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Abstract

In general C∗-algebras, elements with minimal norm in some equivalence class are introduced and characterized.

We study the set of minimal hermitian matrices, in the case where the C∗-algebra consists of 3×3 complex matrices,

and the quotient is taken by the subalgebra of diagonal matrices. We thoroughly study the set of minimal matrices

particularly because of its relation to the geometric problem of finding minimal curves in flag manifolds. For the

flag manifold of ‘four mutually orthogonal complex lines’ in C
4, it is shown that there are infinitely many minimal

curves joining arbitrarily close points. In the case of the flag manifold of ‘three mutually orthogonal complex

lines’ in C
3, we show that the phenomenon of multiple minimal curves joining arbitrarily close points does not

occur. Key words: aproximation, curves, flag manifolds, matrices, minimal.
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1 Introduction

Let A be a unital C∗-algebra, and 1 ∈ B ⊂ A a C∗-subalgebra. Let U , and UB be the unitary groups of A, and B
respectively. Let us denote with Aah and Bah the sets of antihermitian elements of A and B (i.e. the Lie algebras of
U , and UB respectively). Finally, denote by P the homogeneous space U/UB, with the natural left action Lg, g ∈ U ,
of U on P . The space P is provided with the invariant Finsler metric given by the quotient norm in the Banach
space Aah/Bah (the tangent space of P at the base point).

In [2] the following theorem is proven.

Theorem 1.1 Consider ρ ∈ P and X ∈ (TP)ρ. Suppose that there exists Z ∈ Aah which projects to X and is a
minimal vector i.e. ||Z|| = ||X ||ρ. Then the oneparameter curve γ(t) given by γ(t) = LetZρ has minimal length in
the class of all curves in P joining γ(0) to γ(t) for each t with |t| ≤ π

2||Z|| .

This theorem shows the relevance of the set of minimal vectors in the study of the space of minimal curves in
such homogeneous spaces.

In section 2 we prove a convenient characterization of the set of minimal vectors for general C∗-algebras. This
result is inspired in [2] and it is of fundamental importance for the work presented in the remaining sections.

In section 3 we present a detailed study of the set M of minimal vectors in the simplest non-trivial case, i.e. the
case where A is the C∗-algebra of 3 × 3 complex matrices, and B is the subalgebra of diagonal matrices in A. It
turns out that M has a non-trivial structure. However this complexity is not reflected in the set of minimal curves,
because different minimal vectors (above the same tangent vector) always give rise to the same minimal curve.

Operator approximation problems consist of finding, for a given operator, the element in some special class nearest
to it, when distance is measured with a norm. These problems have been treated in the case of hermitian, positive



and unitary approximants using different norms in [3], [4], [5], and others. The survey article [6], is related to matrix
nearness and presents explicit formulas, uniqueness results and algorithms for computing or estimating the minimal
norm attained, as well as the matrix or matrices sought in different contexts, but in this survey the operator norm
is not considered. The problem of finding the minimum of ‖M +D‖ for a given hermitian matrix M ∈ Cn×n among
all the diagonal matrices D ∈ Rn×n, and finding the matrix or matrices D that realize the minimum, is indeed an
operator approximation problem. It has a trivial translation to the problem of finding a real diagonal matrix D′

such that M +D′ ≥ 0 and ‖M +D′‖ is minimum. In the n×n case, some bounds of this minimum were obtained in
[1]. In that work the calculation of this minimum is related to the estimation of bounds of the norm of the operator
O : Cn×n → Cn×n that for any n× n matrix replaces all its diagonal entries by zeroes.

In section 4 we consider the case where A is the C∗-algebra of 4× 4 complex matrices, and B is the subalgebra of
diagonal matrices in A. In this case, different minimal vectors (above the same tangent vector) can give rise different
minimal curves, furthermore the following unusual phenomenon is shown: there are infinitely many minimal curves
joining arbitrarily close points.

2 Minimal vectors

Let us denote with Ah and Bh, the sets of hermitian elements of A and B to introduce the following definition.

Definition 2.1 We call an element Z ∈ Aah minimal if ‖Z‖ ≤ ‖Z+V ‖, for all V ∈ Bah. Similarly, in the hermitian
case, any Z ∈ Ah is said to be minimal if ‖Z‖ ≤ ‖Z + V ‖, for all V ∈ Bh.

Remark 2.1 Note that since for any operator, ‖Im(X)‖ ≤ ‖X‖ (and ‖Re(X)‖ ≤ ‖X‖) it follows that Z ∈ Aah (or
Z ∈ Ah) is minimal if and only if ‖Z‖ ≤ ‖Z +B‖, for all B ∈ B.

The following theorem follows ideas in [2]. We write it down in its antihermitian form, and a similar theorem can
be shown for the isometric set of hermitian elements.

Theorem 2.2 An element Z ∈ Aah is minimal if and only if there exists a representation ρ of A in a Hilbert space
H and a unit vector ξ such that ρ(Z2)ξ = −‖Z‖2ξ, and 〈ρ(Z)ξ , ρ(B)ξ〉 = 0 for all B ∈ B.

Proof of Theorem 2.2 The (⇐) part is short, for suppose that there exist ρ,H, ξ as above, then if B ∈ B,

‖Z +B‖2 ≥ ‖ρ(Z +B)ξ‖2 = ‖ρ(Z)ξ‖2 + ‖ρ(B)ξ‖2 ≥ ‖ρ(Z)ξ‖2 = −〈ρ(Z2)ξ , ξ〉 = ‖Z‖2.

Next the (⇒) part. Suppose now that Z is minimal. Denote by S the closed (real) linear span of Z2 + ‖Z‖2I and
the operators of the form ZB − B∗Z for all possible B ∈ B. Note that Z2 + ‖Z‖2I is positive and ZB − B∗Z is
hermitian, i.e. S ⊂ Ah.

Denote by C the cone of positive and invertible elements of A. We make a claim.

Claim 2.3 The minimality condition implies that S ∩ C = ∅.

Proof of the claim. Indeed, since C is open, there would exist otherwise an s ∈ R and some B ∈ B such that
s(Z2 + ‖Z‖2I) + ZB − B∗Z ≥ rI, with r > 0. We may suppose that s > 0, so that dividing by s we get that for
some B ∈ B, r > 0,

Z2 + ‖Z‖2I + ZB −B∗Z ≥ rI. (2.1)

Also note that Z2 + ‖Z‖2I ≥ 0, then for n ≥ 1,

n(Z2 + ‖Z‖2I) + ZB −B∗Z ≥ Z2 + ‖Z‖2I + ZB −B∗Z ≥ rI.

Or equivalently, dividing by n,

Z2 + ‖Z‖2I + Z(
1

n
B) − (

1

n
B∗)Z ≥ r′I.

In other words, one can find B ∈ B of arbitrarily small norm such that inequality (2.1) holds. This inequality clearly
implies that

Spec(Z2 + ZB −B∗Z) ⊂ (−‖Z‖2,+∞).
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On the other hand, since B can be chosen of arbitrarily small norm, and Z2 is non positive, it is clear that one
can choose B in order that Spec(Z2 + ZB − B∗Z) ⊂ (−∞, ‖Z‖2). Therefore there exists B ∈ Bah such that
‖Z2 + ZB − B∗Z‖ < ‖Z‖2. Let us show that this contradicts the minimality of Z, which would prove our claim.
Indeed, this is Lemma 5.3 of [2]:

Lemma 2.4 If ‖Z +B‖ ≥ ‖Z‖ for all B ∈ B, then also ‖Z2 + ZB −B∗Z‖ ≥ ‖Z‖2.

