
A note on the star order in Hilbert spaces

J. Antezana, C. Cano, I. Mosconi and D. Stojanoff

December 3, 2008

Abstract

We study the star order on the algebra L(H) of bounded operators on a Hilbert space
H. We present a new interpretation of this order which allows to generalize to this
setting many known results for matrices: functional calculus, semi lattice properties,
shorted operators and orthogonal decompositions. We also show several properties
for general Hilbert spaces regarding the star order and its relationship with the func-
tional calculus and the polar decomposition, which were unknown even in the finite
dimensional setting. We also study of the existence of strong limits for star-monotone
sequences and nets.
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1 Introduction

Given two n × n complex matrices A and B, Hestenes introduced in [9] the concept of ? -
orthogonality, defined by the equations A∗B = 0 and AB∗ = 0, where A∗ (resp. B∗) denotes
the transpose and component-wise conjugate of A (resp. B). In the same paper he defined
and discussed the relation defined by A ∼ B if

A∗A = B∗A and AA∗ = AB∗ .
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Later on, Drazin proved [5] that this relation on the set of square matrices, and even more
generally in semigroups with involution, is in fact a partial ordering. This order, that we shall

denote
?

≤, is nowadays called star order (or ? -order). Although this order can be generalized
to much more general setting, it has been studied specially in the space of complex matrices.

In this paper, we study the ? -order on the algebra L(H) of bounded operators on a
Hilbert space H. Since many of the usual techniques used in finite dimensional spaces (as
pseudoinverses or singular value decompositions) are not longer available for general Hilbert
spaces, we introduce new techniques which allow us to show that almost all the known
properties which hold for matrices can be generalized to operators acting on a Hilbert space
H, and to obtain simpler proofs. Indeed, several results of the articles [1], [2], [3], [6], [7], [8],
and [10] concerning the ? -order are contained in this note if we consider finite dimensional
spaces. On the other hand, we show several properties for general Hilbert spaces which were
unknown even in the finite dimensional setting, particularly those results concerning the polar
decomposition and those regarding the relationship between the ? -order and the functional
calculus. We also study some questions that only have sense in the infinite dimensional
setting, such as the existence of strong limits for ? -monotone sequences and nets.

The article is organized as follows: section 2 starts with the relationship between the ? -
order and certain sets of projections. Roughly speaking, given two operators A, B ∈ L(H),

the relation A
?

≤B says that A is “a piece” of B. Concretely, it can be proved that A
?

≤B
if and only if A = PR(A) B = BPR(A∗) , where PS denotes the orthogonal projection onto the

closed subspace S. Since the relation A
?

≤B means that both equalities must hold, it is not

true that for every projection P the inequality PB
?

≤B holds, even if R(P ) ⊆ R(B). The
main aim in the first part of section 2 is to give a characterization of those projections P

such that there is an operator A ∈ L(H) so that A
?

≤B and P = PR(A) (and by symmetry

also the set of those Q such that Q = PR(A∗) ). We prove that the mentioned set consists of
those projections P that satisfy

R(P ) ⊆ R(B) and P ·BB∗ = BB∗ · P . (1)

Moreover, we show that if P1 and P2 satisfy these properties, then P1 B
?

≤P2 B ⇐⇒ P1 ≤ P2

(see Theorem 2.7). These facts can be viewed as a reformulation of the definition of the ? -
order, and their proofs are quite simple. However, these criteria can be applied to obtain
very short proofs of several results throughout the paper, and they are particularly useful to
work in the context of general Hilbert spaces.

Then, we study what functions preserve the ? -order when they are applied to operators
using some convenient functional calculi. These results are motivated by the work of Bak-
salary, Hauke, X. Liu and S.Liu [1], where these authors prove that the polynomial functions
of the form p(x) = x2k

(with k ∈ N) preserve the ? -order, provided that some technical
requirement on the ranges of the matrices involved holds. Under a slightly less restrictive
additional hypothesis, we prove that any function, that can be applied to the operators
considered, preserves the ? -order. We conclude section 2 by studying the relationship be-
tween the ? -order and the polar decomposition. One of the main tools used in the finite
dimensional setting is the singular value decomposition, but it is not available for general
operators on a Hilbert space. We prove that the polar decomposition behaves very well with
respect to the ? -order and it may be a natural substitute.

Section 3 is devoted to the lattice properties of L(H) endowed with the relation
?

≤. In
the finite dimensional setting these properties have been studied by Hartwig and Drazin in
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[8]. A similar approach can be pursue using the results proved in section 2 regarding the
? -order and the polar decomposition. Nevertheless, we prefer to follow a different way that
leads to the results directly. Given B ∈ L(H), we prove that there exists an order preserving
(in both directions) bijection between the sets

1. LB := {A ∈ L(H) : A
?

≤B} with the ? -order;

2. PB := {P = P 2 = P ∗ ∈ L(H) : R(P ) ⊆ R(B) and PBB∗ = BB∗P} with the usual
order (or with the ? -order because on this set both orders coincide).

