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This work proposes the variational determination of two-electron reduced density matrices cor-
responding to the ground state of N-electron systems within the doubly occupied-configuration-
interaction methodology. The P, Q, and G two-index N-representability conditions have been extended
to the T1 and T2 (T2′) three-index ones and the resulting optimization problem has been addressed
using a standard semidefinite program. We report results obtained from the doubly occupied-
configuration-interaction method, from the two-index constraint variational procedure and from the
two- and three-index constraint variational treatment. The discussion of these results along with a
study of the computational cost demanded shows the usefulness of our proposal. Published by AIP
Publishing. https://doi.org/10.1063/1.5008811

I. INTRODUCTION

Although the full configuration interaction (FCI) method
provides the exact solutions of the Schrödinger equation cor-
responding to an N-electron system for a chosen subspace,
its practical application is limited to small size systems with
small basis sets due to its high computational cost. Many
approximate procedures have been proposed attempting to
reduce that computational effort. Most of these methods
express the N-electron wave function by means of trun-
cated N-electron determinant expansions in which those deter-
minants are selected according to determined criteria. One
of these procedures is the doubly occupied-configuration-
interaction (DOCI) method,1–6 where all N-electron determi-
nants involved in the wave function expansion are composed
of doubly occupied orbitals, i.e., the seniority number3,7–10 of
all these determinants is zero. The DOCI method has proven
to be a powerful tool to describe systems with strong corre-
lation11,12 and many other methods may be derived from it
formulating some approximations.13 However, although the
computational expense of the DOCI method is considerably

a)Electronic mail: Patrick.Bultinck@UGent.be

less than that required in the FCI treatment, the description of
medium or large size systems cannot be tackled either by that
procedure, as it still scales exponentially albeit in terms of the
number of pairs.

As is well known, the two-electron reduced density matrix
(2-RDM) constitutes an alternative tool to wave functions to
compute the energy.14–17 Moreover, the energy of the ground
state of an N-electron system can be optimized variationally
(v2RDM). Within this technique, the 2-RDM matrix elements
are optimized subject to constraints so that the resulting 2-
RDM is N-representable (it arises from an N-electron wave
function).18–21 The necessary and sufficient conditions for a
2-RDM to be N-representable are known,22–25 but in practice,
only a limited set of such constraints is used, commonly only
the so-called P, Q, and G two-index N-representability condi-
tions. Recently, we have reported26,27 results of the v2RDM
method under these P, Q, and G conditions approximating the
2-RDM arising from zero seniority number wave functions.
We have performed that task formulating the optimization
problem as a semidefinite program (SDP)28–31 specifically
adapted towards v2RDM21,32,33 in which one maximizes a
linear function on the intersection of a linear affine space
and the convex cone of block-diagonal positive semidefinite
matrices. The aim of this work is to extend our previous
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studies26,27 and the recent work by Head-Marsden and Mazz-
iotti34 by including the T1 and T2 (T2′) three-index condi-
tions35–37 in the v2RDM-DOCI scheme, in order to know the
importance of these additional N-representability conditions
and to study the increase of the computational cost due to
the use of the three-index constraints. We report numerical
determinations for the ground state potential energy curves
obtained from our procedure in selected molecular systems.
These results have been compared with those arising from
full-DOCI calculations, showing that the use of the three-
index conditions provides a significant improvement upon
those obtained using only two-index conditions, albeit still at
an affordable computational cost. Moreover, since the DOCI
results are not invariant under a unitary orbital transformation,
we have performed studies on the basis set dependence of our
results.

This work has been organized as follows. In Sec. II,
we describe the equations which formulate the two- and
three-index N-representability conditions, as well as the pro-
cedure we have used in this work to deal with the SDP
codes within the v2RDM-DOCI approximation. Section III
reports the computational details and the results obtained for
selected systems with several orbital basis sets, which allows
one to discuss the influence of the three-index conditions
and the basis set dependence of these results. The computa-
tional scaling of our algorithms is also studied in this section.
Finally, in Sec. IV, we summarize the main conclusions of this
work.

II. THEORETICAL ASPECTS

We will formulate the nonrelativistic Hamiltonian of a
pairwise-interacting N-electron system in the formalism of
second quantization as38

Ĥ =
∑

ij

hi
j a†i aj +

1
2

∑
ijkl

Rik
jl a†i a†kalaj, (1)

in which a†i and aj are the standard creation and annihilation
fermion operators, respectively, for a given orthonormal 2K
spin-orbital basis set {i, j, k, l, . . .} (K spatial orbitals), hi

j are
the one-electron integrals (the sum of electron kinetic energy
and electron-nucleus potential energy), and Rik

jl = [ij |kl] stands
for the two-electron repulsion ones (in the [11|22] convention).