Let us prove this lemma. Consider for t > 0, f(t) = Z2 + 1
t
((Z + tB)∗(Z + tB) − Z2). Note that ‖f(t)‖ ≥ ‖Z‖2.

Otherwise ‖f(t)‖ < ‖Z‖2 and then the convex combination tf(t)+ (1− t)Z2 has norm strictly smaller than ‖Z‖2 for
0 < t < 1. Note that

tf(t) + (1 − t)Z2 = (Z + tB)∗(Z + tB).

That is ‖Z + tB‖2 = ‖(Z + tB)∗(Z + tB)‖ < ‖Z‖2, which contradicts the hypothesis, and the lemma is proven, as
well as our claim. �

We have that S ∩ C = ∅, with S a closed (real)linear submanifold of Ah and C open and convex in Ah. By the
Hahn-Banach theorem, there exists a bounded linear functional ϕ0 in Ah such that

ϕ0(S) = 0 and ϕ0(C) > 0.

The functional ϕ0 has a unique hermitian extension to A, let ϕ be the normalization of this functional. Then clearly ϕ
is a state which vanishes on S. Let ρ,H, ξ be the GNS triple associated to this state. Note that since Z2+‖Z‖2I ∈ S,
〈ρ(Z2)ξ, ξ〉 = ϕ(Z2) = −‖Z‖2, and therefore, by the equality part in the Cauchy-Schwartz inequality, it follows that

ρ(Z2)ξ = −‖Z‖2ξ.

Moreover, 0 = ϕ(ZB − B∗Z + Z2 + ‖Z‖2I) = ϕ(ZB − B∗Z). Since ϕ is hermitian, this means Re(ϕ(ZB)) = 0 for
all B ∈ B. Putting iB in the place of B, one has that in fact ϕ(ZB) = 0 for all B ∈ B. Then,

0 = 〈ρ(ZB)ξ, ξ〉 = 〈ρ(B)ξ, ρ(Z)ξ〉,

which concludes the proof Theorem 2.2. �

3 Minimal 3×3 matrices

Our interest in minimal 3×3 matrices arises when studying the flag manifold P(3). This is the space of triples of
mutually orthogonal lines in C3 (1-dimensional complex subspaces) which is indeed a low dimensional example of
a homogeneous space. The group of unitary operators in C3 acts on the left in P(3). Consider the canonical flag
pe = (sp {e1} , sp {e2} , sp {e3}) where sp {ei} is the complex line spanned by the canonical vector ei in C3. The
isotropy of pe is the subgroup of ‘diagonal’ unitary operators.

Again, our interest here in minimal 3×3 matrices is due to the following theorem, for general homogeneous spaces
of the unitary group of a C∗-algebra A, which is proven in [2]:

Theorem 3.1 Let P be a homogeneous space of the unitary group of a C∗-algebra A. Consider ρ ∈ P and X ∈
(TP)ρ. Suppose that there exists Z ∈ Aah which is a minimal vector i.e. ||Z|| = ||X ||ρ. Then the oneparameter
curve γ(t) given by γ(t) = LetZρ has minimal length in the class of all curves in P joining γ(0) to γ(t) for each t
with |t| ≤ π

2||Z|| .

Namely, minimal curves in P(3) are given by action of (the class of) exponentials of anti-hermitian minimal 3×3
matrices. To study anti-hermitian minimal 3×3 matrices is (isometrically) equivalent to investigate the hermitian
minimal 3×3 matrices, and in this article we find them notationaly simpler to consider.

3.1 A study of 3 × 3 minimal hermitian matrices

From Definition 2.1 of minimal vectors, we have the corresponding definition for 3 × 3 minimal hermitian matrices:

Definition 3.1 We say that a non-zero matrix M ∈ Mh
3×3(C) is minimal if, ||M || = inf

D∈Diag
3×3

||M +D||, and

such set of minimal matrices shall be denoted with M.

3



3.1.1 Some notation

We shall denote with D3×3 the subset of the diagonal real matrices. Let us denote with M the quotient space
Mh

3×3(C)/D3×3 with the quotient norm
| [M ] | = inf

D∈D3×3

||M +D ||

where || · || is the usual operator norm.

Remark 3.2 If M ∈ M and ||M || = λ(> 0), and Tr(M) = µ then:

1. A matrix M ∈Mh
3×3(C) is minimal if and only if, ||M || = | [M ] | .

2. The diameter ‘d’ of the spectrum of M is d = 2λ. Otherwise, if d < 2λ we can add a real scalar matrix D to
M to produce another matrix M +D with norm, d/2 < λ, and M would not be minimal.

3. The numbers −λ, λ and µ are the eigenvalues of M .

3.1.2 The minimality theorem

The following theorem is a direct consequence of the hermitian equivalent of Theorem 2.2.

Theorem 3.3 A matrix M ∈ M if and only if there exists a positive matrix P ∈M3×3(C) such that,

• P.M2 = λ2 P , where ||M || = λ.

• The diagonal elements of the product P.M are all zero.

Proof of Theorem 3.3 This is just a translation to the algebra M3×3(C) an its representations. �

3.1.3 Auxiliary results on C3

Definition 3.2 We say that a vector (a1, a2, a3) ∈ C3 is triangular if it is unitary and the numbers |a1|2, |a2|2, |a3|2
are the lengths of the three side of a triangle, i.e. each of them is smaller than or equal to the sum of the other two
numbers.

Remark 3.4 If a vector (a1, a2, a3) ∈ C3 is triangular and one of its components is zero, then the other two

components have lengths equal to
√

2
2 .

Proposition 3.5 Any vector v = (a1, a2, a3) ∈ C3 is triangular if and only if there exists a unitary vector w =
(b1, b2, b3) ∈ C3, orthogonal to v and such that, |a1| = |b1|, |a2| = |b2|, |a3| = |b3|. Furthermore, there are at most
two such vectors, w and w̃, for any given triangular vector v.

Proof of the ‘if ’ part (⇐) Let’s write v = (ρ1 e
iθ1 , ρ2 e

iθ2 , ρ3 e
iθ3) and w = (ρ1 e

iψ1 , ρ2 e
iψ2 , ρ3 e

iψ3). Since v and
w are orthogonal we have that,

v · w = ρ2
1 e

i(θ1−ψ1) + ρ2
2 e

i(θ2−ψ2) + ρ2
3 e

i(θ3−ψ3) = 0

then we have ρ2
1 e

i(θ1−ψ1) = −ρ2
2 e

i(θ2−ψ2) − ρ2
3 e

i(θ3−ψ3) and considering norms we get, by the triangular inequality,
ρ2
1 ≤ ρ2

2 + ρ2
3. Similarly we can get ρ2

2 ≤ ρ2
1 + ρ2

3 and ρ2
3 ≤ ρ2

1 + ρ2
2. Now w is unitary, then v is unitary, hence v is

triangular. �

Proof of the ‘only if ’ part (⇒) Let’s write again v = (ρ1 e
iθ1 , ρ2 e

iθ2 , ρ3 e
iθ3). We just need to construct w =

(ρ1 e
iψ1 , ρ2 e

iψ2 , ρ3 e
iψ3) so that,

v · w = ρ2
1 e

i(θ1−ψ1) + ρ2
2 e

i(θ2−ψ2) + ρ2
3 e

i(θ3−ψ3) = 0

Let’s write ν2 = θ2 − ψ2 − θ1 +ψ1 and ν3 = θ3 −ψ3 − θ1 + ψ1. Then we just need to solve the complex equation:

