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The zero-bias anomaly at low temperatures, originated by the Kondo effect when an electric
current flows through a system formed by a spin-1/2 quantum dot and two metallic contacts is
theoretically investigated. In particular, we compare the width of this anomaly 2TNE with that of the
Kondo resonance in the spectral density of states 2T ρ

K , obtained from a Fano fit of the corresponding
curves and also with the Kondo temperature, TG

K , defined from the temperature evolution of the
equilibrium conductance G(T ). In contrast to TG

K and 2T ρ
K , we found that the scale 2TNE strongly

depends on the asymmetry between the couplings of the quantum dot to the leads while the total
hybridization is kept constant. While the three scales are of the same order of magnitude, 2TNE

and T ρ
K agree only in the case of large asymmetry between the different tunneling couplings of the

contacts and the quantum dot. On the other hand, for similar couplings, TNE becomes larger than
T ρ
K , reaching the maximum deviation, of the order of 30%, for identical couplings. The fact that an

additional parameter to TNE is needed to characterize the Kondo effect, weakenig the universality
properties, points that some caution should be taken in the usual identification in experiments of
the low temperature width of the zero-bias anomaly with the Kondo scale. Furthermore, our results
indicate that the ratios TNE/T

G
K and T ρ

K/TG
K depend on the range used for the fitting.

PACS numbers: 73.23.-b, 71.10.Hf, 75.20.Hr

I. INTRODUCTION

The Kondo effect is one of the most relevant examples
of the nontrivial role of correlations in quantum many-
body systems.1,2 Initially observed in magnetic impuri-
ties embedded in metals, is nowadays the most interesting
regime and often found at low temperatures when mea-
suring the electric current through quantum dots (QDs)
in semiconducting materials,3–10 carbon nanotubes,11–18

and molecular systems,19–28 in which the QD acts as
the magnetic impurity. In their more usual realizations,
the Kondo effect can be understood as the screening
of the impurity magnetic moment by the surrounding
free conduction electrons forming a many-body singlet.
A remarkable feature of this phenomena is given by its
universality. Different physical properties depending on
temperature, T , bias voltage, Vb, and magnetic field, B,
among others, display an universal behavior once they
are properly scaled by the Kondo temperature TK .7,8

The Kondo temperature is a many-body energy scale
(here we take the Boltzmann kB = 1) that can be thought
as the binding energy of the spin singlet. A precise deter-
mination of this energy is always desirable. For the sim-
plest theoretical case in which a single interacting spin de-
generate level, at energy Ed below the Fermi one, is cou-
pled via the hopping, V , to the conduction electrons there
is a well defined analytical expression of this magnitude.2

The same is true for two-level or two-dot generalizations
with SU(4) symmetry like QDs in carbon nanotubes,11–18

or silicon nanowires,29 or a system with two capacitively

coupled QDs.10,30,31 Instead, for a QD with several lev-
els coupled with two single-band leads, analytical expres-
sions for TK are more difficult to obtain and when more
than one level is occupied a scenario with several stages of
the Kondo effect is the general situation.32–34 In addition,
the Kondo temperature scale can be obtained numeri-
cally from the low-temperature behavior of several mag-
nitudes, like thermodynamics properties, for instance the
impurity entropy,35,36 or dynamical ones, like the width
of the Kondo peak (the one located near the Fermi en-
ergy) in the impurity spectral density.37 The resulting TK

obtained from different properties are different, although
of the same order of magnitude.

In general, and particularly for the one-level single-
channel system, measurements of the electrical current
through the impurity, J , and its derivative with re-
spect to the bias voltage Vb, the conductance G(Vb, T ) =
dJ/dVb, characterize the Kondo phenomenon. At low
enough temperature, G(Vb, T ) as a function of the bias
voltage has a peak at Vb = 0, the zero-bias anomaly
(ZBA). The peak has a width which is narrow compared
to the other energy scales of the system. Increasing T
broadens the peak until it completely disappears. In ad-
dition, under an applied magnetic field, a splitting of
ZBA appears. These properties of the ZBA represent
the most clear evidence of the Kondo effect.4

In case of spin-1/2 QDs, the Kondo temperature is
commonly extracted from i) fitting the temperature-
dependence of the equilibrium conductance G(0, T ) =
dJ/dVb

∣∣
Vb=0

, which follows a phenomenological ex-
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pression obtained using the numerical renormalization
group3,38