This immediately implies the existence of a minimum between two operators A, B ∈ L(H),
which is denoted by A ∧? B. Several properties of this minimum are analyzed. Section 3
concludes with the study of some limits theorems. In the finite dimensional setting it is not
difficult to see that any star monotone sequence is constant from some n0 on. However, in
the infinite dimensional setting, this is not longer true, and a natural question is whether
or not a bounded star monotone sequence converges. In this last subsection of section 3
we answer positively this question and we also study the behavior of the minimum with
respect to monotone sequences. We prove that it behaves well with respect to monotone
decreasing sequences, but we exhibit a counterexamples which shows that the results proved
for monotone decreasing sequences are not valid for monotone increasing ones. In some way,
this is one of the obstruction to pursue the generalization to the infinite dimensional setting
based on the finite dimensional case and (star) monotone increasing sequences consisting of
operators with finite dimensional ranges (see also Remark 3.7).

In section 4, we study the so-called star shorted operator. This notion was introduced
for matrices by Mitra in [10]. Recall that given a matrix A and two subspaces S and T of

Cn, the star shorted operator, denoted by
?

Σ (A,S, T ), is defined as the star maximum of the
set of matrices

?

M(A,S, T ) =
{
D

?

≤A , R(D) ⊆ T y R(D∗) ⊆ S
}
.

We prove that this maximum also exists in the infinite dimensional setting, where the
subspaces are asked to be closed, and we characterized this maximum as the minimum

A∧? (PT APS) . We also prove that the modulus of
?

Σ (A,S, T ) can be characterized as a star
shorted of |A| with respect to some suitable subspaces.

Finally, section 5 is devoted to study the relationship between the ? -order and the notion
of ? -orthogonality. We show that if an operator A admits a suitable ? -orthogonal decom-
position then the minima and the shorted operators of A can be also decomposed in terms
of the elements of that decomposition.

2 The star order

Notations

Given a Hilbert spaceH, L(H) denotes the algebra of bounded linear operators onH, Lsa(H)
the real vector space of self-adjoint operators, and L(H)+ the cone of positive operators. For
an operator A ∈ L(H), R(A) denotes the range or image of A, ker A the nullspace of A,
σ(A) the spectrum of A, A∗ the adjoint of A, |A| = (A∗A)1/2 the modulus of A, and ‖A‖
the usual norm of A.
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The word projection is used exclusively for orthogonal projections. We denote by P(H) =
{P ∈ L(H) : P = P ∗ = P 2}, the set of all projections in L(H). Throughout this paper,
S v H means that S is a closed subspace ofH, and PS ∈ P(H) denotes the unique projection
onto S. For every A ∈ L(H), we denote by

PA = PR(A) ∈ P(H) and QA = PA∗ = PR(A∗) = I − Pker A ∈ P(H) .

Definition 2.1. Given A, B ∈ L(H), we say that A is lower or equal than B with respect

to the ? -order, which is denote by A
?

≤B, if

1. A∗A = A∗B = B∗A;

2. AA∗ = BA∗ = AB∗. 4

Remark 2.2. Given A, B ∈ L(H), it is easy to see that A
?

≤B ⇐⇒ A∗ ?

≤B∗. Also

A
?

≤B =⇒ AA∗ ?

≤BB∗ , A∗A
?

≤B∗B and B − A
?

≤B . 4

2.1 Star order and projections

In this section we describe the relationship between the ? -order and some subsets of the
Grassmann manifold, viewed as the set of projections. We begin with the following two well
known characterizations of the equalities that define the ? -order. Since these characteriza-
tions will be very important in the sequel, and for a sake of completeness, we include a short
proof valid in our general setting.

Proposition 2.3. Let A, B ∈ L(H). Then

BA∗ = AA∗ ⇐⇒ A = BQA ⇐⇒ A = BQ for some Q ∈ P(H) . (2)

Similarly, it holds that

B∗A = A∗A ⇐⇒ A = PA B ⇐⇒ A = PB for some P ∈ P(H) . (3)

Proof. Indeed, given x ∈ R(A∗), there exists a sequence {un}n∈N contained in R(A∗) such

that un
‖ · ‖−−−→

n→∞
x. If we assume that BA∗ = AA∗, then Bu = Au for every u ∈ R(A∗).

Therefore
Bx = lim

n→∞
Bun = lim

n→∞
Aun = Ax .

On the other hand, both Ax = BPA∗ x = 0 for every x ∈ R(A∗)⊥ = ker A.

Suppose now that A = BQ for some Q ∈ P(H). Then

BA∗ = B(BQ)∗ = BQB∗ = (BQ)(QB∗) = AA∗ .

The proof of (3) is almost the same. It can also be obtained from (2). �

Corollary 2.4. Let A, B ∈ L(H) such that A
?

≤B. Then R(A) ⊆ R(B) and R(A∗) ⊆ R(B∗).

Corollary 2.5. Let A, B ∈ L(H) such that A
?

≤B and B2 = B. Then A2 = A.

4



Proof. Indeed, A2 = PA B B QA = PA B QA = PA A = A . �

The statement of Proposition 2.3 implies the following alternative description of the ? -order:
Given A, B ∈ L(H), then

A
?

≤B ⇐⇒ A = PA B = B QA . (4)

This description suggests that the relation A
?

≤B means that A is “a piece” of B. Neverthe-
less, Eq. (4) does not say exactly which pieces of B (of the type A = PB for P ∈ P(H) ) are
? -smaller than B. In other words, the above results do not characterize which projections

P and Q satisfy that P = PA or Q = QA for some A
?

≤B. This characterization is the main
goal of this subsection and the first step in that direction is the next lemma which gives a

one sided description (in terms of the action of projections) of the relation A
?