ρ2
1 + ρ2

2 e
iν2 + ρ2

3 e
iν3 = 0

4



for ν2 and ν3, which can be decomposed as two real equations,

{

ρ2
1 + ρ2

2 cos(ν2) + ρ2
3 cos(ν3) = 0

ρ2
2 sin(ν2) + ρ2

3 sin(ν3) = 0
. (3.2)

Now we distinguish two cases in this proof:

The case ρ1 ρ2 ρ3 6= 0
These equations can be solved for the unknowns cos(ν2), sin(ν2), cos(ν3) and sin(ν3), at most in two forms
(two choices of corresponding signs):

sin(ν2) = ∓
√

1 − (−ρ14−ρ24+ρ34)2

4 ρ14 ρ24 , cos(ν2) = −ρ14−ρ24+ρ3
4

2 ρ12 ρ22

sin(ν3) = ±
√

1 − (−ρ14+ρ24−ρ34)2

4 ρ14 ρ34 , cos(ν3) = −ρ14+ρ2
4−ρ34

2 ρ12 ρ32

. (3.3)

To find ν2 and ν3 it is sufficient that two sets of inequalities are satisfied:

−1 ≤ −ρ1
4 − ρ2

4 + ρ3
4

2 ρ1
2 ρ2

2
≤ 1 and − 1 ≤ −ρ1

4 + ρ2
4 − ρ3

4

2 ρ1
2 ρ3

2
≤ 1.

In the first set, the inequalities can be written as:

−2 ρ1
2 ρ2

2 ≤ −ρ1
4 − ρ2

4 + ρ3
4 and −ρ1

4 − ρ2
4 + ρ3

4 ≤ 2 ρ1
2 ρ2

2,

which become
0 ≤ −

(

ρ1
2 − ρ2

2
)2

+ ρ3
4 =

(

−ρ1
2 + ρ2

2 + ρ3
2
) (

ρ1
2 − ρ2

2 + ρ3
2
)

and
(

−ρ1
2 − ρ2

2 + ρ3
2
) (

ρ1
2 + ρ2

2 + ρ3
2
)

= −
(

ρ1
2 + ρ2

2
)2

+ ρ3
4 ≤ 0.

But the vector v is triangular, hence both inequalities are satisfied. Similarly, the second set of inequalities is
satisfied, for the vector v is triangular. Hence the vector w can be constructed with the desired properties, at
most in two different forms, w and w̃, corresponding to the two choices of corresponding signs for ν2 and ν3.

The case ρ1 ρ2 ρ3 = 0
In this case, the triangular vector v has exactly one of its components equal to zero. The other two components

must have the same length
√

2
2 as in Remark 3.4. It is easy then to construct a unitary vector w with the

desired properties. It can be observed that in this case w is unique (up to multiplication by unitary complex
numbers), i.e. there is no alternate vector w̃ with the desired properties.

This completes the proof of Proposition 3.5. �

Definition 3.3 We say that and ordered pair (v, w) of triangular vectors, v = (a1, a2, a3) and w = (b1, b2, b3) in C3

form a triangular-pair if they are orthogonal to each other and the equalities |a1| = |b1|, |a2| = |b2| and |a3| = |b3|
hold.

Corollary 3.6 Every triangular vector v = (a1, a2, a3) ∈ C3 is the first coordinate of at least one and at most two
triangular-pairs, (v, w) and (v, w̃) .

Proof of Corollary 3.6 Immediate from Proposition 3.5. �
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3.1.4 Preliminary theorem

Theorem 3.7 Let M be a hermitian matrix, M ∈ Mh
3×3(C) with ||M || = λ > 0. Then M ∈ M if and only if there

exists a triangular-pair (v+, v−) of eigenvectors of M , v+ for the eigenvalue λ, and v− for the eigenvalue −λ.

We shall prove the following theorem which, by virtue of Proposition 3.5, is just a restatement of Theorem 3.7:

Theorem 3.8 Let M be a hermitian matrix, M ∈ Mh
3×3(C) with ||M || = λ > 0. Then M ∈ M if and only if there

exist two unitary eigenvectors, v+ for the eigenvalue λ, and v− for the eigenvalue −λ, such that their corresponding
coordinates have the same size, i.e. for every vector ei in the canonical base of C3, it holds that |v+ · ei| = |v− · ei|.

Proof of the ‘if ’ part (⇐) Consider the matrices P+ and P− associated to the orthogonal projections onto the
complex lines generated by v+ and v− respectively. Consider also the positive matrix P = P+ + P−. We will show
that P satisfies the two conditions that in Theorem 3.3 imply the minimality of M , namely: P.M2 = λ2 P , and the
diagonal elements of the product P.M are all zero.

Notice that M = λP+ − λP− + µPµ where Pµ is the orthogonal projection onto the complex line generated
by an eigenvector vµ for the third eigenvalue µ of M . Observe that the first condition above is satisfied because
P.M2 = λ2 P+ + λ2 P− = λ2 P .

For the second condition observe that P.M = λP+ − λP− = λ(P+ − P−). The diagonal elements of P.M are,
(P.M ei) · ei for each of the three canonical vectors ei. Now,

(P.M ei) · ei = [λ(P+ − P−)ei] · ei =

= λ ([P+ei] · ei − [P−ei] · ei)
= λ [([ei · v+] v+) · ei − ( [ei · v−] v−) · ei]
= λ

[

(ei · v+)(ei · v+) − (ei · v−) (ei · v−)
]

= λ
[

|ei · v+|2 − |ei · v−|2
]

= 0

Then all the diagonal elements of P.M are zero, and the second condition for minimality is satisfied. �

For the proof of the ‘only if’ part (⇒) we shall consider the two possible cases:

1. M has three simple eigenvalues, λ, −λ and µ (|µ| < λ).

2. Only one eigenvalue of M is simple.

The ‘only if ’ part (⇒) with simple eigenvalues: λ, −λ and µ. Consider unitary eigenvectors v+, v− and vµ
for the three eigenvalues λ, −λ and µ of M . We will show that for i ∈ {1, 2, 3}, it happens that |v+ · ei| = |v− · ei|.

Let P+, P− and Pµ be the matrices associated to the orthogonal projections onto the complex lines generated
by the corresponding eigenvectors above. As above, M = λP+ − λP− + µPµ. Consider any positive matrix P that
satisfies the two conditions for the minimality of M of Theorem 3.3. Since P.M2 = λ2 P , it is clear that vµ is in the
kernel of P . The condition that the diagonal elements of the product P.M are all zero means that for each vector ei
of the canonical base in C

3 we have
(P.M ei) · ei = (M ei) · (P ei) = 0 (3.4)

Consider the inner product of C3 induced by P , i.e. 〈x, y〉 = x · (Py). Denote with 〈〈x〉〉 =
√

〈x, x〉 the norm for this
inner product.

