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HIGHLIGHTS 

- Azure B and its monobrominated derivative were encapsulated in multilamellar liposomes 

- Liposome encapsulation decreased the aggregation of phenothiazine dyes 

- Encapsulated photosensitizers exhibited higher singlet oxygen quantum yield 
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ABSTRACT 

The aim of the present paper was to optimize the properties of phenothiazine photosensitizers (PSs), 

Azure B and its monobrominated derivative.  They were entrapped in multilamellar liposomes of egg 

phosphatidylcholine (EPC) and dipalmitoylphosphatidylcholine (dpPC). The higher partition coefficient 

of both PSs in the EPC/water system compared with that of both PSs in the dpPC/water system allowed 

the selection of EPC to be used for the development of third generation photosensitizers. The optimal 

phospholipid/phenothiazine ratio and the location of these dyes in the lipid bilayer systems were 

established.  These dyes were found to be located within the polar head group region of the lipid bilayer, 

which would enhance the effectiveness of the irradiation procedure. In addition, the encapsulation of 

both photosensitizers in liposomes led to a decrease in the aggregation of these compounds, and 

consequently to an increase in their singlet oxygen quantum yield (). The encapsulation of the PSs in 

lipid vesicles significantly increased their photochemical reactivity, doubling the  value of AzBBr and 

increasing that of AzB by 60%. The results obtained demonstrate that the vehiculization of these PSs in 

liposomes allowed the development of third generation photosensitizers with better photochemical 

properties to be used in potential therapeutic applications.  

KEYWORDS 

 

Phenothiazine dyes, photochemical properties, EPC, dpPC, encapsulation efficiency of MLVs, 

membrane partitioning and location. 
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1 INTRODUCTION 

The exposure of Photosensitizers (PSs) to a specific light wavelength induces the production of 

harmful radicals such as reactive species of oxygen (mainly singlet oxygen, 
1
O2) and nitrogen, which are 

capable of killing cells.[1,2] PSs are used in Photodynamic Therapy (PDT) as a valuable alternative for 

the diagnosis and treatment of various types of cancers. It is known as Antimicrobial Photodynamic 

Therapy (APDT) when  it is applied to the treatment of diseases caused by a broad range of species of 

microorganisms, regardless of drug resistance.[3] Both therapies provide a safe and effective way to 

selectively eradicate target cells while avoiding systemic toxicity and side effects on healthy tissues.[4] 

For this reason, PDT and APDT are widely evaluated to address two global issues of health, the 

treatment of cancer and antibiotic resistance, which are a priority for the World Health Organization 

(WHO). Consequently, the development of new PSs and different alternatives to improve the 

effectiveness of these therapies has become an important field of scientific research. 

The clinical use of first and second generation PSs has been questioned because of their low 

selectivity, hydrophobicity, and important biodegradation, among other features. In order to overcome 

these difficulties, different vehiculization strategies are used, which allow obtaining biodegradable 

systems, known as third generation PSs.[5,6] There are different drug delivery approaches that can be 

used for the diagnosis and treatment of numerous diseases Examples of the main nanocarriers used in the 

field of medicine include micelles, liposomes, dendrimers, carbon nanotubes, nanoshells,  and gold, 

silver and copper nanoparticles.[7–15] 

Liposomes are currently one of the most commonly used drug nanocarrier systems in clinical 

applications and are particularly employed in the treatment of various oncological diseases.[16] These 

strategies are widely investigated for their use in PDT and APDT because they are versatile systems 

capable of encapsulating hydrophilic, hydrophobic, and amphiphilic molecules. Liposomes exhibit high 

biocompatibility and increase the amount of PS available at the site of action, preventing its degradation 

and aggregation in the biological environment, as well as reducing unspecific damage.[17–19] In 

addition, numerous studies proved that the use of liposomes for the development of third generation PSs 

has greater benefits than other delivery systems, such as micelles and polymeric or metallic 

nanoparticles.[20,21]  
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Encouraging results were obtained by using conventional liposomes as nanocarriers for PDT and 

APDT. Visudyne®, a liposomal formulation of verteporfin, is one of the first third generation PSs 

approved by FDA in 2000 for the treatment of age-related macular degeneration. Foslip
®
 is another 

recently developed third generation PS based on a liposomal formulation, which is in preclinical phases. 