≤B.

Lemma 2.6. Let B ∈ L(H).

1. If P ∈ P(H) and R(P ) ⊆ R(B) , then PB
?

≤B ⇐⇒ P BB∗ = BB∗ P .

2. If Q ∈ P(H) and R(Q) ⊆ R(B∗) , then BQ
?

≤B ⇐⇒ QB∗B = B∗B Q.

Proof. Denote by A = PB. If A
?

≤B, then PBB∗ = AB∗ = BA∗ = BB∗P . Conversely, the
identity A = PB implies that B∗A = A∗A, by Proposition 2.3. On the other hand, since P
commutes with BB∗, it holds that

BA∗ = BB∗P = PBB∗P = AA∗ .

The proof of the second statement follows mutatis mutandis. �

Theorem 2.7. Let A, B, C ∈ L(H). Then it holds that

A
?

≤B ⇐⇒ A = PA B , PA ≤ PB and PA ·BB∗ = BB∗ · PA

⇐⇒ A = B QA , QA ≤ QB and QA ·B∗B = B∗B ·QA .

(5)

Moreover, if both A
?

≤B and C
?

≤B, then

A
?

≤C ⇔ PA ≤ PC ⇔ QA ≤ QC ⇔ R(A) ⊆ R(C) ⇔ ker C ⊆ ker A . (6)

Proof. Both implications ⇒ of (5) follow from Proposition 2.3, Corollary 2.4 and Lema 2.6.
The reverse implications follow from Lema 2.6.

Assume that A
?

≤B and C
?

≤B. Then we have that A = PA B and C = PC B. If A
?

≤C,
then Corollary 2.4 shows that all the other conditions of Eq. (6) hold. Conversely, suppose
that PA ≤ PC . Then PA C = PA PC B = PA B = A, and

PA CC∗ = PA PC BB∗ = PA BB∗ = BB∗PA = BB∗PC PA = CC∗PA .

Therefore, by Lema 2.6, we can conclude that A = PA C
?

≤C. The proof of the other case

QA ≤ QC =⇒ A
?

≤C is almost the same. �
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The main advantage of Theorem 2.7 over Proposition 2.3 or Eq. (4) is that each equivalence
involves only one projection. The price we have had to pay for this simplification does not
seem to be very high, at least in the applications of this result that we shall consider, because
the commutation relation is not too complicated to check in those applications. On the other
side, the set of projections of a “commutant” subálgebra of L(H) has excelent properties.
The following results are direct consequences of Theorem 2.7:

Corollary 2.8. Let V ∈ L(H) a partial isometry. Denote by P = PV . Then

W
?

≤V ⇐⇒ W = QV for some Q ∈ P(H) such that Q ≤ P .

Every such W is also a partial isometry and all them are ? -ordered by the inclusion of their
final (resp. initial) spaces. �

Corollary 2.9. Given A ∈ L(H) and B ∈ L(H)+, if A
?

≤B, then also A ∈ L(H)+.

Proof. It is easy to see that the commutant of BB∗ = B2 coincides with {B}′. �

A more detailed analysis of the relation between the ? -order and the polar decomposition
will be done in subsection 2.3. The next example shows that the above corollary is not longer
true if we replace positive by self-adjoint or normal

Example 2.10. Consider the matrices A =

[
1 1
0 0

]
and B =

[
1 1
1 −1

]
. Using that

PA =

[
1 0
0 0

]
and BB∗ = 2I, it is easy to se that and A

?

≤B. Observe that B = B∗ but A

is neither self-adjoint nor normal. 4

2.2 Star order and functional calculi

In this subsection we study the problem of finding out those function that are monotone with
respect to the ? -order, when they are applied using one of the following functional calculi:
The Riesz functional calculus for holomorphic maps, and the continuous functional calculus
for normal operators. The reader who is not familiarized with these topics is refereed to
the excellent book by Conway [4]. The key remark to obtain these results is the following
statement, which is a direct consequence of Eq. (4):

Proposition 2.11. Let A, B ∈ L(H) such that PA = PA∗ = QA . Then, in terms of the
orthogonal decomposition H = R(PA)⊕ ker PA , we have that

A
?

≤B ⇐⇒ A =

[
A11 0
0 0

]
and B =

[
A11 0
0 B22

]
. (7)

In such case AB = BA and σ(A) ⊆ σ(B) ∪ {0}.

Proof. Let P = PA = PA∗ = QA . By Eq. (4), A
?

≤B ⇐⇒ A = BP = PB, which is a
reformulation of Eq. (7). �

The announced results involving the ? -order and the functional calculi follows directly from
of the above 2 × 2 decomposition. Note that the type of functions considered in each
proposition only depends on the class of operator considered and the functional calculus
defined on them, there is no other restriction. It should be mentioned that, besides their
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applications, these propositions may be interesting by themselves because they provide two
different generalizations of Theorem 4.1 of [1], where a similar result is proved for functions
of the form f(t) = t2

k
for k ∈ N.

Proposition 2.12. Let A, B ∈ L(H) such that PA = PA∗ . Let f be a complex analytic
function defined in a neighborhood of {0} ∪ σ (A) ∪ σ (B) such that f(0) = 0. Then

A
?

≤B =⇒ f(A)
?

≤ f(B) .

Moreover, if f is also injective, then A
?

≤B ⇐⇒ f(A)
?

≤ f(B).