G(0, T ) =
Gs[

1 +
(
21/s − 1

) (
T/TG

K

)2]s , (1)

where s = 0.22, and Gs is the conductance at temper-
ature T = 0 being TG

K the only adjustable parameter
and, ii) extracted from a fitting of the full width at half
maximum (FWHM) of the zero-bias anomaly using the
expression39,40 (using the electron charge |e| = 1)

FWHM(T ) =
√
(βT )2 + (2TK)2, (2)

with β an extra fitting parameter. This expression for
the FWHM gives the result 2TK at zero temperature.
Usually, to define the FWHM, the Fano formula41 is used,
which at very low temperatures directly relates the width
of the ZBA with a Kondo temperature

G(Vb, T = 0) = C
(ǫ + q)2

1 + ǫ2
, ǫ =

Vb − ǫ0
Γ

, (3)

where ǫ0 is the center of the ZBA. The parameter q rep-
resents the degree of asymmetry in the line shape which
continuously evolves from a dip for q = 0 to a peak for
q → +∞42. In both limiting cases, the fitting function
reduces to a constant plus a Lorentzian, and Γ is the half
width of the dip or peak. Usually in experiments Γ is
identified as the Kondo scale, which we denote as TNE.
A similar Fano fit can be done for the spectral density

of the impurity ρ(ω), leading to a third possible definition
of the Kondo scale T ρ

K .
One might argue that since the Kondo effect is an equi-

librium phenomenon, which is destroyed by an applica-
tion of a large bias voltage Vb, a quantity such as TNE ob-
tained from non-equilibrium measurements is not a good
representation of the Kondo scale. However, calculations
using perturbative renormalization group and poor mans
scaling, valid when the largest of eVb and the Zeeman en-
ergy B is much larger that the equilibrium Kondo scale
TK , find that G(Vb) and the magnetization are universal
functions of eVb/TK and B/TK .43 In Ref. 44, the authors
use using real-time renormalization group calculations to
propose a scaling function for G(Vb) more involved than
Eq, (3). Therefore in principle TK can be extracted from
non-equilibrium measurements. We note that both works
assumed symmetric coupling to the leads.
The main message of our work is that while TG

K and
T ρ
K do not depend on the asymmetry of the coupling of

the QD to the leads, the width of the zero-bias anomaly
2TNE does. Therefore, part of the universality is lost,
since for example the dependence of different quantities
on magnetic field or temperature, do not depend only
on TNE but also on the asymmetry ratio. Then, TNE

cannot be considered as a Kondo temperature, although

it is closely related to this concept. We also show that
the result of the Fano fit Eq. (3) depends markedly on
the range of values chosen for the fit. Both results are
relevant for experiments, as discussed below.

The half width at half maximum of ρ(ω) is other fre-
quently used definition of the Kondo temperature, but
this quantity is difficult to access experimentally. Nev-
ertheless, the spectral density has been measured in a
three-terminal quantum ring,45 and a splitting of Kondo
resonance for a high enough bias voltage has been ob-
served. A problem of using the half width at half max-
imum is that it depends on the subtraction of a back-
ground. We discuss this point in more detail in Sec-
tion III B. Another possibility to define a Kondo scale is
from the dependence of the conductance for Vb, T, B → 0,
where B is the magnetic field.7,24,46–54 We would like to
mention here that while expanding Eq. (1) in powers of
T leads to the correct quadratic dependence of the devi-
ation G(T )−G(0), the coefficient is not correct.54 Since
the concept of scaling is usually used for a whole curve
and not just a leading behavior, we prefer to use TG

K as
the Kondo scale rather than a similar quantity derived
from some leading term in the expansion of the conduc-
tance. For this reason, we restrict the discussion in our
paper to the relation between TNE and the Kondo scales
TG
K and T ρ

K .

In Ref. 6, W. G. van der Wiel et al., pointed out that
applying a finite bias voltage introduces dephasing even
at very low temperatures which leads to a possible de-
viation of TNE from the values of TG

K obtained from Eq.
(1). In this work, we discuss this deviation and show that
there is, in addition, a geometrical mechanism that also
introduces differences in the magnitudes extracted from
Eqs. (1), (2) and (3). This is the asymmetry between
the tunneling couplings of the QD and the leads. Pre-
vious works have studied the relation between zero-bias
anomaly and Kondo temperature, for instance in Refs.
44, 55, and 56. However, the effect of asymmetry has not
been discussed in detail.