[13,14] Several experimental results showed that liposomal formulations exhibit greater photodynamic 

efficiency and cause less damage to healthy tissue. Also, these formulations are less toxic in the absence 

of light compared with the free PS. [15, 16] In conclusion, the encapsulation of different PSs is a 

successful strategy to increase the photoinactivation of bacteria and numerous tumor cells, as well as to 

reduce toxicity and damage to healthy tissue in darkness. 

The purpose of this study was to encapsulate Azure B (AzB) and its novel monobrominated 

derivative (AzBBr) in multilamellar liposomes (MLVs). These vesicular systems were selected to carry 

out biophysical studies and, as a first step, to develop third generation PSs, since they can encapsulate a 

high concentration of lipophilic and amphiphilic drugs, are easy to prepare and are mechanically stable 

during storage.[26,27] In this approach, we evaluated the effect of MLVs on the aggregation of PSs and 

consequently on the production of singlet oxygen. Previous studies have demonstrated that phenothiazine 

dyes form higher order aggregates in aqueous media, which decreases their photodynamic 

efficacy.[28,29] The encapsulation of AzB and AzBBr in liposomes would be an interesting strategy to 

prevent their aggregation in biological media and improve their properties as PSs. 
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2 MATERIALS AND METHODS 

2.1 Chemicals 

AzB was purchased from Sigma Aldrich Co. (St. Louis, MO) and used without additional 

purification, while AzBBr was synthesized by the method previously described.[30] Figure S1 (see 

Supporting Information) shows the chemical structure of both compounds, which were used at higher 

purity levels (greater than 95%). 

The lipids, egg-phosphatidylcholine (EPC) and dipalmitoylphosphatidylcholine (dpPC), 

employed for the preparation of liposomes were purchased from Avanti Polar Lipids (Alabaster, 

Alabama) and used without further purification. The fluorescent probes, diphenylhexatriene (DPH), 

trimethyl-ammonium-diphenylhexatriene (TMA-DPH), and 9,10-Anthracenediyl-bis (methylene) 

dimalonic acid (ABDA), were obtained from Sigma Chem. Co (St. Louis, MO). Phosphate-buffered 

saline (PBS, 150 mM pH 7.4) solution was prepared using ultrapure water from a Milli-Q® purification 

system. All reagents and solvents used were of analytical grade. 

 

2.2 Instrumentation 

Absorption spectra were carried out at room temperature with a Cary 60 UV-Vis (Agilent 

Technologies) spectrophotometer between 200 and 800 nm using a 1 cm length quartz cell. 

Fluorescence spectra were recorded on a Fluoromax Spex-3 Jobin Yvon (Horiba, NJ, USA) 

spectrofluorometer equipped with a thermostatized cell, a Xenon arc lamp, and a diode array detector, 

where light intensity was registered by a photon counter system. The excitation and emission slits were 

0.5 nm wide. Excitation wavelength (ex) and emission wavelength (em) were determined for each 

experiment. 

Liposome size and polydispersity index (PI) were determined by dynamic light scattering (DLS) 

at 25 °C using a Beckman Coulter DelsaTM Nano C Particle Analyser with a He-Ne laser (633 nm), a 

scattering angle of 165°, a viscosity of 0.8878 Pa, and a refractive index of 1.3328. The samples were 

appropriately diluted with water before their analysis. A minimum of three measurements were taken and 

averaged for each determination. 
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2.3 Preparation of liposomes 

MLVs were prepared by the film-hydration method.[31] Different concentrations of lipids (EPC 

or dpPC) and PSs (AzB or AzBBr) were dissolved in chloroform/methanol (2:1 v/v). The solvents were 

then evaporated under a stream of nitrogen with constant rotation of a test tube so as to deposit a uniform 

film over the bottom third of the tube. Traces of solvents were removed under vacuum. The lipid film 

was rehydrated with PBS by vortexing at a temperature above the gel to liquid-crystalline phase 

transition of the lipids to obtain MLVs. 

