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ABSTRACT

Background: In healthy lungs, epithelial sodium channel (ENaC) is regulated by short, palate, lung, and nasal clone
1 (SPLUNC1). In cystic fibrosis (CF), ENaC is hyperactivated in part due to a loss of SPLUNC1 function. We have
developed SPX-101 to replace the lost function of SPLUNC1 in the CF lung.

Methods: Expression of SPLUNC1 was determined in sputum from healthy and CF donors. Stability of SPLUNCI,
S18 (the ENaC regulatory domain of SPLUNC1), and SPX-101 was determined in sputum from CF donors and to-
wards neutrophil elastase. Activity of SPX-101 after exposure to CF sputum was determined in airway epithelial
cells from CF donors and in the BENaC transgenic mouse model.

Results: SPLUNC1 protein expression is significantly reduced in CF as compared to healthy sputum. SPLUNC1 is
rapidly degraded in CF sputum as well as by a number of individual proteases known to be found in the sputum.
SPX-101, but not S18, is stable in CF sputum. Finally, SPX-101 retains its ability to internalize ENaC, regulate air-
way surface liquid height, and increase survival of BENaC mice after exposure to CF sputum.

Conclusions: Our results demonstrate that SPX-101, but not SPLUNC1 or S18, is stable in CF sputum. These results
support the therapeutic development of SPX-101 for the treatment of cystic fibrosis.

© 2018 The Authors. Published by Elsevier B.V. on behalf of European Cystic Fibrosis Society. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Cystic fibrosis (CF) is caused by mutations in the cystic fibrosis trans-
membrane conductance regulator (CFTR) gene, but is also characterized
by increased activation of the epithelial sodium channel (ENaC) [1, 2].
Hyperactivation of ENaC results in increased sodium absorption. In the
lung, the loss of chloride secretion and the increased absorption of so-
dium creates an osmotic gradient that draws fluid away from the airway
surface. Dehydration of the airway leads to the accumulation of thick,
static mucus, decreased mucociliary clearance, and consequently colo-
nization with bacteria such as Pseudomonas aeruginosa and members
of the Burkholderia cepacia complex [3-5].

Inhibition of ENaC has the potential for hydrating CF airways with
the advantage of being agnostic to CFTR mutation. The initial observa-
tion that ENaC is hyperactivated in CF airways was made nearly 40
years ago [2, 6, 7]. Since then, airway-expressed ENaC has been targeted
with the use of inhaled small molecule inhibitors such as amiloride and
its derivatives. While these compounds are potent ENaC inhibitors in
laboratory settings, clinical trials results have been disappointing in
part due to dose-limiting diuresis and hyperkalemia [8-11].
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In the healthy lung, ENaC is naturally regulated by short palate, lung,
and nasal clone 1 (SPLUNC1) [12]. Unlike small molecule inhibitors of
ENaC which target open probability of the channel, SPLUNC1 reduces
the number of channels on the surface of cells [13, 14]. SPLUNC1-medi-
ated regulation of ENaC is achieved through an 18 amino acid peptide
(dubbed S18) [15, 16]. In CF, the SPLUNC1/ENaC axis has been disrupted
due to airway acidification and loss of SPLUNC1 protein expression [15,
17]. Currently, this loss of SPLUNC1 protein expression is not well un-
derstood. To replace this lost function, we have developed SPX-101, a
peptide promoter of ENaC internalization that mimics the actions of
SPLUNC1/518 to regulate airway hydration [18]. Here, we have pro-
duced a comprehensive examination of SPLUNC1, S18, and SPX-101 sta-
bility in CF sputum. We find that SPLUNC1 and S18 are degraded in CF
sputum and are therefore unsuitable as therapeutic options. SPX-101
is stable in CF sputum, and retains normal activity after exposure to CF
sputum, providing evidence that it can reduce ENaC activity in a dis-
eased setting.

2. Methods
2.1. Reagents and peptides

Peptides were manufactured by Genscript (Piscataway, NJ) at
>95% purity. The sequences are as follows; SPX-101 (aaLPIPLDQTaa),
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ABC (aaDILLPPQTaa), S18 (GGLPVPLDQTLPLNVNPA) and 4031
(aaLPIPLDQTAAAVVRGRaa) where “a” implies D-Alanine. Recombinant
human SPLUNC1 (BPIFA1) was purchased from LS Bio (Seattle, WA). All
other reagents were from Sigma Aldrich (St. Louis, MO) unless other-
wise noted.