Equation (3.4) above can be rewritten as,
〈M ei, ei〉 = 0 (3.5)

Recall that ei = (ei · v+) v+ + (ei · v−) v− + (ei · vµ) vµ and the fact that 〈x, vµ〉 = 0 for any x ∈ C3.
Expanding equation (3.5) we get

0 = 〈M ei, ei〉 = 〈M ei, [(ei · v+) v+ + (ei · v−) v−]〉 =

= λ 〈[P+ ei − P− ei] , [(ei · v+) v+ + (ei · v−) v−]〉
= λ 〈[(ei · v+) v+ − (ei · v−) v−] , [(ei · v+) v+ + (ei · v−) v−]〉
= λ

[

|ei · v+|2 〈〈v+〉〉2 − |ei · v−|2 〈〈v−〉〉2 + 2 i Im
(

(ei · v+) (ei · v−)〈v+, v−〉
)]

6



Then we have that
|v+ · ei|2 〈〈v+〉〉2 = |v− · ei|2 〈〈v−〉〉2, (3.6)

and then
(

3
∑

i=1

|v+ · ei|2
)

〈〈v+〉〉2 =

(

3
∑

i=1

|v− · ei|2
)

〈〈v−〉〉2

but v+ and v− are both unitary so the previous sums are both equal to 1, then 〈〈v+〉〉 = 〈〈v−〉〉 and from equation (3.6)
we have that for i ∈ {1, 2, 3}, it happens that |v+ · ei| = |v− · ei|, as we wanted to show. �

The ‘only if ’ part (⇒) with only one simple eigenvalue. Without loss of generality, we assume that M is a
reflection, i.e. M2 = Id3×3 with λ = 1 as the simple eigenvalue. Let v+ = (c1, c2, c3) be a unitary eigenvector for the
simple eigenvalue ‘1’.

Let P+ be the matrix of the orthogonal projection in the direction of v+, and let Q be the matrix of the
orthogonal projection onto the plane orthogonal to v+ (the eigenspace for the eigenvalue ‘−1’). Then M = P+ −Q
and Q+ P+ = Id3×3. Let ei denote the vectors in the canonical base of C3. For i ∈ {1, 2, 3}, we have ei = wi + vi
where wi = Qei and vi = P+ ei.

Consider, as in the previous case, a positive matrix P that satisfies the two conditions for the minimality of M
in Theorem 3.3. Consider also the inner product of C3 induced by P , 〈x, y〉 = x · (Py), and 〈〈x〉〉 =

√

〈x, x〉 the
associated norm. As above, the condition that the diagonal elements of the product P.M are all zero means that for
each vector ei of the canonical base in C3 we have

〈M ei, ei〉 = 0

For i ∈ {1, 2, 3}, we have M ei = vi − wi, and

0 = 〈M ei, ei〉 = 〈vi − wi, vi + wi〉 =

= 〈〈vi〉〉 − 〈〈wi〉〉 − 〈wi, vi〉 + 〈vi, wi〉
= 〈〈vi〉〉 − 〈〈wi〉〉 + 2 i Im (〈vi, wi〉)

Then we have that 〈〈wi〉〉 = 〈〈vi〉〉.
Observe that vi = P+ ei = (ei · v+)v+ = c̄i v+ hence 〈〈vi〉〉 = |ci| 〈〈v+〉〉.
We claim that 〈〈v+〉〉 6= 0. In fact, if 〈〈v+〉〉 = 0 then 〈〈vi〉〉 = 0 and 〈〈wi〉〉 = 0 for i ∈ {1, 2, 3}. Hence 〈〈ei〉〉 =

〈〈vi + wi〉〉 ≤ 〈〈vi〉〉 + 〈〈wi〉〉 = 0 for i ∈ {1, 2, 3}. Then the norm 〈〈·〉〉 induced by P is trivial and P could not be a
positive matrix.

We can scale the positive matrix P so that 〈〈v+〉〉 = 1. With this assumption, we have that 〈〈wi〉〉 = 〈〈vi〉〉 = |ci|.
Now, observe that v+ = c1 e1 +c2 e2 +c3 e3 = c1 v1 +c2 v2 +c3 v3 +c1 w1 +c2w2 +c3 w3, but each wi is orthogonal

to v+, hence
v+ = c1 v1 + c2 v2 + c3 v3, and c1 w1 + c2 w2 + c3 w3 = 0

Then we have c3 w3 = −c1w1 − c2 w2 and

|c3|2 〈〈w3〉〉2 = |c1|2 〈〈w1〉〉2 + |c2|2 〈〈w2〉〉2 + 2 Re (c̄1 c2 〈w1, w2〉)
Recalling that 〈〈wi〉〉 = 〈〈vi〉〉 = |ci|, we have

2 Re (c̄1 c2 〈w1, w2〉) = |c3|4 − |c1|4 − |c2|4

We also get
|c3|4 − |c1|4 − |c2|4 ≤ |2 Re (c̄1 c2 〈w1, w2〉)| ≤ 2|c1| |c2| 〈〈w1〉〉 〈〈w2〉〉 = 2|c1|2 |c2|2

hence,
|c3|4 − |c1|4 − |c2|4 ≤ 2|c1|2 |c2|2. (3.7)

Recalling that |c3|2 + |c1|2 + |c2|2 = 1, we get

|c3|2 − |c1|2 − |c2|2 =

=
(

|c3|2 − |c1|2 − |c2|2
) (

|c3|2 + |c1|2 + |c2|2
)

= |c3|4 −
(

|c1|2 + |c2|2
)2

= |c3|4 − |c1|4 − |c2|4 − 2|c1|2|c2|2 ≤ 0 (by (3.7))
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Hence |c3|2 ≤ |c1|2 + |c2|2. We can similarly prove that |c1|2 ≤ |c2|2 + |c3|2 and |c2|2 ≤ |c1|2 + |c3|2. Then the vector
v+ = (c1, c2, c3) is triangular and by Proposition 3.5, there exists another vector v− = (c′1, c

′
2, c

′
3) which makes a

triangular-pair with v+. It is clear that v− belongs to the eigenspace of the eigenvalue −1. This completes the proof
of Theorems 3.8 and 3.7. �

3.2 Description of the set of minimal matrices

We shall introduce two definitions, convenient for our next theorem.

Definition 3.4 Let M be a hermitian matrix, M ∈Mh
3×3(C). We say that M is of extremal type if there exist:

1. η ∈ [0, 2π). 2. λ > 0. 3. µ ∈ R with |µ| ≤ λ.

such that M is one of the following three matrices:





µ 0 0
0 0 λ ei η

0 λ e−i η 0



 ;





0 0 λ e−i η

0 µ 0
λ ei η 0 0



 ;





0 λ e−i η 0
λ ei η 0 0

0 0 µ



 (3.8)

Definition 3.5 Let M be a hermitian matrix, M ∈ Mh
3×3(C). We say that M is of non-extremal type if there

exist:

1. Two real numbers η and ξ in [0, 2π)

2. λ > 0.

3. µ ∈ R with |µ| ≤ λ.

