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Exact electronic Green functions in a Luttinger liquid with long-range interactions
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We compute the two-pointequal-time electronic Green function in a Tomonaga-Luttinger system with
long-range electron-electron interactions. We obtain an analytical expression for a “super long-range” poten-
tial of the formV(x) =e?d ™~ ¢/|x|1™ €. As a consistency check of our computational technique we also consider
the particular case of a Coulomb potential. Our result confirms the €jog x)*? long-distance behavior first
obtained by Schulz.

Models of one-dimensiondlLD) interacting electrons are v=1 and pe=0 throughout this article. The functions
relevant as testing grounds for new ideas and can help us %9 ,,(x,y) are forward-scattering potentials. Settingo,
understand systems in higher dimensions. In particular theytv(l):(92/2)52(x—y) one gets the covariant and local
are useful to describe the behavior of strongly anisotropia/ersion of the Thirring model usually studied in the context
physical systems in condensed matter, such as organgf (1+1) QFTs. On the other hand, the choice
conductors, charge transfer salfs,and quantum wire$.

Probably the two most widely studied 1D systems are the Vo) (%,¥)=V(|x=y|) 8( 74— 1),
Hubbard modéland the so-called §-ology” model® They
are known to display the Luttinger liqiidehavior charac- V(1)(%,y)=0, 2

terized by spin-charge separation and by nonunivesedr-

action dependehtpower-law correlation functions. In these Yyields the simplest version of the Tomonaga-LuttingEkr)
models one usually considers short-range electron-electramodel with an instantaneous distance dependent potential
interactions. This picture works well for conductors in which and no current-current fluctuations. The main purpose of the
the screening between adjacent chains reduces the range @sent paper is to study this case for a long-range electron-
interactions within one chaih.On the other hand, as the electron potentialdifferent from the Coulomb interactiponf
dimensionality of the system decreases, charge screening dfie form
fects are expected to become less important and the long-

range interaction between electrons seems to play a central

role in determining the properties of the system. This asser- V(Ix=y)= W& T Ty), ©)

tion seems to be confirmed by experiments in GaAs quantum

wires’ and quasi-1D conductofstrom a theoretical point of whered is a length scale and is a small real number (0
view the effects of long-range interactions have been alsele<1). This interaction has been previously analyzed by
recently discussed in connection to a variety of problemsising renormalization group techniques in order to explore
such as the Fermi edge singulardtythe insulator-metal the possibility of having Luttinger liquid behavior in more
transitiort® and the role of the lattice through umklapp scat-than one dimensidfiand in connection to the vacuum struc-
tering and size dependent effetts. ture of the nonlocal Thirring modeél.

The effect of Coulomb forces on the single-particle Green Before considering the “super long-range” potential de-
function and on charge-density correlations in 1D systemscribed above, we shall sketch our functional approach to
have been previously investigated in a pioneering work bybosonization in a general case. As shown in Ref. 15 the
SchulZ? using the conventional bosonization metiddhe  partition function of the model defined by E¢l) can be
purpose of the present paper is to compute the electronisolved, in the path-integral framework, by means of a chiral
Green function in the presence of long-range interactions usshange of fermionic variables. This procedure allows to ob-
ing an alternative path-integral bosonization technique previtain a bosonized effective action in terms of scalar fields that
ously developed in the context of quantum-field theoriesare naturally identified with the collective modgsasmong
(QFT’s).2* We consider a nonlocal version of the Thirring of the system. Since this method has been described many
model® described by the followingEuclidean action times in the literature, here we shall skip the detdilse

interested reader is referred to Refs. 14 and 15 and references

2d—s

_ therein. Let us only say that using a Hubbard-Stratonovich-

5=f d?x ‘l’iﬂ‘l'—f d?x d?Y[V 0)(X,y)Jo(X) Jo(y) like identity, which amounts to introducing an auxiliary vec-
tor field A,,, the partition function of the general model
+V(1)(X,y)I1(x)J1(Y) ], (1)  given by Eq.(1) can be written in terms of a functional

o - fermionic determinant as
where x=(x,7,), and Jo=Vy,¥=p, and 3=V y, ¥ =j
are the charge-density and current-density operators, respec- _ . —gA]
tively. Let us also mention that, for simplicity, we shall take Z= | DA, detio+ghe ' )
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with and

1 A=C?(p)—4A(p)B(p). 13
SIAl= 5 [ dx Py VS 0ay),  © (PI=AAPBPR) 19
Let us now focus our attention on the one-particle fermi-
wherev(’ﬂl) is such that onic propagator

Gr(X,Y)