2.2. Tissue procurement and cell culture

Primary human bronchial epithelial cells (HBECs) were obtained
from the CF Canada Primary Airway Cell Biobank at McGill University.
Cells were maintained at air liquid interface on transwell membranes
(Corning; Corning, NY) for at least three weeks before experiments as
previously described [18]. HEK293T cells were obtained from ATCC
(Manassas, VA) and grown in DMEM containing 10% fetal bovine
serum and penicillin/streptomycin solution (last three from Life
Technology; Grand Island, NY). Cells were transfected using with
oENaC-GFP, BENaC-FLAG, and yENaC using Lipofectamine 2000 (Life
Technologies) according to the manufacturer's protocol.

2.3. Surface Biotinylation

Assays were carried out as previously described [18]. Briefly,
HEK?293T cells were treated with 10 uM peptide for 1 h and then labeled
with 0.5 mg/ml Sulfo-NHS-SS-biotin solution according to the manufac-
turer (Thermo Fisher Scientific, #21331). Cells were lysed and incu-
bated with Nutravidin beads (Thermo Fisher Scientific #29204) at 4 °C
for 2 h with rotation. 10% of the lysate was reserved for input control.
Nutravidin beads were washed 4x with lysis buffer and then boiled at
95 °C for 5 min.

2.4. Sputum samples

Sputum samples from CF patients and those without a diagnosed
pulmonary disease (healthy) were obtained from Discovery Life Sci-
ences (Los Osos, CA). All sputum samples were spontaneously collected
except for six of the healthy subjects which were induced by inhalation
of hypertonic saline. All samples were directly frozen at —80 without
the addition of protease inhibitors. Samples were shipped on dry ice,
thawed overnight at 4 °C, and all subsequent experiments were under-
taken within 24 h of thawing.

2.5. SPLUNCT stability assay

Recombinant SPLUNC1 was incubated in a 1:1 mixture of PBS:spu-
tum at a final concentration of 40 pg/ml. Where indicated, the PBS:spu-
tum mixture was prepared to contain ONO-4456 (sivelestat; 10 and
100 pM final concentration) or an EDTA-free protease inhibitor cocktail
(1x, 5%, and 10x final concentration). For degradation in specific
proteases, solutions were prepared as above but contain no enzyme,
neutrophil elastase (0.1 mg/ml, Innovative Research, Inc), trypsin
(0.025%, Life Technologies), prostasin (0.2 mg/ml), cathepsin G (0.2
mg/ml), matriptase (0.2 mg/ml), or cathepsin B (0.2 mg/ml, last four
Novus Biologicals; Littleton, CO). Samples were collected at the indi-
cated time points and all reactions stopped by incubation at 95 °C for
5 min.

2.6. Western blot analysis

Sputum samples were resolved for western blot analysis on 8-16%
TGX gels (BioRad; Hercules, CA) and transferred to nitrocellulose mem-
branes. For SPLUNC1 degradation studies, a total of 100 ng of recombi-
nant SPLUNC1 was loaded into each well. For detection, samples were
incubated with goat anti-SPLUNC1 (R&D Systems; Minneapolis, MN)
overnight at 4 °C and a donkey anti-Goat RD680 secondary antibody
(Licor; Lincoln, NE). Signals were detected using a Licor Odyssey imager.
Surface biotinylation samples were resolved on 4-15% TGX gels

(BioRad) and transferred to nitrocellulose membranes. Antibodies
used were: GFP (Cell Signaling #2956), FLAG (Sigma #F1804), and
YENaC (abcam ab3468). IRDye 680 and 800 secondary antibodies
(LiCor) were used to label ENaC and IRDye 680 streptavidin (LiCor)
was used to label total biotinylated protein. Western blots were scanned
on a LiCor Odyssey and processed with Image Studio Lite v.5.2.

2.7. Experiments in BENaC transgenic mice

Studies assessing the survival of mice overexpressing the Scnn1b
gene were conducted as previously described [18, 19]. Once daily intra-
nasal instillation of peptides (50 mM solution, 1 pl/g bodyweight) be-
ginning at post natal day (PND) 2 until PND14. Mice were housed in a
pathogen-free facility maintained at Spyryx Biosciences, on a 12-h
day/night cycle with ad libitum access to regular chow diet and water.
Animal protocols were reviewed and approved by the Institutional An-
imal Care and Use Committee of Spyryx Biosciences.

2.8. Protease activity assays

Total protease activity was determined by measuring cleavage of
succinylated Casein (Pierce #23263) according to manufacturer's
instructions. Neutrophil elastase activity was measured using a fluori-
metric assay kit (abcam #ab204730) according to manufacturer's in-
structions. Experiments were performed in duplicate and average data
is presented. For heat-inactivation, CF samples were diluted as above
and incubated at 95 °C for 5 min.