We represent the QD by the spin-1/2 Anderson im-
purity model (AIM) and study the differential conduc-
tance by using the non-crossing approximation (NCA)
in its non-equilibrium extension. To complement the re-
sults, particularly at low temperatures, we also use renor-
malized perturbation theory (RPT). As discussed in Sec-
tion II these approaches are complementary. We obtain
that the Fano fit depends on the range of values used in
the fitting procedure. This is supported by calculations
using the numerical renormalization group (NRG). We
also find out that TNE varies with the asymmetry while
the total coupling is set to be constant. This behavior
is against the expected universality of the Kondo scale,
which should roughly depend only on the energy level
position and the total coupling. We find that TNE is ap-
proximately 30% larger than T ρ

K for symmetric couplings
and only tends to same value for large asymmetry.

Our results are relevant for spectroscopic measure-
ments using a scanning tunnel microscopy (STM) per-
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formed over magnetic impurities (atoms and molecules)
deposited on metallic surfaces. In these measurements
the symmetry of the couplings between the magnetic im-
purity and the surface, and the magnetic impurity and
the tip is an important issue. In particular, experiments
where the tip is moved over the surface, are examples of
the change in the symmetry of the aforementioned cou-
plings. For instance, in Ref. 57 such measurements are
made for a system consisting in a Co atom on Cu(111)
and the tip of the STM is moved vertically on top of
the Co atom until contact. The authors characterized
the point of contact by the physical situation at which
the curve G(Vb) vs Vb becomes symmetric, which in turn
means that both couplings, Co-Cu and Co-tip are ap-
proximately equal.56,58 In the experiment, the width of
G(Vb) varies due to the monotonic increase of the cou-
pling Co-tip when the tip is moved towards the Co atom
and also for the more subtle variation of the asymme-
try between Co-Cu and Co-tip couplings, which seems
to have been missed in previous work. A similar exper-
imental procedure is used for a system consisting on a
Co atom adsorbed on Cu(100) and Cu(111) surfaces, as
described in Refs. 59–62.

We find that TNE deviates from T ρ
K in experimental

setups for which the tunneling couplings between QD
and the leads are approximately the same. Further-
more, the relations of both quantities to TG

K given by
Eq. (1) depend on the range of voltages or energies used
in the fitting procedure. This is important, since TNE is
widely used as an estimation of TK in different classes of
experiments.59,63–69 For example, in Ref. 64 a ”Kondo
temperature” TNE = 92 K for a Co impurity on Ag(111)
is reported, while in Ref. 69 a distribution of TNE with
an average 52.1 ± 9.4 K was found for the same system.
While part of the discrepancy might be due to the vari-
ation of the surface density of states,69 the nearly four
times wider range of voltages used in Ref. 64 in the fit-
ting procedure can explain the different TNE as we shall
show.

The paper is organized as follows. In Sec. II, we de-
scribe the IAM and the method we used. In Sec. III we
discuss the properties of the differential conductance and
its dependence with the couplings to the leads. Sec. IV
contains a summary and a discussion.

II. MODEL AND METHODS

As we have mentioned, we use the spin-1/2 impurity
AIM to describe the molecular or semiconducting QD.
This choice does not limit the qualitative validity our
findings. In Section IV we address the more general case
of large values of the molecular spin and also total and
partial screening of it.

The model is composed by a single level characterized
by an energyEd below the Fermi energy (which we choose
at the origin of energies) coupled to two conduction leads.

The Hamiltonian reads as follows

H = Ednd + Und↑nd↓ +
∑

νkσ

ǫνkc
†
νkσcνkσ

+
∑

νkσ

(V ν
k d†σcνkσ +H.c.) (4)

with nd =
∑

σ ndσ, ndσ = d†σdσ. The operator d
†
σ creates

an electron with spin σ at the single level of the QD while

the operators c†νkσ create conduction electrons at the
leads. Depending on the specific experiment, they can
represent left and right leads when conduction through
a QD is studied, or the metallic substrate (ν = S) and
the tip (ν = T ) of the STM in scanning tunneling spec-
troscopy. The parameters V ν

k describe the hopping ele-
ments between the leads and the QD. For most of our
results, we take the value of the Coulomb repulsion to
be infinite, U → ∞ and analyze the model within the
Kondo regime, −Ed ≫ ∆, being ∆ the resonant level
half-width. Finite values of U within this regime only
change the Kondo scale while the present analysis re-
mains valid.
In the case of having different chemical potentials µν

in the metallic contacts, a constant electric current flows
through the QD in the steady state. We take the same
temperature T for all elements of the setup and fix the
chemical potentials to be µν = −eγνVb/2 with the sign
γν = −(+) for S(T ) being Vb the bias voltage, as a ref-
erence.
The charge current through the QD is given by70–72

