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Abstract. In this paper we present an embedding of abstract argumentation
systems into the framework of Barwise and Seligman’s logic of information flow.
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feature of non-monotonicity of commonsense reasoning obtains as the transition
from one local logic to another, due to a change in certain background conditions.
Each of Dung’s extensions of argument systems leads to a corresponding ordering of
background conditions. The relations among extensions becomes a relation among
partial orderings of background conditions. This introduces a conceptual innovation
in Barwise and Seligman’s representation of commonsense reasoning.
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1. Introduction

The modeling of commonsense reasoning has been a goal of Artificial
Intelligence since its inception almost fifty years ago (McCarthy and
Hayes, 1969). This project has been hampered by logical limitations,
one of the most important being that, in contrast to first order logic,
commonsense reasoning is non-monotonic. That is, it allows for changes
in the conclusions of a line of reasoning as a result of the incorporation
of new information.

Many alternative forms of representing non-monotonicity have been
advanced since the end of the 1970s, when researchers in AI realized
that classical formal logic was not enough to represent the reason-
ing abilities of intelligent agents (MacDermmot and Doyle, 1980),(Mc-
Carthy, 1980),(Reiter, 1980). One approach which was particularly
successful in incorporating non-monotonicity while at the same time
retaining other features of commonsense reasoning was argumentation
systems (Loui, 1987), (Pollock, 1987), (Poole, 1988), (Lin and Yoham,
1989), (Simari and Loui, 1992). These systems capture quite accurately
the dynamics of deliberation, in which agents weigh the pros and cons
of the conclusions of different lines of reasoning, and end up choosing
the “strongest”. The incorporation of new information may activate a
new line of reasoning, with a stronger conclusion that may revoke the
previously held conclusions.

However the advantages of argumentation for representing non-mo-
notonicity are not without a downside, namely, a quite radical de-
parture from orthodox logic. Although this estrangement is natural,
given the inability of orthodox logic to handle the incorporation of new
information, many interesting characteristics of the orthodox approach
that are worth preserving are lost in argumentation systems. For ex-
ample, argumentation systems lack a semantics in the usual logical
sense; instead, they are interpreted by an algebra of notational devices
which determines the warranted arguments in a given context. These
interpretations can be thought of as supplying a pragmatic foundation,
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LOCAL LOGICS AND DEFEASIBLE ARGUMENTATION 3

in the sense that the correct behavior of the system is evaluated in
terms of how well they yield the “right” (i.e. intuitive) answer1.

At around the same time that argumentation systems were intro-
duced, another line of attack on the problem of representing non-mo-
notonicity began to achieve success in logic. The late Jon Barwise, as a
culmination of his work of two decades, introduced (in joint work with
Jerry Seligman) a framework to represent the flow of information in
distributed systems (Barwise and Seligman, 1997). By a simplification
of traditional logic, in order to represent a wide class of contexts in
which the information about one component has implications for the
information about another, the logic of information flow succeeded in
providing an alternative representation of commonsense reasoning.

In an audacious move, Barwise made the claim that reasoning should
be put in a framework suitable for the study of physical systems (in-
cluding the use of numerical intervals for the values of variables). In
Barwise and Seligman’s framework, non-monotonicity obtains as a re-
sult of changes in the background conditions of reasoning processes
about spaces of states. This procedure allowed him to keep a logical
formalism with the desired properties of commonsense reasoning.

Our goal in this paper is to get the best of both worlds. While, on one
hand, argument systems seem more natural to represent some natural
features of reasoning, Barwise and Seligman’s logic of information flow
provides a powerful logical apparatus. We will show that a very abstract
system of argumentation, developed by P.M.Dung (Dung, 1995), can be
seen as an instance of Barwise’s commonsense reasoning in state spaces.
On the other hand, this embedding bites back: the different criteria of
selection of conclusions detected by Dung may be also incorporated in
Barwise’s scheme. These criteria represent different epistemic attitudes,
like skepticism or credulity. By representing these attitudes as different
ways in which background conditions may be structured, we introduce
a conceptual innovation to Barwise and Seligman’s framework. They
conceived only one criterion according to which background conditions
may be ordered. In this extensions, commonsense reasoning, accord-
ing different criteria, may lead to different orderings of background
conditions.

