternative path-integral bosonization technique pr
ously developed in the context of quantum-field theor
~QFT’s!.14 We consider a nonlocal version of the Thirrin
model15 described by the following~Euclidean! action

S5E d2x C̄ i ]”C2E d2x d2y@V~0!~x,y!J0~x!J0~y!

1V~1!~x,y!J1~x!J1~y!#, ~1!

where x5(x,tx), and J05C̄g0C5r, and J15C̄g1C5 j
are the charge-density and current-density operators, res
tively. Let us also mention that, for simplicity, we shall tak
PRB 610163-1829/2000/61~23!/15530~4!/$15.00
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vF51 and pF50 throughout this article. The function
V(m)(x,y) are forward-scattering potentials. SettingV(0)
5V(1)5(g2/2)d2(x2y) one gets the covariant and loc
version of the Thirring model usually studied in the conte
of (111) QFTs. On the other hand, the choice

V~0!~x,y!5V~ ux2yu!d~tx2ty!,

V~1!~x,y!50, ~2!

yields the simplest version of the Tomonaga-Luttinger~TL!
model with an instantaneous distance dependent pote
and no current-current fluctuations. The main purpose of
present paper is to study this case for a long-range elect
electron potential,different from the Coulomb interaction, of
the form

V~ ux2yu!5
e2d2e

ux2yu12e d~tx2ty!, ~3!

whered is a length scale ande is a small real number (0
,e<1). This interaction has been previously analyzed
using renormalization group techniques in order to expl
the possibility of having Luttinger liquid behavior in mor
than one dimension16 and in connection to the vacuum stru
ture of the nonlocal Thirring model.17

Before considering the ‘‘super long-range’’ potential d
scribed above, we shall sketch our functional approach
bosonization in a general case. As shown in Ref. 15
partition function of the model defined by Eq.~1! can be
solved, in the path-integral framework, by means of a ch
change of fermionic variables. This procedure allows to o
tain a bosonized effective action in terms of scalar fields t
are naturally identified with the collective modes~plasmons!
of the system. Since this method has been described m
times in the literature, here we shall skip the details~the
interested reader is referred to Refs. 14 and 15 and refere
therein!. Let us only say that using a Hubbard-Stratonovic
like identity, which amounts to introducing an auxiliary ve
tor field Am , the partition function of the general mode
given by Eq. ~1! can be written in terms of a functiona
fermionic determinant as

Z5E DAm det~ i ]”1gA” !e2S@A#, ~4!
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with

S@A#5
1

2 E d2x d2y V~m!
21~x,y!Am~x!Am~y!, ~5!

whereV(m)
21 is such that

E d2z V~m!
21~z,x!V~m!~y,z!5d2~x2y!. ~6!

DecomposingAm(x) in longitudinal and transverse pieces

Am~x!5emn]nf~x!1]mh~x!, ~7!

wheref andh are boson fields~to be associated to the no
mal modes of the system! and applying, as anticipated, func
tional bosonization techniques to express the fermionic
terminant in terms off andh, one finally obtains

Z5NE Df Dh e2Sbos, ~8!

whereN is a normalization constant andSbos, already writ-
ten in momentum space, reads

Sbos5
1

~2p!2 E d2p@f̂~p!f̂~2p!A~p!1ĥ~p!ĥ~2p!B~p!

1f̂~p!ĥ~2p!C~p!# ~9!

with

A~p!5
1

p
p21

1

2
@V̂~0!

21~p!p1
21V̂~1!

21~p!p0
2#, ~10!

B~p!5 1
2 @V̂~0!

21~p!p0
21V̂~1!

21~p!p1
2#, ~11!

C~p!5@V̂~0!
21~p!2V̂~1!

21~p!#p0p1 , ~12!
in
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D5C2~p!24A~p!B~p!. ~13!

Let us now focus our attention on the one-particle ferm
onic propagator

^C~x!C̄~y!&5S 0 GR~x,y!

GL~x,y! 0 D . ~14!