J =
2eπ

h
A(α)∆

∫
dωρ(ω) (fS(ω)− fT (ω)) . (5)

Here the energy ∆ incorporates both, the substrate-dot
and tip-dot couplings, ∆ = ∆S + ∆T , being ∆ν =
π
∑

k |V
ν
k |2δ(ω − ǫνk) = πV 2

ν ρν assumed independent of
energy. Furthermore, fν(ω) = 1/[exp(ω − µν/T ) + 1)] is
the Fermi distribution associated to the lead ν, and the
spectral function of the QD per spin, is denoted by ρ(ω).
Regarding the factor A(α) = 4α/(α + 1)2, it represents
the asymmetry in the device geometry being α = ∆S/∆T

the ratio of the tunneling couplings.
For the calculation of ρ(ω) entering Eq. (5), we

mainly use the non-equilibrium non-crossing approxima-
tion (NCA)71,73,74. The non-equilibrium NCA technique
is one of the standard tools for calculating the spectral
density of the dot within the Kondo regime in which the
population of the dot is near 1. NCA has being success-
fully applied to the study of a variety of systems such as
two-level QD’s and C60 molecules displaying a quantum
phase transition,26,37,75,76 or a nanoscale Si transistor29

among others. Few alternatives exist out of equilibrium,
like renormalized perturbation theory53,54,72,77,78, Fermi-
liquid approaches79 and slave bosons,80,81 which are re-
stricted to small voltage and temperature, equations of
motion with some difficulties to reproduce the Kondo en-
ergy scale,82–84 or real-time renormalization group.44,55

Recently, a variational approach has been proposed.85
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Nevertheless, the NCA has some limitations at very
low temperatures (typically below 0.05TG

K). In particu-
lar, it does not satisfy accurately the Friedel sum rule at
zero temperature.17 For this reason, we also used the ap-
proach of renormalized perturbation theory (RPT) used
before by one of us.54,72 It consists of using renormalized
parameters for Ed, U and ∆ obtained at Vb = T = 0 by
a numerical-renormalization-group calculation,53,86 and
incorporating perturbations up to second order in the
renormalized U . At equilibrium, the method provides
results that coincide with state-of-the art techniques for
the dependence of the conductance with magnetic field
B (cB)

53 and temperature (cT )
54 to second order in B

or T . An analytical expression for cT in terms of the
renormalized parameters was provided.54 However, for
energy scales of the order of TG

K or larger, the method
loses accuracy and in particular if fails to give a splitting
of the spectral density for eVb > TG

K , which is however
well reproduced by the NCA.

III. RESULTS

In what follows we set ∆ = 1 as our unity of energy,
Ed = −4 for the energy level of the QD and U → ∞,
unless otherwise stated. Some results are presented with
Ed = −6, and some RPT results in the symmetric case
U = 8, Ed = −4 are also shown. The choice of Ed = −4
does not affect our discussion as long as the Kondo regime
|Ed| ≫ ∆. As usual, we assume a constant conduction
density of states with bandwidth 2D. We use D = 10.

A. Nonequilibrium conductance

We start our discussion by giving a brief description
of the experiment recently made by Choi et al. in Ref.
59, in which a Co atom is deposited on a Cu(111) sur-
face. A STM with a tip that also contains Cu is placed
vertically over the adsorbed Co atom and is used to mea-
sure the tunneling current. From a distance tip-Co large
enough, characterized by a tip-Co coupling ∆T ≪ ∆S ,
the authors move the tip towards the surface till contact,
which is defined by the condition of getting a symmetric
curve of the conductance as a function of bias voltage
G(−Vb) = G(Vb).
In Fig. 1 we show the differential conductanceG(Vb, T )

as a function of bias voltage Vb for several values of ∆T

and temperature T low enough so that the conductance
has already reached the saturated value for T = 0 (in
practice we have taken T ∼ TG

K/20 where TG
K depends

on ∆T ). As expected, as ∆T increases, G also increases
and becomes more symmetric, in qualitative agreement
the results already presented in Fig. 1(c) of Ref. 59.
The different curves, from bottom to top, represent the
excursion of the tip as vertically approaches the adsorbed
Co atom. We have fixed the hybridization Co-Cu to be
∆S = 0.5. We simulate larger distances between the Co