In section 2 we present the fragment of Barwise and Seligman’s the-
ory that we shall use for the characterization of commonsense reasoning.
In section 3 we will discuss briefly Dung’s formalization of argument
systems. In section 4 we will present our embedding of Dung’s system

1 There are some paradigmatic problems, with a clear intended answer, that are
used to test the performance of argument systems. The best known are about the
flying ability of a penguin, once one accepts that penguins are birds and that birds
fly.
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4 G. BODANZA AND F. TOHMÉ

into Barwise and Seligman’s. Moreover, we will show how, in turn, the
later framework becomes expanded, allowing us to represent several
criteria of reasoning.

2. Local Logics and Commonsense Reasoning

Barwise and Seligman developed a theory of information flow in which
the notion of local logic plays a fundamental role in the modeling
commonsense reasoning. The starting idea is that certain theoretical
entities called ‘tokens’ or ‘situations’2 are classified by types.

DEFINITION 2.1. A classification is a tuple C = 〈Sit(C), typ(C),
|=C〉 where Sit(C) is a non-empty set of objects called the situations of
C, typ(C) is a set of objects called the types of C, and |=C is a binary
relation on Sit(C)× typ(C).

Each classification leads to a “theory” and a “local logic”. If C is
a classification, a theory T on C is a set of sequents Γ �C ∆, such
that Γ, ∆ ⊆ typ(C), and for every situation s ∈ Sit(C), if s |= γ for
every γ ∈ Γ then s |= δ for some δ ∈ ∆. These sequents are called the
constraints of the theory. A theory is regular iff each constraint verifies
the properties of identity, weakening and global cut (see (Barwise and
Seligman, 1997): 119). A local logic L on C consists of the classification
C, a regular theory T and a subset NL ⊆ Sit(C) of situations which
satisfy all the constraints in T , called the normal situations. A local
logic is sound if every situation of C is normal, and it is complete if
T contains all the constraints satisfied by all the normal situations.
Theories and local logics derived from a fixed classification can be
ordered partially. For regular theories T1, T2 over C, T1 � T2 iff every
constraint of T1 is also a constraint of T2. Moreover, for local logics
L1 and L2 in a fixed classification C, L1 � L2 iff T1 � T2 for the
corresponding theories T1 of L1 and T2 of L2, and NL2

⊆ NL1
.

These formal tools can be applied to the study of non-monotoni-
city in commonsense reasoning. For instance, we can take the state
space of a system, say a flashlight, and give a classification in which
the situations describe instances of the flashlight and the types are
events, i.e., sets of states which have common attributes (for example,
the states where the flashlight’s batteries are charged, those where
the bulb is burned, and so on). A commonsense theory of flashlights
could contain constraints such as ‘if the switch is on then the bulb is

2 In (Barwise and Seligman, 1997) they use the term ‘tokens’ while Barwise refers
to ‘situations’ in (Barwise, 1999). We use the later expression from now on.
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LOCAL LOGICS AND DEFEASIBLE ARGUMENTATION 5

lit’ (let us symbolize this with ‘{On(switch)} � {Lit(bulb)})’. Under
“normal” conditions we can accept this constraint as valid, while ex-
ceptional situations, for example, those in which the batteries are not
charged, would be considered “abnormal” and the constraint not valid.
Moreover, the theory is not regular for such situations since weakening
is violated: {On(switch),¬Charged(batteries)} �� {Lit(bulb)}. Hence,
the local logic for “normal” flashlights is sound only if the batteries
are charged. non-monotonicity can be viewed in this model as arising
from the transition from one local logic to another: usually we assume
the local logic of normal flashlights with charged batteries, but when
this “background” condition changes we pass to the local logic of the
flashlights with batteries without charge.

A particular kind of local logic can be derived in terms of state space
models. The state of a system in a given moment can be described by
selecting some parameters and giving the value of those parameters in
that moment. Clearly, each situation (particular instance) of a system
has exactly one state (even when some states could not correspond to
any situation).

DEFINITION 2.2. A state space (classification) S = 〈Sit(S), Ω, |=S〉
classifies the situations Sit(S) by means of the types in Ω, called states.
Each situation has exactly one state in Ω.

As any other classification, a state space classification can be asso-
ciated to a local logic:

DEFINITION 2.3. The canonical local logic based on the state space
S, Log(S), consists of the following items:

− A classification of events Evt(S) = 〈Sit(S), 2Ω, |=Evt(S)〉.
− A regular theory Th(Log(S)) in which each constraint is of the
form Γ �Th(Log(S)) ∆, meaning that each situation s ∈ Sit(S) that
is classified by every event in Γ becomes classified by at least one
event in ∆.

− The set of situations Sit(S), which are all assumed to be normal.