2.9. ASL height measurements

ASL height was measured as previously described [15]. Briefly, CF
HBECs which had been cultured at ALI for at least three weeks were
washed with PBS. The following day Ringer's solution containing the in-
dicated peptide and TRITC-Dextran (Invitrogen) were added to the api-
cal surface of the cells. After six hours images were collected using a
Leica SP8 confocal microscope.

2.10. Peptide stability in sputum samples

Sputum samples were first centrifuged at 2000 xg for 10 min and
then the supernatants were collected and re-centrifuged at 17,000 xg
for 10 min at 4 °C. These neat supernatants were collected and a
10-fold dilution of each sample were used to perform the assays. Pep-
tides were added to the samples to a final concentration of 2.5 mM
and incubated at 37 °C. At different time points during the assays, ali-
quots of the samples were collected, boiled for 5 min, iced and centri-
fuged at 17,000 g for 5 min. A 5-fold dilution of each sample was
loaded and analyzed by HPLC using a C18 reversed phase column
(YMC-Pack Pro C18, 150 mm x 3.0 mm, 3 pum, YMC America Inc., Allen-
town, PA, USA). Solvent A contained 0.1% trifluoroacetic acid (TFA) in
water. Elution was achieved using a linear gradient of 15-30% of solvent
B (0.1% TFA in acetonitrile).

2.11. Peptide stability in neutrophil elastase and DNAse1

Peptides (2.5 mM) were incubated in 0.1 mg/ml of Human Neutro-
phil Elastase (Innovative Research, Inc) or 0-10 mg/ml DNAsel
(Sigma Aldrich) at 37 °C. Aliquots were taken at the indicated times,
boiled at 95 °C for 5 min, and analyzed by HPLC as described above.

2.12. Data analysis and statistics

All data were analyzed with GraphPad Prism (GraphPad, La Jolla,
CA). Unless otherwise noted, all data are presented as means + SEM
for n experiments or samples as identified in the figure legend. Differ-
ences between means were tested for statistical significance using a
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Mann-Whitney test or a Kruskal-Wallis test. Significance was consid-
ered as p < 0.05.

3. Results
3.1. SPLUNCT is reduced or absent in CF sputum

There are conflicting reports on the expression of SPLUNC1 in
CF sputum [15, 20, 21]. To clarify this discrepancy, we first determined
if SPLUNC1 protein expression was altered between healthy and CF
sputum (patient demographics are in Supplemental Table 1).
SPLUNCT1 protein was readily detected in healthy sputum samples.
In contrast, only two of 25 CF sputum samples had appreciable levels
of SPLUNC1 with undetectable levels of the protein observed in
multiple samples (Fig. 1A/B). This data demonstrates that SPLUNC1
protein is significantly reduced, and frequently absent, in CF sputum
samples.

3.2. SPLUNCT is degraded by multiple proteases found in CF sputum

SPLUNCT is known to be degraded by proteases [15, 22] and it is well
established that protease levels are increased in CF sputum [23-27].
Total protease activity and neutrophil elastase activity was significantly
increased in the CF sputum samples as compared to healthy. This activ-
ity could be abolished by heat inactivation of the CF sputum at 95 °C for
5 min (Fig. 2A/B). Several proteases enriched in CF sputum, including
neutrophil elastase, cathepsin G, trypsin, and matriptase are all efficient
at degrading SPLUNCT. In contrast, only a small amount of cleavage was
observed with prostasin and no cleavage was detected with cathepsin B
(Fig. 2C).

We next examined the stability of recombinant SPLUNC1 in
healthy and CF sputum. Recombinant SPLUNC1 was stable in sputum
from healthy donors with <10% degradation of the protein over the
course of the experiment (Fig. 3A/B). In contrast, SPLUNC1 was rap-
idly degraded in sputum from CF patients in as little as 15 min
(Fig. 3C/D). Incubation with CF sputum alone resulted in degrada-
tion of 89% of SPLUNC1, while boiling to heat-inactivate proteases
prevented this degradation. Co-incubation with sivelestat (ONO-
5546) had a marginal effect on degradation with the highest dose
reducing total degradation to ~75%. Co-incubation with a broad-
spectrum protease inhibitor cocktail (PIC) at 1x, 5%, or 10x resulted
in 71, 45, and 15% degradation (Fig. 3E/F). This data demonstrates
that SPLUNC1 is rapidly degraded in sputum from CF patients and
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Fig. 1. SPLUNCI is reduced or absent in CF sputum. Sputum collected for healthy or CF
patients was subjected to western blot analysis for detection of SPLUNCI.
Representative data are shown in A and data from all samples tested quantified in B. In
total 18 healthy and 25 CF samples were tested. Data shown in B depicts mean 4 SEM.
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indicates p <0.0001 versus healthy sputum.

that a broad spectrum of proteases are responsible for this
degradation.