 0.2

 0.4

 0.6
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-0.008 -0.006 -0.004 -0.002  0  0.002  0.004  0.006  0.008

G

Vb

∆ = 1.00
∆ = 0.95
∆ = 0.90
∆ = 0.88
∆ = 0.80
∆ = 0.75
∆ = 0.70

FIG. 1. (Color online) Differential conductance as a function
of the applied bias voltage for ∆S = 0.5 and several values of
∆T from 0.2 (largest distance) to 0.5 (point contact).
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FIG. 2. (Color online) Differential conductance as a function
of the applied bias voltage for ∆ = 1 and several values of α.

atom and the STM tip by smaller coupling ∆T . As soon
as the distance is reduced, the value of ∆T increases until
the point contact is reached. We define the point contact
by ∆T = ∆S giving a total coupling of ∆ = 1.
The main features of the different curves are that the

width, intensity and symmetry increase as ∆ does. The
increase of the width is related to the increase of the
Kondo scale, which in turn, depends on the total coupling
∆. The increase of the intensity is due to the increase
of the asymmetry factor A(α), which reaches A(α) = 1
for the point contact. Finally, the symmetry increases as
∆T does. This is related with the fact that for ∆T ≪
∆S , G(Vb) mimics the spectral density ρ(ω) which is in
turn asymmetric due to the infinite value of U ,56,58 while
for the opposite limit, ∆T ∼ ∆S , G(−Vb) = (Vb) as a
consequence the reflection S ↔ T symmetry.
The increase in the width of the differential conduc-

tance as ∆T increases is due to the addition of two effects
that cannot be disentangled in the figure: the increase in
TG
K and the decrease in the asymmetry of the couplings.

In order to separate these effects, we show in Fig. 2
the results for the differential conductance for a fixed to-
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125
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4
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FIG. 3. (Color online) Temperature evolution of the differ-
ential conductance as a function of the applied bias voltage
for two selected values of the asymmetry parameter α. The
temperature range covers the region from 125TG

K to TG
K/20.

tal coupling ∆ = 1 as a function of the applied voltage
and the asymmetry ratio α = ∆S/∆T . In this way, the
results become independent of ∆ but retain the depen-
dence in the asymmetry, which is the main ingredient in
the present discussion. As in Fig. 1, the symmetry and
intensity increase as α is reduced. However, it is expected
that the Kondo temperature remains constant simply be-
cause it depends on the total coupling ∆ and not on the
asymmetry ratio α = ∆S/∆T . From the spectral den-
sity, the Kondo temperature is given by the half-width al
half-maximum of the Kondo peak. It is well known that
the shape of the Kondo resonance in the spectral density
does not depend on the asymmetry coupling, see for in-
stance Fig. 1 in Ref. 58. We have verified that this is
actually the case for the whole values of α from α = 1 to
α = 60. Therefore, the width of this resonance, or that
obtained from the Fano fit, which we denote as 2T ρ

K , is
independent of α. However from the figure, particularly
for small values of α, it is clear that the width of the peak
in the differential conductance G(Vb) (2TNE from a Fano
fit) narrows as α increases.

The temperature evolution of the differential conduc-
tance can also be used to determine the Kondo scale
TG
K by using Eq. (1). In Fig. 3 we show the temper-

ature dependence of G(Vb) for the symmetric case α = 1
(top panel), which can be related with the point contact
regime of the experiment in Ref. 59, and for the oppo-
site strong asymmetric one α = 60. From the figure, it
is not obvious that a fitting of the values of G(Vb = 0)
(obtained from the non-equilibrium calculation) with Eq.
(1) gives the same result of TG

K for both cases. However
in Fig. 4 we confirm that this is actually the case. We
have verified that the same value of TG

K = 0.00797 is ob-
tained independently of the value of α. Fig. 4 shows the
temperature dependence of the equilibrium conductance
for the two selected values of the asymmetry parameter,
α = 1 and α = 60. Calculating G(T ) at Vb = 0 from an
equilibrium calculation gives the same result.

 0.2

 0.4

 0.6

 0.8

 1 (a)

G
/G

s

Data α = 1
Fit TK = 0.0079673
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 0.6
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(b)

G
/G

s

T

Data α = 60
Fit TK = 0.0079675

FIG. 4. (Color online) Temperature evolution of the equilib-
rium conductance (discrete points) normalized by its satura-
tion values and the corresponding fitting with Eq.1 (full red
lines).