Events are useful to represent sets of states sharing some common
attributes. Each state σ ∈ Ω classifies a situation s ∈ Sit(S), and
this classification can be extended in a straightforward form: s is also
classified by any event α ∈ 2Ω such that σ ∈ α. Since to say that s is
classified by an event α is equivalent to indicate that there exists a state
σ ∈ α that classifies s in S, we have that Γ �Th(Log(S)) ∆ if and only
if

⋂
α∈Γ

α ⊆ ⋃
β∈∆

β. Notice that since each situation is normal, Log(S)
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6 G. BODANZA AND F. TOHMÉ

is sound. That is, every situation in Sit(S) verifies each constraint in
Th(S).

Log(S) is not the only logic that can be defined over the classification
S (or its extension Evt(S)):

DEFINITION 2.4. A local logic L over S is called a S-logic if it
verifies that Log(S) � L, i.e. for each pair Γ, ∆ ⊆ Evt(S), Γ �Th(Log(S))

∆ implies that Γ �Th(L) ∆ while the normal situations of L are NL ⊆
Sit(S). A state σ ∈ Ω is L-consistent if {σ} ��Th(L) ∅, that is, if every
state is the state of some situation.

Any S-logic L over a state space S determines a sub-space SL ⊆
S. In fact, the normal situations of L are the situations that become
classified by the states in SL. This fact is more precisely characterized
by the following proposition:

PROPOSITION 2.1. If S is a state space and L1 and L2 are two
S-logics, L1 � L2 if and only if SL2

⊆ SL1
.

Proof. See (Barwise and Seligman, 1997): 196-197.�

This relation becomes particularly interesting for the analysis of non-
monotonicity. Given a general description of a state of affairs in terms
of a state space and an intended logic over it, some realizations (the
incorporation of new information, for example) may force to change
the representation to another logic. Two possible reasons for this may
be possible:

− If a new situation s′ is discovered to be normal.

− If a constraint, previously valid in the theory, is no longer accepted.

In more precise terms, assume that we have a S-logic L, with theory
Th(L) and normal situations NL. In the first case, we have that NL ⊂
NL ∪ {s′}. That is, we have a new logic L′, such that L′ � L. In
the second case we have that, if a constraint Γ �Th(L) ∆ is no longer
accepted, we have a new logic L′ such that Th(L) = Th(L′)∪{Γ �Th(L)

∆}. This means, again, that L′ � L. That is:

PROPOSITION 2.2. Given a state space S, the incorporation of a
new normal situation s′ to a theory L leads to a new theory L′ such
that there exist Γ, ∆ ⊆ Evt(S) that verify Γ �Th(L) ∆ but Γ ��Th(L′) ∆.

Proof. Trivial. Assume that all the constraints in L remain valid in L′.
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LOCAL LOGICS AND DEFEASIBLE ARGUMENTATION 7

Then, the normal situations for L keep verifying all the constraints in
L. That is NL = NL′ . Absurd, since we assume that NL′ = NL∪{s′}.
�

Of course, the dual of this result is also valid. That is, the retraction
of a situation deemed normal may lead to the validity of a previously
non-accepted constraint.

As said above, if a logic L changes to a logic L′ such that L′ � L,
this move is paralleled in a change of sub-spaces, namely from SL1

to
SL2

such that SL2
⊆ SL1

. A way of characterizing the sub-spaces is by
some conditions (other than the constraints) verified by each state in
them. That is, we are looking for some background conditions defining
those sub-spaces. More precisely:

DEFINITION 2.5. A background condition B, on a state space S,
is a condition satisfied by some situations, classified by states σ, such
that the set of all these states constitutes a sub-space SB .

The proper characterization of what B is, depends on the state
space under consideration. Even with this generality it is clear that
the following claim is valid:

PROPOSITION 2.3. For each background condition B on S there
exists a logic Log(SB) such that:

1. The Log(SB)-consistent states are those satisfying B.

2. If Γ, ∆ ⊆ Evt(S), Γ �Th(Log(SB)) ∆ if and only if for every state
σ satisfying B, σ ∈ α for all α ∈ Γ implies that σ ∈ β for some
β ∈ ∆.