3.3. SPX-101 is stable in CF sputum and neutrophil elastase

SPX-101 was developed to replace the natural ENaC regulatory func-
tion of SPLUNCT that is lost in the CF lung. SPX-101 resisted degradation
in CF sputum with 92% of the peptide still present after 4 h and 67%
present after 24 h of exposure (Fig. 4A). In contrast, S18 was degraded
such that only 2% of the peptide remained after 24 h. Similarly, S18
was rapidly degraded in concentrated neutrophil elastase, with <50% re-
maining after 1 h of exposure and 10% remaining after 5 h. SPX-101 was
significantly more stable in concentrated neutrophil elastase than S18,
with 79% of SPX-101 intact after 5 h (Fig. 4B). In both studies a control
peptide (4031) with a known neutrophil elastase cleavage site was in-
cluded. We also examined the stability of SPX-101 towards human
DNAse1 and no degradation was observed (Supplemental Fig. 1).

3.4. SPX-101 is functional after exposure to CF sputum

For SPX-101 to be efficacious in the CF lung it must retain its ENaC
regulatory function in the presence of, and after exposure to, sputum
proteases. We tested the ability of CF sputum-exposed SPX-101 to inter-
nalize ENaC (Fig. 5A/B), and of CF sputum exposed SPX-101 or S18 to
regulate ASL height (Fig. 5B), and increase survival in a murine model
of CF, the PENaC-Tg mice (Fig. 5C). We also included a control peptide
(ABC peptide) in the animal studies to account for any osmotic effects.
For these studies, SPX-101 and S18 were exposed to CF sputum for 4 h
before the reaction was inhibited by heating the sample at 95 °C for 5
min. In all three assays, exposure to CF sputum did not alter the activity
of SPX-101. In contrast, S18 was able to increase ASL height in CF HBEC,
and to increase survival of BENaC-Tg mice, but these effects were lost
after the peptide was exposed to CF sputum. Combined, these data dem-
onstrate that SPX-101, but not S18, retains activity after being exposed
to CF sputum.

4. Discussion

In healthy lungs, SPLUNCI is secreted by airway epithelia and pro-
vides a natural allosteric inhibition of ENaC by reducing membrane con-
centration of the channel [12, 28, 29]. SPLUNCT1 is reported to be absent
in sputum from CF patients as well as those suffering from other chronic
diseases such as COPD and asthma [15, 21, 22, 30]. While arising from
different combinations of genetic and environmental causes, each of
these diseases feature by high levels of sputum proteases. Our data
herein demonstrates that SPLUNC1 is degraded by multiple proteases
found in diseased sputum.

The discovery that a peptide derived from SPLUNC1's N-terminus,
S18, retains ENaC regulatory activity provides the foundation for an op-
timized peptide therapeutic [17]. However, in examining the endoge-
nous S18 sequence there is a canonical neutrophil elastase cleavage
site at amino acid 5 (GGLPVPLxxx). Therefore both SPLUNC1 and the
S18 peptide are unsuitable for therapeutic use. In creating SPX-101,
the nutrophil elastase cleavage site was changed to create a peptide re-
sistant to cleavage (LPIPLxxx). To this end, when exposed to neutrophil
elastase, SPX-101 is resistant to degradation while S18 is rapidly de-
graded. This observation is further confirmed in that SPX-101, but not
S18, is stable in CF sputum. Importantly, SPX-101, but not S18, that
has been exposed to CF sputum retains normal activity.

Orthogonal approaches were used to test SPX-101 activity in these
studies and this included test survival of the BENaC transgenic mouse
[19]. This model develops a CF-like airway disease consisting of de-
creased percilliary liquid, increased mucus solids, and decreased
mucus clearance. Approximately 50% of mice die with two week of
birth due to these mucus clearance defects. Previously we have demon-
strated that SPX-101, but not a control peptide that was also used as an
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Fig. 2. SPLUNCT is degraded by multiple proteases found in CF sputum. Total protease (A) and neutrophil elastase (B) were assessed in 10 healthy and 16 CF sputa samples. All graphs
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osmotic control in these studies, increases survival in this model [18].
When amiloride was used in this model survival was increased only
with thrice-daily dosing. These animals also required supplemental sa-
line injections to compensate for the diuretic effect of the small mole-
cule [31]. SPX-101 increased survival in this model with once-daily
dosing and did not require supplemental saline as mice did not lose
weight during the study. In the current work we extend these findings
to demonstrate that SPX-101, but not S18, exposed to CF-sputum can
increase survival in this model. This key finding demonstrates that
SPX-101 retains function in vivo even after prolonged exposure to pro-
tease-rich CF sputum. Additional future work is needed to investigate
the effect of SPX-101 on lung histology and inflammation in this
model but lies outside the scope of the current manuscript.