According to Eq. (1), the electronic energy corresponding
to an N-electron wave function Ψ of the system is

E(Ψ) =
∑

ij

hi
j 〈Ψ|a

†

i aj |Ψ〉 +
∑
ijkl

Rik
jl 〈Ψ|

a†i a†kalaj

2
|Ψ〉

= tr(h 1D) + tr(R 2D), (2)

in which 〈Ψ|a†i aj |Ψ〉 and 〈Ψ|
a†i a†k alaj

2 |Ψ〉 are the 1-RDM and 2-
RDM elements, respectively, that will be denoted as 1Di

j and
2Dik

jl .

The numerical determination of the 1Di
j and 2Dik

jl ele-
ments, for N-electron ground (g) states, can be implemented
by means of the variational method minimizing the energy
E(Ψ) in Eq. (2),

Eg = min
{2D ,1D }

*.
,

∑
ij

hi
j

1Dj
i +

∑
ijkl

Rik
jl

2Djl
ik
+/
-

. (3)

In this formulation, we have kept the 1-RDM (although this
matrix is known if the 2-RDM is known) since, according
to Zhao et al.,39,40 it provides numerically more stable SDP
problems.

Although this procedure is the most intuitive method for
evaluating the energy Eg, its results are very often mean-
ingless since such a procedure does not guarantee that the
obtained 1-RDM and 2-RDM arise from an N-electron wave
function. In order to solve this problem, great efforts have
been dedicated to search for conditions that the 1-RDM,
2-RDM, and related matrices must satisfy to provide reli-
able results; this challenge is known as the N-representability
problem.17–22,35–37,41,42 Well-known N-representability condi-
tions, which are constraints imposed to the variational method,
require that the following matrix elements constitute positive
semidefinite matrices

1Di
j = 〈Ψ|a

†

i aj |Ψ〉, (4)

1Qi
j = 〈Ψ|aja

†

i |Ψ〉, (5)

2Pik
jl = 〈Ψ|a

†

i a†kalaj |Ψ〉, (6)

2Qik
jl = 〈Ψ|ajala

†

ka†i |Ψ〉, (7)

2Gik
jl = 〈Ψ|a

†

i aka†l aj |Ψ〉, (8)

(T1)ikm
jln = 〈Ψ|a

†

i a†ka†manalaj + analaja
†

i a†ka†m |Ψ〉, (9)

(T2)ikm
jln = 〈Ψ|a

†

i a†kama†nalaj + a†nalaja
†

i a†kam |Ψ〉, (10)

(T2′) = *
,

T2 X

X† 1D
+
-

. (11)

Equations (4) and (5) describe the matrix elements of the
one-electron and one-electron hole reduced density matrices,
respectively. The matrix elements 1Qi

j can be calculated by
means of those of the 1-RDM ones, using the anticommuta-
tion rules of fermion operators. The positive semidefiniteness
of both matrices 1D and 1Q and the tr(1D) value constitute the
Coleman necessary and sufficient ensemble N-representability
conditions for the 1-RDM.18,19 The matrices described in Eqs.
(6)–(8) require the use of two indices (two creation and two
annihilation operators). They constitute the above mentioned
P, Q, and G conditions, respectively, requiring that the cor-
responding matrix turns out to be positive semidefinite. Like-
wise, the T1 and T2 (T2′) conditions mean that the three-index
matrices shown in Eqs. (9) and (10) or (9) and (11) must also be
positive semidefinite. The matrix elements of all these matri-
ces can be expressed in terms of only the 1-RDM and 2-RDM;
the anticommutation rules of the fermion operators lead to
3-RDM elements that cancel in the T1 and T2 (T2′) expres-
sions. The T2′ condition, in which Xp

jln = 2 2Dpn
jl , is stronger

than the T2 one and can replace it entirely.43,44 Apart from
these conditions, the matrices 1D, 1Q, 2P, 2Q, 2G, T1, and
T2 (T2′) must be Hermitian and satisfy the antisymmetric
conditions36
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2Dik
jl = −

2Dki
jl = −

2Dik
lj . (12)

Similarly, the matrices 2Q and T1 must be antisymmetric with
respect to all pair and triple indices, respectively, and the matrix
T2 (T2′) must be antisymmetric with respect to the first 2
indices of each trio.

