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1 Introduction

A recent paper by S. Smale and D. X. Zhou [23] on Shannon sampling theorem deals with
reducing noise in the sampling data, using probability estimates and a measure of the richness
of the data. Related problems have also recently studied by S. Li and H. Ogawa [21], Y.
Eldar [14], O. Christensen and Y. Eldar [7] and Y. Eldar and T. Werther [15], among others.
In this note we show that the use of oblique projections in Hilbert spaces together with a
convenient modification of the measure of richness of the data used by Smale and Zhou,
give an error estimation which answer a question raised in their paper (see [23] Remark p.
303). Our method works as well for abstract Hilbert spaces as for reproducing kernel Hilbert
spaces.
Given a complete metric space X and a reproducing kernel Hilbert space H of function
defined on X, consider discrete subsets t, x of X and define, as Smale and Zhou, the closed
subspaces

Hk, t = span
〈
kt : t ∈ t

〉
and Hk, x = span 〈kx : x ∈ x〉.

of H, where k is the kernel of H. Suppose that {kt}t∈t is a frame for Hk, t and {kx}x∈x is
a frame for Hk, x and let F, G be their synthesis operators. Denote Kt,t = F ∗F , Kx,x =
GG∗ and Kx,t = K∗

t,x
= G∗F . Finally, let Dω be the diagonal operator with respect to

the canonical basis of `2(x) defined by a sequence ω = {ωx}x∈x of positive numbers with
inf ωx > 0. Given f ∈ H and y = {f(x)}x∈x (the sampling data) it is proved that the
solution of the minimization problem

fα,ω = arg min
h∈Hk, t

(∑
x∈x

ωx|h(x)− f(x)|2 + α‖h‖2
H

)
,
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is fα,ω =
∑

t∈t Lα,ω(y)(t) kt, where Lα,ω =
(
Kt,xDωKx,t + αKt,t

)†
Kt,xDω.

In addition, if x provides rich data with respect to t and ω (see definition 4.1), then

‖fα,ω − f‖H ≤
∥∥∥(1− PD,Hk, t

)(f)
∥∥∥
H

+

(
α

‖Kt,t‖
γ(D

1/2
ω Kx,t) + α γ(Kt,t)

)
‖f‖H

where D = (Kx,x +αPHk, t
) and PD,Hk, t

is the orthogonal projection onto Hk, t with respect
to the semi-inner product on H defined by D (see details in section 2).

2 Preliminaries

Let H be a separable Hilbert space, L(H) the algebra of bounded linear operators on H and
L(H)+ the cone of positive (semi-definite) operators. For an operator A ∈ L(H), we denote
by R(A) the range or image of A, N(A) the nullspace of A, σ(A) the spectrum of A, A∗

the adjoint of A, ‖A‖ the usual norm of A and, if R(A) is closed, A† the Moore-Penrose
pseudoinverse of A. Given a closed subspace S of H, we denote by PS the orthogonal (i.e.
selfadjoint) projection onto S.

Angle between subspaces and reduced minimum modulus

We need the following two definitions of angles between subspaces in a Hilbert space; they
are due, respectively, to Friedrichs and Dixmier (see [12] and [16], and the excellent survey
by Deutsch [11]).

Definition 2.1. Given two closed subspaces M and N , the Friedrichs angle between M
and N is the angle in [0, π/2] whose cosine is defined by

c [M, N ] = sup
{
| 〈x, y〉 | : x ∈M	 (M∩N ), y ∈ N 	 (M∩N ) and ‖x‖ = ‖y‖ = 1

}
.

The Dixmier angle between M and N is the angle in [0, π/2] whose cosine is defined by

c0 [M, N ] = sup
{
| 〈x, y〉 | : x ∈M, y ∈ N and ‖x‖ = ‖y‖ = 1

}
.

The next proposition collects the results on angles which are relevant to our work.

Proposition 2.2. Let M and N be two closed subspaces of H. Then

1. c [M, N ] = c0 [M	 (M∩N ), N ] = c0 [M, N 	 (M∩N ) ].

2. c [M, N ] = c
[
M⊥, N⊥ ]

3. c [M, N ] < 1 if and only if M+N is closed.