It has been reported that at acidic pH SPLUNCT fails to regulate ENaC.
However, the S18 peptide from SPLUNCT retains ENaC regulatory func-
tion in an acidic environment [17]. This mild acidification in the ASL of
HBEC cultures has been reported by multiple groups [32, 33] and
work continues to understand why this acidification occurs [34]. Like-
wise, there have been multiple reports of acidification in the CF airway
in humans and animal models of the disease [34-36]. However, a recent
study suggested that there is no acidification of the CF airway or in the

ASL of cells derived from CF donors [37]. Several factors could explain
these conflicting observations, including age of the patients,
microbiome status, medications being used by patients, growth condi-
tions of cells for in vitro experiments, and assay technique. This area
will certainly require more work in the coming years to fully understand
the role that airway pH plays in CF lung disease.

Previous therapeutic approaches directed towards ENaC have in-
duced hyperkalemia [38]. This is because these small molecule inhibi-
tors of ENaC enter the systemic circulation where they engage ENaC in
the kidney thereby inducing potassium-sparing diuresis. Nebulized
SPX-101 was tested in toxicology trials in rats and dogs and found to
have no impact on serum potassium concentrations and was rapidly re-
moved from systemic circulation [18, 39]. Moreover, in clinical trials in
healthy volunteers and adult patients with cystic fibrosis SPX-101 was
not associated with any relevant changes in serum or urinary potassium
(manuscripts in preparation). These findings supported the initiation of
an ongoing CFTR mutation agnostic clinical trial of SPX-101 for the treat-
ment of cystic fibrosis (NCT03229252).

The hyperactivation of ENaC observed in CF airways is the result of
both an increase in channel number [40] combined with an increase
in the open probability (Po) of the channel [41, 42]. ENaC can be
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regulated by a variety of proteases found in CF sputum [43]. Moreover,
the expression level of ENaC and SPLUNCT1 can be regulated by a number
of hormones and soluble proteins [30, 44]. Small molecule inhibitors of
ENaC such as amiloride and its derivatives work by reducing Po, but the
channels remain on the surface of cells. As such, ENaC hyperactivation,
and correspondingly sodium and fluid uptake, rapidly resumes when
these inhibitors are washed away. This short duration of action could
explain why these inhibitors have not generated positive results in clin-
ical trials [16, 18, 31]. In contrast to small molecule inhibitors, SPX-101
provides a durable reduction of ENaC activity by removing the channels
from the surface of cells [18].

The data presented herein has demonstrated that SPLUNC1 is sus-
ceptible to degradation by multiple proteases found in CF sputum

while SPX-101 is not. Multiple attempts have been made to treat CF
using anti-proteases and protease inhibitors in the hopes of reducing in-
flammation and improving lung function [45, 46]. To date, this approach
has proven to be safe for patients, but has yet to have a positive impact
on lung function. With regard to the SPLUNC1/ENaC axis, inhibition of a
single protease, or even a family of proteases, would fail to protect
SPLUNC1 from degradation. These therapeutic approaches might re-
duce inflammation but are unlikely to impact airway hydration, the
key factor in mucus transport.

In summary, SPX-101 differentiates itself from SPLUNC1 and S18, as
the peptide is stable in CF sputum and is, therefore, suitable for investi-
gation as a therapeutic treatment. By restoring the lost SPLUNC1 regula-
tory function to the CF lung, it may be possible to increase airway
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hydration, promote mucocillary clearance, and recover lost lung func-
tion. Beyond CF, SPX-101's potential to increase airway hydration
could prove to be beneficial in other diseases associated with
mucociliary clearance defects and high levels of sputum proteases,
such as non-CF bronchiectasis, COPD, and severe asthma. Currently,
SPX-101 is in Phase 2 clinical development for the treatment of cystic
fibrosis.

Supplementary data to this article can be found online at https://doi.
org/10.1016/j.jcf.2018.06.002.
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