 

2.4 Effect of liposome encapsulation on the aggregation properties of photosensitizers 

In order to select the optimal MLVs for the entrapment of the phototherapeutic agents AzB and 

AzBBr, the effect of the encapsulation of these compounds in vesicles of EPC and dpPC on the 

aggregation of PSs was evaluated. MLVs were prepared as mentioned in the previous section using 1 

mg/mL of lipids (EPC or dpPC) and different concentrations of PSs (5-45 M). The resulting samples 

were analyzed by UV-Vis spectrophotometry. The intensity absorption ratio of the two bands 

corresponding to the dimer (𝜆𝑚𝑎𝑥−𝑎𝑏𝑠
𝐴𝑧𝐵 : 646 nm; 𝜆𝑚𝑎𝑥−𝑎𝑏𝑠

𝐴𝑧𝐵𝐵𝑟 : 650 nm) and high aggregates ( 𝜆𝑚𝑎𝑥−𝑎𝑏𝑠
𝐴𝑧𝐵 : 600 

nm; 𝜆𝑚𝑎𝑥−𝑎𝑏𝑠
𝐴𝑧𝐵𝐵𝑟 : 601 nm) was calculated at the  maximum absorption wavelength (max-abs).[28] These 

values were compared with those obtained for AzB and AzBBr in PBS without lipids. The higher values 

of this ratio indicated higher disaggregation of the dyes.[32] 

 

2.5 Optimization of liposomal formulation 

To select the optimal EPC/PS ratio that allows the highest incorporation of the dyes into the 

liposomes, the encapsulation efficiency (EE) of different liposomal preparations was evaluated by UV-

Vis spectrophotometry. Prior to testing EE, it was necessary to select a detergent (DT) to destabilize 

MLVs and subsequently quantify the PSs. 

2.5.1 Selection of detergent for liposome lysis 

The treatment of biomembranes with an excess of DTs produces mixed (DT-phospholipid) 

micelles. This new environment may affect the absorption, excitation, and emission properties of drugs. 

Therefore, the absorption and fluorescence intensities (FI; ex: 646 nm and 650 nm for AzB and AzBBr, 
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respectively; em range: 660 - 850 nm) of aqueous solutions of PSs were evaluated in the presence and in 

the absence of different DTs. The effect of anionic (sodium dodecyl sulfate, SDS), cationic (cetyl-

trimethyl-ammoniumbromide, CTAB), and non-ionic (Triton X-100) DTs was tested. Solutions of AzB 

and AzBBr in PBS at different concentrations (1.5 - 20 M) were analyzed. DTs were applied at either 0 

or 35 mM. The higher concentration was well above the critical micelle concentration (cmc) of each 

tested DT.[33] It is important to note that the treatment with SDS could not be processed due to the 

formation of abundant precipitate. 

Absorption spectra were determined between 200 nm and 800 nm at room temperature using a 

quartz cell with an optical path length of 1 cm. Fluorescence spectra were recorded between 660 nm and 

850 nm. The selected ex were the max-abs corresponding to the dimeric species of PSs (646 nm and 650 

nm for AzB and AzBBr, respectively).[28] 

2.5.2 Determination of encapsulation efficiency 

EE was determined as a function of lipid (1 - 30 mg/mL) and PS (36 - 360 M) concentrations 

by UV-Vis spectrophotometry. MLVs of EPC or dpPC were prepared in a final volume of 2 mL. Half of 

the sample volume was used to determine 100% of PS (PStotal). The second half aliquot was centrifuged 

for 15 min at 10000 rpm. Subsequently, the supernatant was separated and the pellet obtained was 

resuspended in 1 mL of PBS. Finally, Triton X-100 (35 mM) was added to the non-centrifuged samples 

(PStotal), supernatants (PSfree), and resuspended pellets (PSencapsulated). The samples were analyzed by UV-

Vis spectrophotometry. The percentage of encapsulated PS was determined by Equations 1 and 2. The 

results obtained were the mean ± SD of both determinations.[34] 

𝑬𝑬 (%) =  
𝑨𝒃𝒔𝑷𝑺 𝒆𝒏𝒄𝒂𝒑𝒔𝒖𝒍𝒂𝒕𝒆𝒅 

𝑨𝒃𝒔𝑷𝑺 𝒕𝒐𝒕𝒂𝒍
 𝒙 𝟏𝟎𝟎%   Equation 1 

𝑬𝑬 (%) =  
𝑨𝒃𝒔𝑷𝑺 𝒕𝒐𝒕𝒂𝒍− 𝑨𝒃𝒔𝑷𝑺 𝒇𝒓𝒆𝒆 

𝑨𝒃𝒔𝑷𝑺 𝒕𝒐𝒕𝒂𝒍
 𝒙 𝟏𝟎𝟎%   Equation 2 

Note that the concentration of AzBBr charged in MLVs was calculated using a molar 

absorptivity coefficient value, = (18.4 ± 0. 6) x 10
3
 M

-1
cm

-1
, previously defined in a Triton X-100/EPC 

mixture (27:1 molar ratio) in PBS (data not shown). 
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2.6 Interaction photosensitizer–multilamellar vesicles 

2.6.1 Evaluation of membrane-water partition coefficient 

Due to the amphiphilic characteristics of AzB and AzBBr, the membrane-water partition 

coefficients (Kp) of these PSs were evaluated. 