4. H = M⊥ +N⊥ if and only if c0 [M, N ] < 1.
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Definition 2.3. Given T ∈ L(H), the reduced minimum modulus γ(T ) is defined by

γ(T ) = inf{‖Tx‖ : ‖x‖ = 1 , x ∈ N(T )⊥} (1)

It is well known that γ(T ) = γ(T ∗) = γ(T ∗T )1/2. Also, it can be shown that an operator T
has closed range if and only if γ(T ) > 0. In this case, γ(T ) = ‖T †‖−1.

The next result has been proved in [2] (See also [5]).

Proposition 2.4. If A, B ∈ L(H) have closed ranges, then

γ(A)γ(B) s [ N(A), R(B) ] ≤ γ(AB) ≤ ‖A‖ ‖B‖ s [ N(A), R(B) ] . (2)

In particular, AB has closed range if and only if s [ N(A), R(B) ] > 0.

D-selfadjoint projections and compatibility

Any D ∈ L(H)+ defines a bounded, positive and sesquilinear form 〈ξ, η〉D = 〈Dξ, η〉, ξ, η ∈
H. We say that C ∈ L(H) is D-selfadjoint if DC = C∗D. Consider the set of D-selfadjoint
projections whose range is exactly S:

P(D,S) = {Q ∈ Q : R(Q) = S, DQ = Q∗D}.

A pair (D,S) is called compatible if P(D,S) is not empty. In this case, there exists a
distinguished projection PD,S ∈ P(D,S) whose nullspace is D−1(S⊥)	

(
D−1(S⊥) ∩ S⊥

)
.

In the following theorem we present several results about compatibility, taken from [8] and
[9].

Theorem 2.5. Given D ∈ L(H)+, let S be a closed subspace of H such that the pair (D,S)
is compatible. Then

1. P(D,S) has a unique element if and only if N(D) ∩ S = {0}.

2. PD,S has minimal norm in P(D,S), i.e. ‖PD,S‖ = min{ ‖Q‖ : Q ∈ P(D,S)}.

The reader is referred to [8], [9] and [10] for several applications of PD,S (see also Hassi and
Nordström [17]).

Frames

We introduce some basic facts about frames in Hilbert spaces. For complete descriptions of
frame theory and applications, the reader is referred to the review by Heil and Walnut [18]
or the books by Young [25] and Christensen [6].
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Definition 2.6. Let H be a separable Hilbert space, W a closed subspace of H and F =
{fn}n∈N a sequence in W . The sequence F is called a frame for the subspace W if there
exist numbers A, B > 0 such that, for every f ∈ W ,

A‖f‖2 ≤
∑
n∈N

| 〈f, fn〉 |2 ≤ B‖f‖2 (3)

The optimal constants A, B for equation (3) are called the frame bounds for F . F is a tight
frame if A = B, and it is a Parseval frame if A = B = 1.

Associated with F there is an operator T : `2 → H such that T (en) = fn, where {en}n∈N
denotes the canonical basis of `2. This operator is called the synthesis operator of F . In the
case of finite dimensional frames we assume that the domain of the synthesis operator is Cm

where m is the number of vectors of the frame. The adjoint T ∗ ∈ L(H, `2) of T , given by

T ∗(f) =
∑
n∈N

〈f, fn〉en, is called analysis operator of F , and the operator S = TT ∗ is usually

called the frame operator of F . Observe that

Sf =
∑
n∈N

〈f, fn〉 fn f ∈ W . (4)

It follows from (3) that A.PW ≤ S ≤ B.PW , so that S|W is invertible in L(W).

3 Sampling in abstract Hilbert spaces

Throughout this section M and W denote closed subspaces of H, {fn} and {gn} are frames
for the subspaces W and M respectively, with synthesis operators F and G. Finally {en}
denotes the canonical orthonormal basis of `2.

The next notion is an extension of one introduced by Smale and Zhou [23] in reproducing
kernel Hilbert spaces.

Definition 3.1. We say that G provides rich data with respect to F if

inf
z∈N(F )⊥

‖G∗F (z)‖ > 0.

This notion is related to a decomposition of H as a sum of W⊥ and M

Proposition 3.2. The following statements are equivalent:

1. G provides rich data with respect to F .

2. G∗F is a closed range operator and W ∩M⊥ = {0}.

3. c0

[
W , M⊥ ] < 1 .