In this work, the one- and two-electron reduced density
matrices have been normalized according to

tr(1D) = N , (13)

tr(2D) =

(
N
2

)
, (14)

and, consequently, the contraction relation between both
matrices is

1Dj
i =

2
N − 1

∑
k

2Dik
jk . (15)

As mentioned in the Introduction, we will only refer to
DOCI wave functions. These wave functions are eigenstates
of the Hamiltonian projected over the Hilbert space restricted
to Slater determinants where all spatial orbitals are doubly
occupied, or, equivalently, of the effective Hamiltonian

Ĥeff =
∑
σ

∑
iσ

hiσ
iσ a†iσ aiσ +

1
2

∑
σ

∑
iσ,jσ

Riσ jσ

iσ jσ a†iσ a†jσ ajσ aiσ

+
1
2

∑
σ

∑
iσ ,jσ̄

Riσ jσ̄

iσ jσ̄
a†iσ a†

jσ̄
ajσ̄ aiσ

+
1
2

∑
σ

∑
iσ,jσ

Riσ jσ

jσ iσ a†iσ a†jσ aiσ ajσ

+
1
2

∑
σ

∑
iσ,jσ

Riσ iσ̄

jσ jσ̄ a†iσ a†
iσ̄

ajσ̄ ajσ , (16)

in which we denote by σ the spin coordinate (α or β) of
the corresponding orbital and σ̄ means its spin conjugate.
This effective Hamiltonian Ĥeff contains much less terms
than Ĥ in Eq. (1) although both of them provide identical
information for DOCI wave functions. According to Eq. (16),

only the matrix elements 1Diσ
iσ , 2Diσ jσ

iσ jσ , 2Diσ jσ̄

iσ jσ̄
, 2Diσ jσ

jσ iσ , and
2Diσ iσ̄

jσ jσ̄
need to be determined for energy calculations; the

remainder 1-RDM and 2-RDM ones are zero within the DOCI
framework.

The DOCI wave functions are linear combinations of
N-electron determinants which are eigenfunctions of the N-
electron Ŝ2 operator45 corresponding to a S = 0 spin quantum
number, and consequently these wave functions are singlet
states with an expectation value equal to zero for the seniority
number operator Ω̂,3,9

〈Ω̂〉DOCI =
∑
σ

∑
iσ

1Diσ
iσ − 2

∑
σ

∑
iσ

2Diσ iσ̄

iσ iσ̄ = 0. (17)

This condition or equivalently∑
σ

∑
iσ

2Diσ iσ̄

iσ iσ̄ =
N
2

, (18)

along with the traces of the spin blocks of the 1-RDM and 2-
RDM, suffices to enforce the singlet and seniority-zero (DOCI)
character of the corresponding wave functions. Alternatively
to using the effective Hamiltonian (16), the “full” Hamiltonian
can be used along with DOCI specific N-representability con-
straints. These have been formulated previously by Weinhold
and Wilson1,2 and extended further more recently26,27,34 (see
also the Appendix).

TABLE I. Maximum Absolute (MaxAE) and Nonparallelity (NPE) errors of the ground state potential energy
curves of molecules and ions calculated by the v2RDM-DOCI method imposing the PQG, PQGT1, PQGT1T2,
and PQGT1T2′ conditions with respect to the DOCI results using the canonical molecular orbitals (CMOs),
natural orbitals (NOs), minimizing the FCI seniority number orbitals (Mmin), and optimizing the energy orbitals
(OPTEs). Curves are computed in the interval [1.4,4.0] bohrs. Results were obtained using the STO-3G atomic
basis set.

MaxAE(Eh) NPE(Eh)

PQG PQGT1 PQGT1T2 PQGT1T2′ PQG PQGT1 PQGT1T2 PQGT1T2′

N2 CMO 0.0017 0.0007 <0.0001 <0.0001 0.0017 0.0007 <0.0001 <0.0001
NO 0.0011 0.0004 <0.0001 <0.0001 0.0010 0.0004 <0.0001 <0.0001
Mmin 0.0011 0.0005 <0.0001 <0.0001 0.0011 0.0004 <0.0001 <0.0001
OPTE 0.0012 0.0005 <0.0001 <0.0001 0.0011 0.0004 <0.0001 <0.0001

CO CMO 0.0344 0.0197 0.0034 0.0034 0.0343 0.0196 0.0034 0.0034
NO 0.1022 0.0815 0.0334 0.0334 0.1020 0.0814 0.0333 0.0333
Mmin 0.0360 0.0178 0.0042 0.0042 0.0358 0.0177 0.0042 0.0042
OPTE 0.0111 0.0031 0.0011 0.0011 0.0108 0.0030 0.0011 0.0011

CN� CMO 0.0940 0.0506 0.0114 0.0114 0.0939 0.0505 0.0114 0.0114
NO 0.0145 0.0127 0.0006 0.0006 0.0143 0.0126 0.0006 0.0006
Mmin 0.0097 0.0083 0.0003 0.0003 0.0096 0.0083 0.0003 0.0003
OPTE 0.0038 0.0028 0.0002 0.0002 0.0036 0.0028 0.0002 0.0002