4. Three non-negative numbers α, β and χ, with:
2α+2β+2χ = 1, α+β > 0, β+χ > 0 and α+χ > 0.

such that,

M = µ





2α n12 n31

n12 2β n23

n31 n23 2χ



+ λ





0 m12 m31

m12 0 m23

m31 m23 0



 (3.9)

where:










































n12 =
−2αβ ± i

√
2αβ χ

√

(α + χ)(β + χ)
e−iη

n31 =
−2αχ± i

√
2αβ χ

√

(α+ β)(β + χ)
e−iξ

n23 =
−2 β χ± i

√
2αβ χ

√

(α+ β)(α + χ)
e−i(ξ−η)

and











































m12 =
χ± i

√
2αβ χ

√

(α+ χ)(β + χ)
e−iη

m31 =
β ± i

√
2αβ χ

√

(α+ β)(β + χ)
e−iξ

m23 =
α± i

√
2αβ χ

√

(α+ β)(α + χ)
e−i(ξ−η)

(3.10)

for one of the two sets of choices of corresponding signs.

Remark 3.9 For matrices of both types, extremal and non-extremal, the parameters λ > 0 and µ respectively give
the norm of M , ||M || = λ, and the trace of M , Tr(M) = µ. The proof is just a direct calculation.

By virtue of Theorem 3.7 a matrixM is minimal if and only if there exists a triangular-pair (v+, v−) of eigenvectors
of M , v+ for the eigenvalue λ, and v− for the eigenvalue −λ.

Theorem 3.10 (Parametrization) Let M be a hermitian matrix, M ∈Mh
3×3(C), if M is minimal then one of the

following two mutually exclusive cases occur:
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1. The triangular eigenvector v+ in the triangular-pair
associated to M , has one null component and M is
of extremal type.

2. The triangular eigenvector v+ in the triangular-pair
associated to M , has no null components and M is
of non-extremal type.

Proof of case (1) in Theorem 3.10: Consider the triangular-pair (v+, v−) of eigenvectors of M . The eigenvector
v+ may be written as v+ =

(

ρ1 e
iθ, ρ2 e

iη, ρ3 e
iξ
)

. In this case ρ1 ρ2 ρ3 = 0. Now assume that ρ1 = 0. After

multiplication by some unitary complex number we can assume that v+ =
(

0, ρ2 e
iη, ρ3

)

where ρi > 0 for i ∈ {2, 3}
and ρ2

2 + ρ2
3 = 1. Similarly, we can assume that v− =

(

0, ρ2 e
i(η+φ), ρ3 e

iψ
)

for some φ and ψ in [0, 2π). In fact, since

v+ is triangular, ρ2 = ρ3 =
√

2/2, see Remark 3.4 in page 4. Then we may assume that:

v+ =

(

0,

√
2

2
ei η,

√
2

2

)

and v− =

(

0,

√
2

2
ei(η+φ),

√
2

2
eiψ

)

The fact that v+ and v− are orthogonal, leads one to conclude that:

v+ =

(

0,

√
2

2
ei η,

√
2

2

)

and v− =

(

0,±
√

2

2
ei η,∓

√
2

2

)

A unitary eigenvector vµ associated to the eigenvalue µ is given by vµ = (1, 0, 0).
We can write M = B∗DB where B is the change of base matrix from the canonical base to the orthonormal

base {vµ, v+, v−}; B∗ is the adjoint of B and D is the diagonal matrix with λ, −λ and µ in the diagonal (from top
to bottom). The product B∗DB gives the first expression of M as in Definition 3.4.

The second and third possible forms of M (in Definition 3.4) correspond to the cases where ρ2 = 0 or when
ρ3 = 0. �

Proof of case 2 in Theorem 3.10: Consider the triangular-pair (v+, v−) of eigenvectors of M . After multiplica-
tion by some unitary complex number we can assume that v+ =

(

ρ1, ρ2 e
iη, ρ3 e

iξ
)

where ρi > 0 for i ∈ {1, 2, 3} and

ρ2
1 + ρ2

2 + ρ2
3 = 1. Similarly, we can assume that v− =

(

ρ1, ρ2 e
i(η+φ), ρ3 e

i(ξ+ψ)
)

for some φ and ψ in [0, 2π).
The condition of orthogonality between v+ and v− is translated as two real equations:

{

ρ2
1 + ρ2

2 cos(φ) + ρ2
3 cos(ψ) = 0

ρ2
2 sin(φ) + ρ2

3 sin(ψ) = 0
(3.11)

These equations have at most two sets of solutions for the unknowns cos(φ), sin(φ), cos(ψ) and sin(ψ), as seen
earlier in equations (3.2) and (3.3) in page 5:

sin(φ) = ∓
√

1 − (−ρ14−ρ24+ρ34)2

4 ρ14 ρ24 , cos(φ) = −ρ14−ρ24+ρ3
4

2 ρ12 ρ22

sin(ψ) = ±
√

1 − (−ρ14+ρ24−ρ34)2

4 ρ14 ρ34 , cos(ψ) = −ρ14+ρ2
4−ρ34

2 ρ12 ρ32

The nature of these solutions and the fact that v+ and v− are triangular vectors lead us to introduce new variables
α, β and χ, with 2α+ 2β + 2χ = 1, given by

ρ2
1 = β + χ, ρ2

2 = α+ χ, ρ2
3 = α+ β

These α, β and χ are given in the picture of Figure 1, recalling that ρ2
1, ρ

2
2 and ρ2

3 represent the three sides of a
triangle with perimeter of length one, and possibly degenerate (area zero).

|BC| = ρ2
1 = β + χ, |AC| = ρ2

2 = α+ χ, |AB| = ρ2
3 = α+ β

With these new variables, we can write the complex numbers eiφ and eiψ from the solutions of equation (3.11) as
follows:

eiφ =
α (β − χ) − χ (β + χ) ± i

√
2αβ χ

(α+ χ) (β + χ)

eiψ =
α (χ− β) − β (β + χ) ∓ i

√
2αβ χ

(α+ β) (β + χ)

9



Figure 1: The construction of α, β and χ.

where one of the two combinations of signs gives the correct values for eiφ and eiψ.
Then the vectors v+ and v− can be written as:

v+ =
(

√

β + χ,
√
α+ χei η,

√

α+ β ei ξ
)

(3.12)

and

v− =

(

√

β + χ,
α (β − χ) − χ (β + χ) ± i

√
2αβχ√

α+ χ (β + χ)
eiη,

α (χ− β) − β (β + χ) ∓ i
√

2αβχ√
α+ β (β + χ)

eiξ
)

. (3.13)

A unitary eigenvector vµ associated to the eigenvalue µ is given by the conjugated cross-product,

vµ =

(

α (β − χ) ∓ i
√

2
√
αβ χ√

α+ β
√
α+ χ (β + χ)

e−i (η+ξ),−β ∓ i
√

2
√
αβ χ√

α+ β
√
β + χ

e−i ξ,
χ± i

√
2
√
αβ χ√

α+ χ
√
β + χ

e−i η
)

. (3.14)

Again we can write M = B∗DB where B is the change of base matrix from the canonical base to the orthonormal
base {v+, v−, vµ}; B∗ is the adjoint of B and D is the diagonal matrix with λ, −λ and µ in the diagonal (from top
to bottom). The product B∗DB gives the expression of M as in formulas (3.9) and (3.10) with the two possible
combinations of signs. �

Remark 3.11 For minimal matrices of extremal type, the construction of the corresponding numbers α, β and χ
as in Figure 1, would lead to one of the three extremal points (vertices) α = 1/2, β = 1/2 or χ = 1/2 of the simplex
(the equilateral triangle) 2α+ 2β + 2χ = 1 in the first octant of the (α, β, χ)-space.