B. Fitting procedure to determine the widths of

the curves

For a quantitative analysis of the effect of the asymme-
try in the widths of the Kondo resonances in the differ-
ential conductance G(Vb) and the spectral density ρ(ω)
at small temperature, we need some procedure to deter-
mine these widths. Experimentally Fano fits described
by Eq. (3) after subtracting a background, are the most
widely used. The Frota function87 is also used but it
does not permit asymmetric shapes and therefore it is
not useful for our purpose. Theoretically, the half-width
at half maximum of the corresponding curve is also used.
However, we have found that this leads to an overestima-
tion of the widths due to the fact that the Kondo peak is
mounted on the tails of the charge transfer peaks. These
peaks in the spectral density are centered at energies Ed

and Ed+U and have total width near 4∆.56,88 Therefore,
we analyze the widths using the Fano formula rewritten
in the following form using q = 1/x in Eq.(3) and adding
a constant background A:

G = A+B
(1 + xǫ)2

1 + ǫ2
, (6)

Note that for the symmetric case α = 1, which cor-
responds to x = 0, G is a constant plus a Lorentzian
function with half-width Γ. Examples of fits of G(Vb) are
given in Fig. 5
We identify the value of Γ that results from the fit

of G(Vb) at small enough temperatures with TNE. Simi-
larly, the value of Γ obtained fitting ρ(ω) gives T ρ

K . While
the result of the fit is unambiguous, a difficulty of this
procedure (also found experimentally89) is that the re-
sulting Γ depends on the window (range of values of the
abscissa) of the fit. In some experimental work with scan-
ning tunneling microscopy,89 the fitting range of G(Vb),
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FIG. 5. (Color online) Differential conductance (discrete
points) as a function of the bias voltage for α = 1 (top panel)
and α = 120 (bottom panel). The continuous line corresponds
to the Fano fitting with Eq. (6).

−W ≤ eVb ≤ W was established as W = 1.5TNE obtain-
ing TNE from the fit and then changing W if it does not
coincide with 1.5TNE until convergence. In our case, it
is simpler to define the range W in terms of the Kondo
temperature determined from the conductance at equi-
librium TG

K , which is defined unambiguously.

 0.4
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 0.7
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 0.85
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 T
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W / TG
K

Ed = -4
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FIG. 6. (Color online) TNE obtained from the Fano fit of the
differential conductance as a function of the window of the fit
−W ≤ eVb ≤ W for α = 1 and two values of Ed.

In Fig. 6 we show the half-width Γ of the ZBA in the
differential conductance obtained from the fit Eq. (6) for
different fitting windows measured in units of TG

K . Sev-
eral conclusions can be drawn from this figure. In spite
of taking the symmetric case α = 1, for which x = 0,
the shape of the curve (corresponding to the top panel in
Fig. 5) is not Lorentzian. Otherwise its width would be
independent of the window of the fit. However, normal-
izing the width with TG

K its shape is universal. It is the
same for different values of Ed. The same is true for the
values of A and B of the fit using Eq. (6) (not shown).
The fit for W ≪ TG

K becomes meaningless since A tends

to the quantum of conductance G0 = 2e2/h and B be-
comes very small. For W ≫ TG

K the fit has too much
weight on the tails of the Kondo resonance. The choice
W ∼ 1.5TNE made by experimentalists89 seems reason-
able. This corresponds approximately to W = 2TG

K . The
latter choice allows us to avoid a self-consistent procedure
to determine W .
Motivated by the arguments above, we take W = 2TG

K

for all the calculations of TNE and T ρ
K that follow, except

in the discussion of Fig. 7 of the next paragraph.
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FIG. 7. (Color online) T ρ
K obtained from the Fano fit of the

spectral density as a function of the window of the fit −W ≤

eVb ≤ W for two values of Ed and two techniques.

Qualitatively, the same general features are shared in
the fits of the spectral density ρ(ω), as it is shown in Fig.
7. We also show in the figure the results obtained using
the numerical renormalization group (NRG).90 In spite
of the known different shape between the spectral den-
sities calculated by NCA and NRG,91 one can see that
qualitatively the same trend of increasing T ρ

K with in-
creasing W for W ∼ TG

K takes place for both approaches.
The difference is that the ratio T ρ

K/TG
K is about 1.5 times

greater with NRG.