NO+ CMO 0.1050 0.0523 0.0119 0.0119 0.1049 0.0523 0.0119 0.0119
NO 0.0207 0.0181 0.0009 0.0009 0.0205 0.0180 0.0008 0.0008
Mmin 0.0132 0.0115 0.0005 0.0005 0.0130 0.0115 0.0005 0.0005
OPTE 0.0042 0.0035 0.0003 0.0003 0.0040 0.0035 0.0003 0.0002
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We have formulated the variational RDM method as a
standard dual SDP problem modifying the procedure described
by Zhao et al.36 to use the SDP codes so that our algo-
rithms satisfy Eq. (18). The determination of the 1-RDM
and 2-RDM elements corresponding to DOCI wave functions
has been performed only by using the one- and two-electron
integrals defining the effective Hamiltonian described by Eq.
(16), i.e., the diagonal elements of the one-electron inte-
grals and the one- and two-index repulsion integrals, respec-
tively. The SDP codes employed46 solve semidefinite prob-
lems at several precision levels by means of the Mehrotra-
type predictor-corrector infeasible primal-dual interior-point
method,47 providing electronic energies and 1-RDM and
2-RDM.

III. COMPUTATIONAL DETAILS, RESULTS,
AND DISCUSSION

We have chosen the set of isoelectronic systems N2, CO,
CN�, and NO+ to test the behavior of our proposals, deter-
mining their ground-state potential energy curves. All the
reported results have been obtained from the STO-3G atomic
basis sets, in order to limit the computational cost. As is
well known, the resulting DOCI energy is not invariant with
respect to a unitary transformation of the orthonormal basis
set used and the same applies to v2RDM-DOCI.26,27,34 To
study the basis set dependence of our results, we have per-
formed calculations using the following orthonormal basis
sets: (i) the canonical molecular orbitals (CMOs), (ii) the
natural orbitals (NOs), (iii) the orbitals which minimize the
seniority number of the FCI expansions (Mmin),9 and (iv)
the orbitals which minimize the DOCI energy (OPTE).12 The
PSI3.4 package48 has been used to obtain the one- and two-
electron integrals expressed in the CMO basis sets. We have
used our own codes to construct and to diagonalize either the
standard Hamiltonian matrix, to obtain the NO and Mmin basis
sets, or its projection in the DOCI space to obtain the OPTE
ones. The full-DOCI treatment (energies and RDMs) has been

FIG. 1. Ground state potential energy curve of the N2 molecule calculated
by the DOCI and v2RDM-DOCI procedures imposing the PQG, PQGT1,
PQGT1T2, and PQGT1T2′ conditions. Energy errors, ∆E, relative to ref-
erence DOCI values. Results were obtained using the canonical molecular
orbitals arising from the STO-3G atomic basis set.

FIG. 2. Ground state potential energy curve of the CO molecule calculated
by the DOCI and v2RDM-DOCI procedures imposing the PQG, PQGT1,
PQGT1T2, and PQGT1T2′ conditions. Energy errors, ∆E, relative to ref-
erence DOCI values. Results were obtained using the canonical molecular
orbitals arising from the STO-3G atomic basis set.

implemented using modified versions of the algorithms
reported in Refs. 49 and 50. We have elaborated codes that
allow to efficiently solve the SDP algorithms identifying and
exploiting the sparse matrix data structure of the P, Q, G, T1,
and T2 (T2′) matrices induced by the structure of the seniority-
zero wave functions. The SDPA 7.3.8 code46 was used to
provide the corresponding v2RDM-DOCI energy values and
1-RDM and 2-RDM elements.

In Table I, we report the maximum absolute errors
(MaxAE) found between the energies obtained from the use
of different N-representability conditions in the variational
method, and the full-DOCI energy, as a function of the
internuclear distance, using several orthonormal orbital basis
sets.

As can be seen, in all cases, the imposition of the T1
and T2 (T2′) conditions on top of the P, Q, and G ones sig-
nificantly reduces these energy differences. Table I also shows

FIG. 3. Ground state potential energy curve of the CN� molecule calculated
by the DOCI and v2RDM-DOCI procedures imposing the PQG, PQGT1,
PQGT1T2, and PQGT1T2′ conditions. Energy errors, ∆E, relative to ref-
erence DOCI values. Results were obtained using the canonical molecular
orbitals arising from the STO-3G atomic basis set.
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FIG. 4. Ground state potential energy curve of the NO+ molecule calculated
by the DOCI and v2RDM-DOCI procedures imposing the PQG, PQGT1,
PQGT1T2, and PQGT1T2′ conditions. Energy errors, ∆E, relative to ref-
erence DOCI values. Results were obtained using the canonical molecular
orbitals arising from the STO-3G atomic basis set.

the nonparallelity errors (NPEs) in that interval, that is, the dif-
ferences between the maximum and minimum deviation from
the full-DOCI energy values. Both MaxAE and NPE quan-
tities predict similar behavior, having very similar numerical
values. Figures 1–4 show the potential energy curves obtained
with the CMO basis sets for the studied systems, as well as
the energy errors, ∆E, relative to the corresponding reference
DOCI values.