The above depicted bosonization scheme can be ea
employed to evaluate this expression. First of all it
straightforward to verify that the nonzero components of
Green function factorize as

GR,L~x,y!5GR,L
~0! ~x,y!BR,L~x,y!, ~15!

where GR,L
(0) (z)51/2p(tz

21z2)(tz6 iz) describe free right
and left propagation, and

BR,L~x,y!5
*DF̂ Dĥ e2@Sbos1SR,L~x,y!#

*DF̂ Dĥ e2Sbos

. ~16!

In this equation one has defined

SR,L~x,y!52
1

~p!2 E d2p@6f̂~p!1 i ĥ~p!#

3~e2 ip•x2e2 ip•y!. ~17!

At this point we notice that the evaluation ofBR,L(x,y)
can be carried out by means of a convenient shift of the fie
f̂(p) and ĥ(p). This standard procedure gives

BR,L~x,y!5exp@ I R,L~x,y!#, ~18!

whereI R,L is a functional of the potentials given by
I R,L~x,y!52
1

p2 E d2p sin2F1

2
p~x2y!G3

~2/p!V̂~0!~p!V̂~1!~p!p21@V̂~0!~p!2V̂~1!~p!#~p07 ip1!2

~2/p!p2@V̂~1!~p!p0
21V̂~0!~p!p1

2#1p4
. ~19!
me
n

al
This result gives a very general expression for the two-po
electronic correlator as functional of density-dens

@V̂(0)(p)# and current-current@V̂(1)(p)# interaction poten-
tials. It can be used as an alternative route to analyze
effect of long-range interactions on a Luttinger syste
Of course, if one considers the local and covariant c
V̂(0)(p)5V̂(1)(p)5g2/2 one easily obtains the well-know
Thirring behavior:

BR,L
Thirring~x2y!}ux2yu2~1/2!~g2/p!2/~11g2/p!. ~20!

Let us now proceed with our main task and special
formula ~19! for the TL model defined by Eq.~2!. Having
V̂(1)(p)50 andV̂(0)(p)5V̂(0)(p1) greatly simplifies the in-
tegrand in Eq.~19! which allows us to perform the integral i
t

he
.
e

e

p0 . Moreover, since we are concerned with the equal-ti
correlator, we taketx5ty . In this case there is no distinctio
betweenI R and I L and one gets

I R,L~ ux2yu,tx5ty!

5I ~ ux2yu!522E
0

` dp

p F 1

p
V̂~p!11

2A2

p
V̂~p!11

2
1

2G
3@12cos~ ux2yu•p!#, ~21!

where we have usedp15p. It is convenient to check the
validity of this equation by considering a nontrivial potenti
such as the Coulomb interaction
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V~ ux2yu!5
e2

Aux2yu21d2
~22!

with Fourier transform given by

V̂~p!52e2K0~dp!, ~23!

where d is a very small length scale. This computation
interesting for two reasons. First, one should stress that
~19! has been checked only for local~short-range! potentials:
the covariant Thirring model@see Eq.~20!# and the short
range TL model.15 On the other hand, the electronic co
relator for a Coulomb potential has been computed
Schulz12 using standard~operational! bosonization13 and thus
our computation will give an independent confirmation
means of a different approach. To achieve this goal we c
sider a large distance approximation of Eq.~19! that consists
of insertingux2yu21 in the lower limit of Eq.~21! and dis-
regarding the cosine term, which is valid for 1/d@1/ux2yu,
we obtain

GR,L~x2y!56 iC~L!sign~x2y!expF2aS log
ux2yu

bd D 3/2G ,
~24!

where a and b are two constants that depend one2 and
C(L) depends on an ultraviolet cutoffL. This is our first
nontrivial contribution. We have obtained, as anticipated,
behavior previously found by Schulz.12

Now we undertake the computation ofGR,L(x2y) for the
so-called ‘‘super long-range’’ potential given by Eq.~3!,
whose Fourier transform is

V̂~p!52e2 cosS p

2
e DG~e!~dupu!2e. ~25!

Inserting this expression in Eq.~21! one gets

I ~j!52E
l

` duqu
uqu F uqu2e12

2Auqu2e11
21G @12cos~juqu!#,

~26!

where it has been natural to define the new variable

j5F 4

p
e2 cosS p

2
e DG~e!G1/e x2y

d
. ~27!