Theorem 3.12 (Construction) Let M be a hermitian matrix, M ∈ Mh
3×3(C). If M is of extremal type, or if M

is of non-extremal type, with λ ≥ |µ|, then M is minimal.

Proof. Let M be a hermitian matrix, M ∈ Mh
3×3(C) of extremal or non-extremal type, then by Remark 3.9 the

parameters λ > 0 and µ, correspond to the norm ||M || = λ and the trace Tr(M) = µ of M . A direct calculation
shows that matrices of these two types have both λ and −λ as eigenvalues and for them correspond eigenvectors v+
and v− which form a triangular-pair. Then by Theorem 3.7 these matrices are minimal. �

Theorem 3.13 (Non-extremals and Extremals) Let M be a hermitian matrix, M ∈ Mh
3×3(C). Then M is

minimal if and only if M is of one of the two types: extremal or non-extremal.

Proof. Immediate from Theorems 3.10 and 3.12. �
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3.3 Minimal 3×3 matrices in a class

3.3.1 The algebraic setting of the problem

Any matrix M ∈Mh
3×3(C) can be written as,

M =





a x ȳ
x̄ b z
y z̄ c



 , (3.15)

where a , b , c ∈ R and x , y , z ∈ C. Observe that the quotient space M is homeomorphic to C3 − {0} because the
class of M , [M ] ∈ M, is given by the triple (x, y, z) of complex numbers. From Remarks 3.2 in page 4, we have that
the three real eigenvalues of every minimal matrix M ∈ Mh

3×3(C), are: some λ ∈ (0,+∞), the opposite −λ and an
intermediate number µ (|µ | ≤ λ). This fact imposes some necessary conditions to the coefficients u, v and w of the
characteristic polynomial, det(M − ΛI) = −Λ3 + uΛ2 + vΛ + w, of every minimal matrix M :

Claim 3.14 Let u, v and w be the coefficients of the characteristic polynomial of a hermitian matrix M , det(M −
ΛI) = −Λ3 + uΛ2 + vΛ + w: Then M has two eigenvalues of opposite signs if and only if the coefficients u, v and
w satisfy:

u v + w = 0. (3.16)

Proof of claim 3.14 (⇒) We have two equations, for the two roots λ and −λ,
−λ3 + u λ2 + v λ+ w = 0, and λ3 + u λ2 − v λ+ w = 0.

Adding and subtracting these equations we get:

u λ2 + w = 0, and −λ2 + v = 0. (3.17)

Then, the coefficients u, v and w must satisfy the equation u v + w = 0.

(⇐) Suppose the equation u v + w = 0 is satisfied, then

det(M − ΛI) = −Λ3 + uΛ2 + vΛ + w = −Λ3 + uΛ2 + vΛ − u v

= −(Λ2 − v)(Λ − u),

which means that λ =
√
v and λ = −√

v are two real eigenvalues of M .
�

For any minimal matrix M , λ =
√
v > 0 and, in the notation above, the coefficient u is the trace of the matrix.

The condition |µ| ≤ λ can be written as u2 ≤ v.
For a fixed class [M0] ∈ M, of a matrix M0 ∈Mh

3×3(C), we consider the real variety given by the equation:

∆ := u v + w = 0. (3.18)

Any minimal matrix M in the class [M0], must lie in ∆, and it must be a minimum for the function λ2(= v) over
the real variety ∆. Observe that the function λ2 is itself a polynomial. Suppose now that the matrix M given in
(3.15) is minimal. Let us rewrite equation (3.18) in terms of elements of the matrix M .

∆ := (a+ b)(a+ c)(b+ c) − (a+ b)|x|2 − (a+ c)|y|2 − (b + c)|z|2 − 2 Re(x y z) = 0. (3.19)

The diagonal elements (a, b, c) ∈ R3 of M , must satisfy this cubic equation for M a minimal matrix. Similarly, from
equation (3.17) we get

λ2 = |x|2 + |y|2 + |z|2 − ab− ac− bc. (3.20)

To simplify the expression of the map ∆, we introduce the following linear change of variables,

a = (r + s− t)/2 , b = (t+ r − s)/2 , c = (s+ t− r)/2.

The equations above change to give a new description of ∆ and a new expression for λ2,

∆ := r s t− r |x|2 − s |y|2 − t |z|2 + 2 Re(x y z) = 0,

and the function to minimize,

λ2(r, s, t) =
1

4
(r2 + s2 + t2) − 1

2
(r s+ r t+ s t) + |x|2 + |y|2 + |z|2.

11



3.3.2 Finding the minimal matrix of a class [M ] in M
To find the minimal matrix (or matrices) in the class [M0] we just have to minimize λ2(r, s, t) on ∆. We shall consider
four cases depending on the triple (x, y, z). Figures representing ∆ are shown in each case. Theorem 3.15 below
states that only in the fourth case there might be multiple minima in the given class [M0]. Two rounded surfaces,
shown in the first three figures, do not belong to ∆, they represent the bounding surfaces µ = ±λ in between which
the (unique) minimum is located.

1. When Im(x y z) 6= 0.

In this case the surface ∆ is regu-
lar (a smooth manifold) and the
method of Lagrange multipliers
can be used to find the unique
minimum in the class. In the fig-
ure to the right, the middle por-
tion represents the component
satisfying u2 ≤ v, and the dark
point indicates the minimum.

2. When Im(x y z) = 0 and Re(x y z) 6= 0.

In this case the surface ∆ is not
regular, has one singular point
which is the unique minimum
in the class. In the figure to
the right, two components of ∆
touch at the singular point which
is the minimum.

3. When Im(x y z) = 0 = Re(x y z), and exactly one of the coordinates in the triple (x, y, z) vanishes.

In this case the surface ∆ is reg-
ular; the class has a unique min-
imum at the origin, (r, s, t) =
(0, 0, 0) = (a, b, c) as shown in
Theorem 3.16 below. Observe
that in the figure the vertical "t-
axis" lies in ∆.
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4. When Im(x y z) = 0 = Re(x y z), and exactly two of the coordinates in the triple (x, y, z) vanish.

In this case the surface ∆ is not
regular along two curves, the two
branches of the hyperbola shown
in the figure, and the class has
multiple minima, represented by
the segment shown in the figure
joining the two branches of the
hyperbola.

Theorem of uniqueness

The main purpose of this section is to prove the following uniqueness theorem.

Theorem 3.15 (Uniqueness) For every class [M ] ∈ M, there is only one minimal matrix, unless two of the
coordinates vanish in the triple (x , y , z).

Proof Theorem 3.15: Suppose that there exist two minima M1 and M2 in the same class [M ] ∈ M. Necessarily
the segment of matrices, ξM1 + (1 − ξ)M2, for 0 ≤ ξ ≤ 1, is contained in that class. This implies that there exist
a segment (r0 + ρξ, s0 + σξ, t0 + τξ), ξ ∈ [0, 1], contained in the variety ∆ = 0, with direction vector (ρ, σ, τ) 6=
(0, 0, 0) ∈ R3 and along which λ2 is constant. Let us write equations (3.19) and (3.20) for the matrices with
(r, s, t) = (r0 + ρ ξ, s0 + σ ξ, t0 + τ ξ),

∆ = 0 = m0 +m1ξ +m2ξ
2 +m3ξ

3, and λ2(a, b, c) = n0 = n0 + n1ξ + n2ξ
2.