Guxy) O (14

| e vieovama-sooy. @ (VP OT(y)=

DecomposingA,,(x) in longitudinal and transverse pieces The above depicted bosonization scheme can be easily

AL (X)=€,,0,(X)+3,7(x), (77 employed to evaluate this expression. First of all it is

) ) straightforward to verify that the nonzero components of the
where ¢ and 5 are boson field¢to be associated to the nor- Green function factorize as

mal modes of the systemand applying, as anticipated, func-
tional bosonization techniques to express the fermionic de- GrL(X,Y)=GRL(X,Y)BrL(X,Y), (15)

terminant in terms ot) and », one finally obtains 0 ) ) . )
where G{} (z) = 1/2m(75+ ) (7,+iz) describe free right

and left propagation, and
z=Nf Dep Dy e Svos ®) propag
D D% e [Shost SrL(xY)]
whereN is a normalization constant ar®,, already writ- BrL(X,Y)= ID®Dye e : (16)
ten in momentum space, reads ’ fDriJ D% e Soos

In this equation one has defined

1 .
Sbos:Wf d?p[b(p) d(—P)A(P) + 7(p) 7(—p)B(P)

1 .
d SrL(X,Y)=———7 | d®p[* i3
+¢(p) 7(—p)C(P)] (9) rL(XY) (W)zf pL* ¢(p)+in(p)]

with X (e P X—g Py, (17

1 1 . A At this point we notice that the evaluation Bk (x,Y)
R S 1 2 1 2 LUX,
Alp)= T P 2 Vo) (P)P1+V(5)(P)PO], (10 can be carried out by means of a convenient shift of the fields

&(p) and 7(p). This standard procedure gives

BrL(X,Y)=exdIr(X,Y)], (18
C(P)=[V5;(P) = V1 (P)1PoP1, (12)  wherelg is a functional of the potentials given by

B(p) =3[V o) (P)P3+ V1 (PP, (12)

y (ZIW)V(O)(p)V(l)(p)p2+ [\A/(O)(P) _\A/(1)(p)](pojr ipy)?

- . (19)
(2im)p?[V(1)(P)P5+ V(0)(P)PT]+ p*

1 1
lrL(X,y)=— ;J d?psirn Ep(x—y)

This result gives a very general expression for the two-poinp,. Moreover, since we are concerned with the equal-time
electronic correlator as functional of density-densitycorrelator, we take,= 7, . In this case there is no distinction
[V(0)(p)] and current-currenfV(;)(p)] interaction poten- betweenig andl_ and one gets

tials. It can be used as an alternative route to analyze the

effect of long-range interactions on a Luttinger system. IR (x=y] 7= 7y)
Of course, if one considers the local and covariant case 1
V(0)(p)=V(1)(p) =9%/2 one easily obtains the well-known - dp ;V(D)Jrl
Thirring behavior: =I(|x=y)= —2f — —
op 2 2
Bg]iering(X_ y)x|x—y|~ (1/2)(g%/m)2/(1+ g% ) (20) 2 ;V( p)+1
Let us now proceed with our main task and specialize X[1—cog|x—y|-p)], (21)

formula (19) for the TL model defined by Ed2). Having  where we have useg,=p. It is convenient to check the
V1y(p) =0 andV )(p) =V (o)(p1) greatly simplifies the in-  validity of this equation by considering a nontrivial potential
tegrand in Eq(19) which allows us to perform the integral in such as the Coulomb interaction
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2 The evaluation of ;(£) is more involved, as expected. It can

(22

e
V(|X_y|)=m

with Fourier transform given by

V(p)=2e%Ky(dp), (23

whered is a very small length scale. This computation is
interesting for two reasons. First, one should stress that Eq.I (&)=
(19 has been checked only for lodahort-rangg potentials:

the covariant Thirring modelsee EQq.(20)] and the short
range TL modet® On the other hand, the electronic cor-
relator for a Coulomb potential has been computed by
SchulZ? using standardoperational bosonizatiof® and thus

our computation will give an independent confirmation by
means of a different approach. To achieve this goal we con-
sider a large distance approximation of EtP) that consists

of inserting|x—y| ! in the lower limit of Eq.(21) and dis-

be achieved by splitting the integration region into two sub-
intervals(\, 1) and(1, «©), then performing series expansions

of the corresponding square root factors, and finally integrat-
ing term by term. Putting all this together and taking the
limit A—0 one finally obtains

1

1o :
7.2 (280t an 1) —[®(pn, unt L))
n=0 Mn

_ 1<
+ P (pn g+ i1 1ED]+ 5 2 (ag
n=0
+ 285, 1)|€] "€ 7200 (= vy [ ]+ TRT

€ )
_E,_I g

e i 71'/451"

1
X(=vn,=ilED]- 716

regarding the cosine term, which is valid fodf 1/|x—y]|,
we obtain

L=l

GrL(x—y)== iC(A)sigr(x—y)exp{ - a( log Ad

(24)

where @ and B are two constants that depend ef and

C(A) depends on an ultraviolet cutoff. This is our first
nontrivial contribution. We have obtained, as anticipated, th

behavior previously found by SchulZ.