Proof. Using Proposition 2.11, and taking 2× 2 matrices with respect to the decomposition
H = R(PA)⊕ ker PA , we have that

A =

[
A1 0
0 0

]
?

≤
[

A1 0
0 B1

]
= B =⇒ f(A) =

[
f(A1) 0

0 0

]
?

≤
[

f(A1) 0
0 f(B1)

]
= f(B) ,

because f(0) = 0 and f(A1 ⊕B1) = f(A1)⊕ f(B1). �

With almost the same proof, we have the following result regarding the continuous functional
calculus for normal operators:

Proposition 2.13. Let A and B be normal operators. Then, for every continuous function
f : {0} ∪ σ (A) ∪ σ (B) → C satisfying that f(0) = 0, it holds that

A
?

≤B =⇒ f(A)
?

≤ f(B) .

Moreover, if f is also injective, then A
?

≤B ⇐⇒ f(A)
?

≤ f(B). �

The condition R(A) = R(A∗) may seem too restrictive, but as we shall see in the next
example taking from [1], without this condition the above results are false even for f(x) = x2:

Example 2.14. Let A, B ∈M2(C) be the matrices of Example 2.10, that is

A =

[
1 1
0 0

]
?

≤
[

1 1
1 −1

]
= B .

However, since A2 = A and B = 2I, it is clear that A2
?

� B2. 4

To conclude this subsection we give an useful application of these results.

Corollary 2.15. Let A, B ∈ L(H) such that A
?

≤B. Then |A|
?

≤ |B| and |A∗|
?

≤ |B∗|.

Proof. By Remark 2.2 we know that A∗A
?

≤B∗B and AA∗ ?

≤BB∗. Then, using Proposition
2.13 with the function f(t) = t1/2, we obtain the desired result. �
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2.3 Star order and the polar decomposition

One of the main tools used to study the ? -order in finite dimensional spaces is the singular
value decomposition, which in general is not longer available in the infinite dimensional
setting. This subsection is devoted to the study of the relationship between the ? -order and
the polar decomposition, which could be seen as a natural substitute of the singular value
decomposition in arbitrary Hilbert spaces.

Notation: Given B ∈ L(H), we denote by UB ∈ L(H) the unique partial isometry such
that B = UB |B| and ker UB = R(|B|)⊥ = ker |B| = ker B. We shall write that B = UB |B|
is the polar decomposition of B. Observe that also B = |B∗|UB .

Recall that, for every B ∈ L(H), it holds that R(|B|) = R(B∗) (without closures). Also
R(B∗) = ker B⊥ = ker UB

⊥ = R(U∗
B). Therefore, in our notations,

P|B| = Q|B| = PB∗ = QB = QUB
. (8)

Lemma 2.16. Let A, B ∈ L(H) such that A
?

≤B. If B = U |B| is a polar decomposition of
B, then A = U |A|. In particular, A = UB|A|.

Proof. By Corollary 2.15, we have that |A|
?

≤ |B|. Then |A| = |B|Q|A| and, by Eq. (8), it
holds that U |A| = U |B|Q|A| = BQA = A. �

Theorem 2.17. Let A, B ∈ L(H). Then, the following statements are equivalent

1. A
?

≤B;

2. |A|
?

≤ |B| and UA

?

≤UB .

Proof. 1 ⇒ 2: By Corollary 2.15 we already know that |A|
?

≤ |B|. On the other hand, by
Lemma 2.16, UA|A| = UB|A|. So UA and UB coincides on R(|A|), and by continuity, on
R(|A|) = R(QA) = R(QUA

). Therefore UA = UB P|A| = UB QA = UB QUA
. Also

|A|
?

≤ |B| =⇒ R(U∗
A) = R(QA) ⊆ R(QB) = R(U∗

B) =⇒ QUA
≤ QUB

.

So, by Corollary 2.8, we have that UA

?

≤UB .

2 ⇒ 1: Denote by Q = QA = Q|A| = P|A| = QUA
. By Theorem 2.7, we have that

|A|
?

≤ |B| =⇒ |A| = |B|Q , Q ≤ Q|B| and QB∗B = Q|B|2 = |B|2Q = B∗BQ .

Then we get that Q|B| = |B|Q = |A|. Similarly, UA

?

≤UB =⇒ UA = UB Q. Hence we have
that BQ = UB|B|Q = UBQ|A| = UA|A| = A, that Q ≤ Q|B| = QB and QB∗B = B∗BQ.

Therefore, by Theorem 2.7, A
?

≤B. �

Remark 2.18. The same arguments used to prove 1 ⇒ 2 imply that, if B = U |B| is a polar

decomposition of B, then UB

?

≤U . Hence, in Theorem 2.17, the partial isometry UB can be
changed by any partial isometry U that can be used in the polar decomposition of B. 4
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3 Semi-lattice properties

This section is devoted to study the lower semi-lattice properties of (L(H),
?

≤). The key
result to pursue these studies is Theorem 3.1.

3.1 Semi-lattice properties of (L(H),
?

≤)

This study has already been done in the finite dimensional setting by Hartwig and Drazin in
[8]. It is not difficult to see that, for example, the invertible operators are maximal elements
with respect to the ? -order. So, it is enough to take two different invertible operators, say

G1 and G2, to see that L(H) can not be a lattice endow with
?