4. c
[
W⊥, M

]
< 1 and W⊥ +M = H.

Proof.
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1 ⇒ 2 The condition of rich data implies that the restriction of G∗F to N(F )⊥ is injective,
so W ∩M⊥ = {0}. On the other hand, since N(G∗F ) = N(F ), it also implies that
γ(G∗F ) > 0. Hence G∗F has closed range.

2 ⇒ 3 It is a direct consequence of Proposition 2.4.

3 ⇒ 4 By proposition 2.2, c0

[
W , M⊥ ] = c

[
W , M⊥ ] and c

[
W , M⊥ ] = c

[
W⊥, M

]
.

So, c
[
W , M⊥ ] < 1. This in particular shows that W⊥ + M is closed. Therefore,

since c0

[
W , M⊥ ] < 1 also implies that W ∩M⊥ = {0},

W⊥ +M = W⊥ +M = (W ∩M⊥)⊥ = H.

4 ⇒ 1 Firstly, note that W ∩M⊥ = (W⊥ +M)⊥ = {0}. Hence, N(G∗F ) = N(F ). So, by
Proposition 2.4,

inf
x∈N(F )⊥

‖G∗F (x)‖ = γ(G∗F ) ≥ γ(G∗) γ(F ) s [ R(F ), N(G∗) ]

= γ(G∗) γ(F ) s
[
W , M⊥ ] > 0.

�

Remark 3.3. Note that the above proposition emphasizes the fact that the hypothesis of
rich data only depends on the subspaces and not on the particular frames chosen for each
subspace. N

The next result shows that D-selfadjoint projections, for a convenient D, play a relevant role
in certain minimization problems.

Proposition 3.4. Let f ∈ H, y = {yn} = G∗(f) the sampling data, and assume that G
provides rich data with respect to F . Then, the solution of the minimization problem

fW = arg min
h∈W

∞∑
n=1

| 〈h, gn〉 − yn|2

is given by fW = PGG∗,W(f). In particular

‖fW − f‖ = ‖(1− PGG∗,W)(f)‖ ≤ s
[
W , (GG∗)−1(W⊥)

]−1 ‖f‖.

Proof. First of all, note that

fW = arg min
h∈W

∞∑
n=1

| 〈h, gn〉 − yn|2

= F
(

arg min
z∈N(F )⊥

∥∥∥G∗F
(
z
)
− y
∥∥∥

`2

)
= F

(
arg min

z∈N(G∗F )⊥

∥∥∥G∗F
(
z
)
− y
∥∥∥

`2

)
,
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where we have used that N(G∗F ) = N(F ) because G provides rich data with respect to F .

Since arg min
z∈N(G∗F )⊥

∥∥∥G∗F
(
z
)
− y
∥∥∥

`2
= (G∗F )†(y) = (G∗F )†G∗(f), we get

fW = F (G∗F )†G∗(f). (5)

Let Q = F (G∗F )†G∗. It is easy to see that Q is a projection whose range is W . On the
other hand, as (G∗F )† = (G∗FF ∗G)†F ∗G,

(GG∗)Q = (GG∗)F (G∗FF ∗G)†F ∗GG∗

which shows that (GG∗)Q is selfadjoint, and therefore Q is (GG∗)-selfadjoint. Finally, since
N(GG∗) ∩ W = N(G∗) ∩ W = M⊥ ∩ W = {0}, by Theorem 2.5, there exists only one
(GG∗)-selfadjoint projection onto W . Hence, Q = PGG∗,W .

�

Now, we are interested in estimating the reconstruction error when we use a perturbed data
instead of the original one.

Proposition 3.5. Let y = {yn} = G∗(f) and fW as in Proposition 3.4. Suppose that f̂W is
the vector obtained when we use ŷ = {ŷn} instead of the original data y = {yn}, then:

‖f̂W − fW‖ ≤ ‖F (G∗F )†‖‖y − ŷ‖ ≤ ‖F‖
γ(G∗F )

‖y − ŷ‖ ≤ ‖F‖
γ(G)γ(F )c0 [W , M⊥ ]

‖y − ŷ‖

Proof. It follows from equation (5), the definition of reduced minimum modulus, and Propo-
sition 2.4. �

3.1 The weighted regularized case

Let α > 0 and {ωn} a sequence of positive numbers bounded from above. In this subsection
Dω will denote the diagonal bounded operator on `2 defined by Dω(en) = ωn en. Before
stating our first result, we need to modify the definition of rich data in the presence of the
diagonal operator Dω.