These curves point out that the PQGT1T2′ variational
method yields the closest values to the full-DOCI one, in agree-
ment with the results exhibited in Table I. It is worth noting
that the T1 and T2 (T2′) conditions strongly reduce the PQG
non-parallelity error near bond dissociation. Moreover, the
comparative analysis of the counterpart values arising from the
different molecular orbital basis sets, reported in Table I, shows
that the OPTE one leads to the best results, the Mmin basis set

FIG. 5. Errors for the NO+ ground state energies calculated by the v2RDM-
DOCI procedure imposing the PQGT1T2′ conditions, with respect to the cor-
responding DOCI values. Results were obtained using the canonical molecular
orbitals (CMOs), natural orbitals (NOs), orbitals which minimize the seniority
number of the FCI wave functions (Mmin), and orbitals which minimize the
DOCI energy (OPTE) arising from the STO-3G atomic basis set.

presents better behavior than the natural orbitals, while the
CMO basis set provides a poor approximation. Similar con-
clusions can be drawn from Fig. 5, which shows the errors
for the NO + ground state energies calculated for all those
orthonormal basis sets by the PQGT1T2′ variational method
with respect to the reference DOCI energy values.

We have gathered in Table II the values of the energy
differences Ev2RDM�DOCI � EDOCI corresponding to the NO+

system obtained for each of the above mentioned orthonormal
basis sets by imposing the P, Q, G, T1, and T2 (T2′) N-
representability conditions. These values have been obtained
at both an internuclear distance near the equilibrium (2.2
bohrs) and at a stretched geometry (4.0 bohrs). These results
again show a clear improvement according to the basis set
sequence CMO < NO < Mmin < OPTE as well as with the
imposed conditions series PQG < PQGT1 < PQGT1T2; no

TABLE II. Energy errors in the ground state of the NO+ molecule at two bond lengths calculated in the canonical
molecular orbitals (CMOs), natural orbitals (NOs), orbitals which minimize the seniority number of the FCI
wave functions (Mmin) and orbitals which minimize the DOCI energy (OPTE). The errors calculated by the DOCI
variational RDM method (v2RDM-DOCI) are computed imposing the PQG, PQGT1, PQGT1T2, and PQGT1T2′

conditions. Results were obtained using the STO-3G atomic basis set.

EDOCI(Eh) Ev2RDM�DOCI-EDOCI(Eh)

PQG PQGT1 PQGT1T2 PQGT1T2′

Req = 2.2 bohrs

CMO �127.316 934 �2.12× 10�3
�1.09× 10�3

�2.57× 10�4
�2.57× 10�4

NO �127.320 704 �1.99× 10�3
�7.30× 10�4

�1.71× 10�4
�1.71× 10�4

Mmin �127.324 924 �3.91× 10�3
�1.02× 10�3

�2.70× 10�4
�2.69× 10�4

OPTE �127.326 027 �2.80× 10�3
�7.96× 10�4

�2.13× 10�4
�2.01× 10�4

Rst = 4.0 bohrs

CMO �126.871 538 �1.05× 10�1
�3.18× 10�2

�4.07× 10�3
�4.07× 10�3

NO �127.119 269 �1.79× 10�2
�1.26× 10�2

�4.63× 10�4
�4.62× 10�4

Mmin �127.121 756 �1.24× 10�2
�8.90× 10�3

�2.59× 10�4
�2.59× 10�4

OPTE �127.128 085 �1.29× 10�3
�9.96× 10�4

�2.68× 10�5
�2.68× 10�5
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TABLE III. 1-RDM errors in the NO+ molecule at two bond lengths, cal-
culated for the v2RDM-DOCI method in the canonical molecular orbitals
(CMOs), natural orbitals (NOs), orbitals which minimize the seniority num-
ber of the FCI wave functions (Mmin) and orbitals which minimize the
DOCI energy (OPTE). The errors are computed imposing the PQG, PQGT1,
PQGT1T2, and PQGT1T2′ conditions. Results were obtained using the
STO-3G atomic basis set.√∑K

i=1

[∑
σ

1Diσ
iσ

(v2RDM−DOCI) −
∑
σ

1Diσ
iσ

(DOCI)
]2

K

PQG PQGT1 PQGT1T2 PQGT1T2′

Req = 2.2 bohrs

CMO 0.002 0.001 <0.001 <0.001
NO 0.002 0.001 <0.001 <0.001
Mmin 0.003 0.001 <0.001 <0.001
OPTE 0.002 0.001 <0.001 <0.001