Condition m0 = 0 states that the initial point (a, b, c) = (r0, s0, t0) is in ∆ = 0, and the coefficient n0 gives the
constant value of λ2. Then the following equations must hold,

m1 = 0 = ρ |x|2 + σ |y|2 + τ |z|2 − s0 t0 ρ− r0 t0σ − r0 s0 τ.

m2 = 0 = t0 ρ σ + r0τ σ + s0 ρ τ.

m3 = 0 = ρ σ τ.

n1 = 0 = r0(ρ− σ − τ) − t0(ρ+ σ − τ) − s0(ρ− σ + τ).

n2 = 0 =
(

ρ2 + σ2 + τ2 − 2στ − 2ρτ − 2σρ
)

/2. (3.21)

We will assume first that y and z are not equal to zero. The equation m3 = 0 says that one of ρ, σ or τ has to
be zero.

• Suppose first that ρ = 0, then completing squares in equation (3.21), n2 = 0, we get τ = σ and the equations
above reduce to,

m1 = 0 = σ (|y|2 + |z|2) − r0 σ(s0 + t0), m2 = 0 = r0 σ
2, n1 = 0 = −2 r0 σ.

In this case, equations m2 = 0 and n1 = 0 both imply r0 = 0 or σ = 0. If r0 = 0, then m1 implies σ = 0. Then
we have a contradiction for we get (ρ, σ, τ) = (0, 0, 0).

• Now suppose that σ = 0 then completing squares in equation (3.21) we get τ = ρ and the original set of
equations reduce to,

m1 = 0 = ρ (|x|2 + |z|2) − ρ s0(t0 + r0), m2 = 0 = s0 ρ
2, n1 = 0 = −2 s0 ρ.

In this case, equations m2 = 0 and n1 = 0 both imply s0 = 0 or ρ = 0. If s0 = 0 then m1 = ρ(|x|2 + |z|2) = 0
and then ρ = 0. Again we have a contradiction for we get (ρ, σ, τ) = (0, 0, 0).
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It remains now consider the cases when x and z are non-zero, or when x and y are non-zero. It is clear from the
analysis above, and from the symmetries in the problem, that if two minima are in the same class, then two of its
coordinates (x, y, z) must be equal to zero. �

Classes with exactly one of its coordinates equal to zero.

For matrices with exactly one of x, y or z equal to zero, it is easy to find the minima in their classes, as stated in the
theorem that follows. This is in turn, a consequence of the description for the non-extremal matrices (in page 8):

Theorem 3.16 For a class having only one of its (x, y, z) coordinates equal to zero, the minimal matrix in the class
is the one with the zero diagonal.

Proof of Theorem 3.16. From Section 3.2 the classes of non-extremal type minimum matrices are described by:

M12 =
λχ− 2µαβ ± i (λ+ µ)

√
2αβ χ

√

(α+ χ)(β + χ)
e−iη, M31 =

λβ − 2µαχ± i (λ+ µ)
√

2αβ χ
√

(α+ β)(β + χ)
e−iξ, and

M23 =
λα− 2µβ χ± i (λ+ µ)

√
2αβ χ

√

(α + β)(α+ χ)
e−i(ξ−η).

Recall that Definition 3.5 of non-extremal matrices, in page 8, does not admit two of the three parameters α, β or
χ equal to zero (the formulas above would not even make sense). Let us now suppose that the x coordinate is zero,
i.e. M12 = 0. Then

λχ− 2µαβ = 0, and, (λ+ µ)
√

2αβ χ = 0

Recall λ > 0. If µ = −λ then χ = −2αβ; but χ ≥ 0 so either α or β is zero and χ = 0. We conclude that either the
pair of parameters α, χ or the pair β, χ are both zero, which is not allowed in non-extremal matrices. Now suppose
that χ = 0, then µαβ = 0 and the only solution is µ = 0. In this case the minimal matrix is

M =
√

2λ





0 0
√
β ei(ξ−η)

0 0
√
α e−iη√

β e−i(ξ−η)
√
α eiη 0





A similar analysis in the case M31 = 0 or the case M23 = 0 draws the same conclusion.
�

3.4 The topology of the set of minimal matrices

In the previous section, Theorem 3.10 gives a light into a parameterization for the set of minimal matrices M. In
this section we shall describe the parameterization and identify M up to homeomorphism.

First consider the 2-simplex ∆ =
{

(α, β, χ) ∈ R3 | α+ β + χ = 1
2 , α ≥ 0, β ≥ 0, χ ≥ 0

}

.

Consider D = [−1, 1]×{1} ⊂ R2, and C =
{

λd ∈ R2 | λ > 0, d ∈ D
}

the positive cone (open cylinder) generated
by D in R2. Consider also W = ∆ × S1 × S1 × C, where S1 is the unit circle in the complex plane, and let
∇ = W+ ⊔W−, the disjoint union of two copies of W .

We shall denote the three vertices of ∆ as follows:

vα = (1
2 , 0, 0) , vβ = (0, 1

2 , 0) , vχ = (0, 0, 1
2 ) (3.22)

Consider in ∇ the smallest equivalence relation ‘∼’ that contains the relations shown in Table 1. Consider now
G = ∇

∼ , the quotient space of ∇ under the equivalence relation described above.

Theorem 3.17 (Topology) The space M of minimal matrices in Mh
3×3(C) is homeomorphic to G = ∇

∼ .

A pictorial representation of M is shown in Figure 2 via the quotient space G = ∇
∼ .

Proof of Theorem 3.17 The homeomorphism f : G→ M shall be defined by parts:
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For all η, ξ ∈ [0, 2π),

all α ∈
[

0, 1
2

]

,

and all (µ, λ) ∈ C.

(E1)
(

α, 1
2 − α, 0, eiη, eiξ, µ, λ

)

+
∼
(

α, 1
2 − α, 0, eiη, eiξ, µ, λ

)

−

(E2)
(

α, 0, 1
2 − α, eiη, eiξ, µ, λ

)

+
∼
(

α, 0, 1
2 − α, eiη, eiξ, µ, λ

)

−

(E3)
(

0, α, 1
2 − α, eiη, eiξ, µ, λ

)

+
∼
(

0, α, 1
2 − α, eiη, eiξ, µ, λ

)

−

For all ξ, η1, η2 ∈ [0, 2π)
and all (µ, λ) ∈ C, taking
all possible left and right
sign combinations.

(V1)
(

1
2 , 0, 0, e

iη1, ei(η1+ξ), µ, λ
)

± ∼
(

1
2 , 0, 0, e

iη2 , ei(η2+ξ), µ, λ
)

±

(V2)
(

0, 1
2 , 0, e

iη1 , eiξ, µ, λ
)

± ∼
(

0, 1
2 , 0, e

iη2 , eiξ, µ, λ
)

±

(V3)
(

0, 0, 1
2 , e

iξ, eiη1 , µ, λ
)

± ∼
(

0, 0, 1
2 , e

iξ, eiη2 , µ, λ
)

±

For all (α, β, χ) ∈
◦
∆, the

interior of ∆, all η, ξ ∈
[0, 2π) and all λ ∈ (0,∞).