3. The normal situations are those satisfying B.

Proof. The first property of Log(SB) follows from the definition of
background conditions since each Log(SB)-consistent state σ is the
state of a situation, one in which B is satisfied. The second condition
just follows from the fact that the constraints in Th(Log(SB)) are those
that define a sub-space SB and therefore can be characterized by a
S-logic L in which constraints Γ �Th(L) ∆ are defined as

⋂
α∈Γ

α ⊆
⋃

β∈∆
β. Finally, since this S-logic characterizes only those states in SB,

which classify situations that verify B, these situations are all normal.
�

If we can endow the set of background conditions with a partial order
≤ such that B1 ≤ B2, meaning that B2 puts more stringent conditions
than B1, i.e., there are less (or equal) number of situations verifying
B2 than B1. More precisely:
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8 G. BODANZA AND F. TOHMÉ

DEFINITION 2.6. If B1 ≤ B2 then SB2 ⊆ SB1.

LEMMA 2.1. If B1 ≤ B2 then Log(SB1) � Log(SB2).

Proof. Straightforward from the previous proposition and the defi-
nition of ≤.�

3. Defeasible argumentation

As we said at the beginning of this paper, argument systems provide an
alternative representation of reasoning processes in which non-mono-
tonicity is a natural feature. In these systems, non-monotonicity arises
as the result of the dynamics of deliberation, in which arguments are
compared and may be defeated by other arguments. If new attack-
ing arguments are introduced in a deliberation, the conclusions that
were accepted before (because their supporting arguments were not
defeated) may be revoked and replaced by other conclusions. So, for
example, an argument concluding that the bulb of the flashlight is lit
because the switch is on, may be not defeated in some argumentative
situation where no opposing arguments defeat it. But if some opposing
argument is introduced, for instance one concluding that the batteries
are not charged, then the argument supporting that the bulb is lit
would become defeated in the new situation.

To get a clear understanding of the aims of the defeasible argumen-
tation approach note that its basic units of analysis are arguments, but
not their component propositions. So, a proposition becomes justified
or not just because of the status of acceptability of its supporting argu-
ments but not because of its soundness (or any other proof-theoretical
feature).

We will follow (Dung, 1995) in his abstract characterization of an
argument system.

DEFINITION 3.1. An argument system is a pair AS = 〈AR,�〉,
where AR is a set which elements are called ‘arguments’, and � is an
arbitrary binary relation among arguments called ‘defeat’. A � B is
interpreted as ‘A defeats B’3. (From now on, unless explicitly claimed
otherwise, we always refer to an arbitrary but fixed argument system
AS = 〈AR,�〉.)

3 Dung uses the term ‘attack’ instead of ‘defeat’. We prefer the later, since ‘attack’
could suggest a symmetric relation. We do not assign a special meaning to ‘defeat’,
but it can be understood as being either objective, or consensually accepted, or
decided by a referee, etc.
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LOCAL LOGICS AND DEFEASIBLE ARGUMENTATION 9

Dung assumes that a rational agent accepts an argument A if the
agent can defend A defeating all the defeaters of A. Moreover, a “conflict-
free” set of arguments is admissible for a rational agent if all its argu-
ments are acceptable.

DEFINITION 3.2. (Dung, 1995)

1. An argument A ∈ AR is acceptable in a set S of arguments iff for
all B ∈ AR, if B � A then C � B, for some C ∈ S.

2. A set S of arguments is admissible iff A �� B for all A, B ∈ S, and
A is acceptable with respect to S, for all A ∈ S.

EXAMPLE 3.1. Let AR = {A, B, C} with A � B and B � C. Then
∅ and {A, C} are admissible.

Different intuitions about the defensibility of a set of arguments are
formalized by Dung, by defining different kinds of “extensions”. For
Dung, extensions are not supersets of AR, as it is natural to think, but
the subsets of AR that contain defensible arguments.

DEFINITION 3.3. A set of arguments S ⊆ AR is:

− a stable extension iff A �� B for all A, B ∈ S, and for all A �∈ S,
there exist some B ∈ S such that B � A;

− a preferred extension iff S is a maximal (w.r.t. set inclusion)
admissible set;

− a complete extension iff given the function F (S) = {A : A is
acceptable in S}, F (S) = S (i.e., S is a fixed point of F );

− the grounded extension of AS iff S is the least fixed point of F .

These extensions characterize different epistemic attitudes: preferred
extensions give the most credulous semantics among the extensions,
while the grounded extension (which is unique) gives the most skeptical.
On the other hand, stable extensions are the only not well defined
(i.e., not every argument system has one). The connections between
the different extensions is given by the following result:

LEMMA 3.1.