The values of Kp were estimated according to the method described by Lissi et al.[35] The 

methodology used is based on the evaluation of a property that depends on the degree of partition of the 

dye. It is a simple method, suitable for the use of spectroscopic techniques and does not require the 

separation of membrane from aqueous solution phases. For the determination of Kp, it is assumed that the 

magnitude of the observed effect is determined only by the concentration of the solute in the 

membrane.[35] 

These tests  involved the spectrophotometric evaluation of the aggregation of PSs (effect that 

depends on the extent of partitioning into the lipid interface), as a function of the dye concentration (8 - 

46 M) at different membrane volumes (VM: 0 - 1 L of EPC) and at a constant volume of the aqueous 

phase (Vw: 1mL).[35] In the first instance, the slopes (S1) corresponding to dimer/higher-order aggregate 

absorbance ratio (Abs
D
/Abs

HA
) as a function of the moles of PSs were determined for different EPC 

volumes (Scheme 1). The reciprocal of the slopes obtained (1/S1) was plotted as a function of the VM 

(Scheme 2). The values of Kp were determined from the slopes (S2) and y-intercepts (Y2) corresponding 

to the second graphic according to Equation 3. 

Abs
D
/Abs

HA
    vs    PS moles                           S1                        Scheme 1 

1/ S1   vs    VM                             S2 and Y2                        Scheme 2 

𝑲𝒑 =
𝑺𝟐 ×  𝑽𝒘

𝒀𝟐
     Equation 3 

It is important to note that MLVs were prepared as described in Section 2.3. All samples obtained were 

analyzed by UV-Vis spectrophotometry. 

2.6.2 Localization of the photosensitizers in phospholipid bilayer 

The fluorescence resonance energy transfer (FRET) between fluorescent probes and PSs was 

evaluated in the presence and in the absence of liposomes. The probes used were DPH, known to be 

located within the lipophilic region of the membrane (hydrocarbon chain of phospholipids), and TMA-
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DPH, which stabilizes its cationic moiety at the polar head group of the phospholipids (surface of the 

lipid bilayer).[36] MLVs were prepared with 0.5 mg/mL of EPC and 80 M of PSs by the methodology 

previously descripted. Then, stock solutions of DPH or TMA-DPH (1.15 - 15 M) were added to the 

liposomal formulation 1 h before the analysis of the samples. Steady state fluorescence spectra were 

recorded from 380 nm to 750 nm, with the emission set at 356 nm. 

In order to corroborate that FRET only occurs when the probes and PSs are bound to MLVs, 

solutions of AzB and AzBBr (80 μM) with different concentrations of DPH or TMA-DPH (1.15 - 15 

μM) were evaluated in PBS without liposomes. 

 

2.7 Singlet oxygen quantum yields 

The 
1
O2 production of the AzB and AzBBr encapsulated in MLVs of EPC was evaluated 

indirectly analyzing ABDA photooxidation by UV-Vis spectrophotometry at different irradiation times. 

[21,37] The results obtained were compared with those previously published for free PSs in aqueous 

solution by employing the same methodology.[29] 

Liposomal samples were prepared using 15 mg/mL of EPC and 260 μM of the phototherapeutic 

agents AzB or AzBBr (see Section 2.3). The MLV suspensions were centrifuged for 15 min at 10000 

rpm in order to separate free from encapsulated PS. The pellets obtained (MLV + PS encapsulated) were 

resuspended in ultrapure water. Before starting the photooxidation test, an aliquot of ABDA aqueous 

solution, enough to reach an absorbance of around 0.3 at 380 nm, was added to the liposomal samples. 