Rst = 4.0 bohrs

CMO 0.239 0.191 0.017 0.017
NO 0.031 0.022 <0.001 <0.001
Mmin 0.021 0.016 <0.001 <0.001
OPTE 0.002 0.002 <0.001 <0.001

significant differences have been found between the
PQGT1T2 and PQGT1T2′ procedures. To complete this
study, we report in Table III values of the quantity√∑K

i=1

[∑
σ

1Diσ
iσ

(v2RDM−DOCI) −
∑

σ
1Diσ

iσ
(DOCI)

]2

K , i.e., the root-

mean-square deviation of 1Dv2RDM�DOCI with respect to
1DDOCI, in terms of the spin-free matrices, for the NO+ sys-
tem at two internuclear distances. The deviation from zero of
this quantity measures the mean error of the results. As can
be observed, these values confirm, in terms of differences of
1-RDM elements, the conclusions arising from the numerical
values found in terms of energy differences, showing similar
behavior.

In order to test whether or not the atomic basis set does
not have a significant effect on the results, we report in Tables
IV and V the energy differences between v2RDM-DOCI and
DOCI for the imposed conditions series PQG, PQGT1, and
PQGT1T2 and for different basis sets. The results for the ener-
gies and their comparison with those reported in Table II

TABLE V. 1-RDM errors in the NO+ molecule at two bond lengths, cal-
culated for the v2RDM-DOCI method in the canonical molecular orbitals
(CMOs). The errors are computed imposing the PQG, PQGT1, PQGT1T2,
and PQGT1T2′ conditions. Results were obtained using the 3-21G and DZ
atomic basis sets. √∑K

i=1

[∑
σ

1Diσ
iσ

(v2RDM−DOCI) −
∑
σ

1Diσ
iσ

(DOCI)
]2

K

PQG PQGT1 PQGT1T2 PQGT1T2′

Req = 2.2 bohrs

3-21G 0.001 0.001 <0.001 <0.001
DZ 0.001 0.001 <0.001 <0.001

Rst = 4.0 bohrs

3-21G 0.149 0.056 0.005 0.005
DZ 0.113 0.030 0.003 0.003

show that there is no drastic influence when using the CMO
orthonormal basis and equilibrium geometry. At stretched
geometry, the larger basis sets give somewhat smaller energy
differences. In Table V, the differences in the 1-RDM and
their comparison with those reported in Table III also show
that the influence is limited although there the data sug-
gest that there is a small improvement for the larger basis
sets.

To evaluate and to compare the computational cost of all
procedures used in this work, we have studied the series of
linear H2n chains composed of n = 5–25 equidistant hydro-
gen atoms separated by a distance of 2.0 bohrs. The STO-3G
basis set has been used so that there is one orbital on each
hydrogen atom. In Fig. 6, we plot the computing time against
the number of basis functions (or number of hydrogen atoms)
both in logarithmic scales. The results show linear behavior
in all cases with a similar slope β, which gives the computa-
tional scaling Kβ . This scaling is due to the sparse structure
of the T1 and T2 (T2′) matrices within the DOCI framework
(see the Appendix), which possess O(K3) blocks of O(1 × 1)
dimension and O(K) blocks of O(K × K) dimension,27 in
contrast to the sparse structure of the P, Q, and G matrices
which present O(K2) blocks of O(1 × 1) dimension and O(1)
blocks of O(K ×K) dimension.26 Nevertheless, the theoretical

TABLE IV. Energy errors in the ground state of the NO+ molecule at two bond lengths calculated in the canonical
molecular orbitals (CMOs). The errors calculated by the DOCI variational RDM method (v2RDM-DOCI) are
computed imposing the PQG, PQGT1, PQGT1T2, and PQGT1T2′ conditions. Results were obtained using the
3-21G and DZ atomic basis sets.

EDOCI(Eh) Ev2RDM�DOCI-EDOCI(Eh)

PQG PQGT1 PQGT1T2 PQGT1T2′

Req = 2.2 bohrs

3-21G �128.210 837 �3.55× 10�3
�2.00× 10�3

�3.48× 10�4
�3.46× 10�4

DZ �128.914 169 �2.46× 10�3
�1.23× 10�3

�3.31× 10�4
�3.30× 10�4

Rst = 4.0 bohrs

3-21G �127.818 809 �4.65× 10�2
�1.46× 10�2

�2.92× 10�3
�2.92× 10�3

DZ �128.518 539 �3.11× 10�2
�9.97× 10�3

�2.02× 10�3
�2.02× 10�3
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FIG. 6. Scaling of the DOCI variational RDM method (v2RDM-DOCI)
imposing the PQG, PQGT1, PQGT1T2, and PQGT1T2′ conditions on grow-
ing linear chains of equidistant hydrogen atoms (R(H–H) = 2.0 bohrs) in the
STO-3G basis on a log-log plot. Data fitted with linear function (y = α + βx).

scaling of the v2RDM-DOCI is O(K3) for the two-index con-
ditions due to the diagonalisation of K × K blocks and O(K4)
for the three-index ones, which is three and five orders of mag-
nitude lower than in the regular v2RDM, method respectively.
Consequently, from a computational point of view, the addi-
tion of the T1 and T2 (T2′) N-representability conditions to
the P, Q, and G ones in the DOCI framework entails an afford-
able increase of computational effort, providing a significant
improvement of the results.