1. Each stable extension is a preferred extension, but not vice versa.

2. Each preferred extension is a complete extension, but not vice versa.
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10 G. BODANZA AND F. TOHMÉ

3. The grounded extension is the least (w.r.t. set inclusion) complete
extension.

4. The complete extensions form a complete semi-lattice w.r.t. set
inclusion.

Proof. See (Dung, 1995), Lemma 15 (p. 328) for 1 and Theorem 25
(p. 330) for 2, 3 and 4.�

4. Argumentation State Spaces

We can model an argument system as a state space, defining a clas-
sification on that space and a local logic on that classification. The
guiding intuition is that an argument system is an ideal representation
of all the arguments that can be entered into a discussion on a certain
subject, assuming a fixed defeat relation among arguments. For exam-
ple, an argument system representing the previous discussion about the
flashlight’s bulb would contain a symbol for every relevant argument
supporting that the bulb is lit or supporting that it is not. The state
space of the system contains all the possible situations involving those
arguments, where each situation represents a possible particular debate,
a possible instance of the discussion.

DEFINITION 4.1. The argumentation state space of AS = 〈AR,�〉
is SAS = 〈Sit(SAS), ΩAS〉, where Sit(SAS) = ΩAS = 2

AR
(recall that

each situation has exactly one state in Ω; situations and states can be
identified each another in this state space).

EXAMPLE 4.1. Assume AR = {A, B}. The situations of the argu-
mentation state space are Sit(SAS) = {∅, {A}, {B}, {A,B}}.
PROPOSITION 4.1. The canonical local logic based on the argu-
mentation state space SAS, Log(SAS), consists of the following items:

− A classification of events Evt(SAS) = 〈Sit(SAS), 2Ω
AS 〉.

− A regular theory Th(Log(SAS)) in which each constraint is of the
form Γ �Th(Log(SAS)) ∆, meaning that each situation s ∈ Sit(SAS)
that is classified by every event in Γ becomes classified by at least
one event in ∆.

− The set of situations Sit(SAS), which are all normal.

Proof. Immediate from definition 2.3.�
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LOCAL LOGICS AND DEFEASIBLE ARGUMENTATION 11

We are looking for a more interesting local logic than just the canon-
ical. In a given debate, it is important to know on which arguments we
should count on to defend some critical argument. So we are interested
in the local logic of all the states satisfying a specific background con-
dition, to wit, all the states in which that critical argument can be
defended. Here is the crucial idea for rationalizing non-monotonicity,
which can be illustrated with the following example. Suppose we want
to defend an argument A. This argument would be defended unless
another argument defeating it were defended. If A is defeated in the
same argumentation state by an argument B, then there must in time
be another argument C defeating B in that state. Otherwise, A could
not be defended in that argumentation state. Assume A, B and C are
the only three arguments in the system. It is clear that in the states
σ in which A is defensible it is true that if B ∈ σ then also C ∈ σ.
Regularities like this one give us a local logic for the sub-space of all
the states in which A is defensible. As this sub-space is determined
by the fact that A is defensible in all its states, we will say that the
defensibility of A is a background condition satisfied by all those states.

In order to give a formal definition of ‘background conditions’, we
have to fix the meaning of ‘defensibility’. As discussed in the preced-
ing subsection, one can think about different criteria. The extensions
defined by Dung, stable, preferred, grounded and complete, give us
four possible meanings of defensibility and hence four possible kinds of
background conditions.

DEFINITION 4.2. Given an argument system 〈AR,�〉, B ⊆ AR is a
background condition satisfied by an argumentation state σ ∈ Ω〈AR,�〉
iff B ⊆ D ⊆ σ for some set D of arguments that is defensible in
〈σ, �|σ〉. As defensibility is defined in terms of extensions, B can be
super-indexed according to the kind of extension considered, as follows:

− Bs, if D is stable;

− Bp, if D is preferred;

− Bg , if D is grounded;

− Bc, if D is complete.

By proposition 2.3 we know that every background condition B will
determine a sub-space of the argumentation state space, to wit, the
sub-space SB of all the states that satisfy the background condition B.
In turn, SB will determine the local logic Log(SB) of all the constraints
satisfied by all the states in SB. Since background conditions, as de-
fined for argumentation state spaces, can be partially ordered by set
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12 G. BODANZA AND F. TOHMÉ

inclusion, then we have that if B1 ⊆ B2 then Log(SB1) � Log(SB2),
as Lemma 2.1 ensures. That is, as background conditions become more
stringent (i.e., more arguments need to be defended), so the associated
logics increase their strength (i.e., more constraints are added and there
are less states that are normal).