The samples were irradiated for 360 s using a Parathom® LED lamp (5w - OSRAM) and 

analyzed at different times by UV-Vis spectrophotometry using a quartz cell with an optical path length 

of 1 cm. The irradiance intensity at a 5 cm distance was 8.4 mW/cm2. The absorbance values at 380 nm 

were plotted as a function of the irradiation time. The obtained slopes (kobs) allowed the determination of 

the relative singlet oxygen quantum yields () according to Equation 4, where 𝐴𝑏𝑠0
𝑃𝑆 is the absorbance 

of third generation PSs and 𝐴𝑏𝑠0
𝑅𝑒𝑓

is the absorbance of references at the initial time of the assay. The 

values obtained for  were determined using the free forms of AzB and AzBBr as references. All assays 

were performed in duplicate, demonstrating consistent results. 
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In order to corroborate that the oxidation of ABDA occurs only by the action of the 
1
O2 

generated by the excitation of PSs, samples equivalent to those irradiated were analyzed at different 

times and protected from light. Also, the behavior of ABDA against irradiation in the presence of MLVs 

without phenothiazine dyes was evaluated. 

ɸ
𝑃𝑆 =

ɸ
𝑅𝑒𝑓

𝑘𝑜𝑏𝑠
𝑃𝑆  𝐴𝑏𝑠0

𝑅𝑒𝑓

𝑘𝑜𝑏𝑠
𝑅𝑒𝑓

 𝐴𝑏𝑠0
𝑃𝑆

     Equation 4 
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3 RESULTS AND DISCUSSION 

3.1 Preparation of liposomes 

Dynamic light scattering (DLS) assays confirmed the formation of vesicular systems. The values 

obtained for the particle size of EPC (0.95 μm) and dpPC (1.2 μm) were consistent with the presence of 

MLVs, considering mainly the method used for their preparation. It has been reported that MLVs have a 

size of between 0.5 -10 μm [38], while the film hydration method leads to the formation of 

heterogeneous multilamellar liposomes with an average diameter of 1-5 μm.[39] Moreover, the 

polydispersion index (PI = 0.3) determined for both samples showed their quite homogeneous particle 

size distribution. In conclusion, the methodology used allowed the obtainment of appropriate liposomal 

preparations for the development of novel third generation PSs. 

 

3.2 Effect of liposome encapsulation on the aggregation properties of photosensitizers 

The plots of absorbance ratio (dimer / higher order aggregate, Abs
D
/Abs

HA
) as a function of the 

PS concentration for AzB and AzBBr, both free and encapsulated in MLV of EPC and dpPC, are shown 

in Figure 1. 

Figure 1: Evaluation of aggregation of AzB and AzBBr, free and encapsulated in MLVs of EPC (A and 

B) or dpPC (C and D). 
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The trends of the aggregation curves of AzB in aqueous solution and trapped in liposomes differed 

from one another (Figures 1A and 1C). While the free PS exhibited an exponential behavior, the 

entrapped dye showed a sigmoidal decay. However, there was no significant difference in the 

aggregation of AzB encapsulated in MLV of EPC or dpPC over the concentration range evaluated. The 

monobrominated derivative, in contrast, showed an exponential decay for both free and encapsulated PS 

(Figures 1B and 1D), evidencing important differences at the highest dye concentrations tested. High 

values of Abs
D
/Abs

HA
 indicated a predominance of the dimeric form over higher order aggregates, which 

means a decrease in the aggregation and stabilization of the active species of these compounds.[29,40] In 

summary, the aggregation of the encapsulated AzBBr decreased compared with that of the free PS at the 

higher concentrations tested. In addition, the EPC vesicles were more efficient than those of dpPC at 

preventing the aggregation of PSs. This behavior suggests that AzBBr has a greater tendency to partition 

into the EPC liposomes compared with those composed of dpPC due to the lower molecular packing of 

the former at the assayed temperature. Considering that the gel-to-liquid crystalline transition 

temperature is below 0°C and 41.5°C for EPC and DPPC, respectively, it can be predicted that the 

preference of PSs for partitioning in EPC over DPPC will remain in physiological conditions. The higher 

partitioning of PS also explains why EPC is more efficient at preventing the formation of higher order 

aggregates. For this reason, EPC-MLVs were selected to develop the third generation PSs. 

 

3.3 Optimization of liposomal formulation 

3.3.1 Selection of detergent for liposome lysis 

 The absorption spectra of the phototherapeutic agents AzB and AzBBr were determined in PBS 

in the absence and in the presence of CTAB and Triton X-100 (see Figure S2 in Supporting Information). 