IV. CONCLUDING REMARKS

In this work, we have studied the influence of the three-
index T1 and T2 (T2′) conditions that, added to the two-index
P, Q, and G ones, constitute necessary constraints to ensure the
N-representability in the variational determination of the two-
electron reduced density matrix within the DOCI methodology
(wave functions possessing a zero seniority number). The
results obtained prove an important improvement approaching
those provided by the reference method (full-DOCI method).
Although this achievement requires an increase of compu-
tational cost, the quality of the numerical determinations
found promotes the usefulness of the three-index variational
constraints within the DOCI framework.
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APPENDIX: CONSTRAINTS ARISING
FROM THE THREE-INDEX N-REPRESENTABILITY
CONDITIONS FOR DOCI WAVE FUNCTIONS

The operators in identical position of the creation and
annihilation strings, which define the reduced density matrices,
possess the same spin coordinate. According to this property,
one can express the (T1)ikm

jln matrix, in Eq. (9), as a direct

sum of spin blocks (T1)iαkαmα

jα lαnα , (T1)iαkαmβ

jα lαnβ , (T1)iαkβmβ

jα lβnβ , and

(T1)iβkβmβ

jβ lβnβ .

The (T1)iαkαmα

jα lαnα block has no repetition of indices in the
creation (or annihilation) string, otherwise the Pauli principle
would be violated. For the DOCI case, the sets {i, k, m} and {j,
l, n}must be constituted by identical indices so that all nonzero
matrix elements of that block are equal (in absolute value) to
the corresponding diagonal elements, which are nonnegative.
According to Eq. (9), one straightforwardly finds

(T1)iαkαmα

iαkαmα = 1 − 1Diα
iα −

1Dkα
kα −

1Dmα

mα + 2 2Diαkα
iαkα

+ 2 2Dkαmα

kαmα + 2 2Diαmα

iαmα ≥ 0. (A1)

This constraint2 leads to K(K � 1)(K � 2)/6 diagonal con-
ditions. A similar set of constraints can be obtained for the
(T1)iβkβmβ

iβkβmβ block.

The matrix elements of the (T1)iαkαmβ

jα lαnβ block for DOCI
wave functions and different i, k, and m indices can also be
reduced to the diagonal ones. Consequently, one finds new
K(K � 1)(K � 2)/2 diagonal conditions,

(T1)iαkαmβ

iαkαmβ = 1 − 1Diα
iα −

1Dkα
kα −

1Dmβ

mβ + 2 2Diαkα
iαkα

+ 2 2Dkαmβ

kαmβ + 2 2Diαmβ

iαmβ ≥ 0. (A2)

It is possible, however, that the index m may be equal to the
i or k index. Using the anticommutation rules for the fermion
operators, it is sufficient to analyze the case k = m. In this case,
the DOCI conditions require that the j or l indices are equal to
i, but it is again sufficient to consider the case i = j. Moreover,
in this case, we have that l = n. Hence, we must analyze the
blocks (T1)iαkαkβ

iα lα lβ
∀i, and therefore we find K blocks of size

(K � 1) × (K � 1) since k, l , i,

(T1)iαkαkβ

iα lα lβ = δ
k
l (1 − 2 1Dkα

kα −
1Diα

iα + 2 2Dkα iα
kα iα ) + 2 2Dlα lβ

kαkβ ,

(A3)

where each of the terms in this expression defines a (K � 1) ×
(K � 1) positive semidefinite matrix∀i. This is a new constraint
which has no counterpart in Ref. 2. A similar set of constraints
can be obtained for the (T1)iαkβmβ

iαkβmβ block. The T2 constraints
are found as

(T2)ikm
jln = 〈ψ |a

†

i a†kama†nalaj + a†nalaja
†

i a†kam |ψ〉, (A4)

(X)p
j ln = 2 2Dpn

jl = 〈ψ |a
†
pa†nalaj |ψ〉, (A5)

1Dp
q = 〈ψ |a

†
paq |ψ〉. (A6)
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In a block matrix form, the T2′ condition can be expressed
as (