C. Comparison of the width of the zero-bias

anomaly with the Kondo scale

In Fig. 8 we show the half width TNE obtained from
the fit of the differential conductance using the procedure
described in Section III B as a function of the asymme-
try parameter α for two techniques, NCA and RPT. We
discuss first the NCA results. We remind the reader that
for NCA, TG

K = 0.00797 independent of α. The results
allows us to quantify the narrowing of G(Vb) with increas-
ing α already apparent in Fig. 2. The behavior of TNE

for moderate and small values of α is unexpected, and
missed in previous studies.57 In the bottom panel of the
figure we show the ratio of the widths derived from the
fits of the differential conductance G(Vb) and the spectral
density ρ(ω). As expected, this ratio tends to 1 for large
α and small temperatures in the Kondo limit. For large
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are RPT results (normalized to the same value for α = 1 in
the top panel).

asymmetry the dot is practically at equilibrium with the
substrate, so that there is a Kondo peak near the chem-
ical potential of the substrate µS = eVb/2, and G(Vb)

mimics the spectral density G(Vb) ∼ e2

h π∆A(α)ρ(µT )

with µT = −eVb/2 the chemical potential of the tip.58

Instead, in the case of symmetric couplings, like the case
of point contact in the experiment of Ref. 59, we obtain
that the width of the differential conductance at low tem-
peratures 2TNE is nearly 30% larger than the width 2T ρ

K
of the spectral density of states. This agrees with previ-
ous estimates based on the half-width at half maximum
of the corresponding curves.56

For RPT, we have obtained TG
K by a fit with Eq. (1)

in the range 0 < T/∆̃ < 0.1, where ∆̃ is the renormal-
ized value of ∆.54. For larger temperatures the RPT
results lie above the universal curve and are not quanti-
tatively reliable. We have used here two sets of parame-
ters: Ed = −4∆ and U → ∞ as in the NCA calculation
[the corresponding RPT parameters are ∆̃ = 0.00579,

Ẽd/∆̃ = 0.161 and Ũ/(π∆̃) = 1.025 (Ref. 54)], and
Ed = −4∆, U = 8 corresponding to the symmetric An-

derson model [with renormalized parameters ∆̃ = 0.120,

Ẽd/∆̃ = 0 and Ũ/(π∆̃) = 0.985 (Ref. 54)]. From the

fitting procedure we obtain TG
K = 0.7612∆̃ = 0.00441 for

U → ∞ and TG
K = 0.7390∆̃ = 0.0887 for U = 8. By com-

parison the Bethe ansatz expression of the Kondo tem-
perature for this case (see for example Eq. (8) of Ref.
84) gives TK = 0.105. The dependence with α is qualita-
tively similar with that obtained by NCA, particularly for
U = 8. However, for U → ∞, the ratio TNE/T

ρ
K is smaller

and in particular it is smaller than 1 in the limit of large α
which indicates a failure of RPT. In the symmetric case
U = −2Ed, the real part of the renormalized retarded
self-energy vanishes by symmetry, while for any param-
eters, the renormalized lesser and greater self-energies
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FIG. 9. (Color online) Ratio TNE/T
G
K as a function of tem-

perature for two values of α and two techniques.

and the imaginary part of the renormalized retarded self-
energy are exact to total second order in ω, T and Vb.

72

Therefore one expects that RPT is more accurate in the
symmetric case. The symmetric point is important be-
cause often experiments on quantum dots are tuned to
this point at which the spectral density gets its maximum
value 1/(π∆) according to the Friedel sum rule,72 leading
at Vb = T = 0 to G = dI/dV = (2e/h)A(α) in Eq. (5).
From here, the asymmetry factor A(α) can be deduced.

In Fig. 9 we show the change with temperature of
the half with of the differential conductance TNE as a
function of voltage obtained from the Fano fit Eq. (6)
for NCA and RPT for U → ∞. There is a strong tem-
perature dependence. TNE increases by a factor near 3
when the temperature reaches values of the order of TG

K .
This should be taken into account when Fano fits are
performed on experimental data at finite temperatures.
As expected from Fermi liquid theories,53,54,72,77–79 the
dependence resulting form RPT is quadratic for small
temperature. A fit for the data for T/TG

K < 0.1 gives
TNE(T )/TNE(0) = 1 + 11.0(T/TG

K)2 for α = 1 and
TNE(T )/TNE(0) = 1 + 12.0(T/TG

K)2 for α = 40. In con-
trast, the NCA results in the same temperature range
display a dependence more similar to a linear one, which
is likely to be related with the shortcomings of the NCA
at low temperatures.