While both detergents induced a decrease in the tendency of PSs to aggregate, mainly in the presence of 

Triton X-100, the formation of higher order aggregates was inhibited and the active species of both PSs 

were stabilized. 

Figure 2 shows the results obtained from the fluorescence studies of the PS in the presence and 

in the absence of the different detergents, using as ex the maximum absorption of the dimeric species of 

AzB and AzBBr. An increase in fluorescence intensities (FI) was observed with the increase in the 
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concentrations of both PSs in diluted solutions ( 10 M). However, at higher concentrations, samples 

exhibited a decrease in FI. In addition, the normalized curves at the maximum emission wavelength 

(max-em) showed that the increase in the PS concentration produced a bathochromic shift of the spectral 

curves (Figure 2, inserts). This behavior has been previously reported for phthalocyanine compounds 

and was attributed to a fluorescence reabsorption effect. [41] This behavior is independent of the 

formation of aggregates. 

 

 

Figure 2: Fluorescence intensity (FI) vs. the concentration of AzB (A) and AzBBr (B) in PBS in the 

absence and in the presence of different DTs. Insert: Normalized fluorescence spectra at  max-em at 

different concentrations of PSs. Arrows point to the direction observed with increasing concentration of 

PSs: (a) 1.5 M; (h) 30 M.  

 

To determine the effect of DTs on the aggregation of AzB and AzBBr by fluorescence 

spectroscopy, the FI of the samples at the same concentration of the PSs were compared in the presence 

and in the absence of different DTs. Other researchers have shown that H-aggregates (which exhibit 

hypochromic changes) have no fluorescence and lead to efficient fluorescence quenching of other species 

in solution.[42–44] For this reason, an increase in FI during the test indicated an increase in the 

proportion of the dimeric species and consequently a decrease of the higher order aggregates. As shown 

in Figure 2, both evaluated DTs decreased the aggregation of AzB and its monobrominated derivative, 

which corroborates the results obtained by UV-Vis spectrophotometry. In addition to absorbance 

measurement, the FI data shows that Triton X-100 presented the greatest effect on the stabilization of the 
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dimeric species. A similar behavior of Triton X-100 was described by Camur et al. for phthalocyanines 

in aqueous solutions.[45] 

To conclude, Triton X-100 inhibited the formation of higher order aggregates of phenothiazine 

dyes in aqueous medium, stabilizing the dimeric species of AzB and AzBBr. These results support the 

selection of this DT for the destabilization of MLVs in the subsequent quantification of the PSs under 

study. 

3.3.2 Determination of encapsulation efficiency 

In order to evaluate the effect of the EPC concentration on the EE of AzBBr, MLVs prepared 

from different lipid concentrations (1- 30 mg/mL) were analyzed keeping the PS concentration (36 M) 

constant. As shown in Figure 3A, the incorporation of the monobrominated derivative into the vesicular 

system increased exponentially as a function of the EPC concentration. The maximum EE was 88% at 

phospholipid concentrations  15 mg/mL. 

Figure 3: Encapsulation Efficiency (EE) of AzBBr in EPC MLVs as a function of lipid (A) and AzBBr 

(B) concentrations. Insert: Encapsulated mass of PS vs. the dye concentration used for the preparation of 

MLVs. 

 

While EE decreased exponentially with increasing concentrations of AzBBr in the range of 36 to 

260 μM (Figure 3B), the incorporation of this compound into the vesicular system increased 

considerably, achieving a maximum encapsulation of 7x10
-8

 moles (Figure 3B, insert). 

Therefore, 15 mg/mL EPC and 260 μM AzBBr, which correspond to the maximum values in 

Figures 3A and 3B insert, respectively, were selected as the optimal concentrations to develop the third 
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generation PS. Higher concentrations of lipid and dye in the preparation of MLVs would not significantly 

improve the EE of the system. 

The optimal EPC/PS ratio established for the vehiculization of AzBBr was used to determine the 

EE of AzB. The obtained results indicated that MLVs trapped 8x10
-8

 moles of the commercial 

phenothiazine dye. 