Now we undertake the computation Gk  (x—y) for the
so-called “super long-range” potential given by E),
whose Fourier transform is

V(p)=2€? COSGe)F(e)(deI)‘E- (25)
Inserting this expression in E€R1) one gets
=dlgl| [q] “+2
1(§)=— —-1([1-
(&) f)\ ol | 2J[q 1 1[ 001§|Q|)]a(26)

where it has been natural to define the new variable

4 ’ T
;e co € I'(e)

Note that we have also introduced a small quantitio be

1/eX_y

&= g (27

set equal to zero at the end of our computation. Althoughb
(&) is infrared convergent, it is convenient to split it into

two pieces! (&) =1,(&) —1,(£=0) with

_ 1 (=dlal| |o"“+2
'1(5)‘2L Bl {\/—|q|f+l 2

cogélal). (28)

The first &independent piece can be very easily computed

yielding

1(£=0)=——N"?—logh— —(log4—1)+O(\?
1 € g € g ( )
(29

. € ) 1 B
+e ’4F(—5,| ¢ }—cwlélwzlél T

€ v
_E CO EG

where ®(a,b,z) is Kummer's confluent hypergeometric
function, I'(«a,x) is the incomplete Gamma function, and
®i(z) is the cosine integral function. We have also defined
the coefficients u,=(n+3)e, v,=(n+1)e, and a,=
(—1)"T'(n+1/2)/T(1/2)I'(n+1). Formula(30) is our main
result. Indeed, by recalling that

X +log| &+

11
C+—— Iog4),
€ €

(30)

GrL(§)=GR (&)expl (&),

one sees that E¢30) gives a complicated but analytical and
exact result for the fermionic propagator of the TL model in
the presence of the long-range interaction given by (Bg.

Of course, it is now interesting to study the long-distance
behavior of our solution |¢|>1). A careful evaluation of
the dominant contributions to E¢30) for this case yields

€ r
CO{Zé

1
GgrL(§)==xi Sigrtg)ex;{zd -5

(31

€l2

3

Note that, exactly as it happens with Schulz’s solution, the
above function decays faster that any power law. Moreover,
the larger the range of the potentitdrgere) the faster is the
reen function decay. Let us also mention that the definition
of the long-distance regime is different in both cases Eq.
(27)], since the quantitg determines the range of the poten-
tial. This does not prevent us from comparing both long-
distance decays for definite valuesefA simple numerical
comparison allows us to verify that the results are increas-
ingly similar when distances increase.

It is also interesting to notice that the long-distance re-
gime can be obtained following a much simpler route, analo-
gous to the one employed to get this regime for the Coulomb
case[see the paragraph preceding Eg84)]. However, we
must mention that the condition that allows to drop the os-
cillating integrals leads, in the present case, to a result that is
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only valid for smalle. Under this condition, replacing EB)  the literature actually correspond to long-distance regimes
in Eq. (21) and disregarding the cosine term gives (see, for instance Ref. 12In passing, and as a consistency
check of our computation, we have given a path-integral

E,2} 33) derivation of the Green function corresponding to the Cou-
' lomb case, a well-known result previously found by Schulz.

1
GrL(§)= =i Sigf(f)exl{ - ;‘%

which coincides with Eq(32) for e<1. We want to stress
here that this agreement is an important consistency check of
our exact result since it has been derived in a very straight- A.l. was partially supported by the Comisiae Investi-
forward way,without using Eq. (30) gaciones Cienficas de la Provincia de Buenos Aires

In summary, we have shown how to compute, through(CICPBA), Argentina. C. N. was partially supported by Uni-
path-integral methods, the equal-time fermionic one-particleversidad Nacional de La PlattyNLP) and Consejo Nacio-
Green function in a simple version of the TL model. In par-nal de Investigaciones Ciéfitas y Tenicas(CONICET),
ticular we have obtained a rather involved but exact analytiArgentina. He thanks Eduardo Fradkin for calling his atten-
cal expression for this propagator in the case of a “supetion to Ref. 12. The authors are also grateful to Yang Chen
long-range” potentialsee Eq.(3)]. This result is indeed of for calling their attention to Ref. 18 where a result similar to
academic interest, since most of the explicit results found irSchulz’s was obtained.
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