Definition 3.6. We say that G provides rich data with respect to F and Dω if

inf
z∈N(F )⊥

‖D1/2
ω G∗F (z)‖ > 0.

Remark 3.7. As in the non-regularized case, G provides rich data with respect to F and Dω

if and only if c0

[
W , M⊥ ] < 1. However, if the operator Dω is not invertible, the property

of having rich data depends not only on the subspaces W and M, but also on the operators
G, F and Dω. N

Now, we are ready to state the first result of this subsection:
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Proposition 3.8. Let f ∈ H and y = {yn} = G∗(f) be the sampling data. Then the solution
of the minimization problem:

fW,α,ω = arg min
h∈W

( ∞∑
n=1

ωn| 〈h, gn〉 − yn|2 + α‖h‖2
)
, (6)

is given by fW,α,ω = Lα,ω(f), where Lα,ω is defined by

Lα,ω = F
(
F ∗GDωG∗F + αF ∗F

)†
F ∗GDωG∗.

In particular, if we assume that G provides rich data with respect to F and Dω, we get the
following estimation of the reconstruction error:

‖fW,α,ω − f‖ ≤
∥∥∥(1− P(GG∗+αPW ),W)(f)

∥∥∥+

(
α

‖F‖2

γ(D1/2G∗F )2 + α γ(F )2

)
‖f‖ (7)

Remark 3.9. The first term appears if f does not belong to W . On the other hand, the

term α

(
‖F‖2

γ(D1/2G∗F )2 + α γ(F )2

)
‖f‖ tends to zero as α −→ 0 and only depends on the

regularization. N

Before proving Proposition 3.8, we need the following norm estimation.

Lemma 3.10. Suppose that G provides rich data with respect to F and Dω. Then,∥∥∥∥(F ∗(GDωG∗ + αPW)F
)†∥∥∥∥ ≤ 1

γ(D1/2G∗F )2 + α γ(F )2
.

Proof. Note that N(F ∗GDωG∗F ) = N(F ∗F ) = N(F ∗GDωG∗F − αF ∗F ). Then

γ(F ∗(GDωG∗ + αPW)F ) = γ(F ∗GDωG∗F + αF ∗F )

≥ γ(F ∗GDωG∗F ) + γ(αF ∗F )

= γ(D1/2
ω G∗F )2 + αγ(F )2.

�

Proof of proposition 3.8. Let L = `2 ⊕H and consider the operator T : `2 → L defined by

T (z) =

(
D

1/2
ω G∗F
α1/2F

)
(z) =

(
D1/2

ω G∗F (z)
)
⊕
(
α1/2F (z)

)
.

In term of the operator T , using the fact that N(T ) = N(F ), the least square problem stated
in (6) can be rewritten in the following way:

fW,α,ω = arg min
h∈W

( ∞∑
n=1

ωn| 〈h, gn〉 − yn|2 + α‖h‖2
)

= F

(
arg min

z∈N(T )⊥

∥∥T (z)− (D1/2
ω (y)⊕ 0)

∥∥) .
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Therefore, fW,α,ω = FT †(D
1/2
ω (y)⊕ 0). Using the identity A† = (A∗A)†A∗, we get

T † =

((
F ∗GD

1/2
ω α1/2F ∗

) (
D

1/2
ω G∗F
α1/2F

))† (
F ∗GD

1/2
ω α1/2F ∗

)
=
(
F ∗GDωG∗F + αF ∗F

)† (
F ∗GD

1/2
ω α1/2F ∗

)
.