In summary, 15 mg/mL of EPC and 260 M of the monobrominated phototherapeutic agent were 

selected as the optimal conditions to charge this PS and used to determine the amount of AzBBr and AzB 

trapped in the MLVs of EPC. These conditions allowed the encapsulation of 8x10
-8

 moles and 7x10
-8 

moles of AzB and AzBBr, respectively. 

 

3.4 Interaction photosensitizer–multilamellar vesicles 

3.4.1 Evaluation of membrane-water partition coefficient 

Table S1 (see Supporting Information) shows the values obtained for the linear fitting of 

Abs
D
/Abs

HA
 vs PS moles determined at different VM (Scheme 1). This linear behavior allowed the 

determination of the membrane/water partition coefficients of AzB and AzBBr. For this, the reciprocal of 

S1 obtained for each PS was plotted as a function of VM (Scheme 2) to determine the Kp of the 

phenothiazines evaluated using Equation 3 (see Figure S3, Supporting Information). 

The log Kp values obtained for AzB and AzBBr were 2.29 and 2.54, respectively. These results 

indicate that both phototherapeutic agents have a higher affinity for the lipid bilayer membrane than for 

the liposomal aqueous core. It is important to note that bromination increased the membrane partitioning 

of phenothiazine compounds. This result is consistent with the increased lipophilicity observed by 

Montes de Oca et al. for AzBBr compared with AzB in the determination of Log PHPLC.[30] 

 

3.4.2 Localization of photosensitizers in phospholipid bilayer 

Förster energy transfer (FRET) is a probabilistic event based on the radiation-less transfer of 

excitation energy from a donor to an acceptor. FRET depends on the degree of spectral overlap between 

the donor and acceptor. Moreover, because the interaction between the donor and acceptor is a dipole-

dipole interaction, FRET is a distance-and orientation-dependent interaction. The energy transfer occurs 

typically over a distance of 1-10 nm.[46] 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

16 
 

The absorption band attributable to the phenothiazine compounds, AzB and AzBBr, presented a 

slight overlap with the emission bands of DPH and TMA-DPH (Figure 4A). These results suggest that 

the transfer of energy between the selected probes (DPH and TMA-DPH) (donors) and PSs (acceptors) 

would be viable if they are located within the Förster’s distance.[47] 

Figure 4: (A) Emission spectra of DPH and TMA-DPH ex= 356 nm) and absorption spectra of PSs. 

(B) Emission spectra of AzBBr excited at two different wavelengths. Insert: Emission spectra extended 

at around 675nm. 

 

The emission spectra of the PSs were determined atex= 356 nm (the same used for exciting 

the probes) and at ex= 426 nm (peak of max-emof the probes). AzBBr (Figure 4B) and AzB (not shown) 

exhibited a significant emission band between 400 nm and 500 nm and a lower intensity peak within a 

wavelength range of 650-700 nm (insert, Figure 4B). Because the former band overlapped with the 

emission region of DPH and TMA-DPH, it was not possible to analyze the decrease in the emission 

intensity of the donors during the energy transfer process. However, the increase in the emission intensity 

of the acceptors (PSs) in the presence of the donors at 679 nm would allow the assessment of the 

localization of the phenothiazine dyes in the liposomal membrane by the FRET experiments. 
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The variation of the FI of AzB and AzBBr encapsulated in the liposomes or free in solution as a 

function of the concentration of DPH and TMA-DPH is depicted in Figure 5. Note that in aqueous 

medium the emission of both PSs remained constant for all the concentrations of the probes evaluated. 

This behavior showed that the distance between the donor and acceptor molecules in PBS (without 

liposomes) did not allow the occurrence of FRET.  In contrast, the samples incorporated in MLVs 

showed an exponential increase in the FI of AzB (Figure 5A) and AzBBr (Figure 5B), indicating that 

the FRET process was developed when the compounds were at an appropriate distance. This effect was 

considerably more intense for both dyes in the presence of TMA-DPH, indicating that the phenothiazine 

dyes were located mainly within the polar head region of the phospholipid bilayer of the evaluated 

liposomes.  

 

Figure 5: Effect of concentrations of probes on the FI of AzB (A) and AzBBr (B) free in solution and 

encapsulated in EPC-MLVs. ex: 356 nm and max-em: 679 nm. 