T2′
)
=

(
T2 X
X† 1D

)
. (A7)

In the T2 case, and due to the antisymmetry in the first
and second indices of this matrix and the singlet character

of the DOCI wavefunctions, there are two types of blocks
to be considered. One of these types of blocks cor-
responds for instance to the blocks generated by the
operators a†iαa†kαamβ , a†mαa†iαakβ , and a†kαa†mαaiβ for every
ordered combination of different i, k, and m. In this case, it
follows that

*......
,

(T2)iαkαmβ

iαkαmβ (T2)mα iαkβ

iαkαmβ (T2)kαmα iβ

iαkαmβ

(T2)iαkαmβ

mα iαkβ
(T2)mα iαkβ

mα iαkβ
(T2)kαmα iβ

mα iαkβ

(T2)iαkαmβ

kαmα iβ
(T2)mα iαkβ

kαmα iβ
(T2)kαmα iβ

kαmα iβ

+//////
-

=

*......
,

2 2Diαkα
iαkα − 2 2Diαmβ

iαmβ − 2 2Dkαmβ

kαmβ + 1D mβ

mβ 2 2Dmαmβ

kαkβ
2 2Dmαmβ

iα iβ

2 2Dkαkβ

mαmβ −2 2Diαkβ

iαkβ
+ 2 2Diαmα

iαmα − 2 2Dmαkβ

mαkβ
+ 1Dkβ

kβ
2 2Dkαkβ

iα iβ

2 2Diα iβ

mαmβ 2 2Diα iβ

kαkβ
−2 2Dkα iβ

kα iβ
+ 2 2Dkαmα

kαmα − 2 2Dmα iβ

mα iβ
+ 1Diβ

iβ

+//////
-

.

It is possible to carry out similar calculations for the blocks corresponding to other spin combinations. These blocks have similar
expressions and the same numerical values, except for the signs that are due to the basis selection and are not relevant to the
positivity of these blocks. Hence, we find 2K(K � 1)(K � 2)/3 blocks of size 3 × 3.

The second type of blocks corresponds for instance to the blocks generated by the operators a†iαa†kαakα , a†iαa†
kβ

akβ , a†kαa†
kβ

aiβ ,

and a†iαa†
iβ

aiβ for each index i. The selection of the operators avoids those that can be skipped due to the antisymmetric properties
of T2. Also, in this list, k represents all indices different from i, so there are 3(K � 1) + 1 combinations. In this case, it follows
that

*..........
,

(T2)iαkαkα
iα lα lα (T2)iαkβkβ

iα lα lα (T2)kαkβ iβ
iα lα lα (T2)iα iβ iβ

iα lα lα

(T2)iαkαkα

iα lβ lβ
(T2)iαkβkβ

iα lβ lβ
(T2)kαkβ iβ

iα lβ lβ
(T2)iα iβ iβ

iα lβ lβ

(T2)iαkαkα

lα lβ iβ
(T2)iαkβkβ

lα lβ iβ
(T2)kαkβ iβ

lα lβ iβ
(T2)iα iβ iβ

lα lβ iβ

(T2)iαkαkα

iα iβ iβ
(T2)iαkβkβ

iα iβ iβ
(T2)kαkβ iβ

iα iβ iβ
(T2)iα iβ iβ

iα iβ iβ

+//////////
-

=

*..........
,

2(2D)kα lα
kα lα + (1Dkα

kα )δk
l 2 2Dlαkβ

lαkβ
(−2 2Dkαkβ

iα iβ
)δk

l 2 2Dlα iβ

lα iβ

2 2Dkα lβ

kα lβ
2 2Dkβ lβ

kβ lβ
+ ( 1Dkβ

kβ
)δk

l (−2 2Dkαkβ

iα iβ
)δk

l 2 2Diβ lβ

iβ lβ

(−2 2Diα iβ

kαkβ
)δk

l (−2 2Diα iβ

kαkβ
)δk

l 2 2Dkαkβ

lα lβ
+ (−2 2Diβkβ

iβkβ
− 2 2Dkα iβ

kα iβ
+ 1Diβ

iβ
)δk

l 2 2Diα iβ

lα lβ

2 2Dkα iβ

kα iβ
2 2Diβkβ

iβkβ
2 2Dkαkβ

iα iβ
1Diβ

iβ

+//////////
-

.

Taking into account those blocks corresponding to other spin
combinations, we find 2K blocks of size (3(K � 1) + 1)
× (3(K � 1) + 1).

Similar analysis can be carried out for the T2′ condition.
In this case, one finds 2K(K � 1)(K � 2)/3 blocks of size 3 × 3
and 2K blocks of size (3(K � 1) + 2) × (3(K � 1) + 2). These
constraints and those arising from the T2 (T2′) conditions have
been reported by Poelmans.27
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