≤. However, Hartwig and
Drazin proved in [8] that the set of matrices endow with the ? -order is a lower semi-lattice,
i.e., for every pair of matrices A and B, there exists the ? -maximum of the set

{C ∈ L(H) : C
?

≤A and C
?

≤B} ,

They firstly prove the result for pairs of partial isometries and then reduce the general case
to this particular case by using a smart trick based on the singular value decomposition. A
similar approach can be done by replacing the singular value decomposition by the polar
decomposition and using some of the results that have been proved in the previous section.
However we prefer to pursue a direct approach based on the next useful reformulation of
Theorem 2.7 that contains all we need to recover Hartwig-Drazin’s result in our setting:

Theorem 3.1. Let B ∈ L(H). Then, there is an order preserving (in both directions)
bijection between the following ordered sets:

1. LB := {A ∈ L(H) : A
?

≤B} with the ? -order;

2. PB := {P ∈ P(H) : R(P ) ⊆ R(B) and PBB∗ = BB∗P} with the usual order (or
with the ? -order because on this set both orders coincide).

This bijection is given by LB 3 A 7→ PA and PB 3 P 7→ PB. �

It is easy to see that PB is a lattice, with respect to the usual order. Actually, PB is the set
of all projections of the von Neumann algebra MB = PB {BB∗}′ PB ⊆ L(R(PB) ), where
{BB∗}′ is the commutant of BB∗.

Proposition 3.2. For every B ∈ L(H) the set LB is a lattice. Moreover, the ordered set

(L(H),
?

≤) is a lower semi-lattice, i.e., for every pair A, B ∈ L(H)

L(A, B) = {C ∈ L(H) : C
?

≤A and C
?

≤B} . (9)

has a ? -maximum, called the ? -minimum of A and B, and denoted by A ∧? B.

Proof. The fact that LB is a lattice follows from Theorem 3.1. Consider the set

P(A, B) =
{

Q ∈ P(H) ∩ {A∗A, B∗B}′ : R(Q) ⊆ R(A) ∩R(B) ∩ ker(A∗ −B∗)
}

.

It is clear that P(A, B) ⊆ PA ∩ PB and hence it is also a lattice. Given Q ∈ P(A, B), the
condition

R(Q) ⊆ ker(A∗ −B∗) ⇐⇒ A∗Q = B∗Q ⇐⇒ QA = QB ,

9



so that QA = QB ∈ L(A, B). On the other hand, any C ∈ L(A, B) satisfies the condition
C = PC A = PC B, so that PC ∈ P(A, B). Therefore

A ∧? B = maxL(A, B) = PA = PB , where P = PA∧?B = maxP(A, B) . �

Next, we state some properties of ? -minima whose proofs are straightforward:

Proposition 3.3. Let A, B, C ∈ L(H). Then

1. A ∧? B = B ∧? A and (A ∧? B)∗ = A∗ ∧? B∗;

2. (A ∧? B) ∧ C = A ∧? (B ∧ C);

3. (A ∧? B)(A ∧? B)∗
?

≤AA∗ ∧? BB∗ and |A ∧? B|
?

≤ |A| ∧? |B|;

4. If A or B are positive then A ∧? B is also positive. �

Observe that both inequalities of item 3 can be strict. Indeed, take A =

[
0 1
0 0

]
and

B =

[
1 0
0 1

]
. Then A∧? B = 0 but 0 6= AA∗ = |A|

?

≤BB∗ = B.

3.2 Some limit theorems.

In finite dimensional spaces it is not difficult to see, by using simple arguments of dimension,
that any sequence of operators which is non-decreasing (resp. non-increasing) with respect
to the ? -order is constant from some n on. In the infinite dimensional setting the situation
is different, and a natural question is whether or not a star-monotone sequence converge.
The following theorems provide a positive answer to this question. Recall that a sequence
{An}n∈N in L(H) converges strongly to A ∈ L(H), which is denoted by An

S.O.T.−−−→
n→∞

A, if

‖An x − Ax‖ −−−→
n→∞

0 for every x ∈ H. It is well known that every sequence (or net) in

Lsa(H) which is bounded and monotone must converge strongly.

Proposition 3.4. Let {An}n∈N be sequence in L(H) which is ? -non-increasing. Then, there

exists A ∈ L(H) such that An
S.O.T.−−−→
n→∞

A, and A
?

≤An for every n ∈ N. Moreover, if B ∈ L(H)

satisfies that B
?

≤An for every n ∈ N, then B
?

≤A.

Proof. Let Pn = PAn . Note that, by Theorem 2.7, for every n ∈ N it holds that

Pn ≥ Pn+1 and Pn(A1A
∗
1) = (A1A

∗
1)Pn .

Let P = inf{Pn : n ∈ N}, so that Pn
S.O.T.−−−→
n→∞

P . Then An = PnA1
S.O.T.−−−→
n→∞

P A1 =: A . Clearly P

commutes with A1A
∗
1 . Hence A

?

≤A1 . Moreover, since An

?

≤A1 and P ≤ Pn , then Theorem

2.7 assures that A
?

≤An . Similarly, if B
?

≤An for every n ∈ N, then PB ≤ Pn for every n ∈ N,

and therefore PB ≤ P . As before, this implies that B
?

≤A because both A, B
?

≤A1 . �

In a similar fashion, we get the next proposition:
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Proposition 3.5. Let {An}n∈N be sequence in L(H) which is ? -non-decreasing and ? -

bounded from above some B ∈ L(H). Then, there exists A ∈ L(H) such that A
?