In conclusion, AzB and AzBBr interacted with the membrane of EPC-MLVs and were preferably 

located on the hydrophilic surface of the lipid bilayer. These results are consistent with the amphiphilic 

character of the phenothiazine dyes whose molecular structures are depicted in Figure S1 in the 

Supporting Information section. 
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3.5 Singlet oxygen quantum yields 

As shown in Table 1, the phenothiazine dyes charged in EPC-MLVs increased the 

photochemical reactivity of both PSs, doubling the value of free AzBBr and increasing that of AzB by 

60%. These results can be associated with the decrease in the aggregation of the phototherapeutic agents, 

mainly of the monobrominated derivative, as a consequence of the entrapment in the liposomal system 

(Section 3.2). It is important to remember that the incorporation of AzBBr in the selected vesicles 

partially reduced the formation of higher aggregates (Figure 1). 

In addition, Figure S4 shows that both irradiated MLVs without photodynamic agents and 

MLVs charged with any of the phenothiazine compounds in the dark did not produce ABDA 

degradation. These results corroborate that the photooxidation of ADBA was caused by the 
1
O2 produced 

after the excitation of the PSs. 

 

 

Consistent with the results obtained in this work, several authors have shown that the 

vehiculization of different PSs in liposomes, micelles and nanoparticles increases the  of these 

compounds. This increase varies from 0.1 to 3.5, depending on the vehiculization system and the PS 

used.[20,29,48,49] 

4 Conclusion 

Multilamellar liposomes of EPC were selected for the development of third generation PSs because 

phenothiazine dyes exhibited a higher partitioning in EPC than in DPPC MLVs. This demonstrates that 

EPC is more efficient at preventing the formation of higher order aggregates. The structural 

Table 1: Singlet oxygen quantum yields of free and encapsulated PSs. 

 

PS Abs
0
 Slope (x10

-3
)  

AzB
* 0.16±0.02 1.25±0.03 1.0 

AzB-MLV 0.09±0.01 1.14±0.06 1.6 
AzBBr

* 0.20±0.02 0.96±0.02 1.0 
AzBBr-MLV 0.08±0.01 0.86±0.02 2.2 
*Data obtained from ref.[29] 
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characteristics of AzB and AzBBr favor their location on the hydrophilic surface of the liposomal 

membrane. The phospholipid-PS ratio defined as optimal (15 mg / mL - 260 μM) allowed the 

encapsulation of 8x10
-8

 moles and 7x10
-8

 moles of AzB and AzBBr, respectively. 

In addition, the vehiculization of these phototherapeutic agents in EPC-MLVs proved to be a successful 

strategy to improve the photochemical properties of the second generation PSs. In turn, the increase in 

the  of the encapsulated AzB and AzBBr compared with free PSs can be explained by the decrease in 

the formation of higher aggregates. The 
1
O2 production was enhanced between 60% and 100% as a 

consequence of the PS entrapment in EPC-MLVs. For these reasons, the liposomal systems developed in 

the present work are excellent alternatives to the evaluation of their efficacy in PDT and APDT. Further 

improvements should be made in the composition of these kinds of vectorization systems that tend to 

optimize the photochemical properties of the studied phenothiazine compounds. These strategies should 

be focused on favoring the lipid membrane partitioning of the PSs and/or on increasing the volume of the 

hydrophilic surface of the vectors. 
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Figure 1: Evaluation of aggregation of AzB and AzBBr, free and encapsulated in MLVs of EPC (A and 

B) or dpPC (C and D). 

Figure 2: Fluorescence intensity (FI) vs. the concentration of AzB (A) and AzBBr (B) in PBS in the 

absence and in the presence of different DTs. Insert: Normalized fluorescence spectra at  max-em at 

different concentrations of PSs. Arrows point to the direction observed with increasing concentration of 

PSs: (a) 1.5 M; (h) 30 M.  

Figure 3: Encapsulation Efficiency (EE) of AzBBr in EPC MLVs as a function of lipid (A) and AzBBr 

(B) concentrations. Insert: Encapsulated mass of PS vs. the dye concentration used for the preparation of 

MLVs. 

Figure 4: (A) Emission spectra of DPH and TMA-DPH ex= 356 nm) and absorption spectra of PSs. 

(B) Emission spectra of AzBBr excited at two different wavelengths. Insert: Emission spectra extended 

at around 675nm. 

Figure 5: Effect of concentrations of probes on the FI of AzB (A) and AzBBr (B) free in solution and 

encapsulated in EPC-MLVs. ex: 356 nm and max-em: 679 nm. 
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