Hence,

fW,α,ω = F
(
F ∗GDωG∗F + αF ∗F

)† (
F ∗GD

1/2
ω α1/2F ∗

)
(D1/2

ω (y)⊕ 0)

= F
(
F ∗GDωG∗F + αF ∗F

)†
F ∗GDωG∗(f) = Lα,ω(f)

Straightforward computations show that
(
F
(
F ∗(GDωG∗+αPW)F

)†
(F ∗(GDωG∗+αPW)) =

P(GG∗+αPW ),W . Using this fact and Lemma 3.10 we obtain:

‖fW,α,ω − f‖ =
∥∥∥(F(F ∗GDωG∗F + αF ∗F

)†
F ∗GDωG∗ − I

)
(f)
∥∥∥

=
∥∥∥(F(F ∗(GDωG∗ + αPW)F

)†
F ∗GDωG∗ − I

)
(f)
∥∥∥

≤
∥∥∥∥(F(F ∗(GDωG∗ + αPW)F

)†
(F ∗(GDωG∗ + αPW))− I

)
(f)

∥∥∥∥
+

∥∥∥∥(F(F ∗(GDωG∗ + αPW)F
)†

αF ∗PW

)
(f)

∥∥∥∥
=
∥∥∥(I − P(GG∗+αPW ),W)(f)

∥∥∥+

∥∥∥∥(F(F ∗(GDωG∗ + αPW)F
)†

αF ∗PW

)
(f)

∥∥∥∥
≤
∥∥∥(I − P(GG∗+αPW ),W)(f)

∥∥∥+

∥∥∥∥(F ∗(GDωG∗ + αPW)F
)†∥∥∥∥ α‖F‖2 ‖f‖

≤
∥∥∥(1− P(GG∗+αPW ),W)(f)

∥∥∥+

(
α

‖F‖2

γ(D
1/2
ω G∗F ) + α γ(F )2

)
‖f‖

�

As before, we also want an estimation of the error produced by a perturbation of the sampling
data.

Proposition 3.11. Let y = {yn} = G∗(f) and fW,α,ω as in Proposition 3.8 and suppose that

f̂W,α,ω is the vector obtained if we use ŷ = {ŷn} instead of the original data y = {yn}. Then

‖f̂W,α,ω − fW,α,ω‖ ≤
∥∥∥∥F(F ∗(GDωG∗ + αPW)F

)†
F ∗GDω

∥∥∥∥ ‖y − ŷ‖

≤

(
‖F‖ ‖ω‖∞‖F ∗G‖

γ(D
1/2
ω G∗F ) + α γ(F )2

)
‖y − ŷ‖
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Proof. Note that

‖f̂W,α,ω − fW,α,ω‖ ≤
∥∥∥∥(F(F ∗(GDωG∗ + αPW)F

)†
F ∗GDω

)
(y − ŷ)

∥∥∥∥
≤ ‖F‖ ‖F ∗G‖ ‖ω‖∞

∥∥∥∥(F ∗(GDωG∗ + αPW)F
)†∥∥∥∥ ‖y − ŷ‖.

Therefore, the desired estimation follows by Lemma 3.10. �

4 Sampling in reproducing kernel Hilbert spaces

Let X be a complete metric space and K a Hilbert space. Given a function K : X → K, for
every η ∈ K we define fη(x) = 〈η, K(x)〉. Let H be the space of all the functions obtained
in this way. Defining T : K → H by

T (η) = 〈η, K(·)〉 ,

the space H may be endowed with the norm

‖f‖H = inf{‖v‖ : f = Tv}.

In this way, T becomes an isometry and H, with the inner product associated to the norm
‖ · ‖H, becomes a Hilbert space isomorphic to N(T )⊥. Let k : X × X → C be the kernel
defined by

k(x1, x2) = 〈K(x2), K(x1)〉K .

Then:

• kx(·) = k(·, x) ∈ H for every x ∈ X.

• For every x ∈ X and every f ∈ H the identity f(x) = 〈f, kx〉H holds.

A Hilbert space of functions defined on a complete metric space with such a kernel is called
reproducing kernel Hilbert space (RKHS). It is well known that the existence of a reproducing
kernel is equivalent to the fact that every point evaluation be a continuous functional ([3]
[22]).

In this section we shall translate our results on sampling in abstract Hilbert spaces to RKHS.
Following Smale and Zhou’s notation, let t and x be discrete subsets of X and define

Hk, t = span
〈
kt : t ∈ t

〉
and Hk, x = span 〈kx : x ∈ x〉.