≤B,

An
S.O.T.−−−→
n→∞

A, and An

?

≤A for every n ∈ N. �

Remark 3.6. Note that in Proposition 3.4, as well as in Proposition 3.5, the sequences can
be replaced by nets and the results remain true with almost the same proof. 4

Remark 3.7. Let {An}n∈N be a sequence as in Proposition 3.5 and let A ∈ L(H) be the limit

of this sequence. Then, it is not difficult to prove that |An|
S.O.T.−−−→
n→∞

|A| and |A∗
n|

S.O.T.−−−→
n→∞

|A∗|.
Observe that, if all the operators An have finite dimensional range, so do the operators |An|
and |A∗

n|. Then, simple computations (involving mainly Proposition 2.11) show that |A|
(resp. |A∗|) have to be diagonalizable, i.e, there exists an orthonormal basis of H consisting
of eigenvectors of |A| (resp. |A∗|). This in particular implies that there are operators in
L(H) that can not be reached using star non-decreasing sequences of finite range operators,
which is one of the obstructions to pursue the generalization to infinite dimensional Hilbert
spaces based in the results for matrices and monotone sequences. 4

The next result shows that the ? -minimum behaves well with respect to ? -monotone de-
creasing sequences.

Proposition 3.8. Let {An}n∈N and {Bn}n∈N be two sequences in L(H) which are ? -non-

increasing and so that An
S.O.T.−−−→
n→∞

A and Bn
S.O.T.−−−→
n→∞

B, for some operators A, B ∈ L(H). Then,

An ∧? Bn
S.O.T.−−−→
n→∞

A ∧? B.

Proof. We shall use Proposition 3.4 several times. Since An+1∧?Bn+1

?

≤An∧?Bn for every n ∈
N, then there exists L ∈ L(H) such that An∧? Bn

S.O.T.−−−→
n→∞

L. Observe that L
?

≤An∧? Bn

?

≤An

for every n ∈ N. Then L
?

≤A. Analogously, L
?

≤B. On the other hand, let C ∈ L(H) such

that C
?

≤A and C
?

≤B. As C
?

≤A∧? B ≤ An

?

≤Bn for every n ∈ N, we get that C
?

≤L, which
completes the proof. �

As the next example shows that a similar result for ? -non-decreasing sequences is not true.

Example 3.9. Let {Sn}n∈N and {Tn}n∈N be two increasing sequences of closed subspaces

of H such that PSn

S.O.T.−−−→
n→∞

I and PTn

S.O.T.−−−→
n→∞

I but Sn ∩ Tn = {0} for each n ∈ N. Then

both sequences {PSn}n∈N and {PTn}n∈N are ? -increasing. However, PSn ∧? PTn = 0 for every
n ∈ N, and I ∧? I = I 6= 0. 4

4 The star shorted

In finite dimensional spaces the study of shorted operators related with the ? -order was
carried out by Mitra [10]. The key tool used by Mitra was the singular value decomposition.
In the infinite dimensional setting, this approach is only available for compact operators. So,
in order to generalize Mitra’s results to any operator on an arbitrary Hilbert space we need
to develop a new approach. The main goal of this section is to characterize the star-shorted
as a ? -minimum of two operators.
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Theorem 4.1. Let A ∈ L(H) and let S, T v H. Then, the set of operators

?

M(A,S, T ) =
{
D ∈ L(H) : D

?

≤A , R(D) ⊆ T y R(D∗) ⊆ S
}

has a ? -maximum given by S = A ∧?
(
PT A PS

)
.

The next technical lemma is part of the proof of Theorem 4.1, but we write it separately
because we think that it could be interesting by itself.

Lemma 4.2. Let A, B ∈ L(H) such that A
?

≤B and S, T v H two subspaces such that

R(A) ⊆ T and R(A∗) ⊆ S. Then A
?

≤PT BPS .

Proof. Note that PA(PT BPS) = PABPS = APS = A . Similarly, it holds that (PT BPS)QA =

A. Then, using Proposition 2.3, we conclude that A
?

≤PT BPS . �

Proof of Theorem 4.1: Let S = A ∧?
(
PT A PS

)
. By Lemma 4.2, if D ∈

?

M(A,S, T ) then

D
?

≤PT A PS and D
?

≤A. Thus, D
?

≤S. Now, it is enough to prove that S ∈
?

M(A,S, T ).

Since S
?

≤PT A PS , then

R(S) ⊆ R(PT A PS) ⊆ T y R(S∗) ⊆ R(PS A∗ PT ) ⊆ S .

On the other hand, S
?

≤A. So, S ∈
?

M(A,S, T ). �

Definition 4.3. Given A ∈ L(H) and S, T v H, the maximum of the set
?

M(A,S, T ),
whose existence is guaranteed by the above theorem, is called ? -shorted operator of A with

respect to the subspaces S and T , and it is denoted by
?

Σ (A,S, T ). If S = T we abbreviate
?

M(A,S, T ) =
?

M(A,S) and
?

Σ (A,S, T ) =
?

Σ (A,S). 4

The next Proposition summarizes some properties of the star shorted operator which are
direct consequences of the definition and the properties of the ? -order.

Proposition 4.4. Let A, B ∈ L(H) and S, T , U , V v H. Then

1.
?