For comparison, in Fig. 10 we show the tempera-
ture dependence of the half width of the spectral den-
sity. As expected, it is weaker than that of the differ-
ential conductance, because in the latter the effects of
broadening of the spectral density and the Fermi func-
tions in Eq. (5) are added. Here the low tempera-
ture dependence predicted by RPT for T/TG

K < 0.1 is
T ρ
K(T )/T ρ

K(0) = 1 + 5.75(T/TG
K)2.
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IV. CONCLUSIONS

In summary, we have investigated theoretically the
width of the zero-bias anomaly, originated by the Kondo
effect, when a charge current flows through a system
composed by a spin-1/2 quantum dot and two metal-
lic contacts. In particular, we have compared the energy
scale represented by this width TNE with definitions of
the Kondo temperature obtained from the width of the
Kondo resonance in the spectral density at equilibrium
(T ρ

K) and from the well established temperature evolu-
tion of the equilibrium conductance G(0, T ) (TG

K ). Our
results at low enough temperatures show that TNE = T ρ

K
only in cases of large asymmetry between the different
tunneling couplings of the contacts with the quantum
dot. On the other hand, if the couplings tend to be sim-
ilar, TNE becomes larger than T ρ

K .
The ratio TNE/T

ρ
K reaches values as high as 1.30. Fol-

lowing usual experimental procedures, we have deter-
mined the above mentioned widths using a Fano fit of
the line shape. Our results using NCA and also NRG
show that the result depends on the range of values used
in the fit. The temperature dependence of these widths is
strong and stronger for the nonequilibrium conductance
G = dI/dVb vs Vb than for the spectral density.
As explained in the introduction, our findings are rele-

vant for a wide range of different experiments. The asym-
metry ratio between the tunnel couplings is directly re-
lated with the intensity of the differential conductance at
zero bias from Eq. (5). In particular, in the Kondo limit
at zero temperature G(0, 0) = 2A(α)e2/h. The effects
of this asymmetry in the width of the zero-bias anomaly
has been missed previously and is particularly relevant
in experiments in which the Kondo temperature and the

asymmetry ratio are simultaneously changed. On the
other hand different windows used in Fano fit can explain
conflicting reports on the width of the zero-bias anomaly
for the same system.

As message to experimentalists, if the precise value of
the Kondo temperature matters, it is more convenient to
extract it from the temperature dependence of the zero-
bias conductance (G(0, T )) than from the shape of the
zero-bias anomaly as a function of bias voltage (G(Vb, 0)).
If a fit of the latter is done, the width depends on the
range of the fitting (which should therefore be specified)
and the asymmetry ratio.

While most of our results were calculated assuming
infinite on-site repulsion U → ∞. calculations in the
symmetric case U = −2Ed and Kondo limit −2Ed ≫ ∆
using renormalized perturbation theory confirm the main
conclusions. We have also assumed a constant density of
conduction electrons ρν(ω) around the Fermi energy for
both leads. Recent experiments obtain an approximate
linear dependence of ∆ with the applied gate voltage in-
dicating a variation of the density of states.92 We expect
that in this case the main result that the ratio TNE/T

ρ
K

varies from near 1.30 for symmetric coupling to 1 for very
asymmetric coupling remains. We also expect that if the
variation of ρν(ω) around the Fermi level is small on the
scale of TK , the results would be very similar as taking
the average density in this scale. As an example, a step
of magnitude ∆/2 in ∆ [which simulates the onset of the
surface band of noble metals at the (111) surface] at po-
sitions ω = ±∆/2 with ∆ ≫ TK changes TK by nearly
three orders of magnitude, but the shape of the Kondo
peak in the spectral density rescaled with TK is very sim-
ilar, indicating that the this peak is sensitive to the value
of ρν(ω) near the Fermi energy and not to its structure
for |ω| > TK (see Figs. 6 and 7 in Ref. 93).

Our results can be extended to other systems. For
instance, in cases of impurity spin S > 1/2, partially
screened by one channel of conduction electrons, there
is a similar temperature dependence of the conductance
G(0, T ) as that given by Eq. (1) with the difference of
having other values of the parameter s. A table of this
parameter for several values of the impurity spin is given
in Ref. 25. On the other hand, in case of a total com-
pensated spin S = 1 with two conduction channels, the
corresponding expression is given in Ref. 94. It would
be interesting to study the ratios of the different Kondo
scales in these cases.
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