EXAMPLE 4.2. Consider the system AS = 〈{A, B, C}, {C � B,
B � A}〉 where we interpret A: ‘the flashlight’s bulb would be lit if
you turn the switch on’, B: ‘the flashlight’s bulb would not be lit if I
turn the switch on, because the batteries are not charged’, and C: ‘the
flashlight’s bulb would be lit if you turn the switch on, because I charged
the batteries yesterday’. Assume our intuition is that arguments are
defensible if they belong to a preferred extension. Then the states veri-
fying the background condition {A}p (“how can I defend that the bulb
would be lit?”) are 〈{A},�|{A}〉, 〈{A, C},�|{A,C}〉 and 〈{A, B, C},
�〉 since all of them have a preferred extension including {A}. Now,
for any argument A let us define the event [A] ∈ 2ΩAS as the set of all
the states containing the argument A, that is, [A] = {σ : A ∈ σ}. Then
[B] �{A}p [C] is a constraint in Log(S{A}p), the local logic determined
by the sub-space S{A}p . That constraint says that if B (which defeats
A) belongs to the states where A is defensible, then C (which defeats
B) also belongs to those states. We can interpret this as indicating
that to defend the claim that the bulb would be lit if the switch is on,
one must be able to defend the claim that the batteries are charged,
otherwise it could not be defended at all.

We can also induce an ordering of the local logics determined by
background conditions according to the different intuitions behind de-
fensibility (i.e., the different kinds of extensions considered). This will
give us a complete picture of the connections among the different local
logics obtained by the respective intuitions.

DEFINITION 4.3.

− B1 ≤s B2 iff Bs
1 ⊆ Bs

2;

− B1 ≤p B2 iff Bp
1 ⊆ Bp

2 ;

− B1 ≤g B2 iff Bg
1 ⊆ Bg

2 ;

− B1 ≤c B2 iff Bc
1 ⊆ Bc

2.

Similarly,

− Log(SB1) �s Log(SB2) if B1 ≤s B2;
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LOCAL LOGICS AND DEFEASIBLE ARGUMENTATION 13

− Log(SB1) �p Log(SB2) if B1 ≤p B2;

− Log(SB1) �g Log(SB2) if B1 ≤g B2;

− Log(SB1) �c Log(SB2) if B1 ≤c B2.

THEOREM 4.1.

1. If B1 ≤s B2 then B1 ≤p B2.

2. If B1 ≤p B2 then B1 ≤c B2.

3. If B1 ≤g B2 then B1 ≤c B2.

Proof. Let us prove 1, since the proofs for the remaining cases are
similar. Assume B1 ≤s B2. By definition, Bs

1 ⊆ Bs
2. Then, there exists

a stable extension S such that B1 ⊆ B2 ⊆ S. By Lemma 3.1, S is
preferred and hence Bp

1 ⊆ Bp
2 , that by definition implies B1 ≤p B2.�

COROLLARY 4.1.

1. If Log(SB1) �s Log(SB2) then Log(SB1) �p Log(SB2).

2. If Log(SB1) �p Log(SB2) then Log(SB1) �c Log(SB2).

3. If Log(SB1) �g Log(SB2) then Log(SB1) �c Log(SB2).

Proof. Immediate from Theorem 4.1 and Lemma 2.1.�

5. Conclusions

We presented in this paper an embedding of argumentation systems
in the framework of local logics based on state spaces. We conceive
argumentation systems as supporting different states in a deliberation
or discussion. The relations among these states is captured by means
of local logics.

We saw that the embedding is quite natural, providing a clear se-
mantics for argumentation while at the same time keeping its prop-
erties. In particular, the non-monotonicity that arises in argument
systems obtains in the corresponding local logics as the transition from
a background condition to another.

Background conditions, which Barwise and Seligman conceived as
partially ordered according to a single criterion, may be ordered, in
our case, in four different forms. Each partial order corresponds to a
different epistemic attitude (a criterion of defensibility of arguments).
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These partial orders, in turn, have a close relation among them, as a
reflection of the properties of the extensions of argument systems that
obey to the criteria of defensibility.

The possibility of having different orderings of the background con-
ditions expands the reach of Barwise and Seligman’s framework, since
it allows us to represent the fact that commonsense reasoning may
conform to different epistemic attitudes. In fact, while here we consider
only attitudes in term of skepticism, many other alternatives are readily
available. Therefore, our framework may provide a general taxonomy
of reasoning, which is matter for further work.
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