Note that we have also introduced a small quantityl to be
set equal to zero at the end of our computation. Althou
I (j) is infrared convergent, it is convenient to split it in
two pieces:I (j)5I 1(j)2I 1(j50) with

I 1~j!5
1

2 El

` duqu
uqu F uqu2e12

Auqu2e11
22Gcos~juqu!. ~28!

The first j-independent piece can be very easily compu
yielding

I 1~j50!52
1

e
l2e/22 logl2

1

e
~ log 421!1O~le/2!.

~29!
q.

y

n-

e

h

d

The evaluation ofI 1(j) is more involved, as expected. It ca
be achieved by splitting the integration region into two su
intervals~l, 1! and~1, `!, then performing series expansion
of the corresponding square root factors, and finally integ
ing term by term. Putting all this together and taking t
limit l→0 one finally obtains

I ~j!5
1

4 (
n50

`

~2an1an11!
1

mn
@F~mn ,mn11;i uju!

1F~mn ,mn11;2 i uju!#1
1

4 (
n50

`

~an

12an11!ujunn@eip/2nnG~2nn ,i uju!1e2 ip/2nnG

3~2nn ,2 i uju!#2
1

4
ujue/2Fe2 ip/4eGS 2

e

2
,2 iUjU D

1eip/4eGS 2
e

2
,iUjU D G2Ci~ uju!1

1

2
ujue/2G

3S 2
e

2D cosS p

2
e D1 loguju1S C1

1

e
2

1

e
log 4D ,

~30!

where F(a,b,z) is Kummer’s confluent hypergeometri
function, G(a,x) is the incomplete Gamma function, an
Ci(z) is the cosine integral function. We have also defin
the coefficients mn5(n1 1

2 )e, nn5(n11)e, and an5
(21)nG(n11/2)/G(1/2)G(n11). Formula~30! is our main
result. Indeed, by recalling that

GR,L~j!5GR,L
0 ~j!expI ~j!, ~31!

one sees that Eq.~30! gives a complicated but analytical an
exact result for the fermionic propagator of the TL model
the presence of the long-range interaction given by Eq.~3!.

Of course, it is now interesting to study the long-distan
behavior of our solution (uju@1). A careful evaluation of
the dominant contributions to Eq.~30! for this case yields

GR,L~j!}6 i sign~j!expF1

2
GS 2

e

2D cosS p

4
e D UjUe/2G .

~32!

Note that, exactly as it happens with Schulz’s solution,
above function decays faster that any power law. Moreov
the larger the range of the potential~largere! the faster is the
Green function decay. Let us also mention that the definit
of the long-distance regime is different in both cases@see Eq.
~27!#, since the quantitye determines the range of the pote
tial. This does not prevent us from comparing both lon
distance decays for definite values ofe. A simple numerical
comparison allows us to verify that the results are incre
ingly similar when distances increase.

It is also interesting to notice that the long-distance
gime can be obtained following a much simpler route, ana
gous to the one employed to get this regime for the Coulo
case@see the paragraph preceding Eq.~24!#. However, we
must mention that the condition that allows to drop the
cillating integrals leads, in the present case, to a result th
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only valid for smalle. Under this condition, replacing Eq.~3!
in Eq. ~21! and disregarding the cosine term gives

GR,L~j!}6 i sign~j!expF2
1

e UjUe/2G , ~33!

which coincides with Eq.~32! for e!1. We want to stress
here that this agreement is an important consistency chec
our exact result since it has been derived in a very strai
forward way,without using Eq. (30).

In summary, we have shown how to compute, throu
path-integral methods, the equal-time fermionic one-part
Green function in a simple version of the TL model. In pa
ticular we have obtained a rather involved but exact anal
cal expression for this propagator in the case of a ‘‘su
long-range’’ potential@see Eq.~3!#. This result is indeed of
academic interest, since most of the explicit results found
of
t-

h
le
-
i-
r

in

the literature actually correspond to long-distance regim
~see, for instance Ref. 12!. In passing, and as a consisten
check of our computation, we have given a path-integ
derivation of the Green function corresponding to the Co
lomb case, a well-known result previously found by Schu
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