We shall assume that {kt}t∈t and {kx}x∈x are frames for Hk, t and Hk, x respectively. If F
denotes the synthesis operator of {kt}t∈t and G denotes the synthesis operator of {kx}x∈x

we shall consider the following operators:

Kt,t = F ∗F Kx,x = GG∗ and Kx,t = K∗
t,x = G∗F.

Finally, {ωx}x∈x is a sequence of positive numbers bounded from above, and Dω the corre-
sponding diagonal operator with respect to the canonical basis of `2(x).
Let us begin with the notion of rich data in this setting:
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Definition 4.1. We say that x provides rich data with respect to t and ω if

inf
z∈N(Kt,t)

⊥
‖D1/2

ω Kx,t(z)‖ > 0.

Equivalently, if the operator D
1/2
ω Kx,t has closed range and Hk, t ∩Hk, x

⊥ = {0}.
Now, we are ready to rewrite Propositions 3.8 and 3.11 in this setting:

Proposition 4.2. Given f ∈ H and y = {f(x)}x∈x (the sampling data), the solution of the
minimization problem

fα,ω = arg min
h∈Hk, t

(∑
x∈x

ωx|h(x)− f(x)|2 + α‖h‖2
H

)
, (8)

is given by

fα,ω =
∑
t∈t

Lα,ω(y)(t) kt,

where Lα,ω : `2(x) → `2(t) is the operator defined by

Lα,ω =
(
Kt,xDωKx,t + αKt,t

)†
Kt,xDω.

In particular, if we assume that x provides rich data with respect to t and ω, we get the
following estimation of the reconstruction error:

‖fα,ω − f‖H ≤
∥∥∥(1− PD,Hk, t

)(f)
∥∥∥
H

+

(
α

‖Kt,t‖
γ(D

1/2
ω Kx,t) + α γ(Kt,t)

)
‖f‖H (9)

where D = (Kx,x + αPHk, t
).

Proposition 4.3. Let y = {f(x)}x∈x and fα,ω as in Proposition 4.2. Suppose that f̂α,ω is
the vector obtained if we use ŷ = {ŷx}x∈x instead of the original data y = {f(x)}x∈x. Then:

‖f̂α,ω − fα,ω‖H ≤

(
‖Kt,t‖1/2‖ω‖∞‖Kt,x‖

γ(D
1/2
ω Kx,t) + α γ(Kt,t)

)∥∥∥ y − ŷ
∥∥∥

`2(x)
.

Concluding remarks. As we have already mentioned in the Introduction, one of the
motivations of this work is a question posed in [23] by Smale and Zhou. In that paper,
they ask for an error estimation if the sampled vector does not belong to the subspace Hk, t.
Inequality (9) is a posible answer. Moreover, if f ∈ Hk, t, estimation (9) slightly improves
their inequality:

‖fα,ω − f‖H ≤

(
α

‖Kt,t‖
γ(D

1/2
ω Kx,t)

)
‖f‖H

Note that in the general setting of the previous section, Proposition 3.8 answers an equivalent
question.
Observe also that in [23] the sequences {kt}t∈t and {kx}x∈x are supposed to be Riesz bases;
however, in the sequel [24] Smale and Zhou weaken the hypothesis and the sequences are
supposed to be frames for the entire space; in the present approach both sequences only need
to be frames for the subspaces Hk, t and Hk, x respectively. N
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[7] O. Christensen, Y. Eldar, Oblique dual frames and shift-invariant spaces, Appl. Comput. Harmon. Anal.
17 (2004) 4868.

[8] G. Corach, A. Maestripieri and D. Stojanoff , Oblique projections and Schur complements, Acta Sci.
Math. (Szeged), 67 (2001) 337-356.

[9] G. Corach, A. Maestripieri and D. Stojanoff, Generalized Schur complements and oblique projections,
Linear Algebra and its Applications 341 (2002), 259-272.

[10] G. Corach, A. Maestripieri and D. Stojanoff, Oblique projections and abstract splines, J. Approx. Theory
117 (2002), 189–206.

[11] F. Deutsch, The angle between subspaces in Hilbert space, in ”Approximation theory, wavelets and
applications” (S. P. Singh, editor), Kluwer, Netherlands, 1995, 107-130.
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