Σ
(

?

Σ (A,S, T ) ,S, T
)

=
?

Σ (A,S, T ) .

2.
?

Σ (A,S, T ) =
?

Σ
(
A,S ∩R(A∗), T ∩R(A)

)
.

3.
?

Σ (A,S, T )∗ =
?

Σ (A∗, T ,S) .

4. If A is selfadjoint, then
?

Σ (A,S) is selfadjoint.

5. If A is positive then
?

Σ (A,S, T ) is positive, even if S 6= T .

6. If A
?

≤B, S ⊆ U and T ⊆ V, then
?

Σ (A,S, T )
?

≤
?

Σ (A,U ,V). �

The characterization of the ? -shorted operator as a maximum allow to prove the following
result in a fairly standard way:
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Proposition 4.5. Let A, B ∈ L(H) and S, T , U , V v H. Then

?

Σ
(

?

Σ (A,S, T ) ,U ,V
)

=
?

Σ (A,S ∩ U , T ∩ V) .

Proof. Let M1 =
?

M(
?

Σ (A,S, T ) ,U ,V) and M2 =
?

M(A,S ∩ U , T ∩ V). It is enough to

show that M1 = M2 . If D ∈ M1 , then, D
?

≤
?

Σ (A,S, T ), so R(D) ⊆ S and R(D∗) ⊆ T .

Thus R(D) ⊆ S ∩ T and R(D∗) ⊆ T ∩ V. But, D
?

≤
?

Σ (A,S, T )
?

≤A, therefore D ∈M2 .

On the other hand, if D ∈ M2 , then, D
?

≤A, R(D) ⊆ S, and R(D∗) ⊆ T therefore

D
?

≤
?

Σ (A,S, T ). Moreover, R(D) ⊆ U and R(D∗) ⊆ V , therefore D ∈M1 . �

Corollary 4.6. Let A ∈ L(H)+ and S, T v H. Then
?

Σ (A,S, T ) =
?

Σ (A,S ∩ T ).

Proof. By Proposition 4.5, as B :=
?

Σ (A,S, T ) ≥ 0 we get that

B =
?

Σ (B,S, T ) =
?

Σ (B∗,S, T ) =
?

Σ
(

?

Σ (A, T ,S) ,S, T
)

=
?

Σ (A,S ∩ T ,S ∩ T ) ,

which completes the proof. �

Proposition 4.7. Let A ∈ L(H) and S, T v H such that S ⊆ R(QA) and T ⊆ R(PA).
Then, if A = U |A| = |A∗|U is the polar decomposition of A, it holds that

|
?

Σ (A,S, T ) | =
?

Σ (|A|,S, U∗(T )) and |
?

Σ (A,S, T )∗ | =
?

Σ (|A∗|, U(S), T ) . (10)

Proof. By Corollary 4.6,
?

Σ (|A|,S, U∗(T ) ) =
?

Σ (A,S ∩ U∗(T ) ) . Also, Lemma 2.16 assures

that U∗ ?

Σ (A,S, T ) = |
?

Σ (A,S, T ) |. Then, to prove the first identity of (10) it is enough to

prove that the map Γ :
?

M(A,S, T ) →
?

M(|A|,S ∩ U∗(T ) ), given by Γ(B) = U∗B = |B|, is

an ? -order-preserving bijection. Let B ∈
?

M(A,S, T ). Then U∗B = |B|
?

≤ |A|,

R(U∗B) = U∗(R(B)) ⊆ U∗(T ) , and R(U∗B) = R(|B|) ⊆ S .

Hence, Γ(B) ∈
?

M(|A|,S ∩ U∗(T ) ). By Corollary 2.15, it is order preserving, and it is
injective because UΓ(B) = B by Lemma 2.16. On the other hand, to prove that Γ is onto,

let C ∈
?

M(|A|,S ∩ U∗(T )) and define B = UC. Observe that, since T ⊆ R(PA), then

R(B) = U(R(C) ) ⊆ UU∗(T ) = PA(T ) = T .

Also R(B∗) ⊆ R(C) ⊆ S. Using that R(C) ⊆ R(|A|) and R(U∗U) = R(|A|), then U∗B = C.
Also BB∗ = UCCU∗ = UC|A|U∗ = BA∗ and

B∗B = CC = C|A| = CU∗U |A| = B∗A ,

which shows that B
?

≤A, and therefore B ∈
?

M(A,S, T ). Since Γ(B) = U∗B = C, then Γ is
onto. The other equality of (10) follows in a similar way. �

Remark 4.8. Note that, by item 2 of Proposition 4.4, the conditions S ⊆ R(A∗) and
T ⊆ R(A) asked in Proposition 4.7 are not too severe. 4
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5 Star orthogonal decompositions

As we have already mentioned, the definition of the ? -order has been motivated by the notion
of ? -orthogonality introduced by Hestenes in [9]. So, it is natural to expect that this relation
plays an important role in the different aspects of the ? -order. In this section we shall study
how the ? -orthogonality is related with the ? -minima and the ? -shorted operators. We
show that, if an operator admits a “suitable decomposition”, the ? -minima as well as the
? -shorted can be computed in terms of that decomposition. In the next definition we say
what we understand by a suitable decomposition:

Definition 5.1. Given A ∈ L(H), we shall say that the family of operators {Ai}i∈I , each
Ai ∈ L(H), is a star orthogonal decomposition (? -OD) of A if

1. A∗
i Ak = 0 = AiA

∗
k for every i 6= k;

2. The spectra σ
(
Ai A

∗
i

∣∣∣
R(PAi

)

)
are pairwise disjoint.

3. A =
∑

i∈I Ai , where in the case of decompositions with infinitely many operators, the
serires converges in the strong operator topology. 4

Example 5.2. A typical example, which actually motivates Definition 5.1, is the singular
value decomposition of compact operators. Given a compact operator A ∈ L(H), its singular
value decomposition can be written as:

A =
∞∑
i=1

si Ui , (11)

where the numbers si are the singular values of A, and the operators Ui are partial isometries
of finite rank. In this case, {si Ui}i∈N is a ? -OD of A. Decompositions like (11) are sometimes
called Penrose’s decompositions (see [8]). 4

Lemma 5.3. Let A ∈ L(H) and let {Ai}i∈I a ? -OD of A. Then

1. AA∗ =
∑

i∈I AiA
∗
i and A∗A =

∑
i∈I A∗

i Ai .

2. The projections PAi
are pairwise orthogonal, and PA =

∑
i∈I PAi

.

3. For every i ∈ I, it holds that PAi
∈ PA , so that Ai = PAi

A
?

≤A .

Proof. Straightforward. �

Proposition 5.4. Let A, B ∈ L(H) such that A
?

≤B, and let {Bi}i∈I a ? -OD of B. Then
the sequence {A ∧? Bi}i∈I is a ? -OD of A.

Proof. By Theorem 2.7, PA commutes with BB∗. So, by Lema 5.3 and the second condition
in Definition 5.1, PA commutes with each BiB

∗
i and each PBi

. Denote by Pi = PAPBi
∈ PBi

,

and Ai = PiBi

?

≤Bi (by Theorem 2.7). In particular,

σ
(
Ai A

∗
i

∣∣∣
R(PAi

)

)
⊆ σ

(
Bi B

∗
i

∣∣∣
R(PBi

)

)
=⇒ σ

(
Ai A

∗
i

∣∣∣
R(PAi

)

)
are disjoint .
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On the other hand, straightforward computations also show that A∗
i Ak = 0 = AiA

∗
k for every

i 6= k. Finally, as PA ≤ PB =
∑

i∈I PBi
, then PA =

∑
i∈I Pi and A = PA B =

∑
i∈I Ai .

Therefore, {Ai}i∈I a ? -OD of A. Thus, it is enough to prove that each Ai = A ∧? Bi . Fix

i ∈ I, and observe that PA∧?Bi
≤ PA and PA∧?Bi

≤ PBi
. So PA∧?Bi

≤ Pi . Since A∧? Bi

?

≤Bi

and also Ai

?

≤Bi , Theorem 2.7 assures that A ∧? Bi

?

≤Ai . The other inequality follows by

Lemma 5.3 and the fact that Ai

?

≤Bi . �

Corollary 5.5. Let A, B ∈ L(H), and let {Bi}i∈I an ? -OD of B. Then the sequence
{A ∧? Bi}i∈I is a ? -OD of A ∧? B.

Proof. It is a direct consequence of Proposition 5.4 and the fact that

(A ∧? B) ∧? Bi = A ∧? (B ∧? Bi) = A ∧? Bi . �

Lemma 5.6. Let A ∈ L(H) and {Ai}i∈I a ? -OD of A. For every i ∈ I, let {Aij}j∈Ji
be a

? -OD of Ai . Then {Aij : i ∈ I , j ∈ Ji} is an ? -OD of A.

Proof. Straightforward. �
As a consequence of this lemma and Corollary 5.5 we obtain the following result:

Proposition 5.7. Let A, B ∈ L(H). Suppose that {Ai}i∈I is a ? -OD of A and {Bj}j∈J is
a ? -OD of B. Then {Ai ∧? Bj}(i,j)∈I×J is an ? -OD of A ∧? B. In particular,

A ∧? B =
∑

(i,j)∈I×J

Ai ∧? Bj . �

Finally, we state the relationship between ? -OD and shorted operators:

Proposition 5.8. Let A ∈ L(H), S, T v H and suppose that {Ai}i∈I is a ? -OD of A.

Then, the sequence {
?

Σ (Ai ,S, T )}i∈I is a ? -OD of
?

Σ (A,S, T ).

Proof. Let Bi =
?

Σ (A,S, T )∧? Ai , for every i ∈ I. Then, by Proposition 5.4, {Bi}i∈I is a ? -

OD of
?

Σ (A,S, T ). Therefore, it is enough to prove that Bi =
?

Σ (Ai ,S, T ) for each i ∈ I. So,

fix i ∈ I. On one hand, Lemma 5.3 assures that Ai

?

≤A, and hence
?

Σ (Ai ,S, T )
?

≤
?

Σ (A,S, T )

for every i ∈ I. On the other hand, by definition,
?

Σ (Ai ,S, T ) ≤ Ai . Therefore each
?

Σ (Ai ,S, T )
?

≤Bi . Conversely, by its definition Bi

?

≤Ai . Moreover, as Bi

?

≤
?

Σ (A,S, T ),

R(Bi) ⊆ T and R(B∗
i ) ⊆ S. So, Bi

?

≤
?

Σ (Ai ,S, T ), which concludes the proof. �
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