(C1)
(

α, β, χ, eiη, eiξ,−λ, λ
)

+
∼
(

α, β, χ, eiη, eiξ,−λ, λ
)

−

(C2)
(

α, β, χ, eiη, eiξ, λ, λ
)

+
∼
(

α, β, χ, ei(η+η
′), ei(ξ+ξ

′), λ, λ
)

−
, with

eiη
′

= χ−2αβ−i 2
√

2
√
αβ χ

χ−2αβ+i 2
√

2
√
αβ χ

and eiξ
′

= β−2αχ−i 2
√

2
√
αβ χ

β−2αχ+i 2
√

2
√
αβ χ

Observations:

• Relations (E1), (E2) and (E3) make iden-
tifications of the boundary of one (α, β, χ)-
simplex with the boundary of the other, over
any point of the factor C.

• Relations (V1), (V2) and (V3) collapse the
toruses on each one of the three vertices of

the (α, β, χ)-simplexes onto a circle, over any
point of the factor C.

• Relations (C1) and (C2) make identifications
between the two toruses, over any point along
both boundary edges of the factor C.

Table 1: Description of the relations that generate the equivalence relation ‘∼’.

Figure 2: A representation of M via the quotient space G = ∇
∼ . The extremal matrices correspond to points in the

circles on the vertices (extremal points) of the triangles.
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• For non-vertex points of ∆, i.e. if α+ β > 0, β + χ > 0 and α+ χ > 0,

f
([

(

α, β, χ, eiη, eiξ, µ, λ
)

±

])

= µ





2α n12 n31

n12 2β n23

n31 n23 2χ



+ λ





0 m12 m31

m12 0 m23

m31 m23 0



 (3.23)

where:







































n12 =
−2αβ ± i

√
2αβ χ

√

(α+ χ)(β + χ)
e−iη

n31 =
−2αχ± i

√
2αβ χ

√

(α+ β)(β + χ)
e−iξ

n23 =
−2 β χ± i

√
2αβ χ

√

(α+ β)(α + χ)
e−i(ξ−η)

and











































m12 =
χ± i

√
2αβ χ

√

(α+ χ)(β + χ)
e−iη

m31 =
β ± i

√
2αβ χ

√

(α+ β)(β + χ)
e−iξ

m23 =
α± i

√
2αβ χ

√

(α+ β)(α + χ)
e−i(ξ−η)

(3.24)

where the choice of sign ‘±’ is taken according to the copy W+ or W− where
(

α, β, χ, eiη, eiξ, µ, λ
)

lies.

• For the three vertex points of ∆, vα, vβ and vχ,

f
([

(

vα; eiη, eiξ, µ, λ
)

±

])

=





µ 0 0
0 0 λ ei(η−ξ)

0 λ e−i(η−ξ) 0



 (3.25)

f
([

(

vβ ; eiη, eiξ, µ, λ
)

±

])

=





0 0 λ eiξ

0 µ 0
λ e−iξ 0 0



 (3.26)

f
([

(

vχ; eiη, eiξ, µ, λ
)

±

])

=





0 λ e−iη 0
λ eiη 0 0

0 0 µ



 (3.27)

Claim: f is a well defined mapping.

The following sets of equivalent points may need some clarification:

Ei’s. Performing the calculations presented in formulas (3.23) and (3.24), the ± signs can be collected with the factor√
αβ χ. Then, if αβ χ = 0, the double choice of signs disappears.

C1. As above, the ± signs can be collected with the factor (µ + λ). Then, if µ = −λ, the double choice of signs
disappears.

C2. If µ = λ, exactly the indicated pairs of phases are mapped to the same matrix, for the corresponding signs.

Claim: the mapping f is continuous.

From the form of the formulas defining f , we just need to verify three limits, to any of the vertices V ∈ {vα, vβ , vχ},
given in formulas (3.22) in page 14:

lim
(α,β,χ)→V

f
[

(

α, β, χ, eiη, eiξ, µ, λ
)

±

]

= f
(

V ; eiη, eiξ, µ, λ
)

, given in (3.25), (3.26) and (3.27)

These limits are readily verified from formulas (3.23) and (3.24) in page 16.

Claim: the mapping f is surjective.

It is clear that all matrices of extremal and non-extremal type are in the image of the mapping f . Then by
Theorem 3.13 the map f is surjective.
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Claim: the mapping f is injective.

This is the main point in this proof: the identifications given in Table 1 of page 15, determine the injectivity. In
fact, for non-extremal type matrices, if two sets of parameters are mapped to the same matrix, then these sets have
the same values for α, β, χ, µ and λ. In fact µ and λ are the trace and the norm of the matrix, and the first three
are given by the triangular-pair of eigenvectors. The only parameters that may change are the “phases” η and ξ,
and these must be taken in different components of ∇, + or −. Equating components, it can be realized that the
only way that double phases occur, is that for a minimal matrix M the product of coordinates M12M31M23 is a
real number. This implies that the imaginary part of this product is zero, i.e. for the parameterization the following
equation holds:

0 = λ
(

λ2 − µ2
)
√

αβ χ (3.28)

Then double representation phases exist in two cases:

1. When µ = ±λ (for non-extremal matrices). This cases are described in C1 and C2 of Table 1.

2. When αβ χ = 0. This cases are described with the Ei’s of Table 1.

Claim: the mapping f is a homeomorphism.

Consider D the generator of the cylinder C. Lets denote with W1, the compact subspace of W given by W1 =
∆ × S1 × S1 × D ⊂ W . Let ∇1 = W1+ ⊔ W1− ⊂ ∇, and G1 = ∇1

∼ ⊂ G. Let f1 denote the restriction of f to
the subspace G1. The image of f1 is the subspace M1 of minimal matrices in M with norm equal to one. A well
known theorem in General Topology ensures that the bijective and continuous mapping f1 is a homeomorphism, for
its range M1 is a Haussdorf space and its domain G1 is compact.

Observe that the mapping (M1, k) 7→ k M1 from M1 × (0,∞) to M is a homeomorphism, for its inverse is just

M 7→
(

M
||M|| , ||M ||

)

. Then the bijective continuous mapping g : G1 × (0,∞) → M, given by (x, k) 7→ k f1(x) is a

homeomorphism.
Consider also the mapping h : G→ G1 × (0,∞) given by,

h
([

(

α, β, χ, eiη, eiξ, µ, λ
)

±

])

=

([

(

α, β, χ, eiη, eiξ,
µ

λ
, 1
)

±

]

, λ

)

This mapping h is a homeomorphism for it is the induced quotient map of the trivial homeomorphism

(

α, β, χ, eiη, eiξ, µ, λ
)

± 7→
(

(

α, β, χ, eiη, eiξ,
µ

λ
, 1
)

±
, λ

)

Finally the mapping f is a homeomorphism for it is the composition of two homeomorphisms: f = g ◦ h.
�

3.5 Observations on minimal vectors and minimal curves in P(3)

Commentaries on extremal and non-extremal matrices

Recall from Section 3.1.1, the quotient space M = Mh
3×3(C)/D3×3 with the quotient norm

| [M ] | = inf
D∈D3×3

||M +D ||

where || · || is the usual operator norm. The following proposition is easily verified:

Proposition 3.18 Let M be an non-extremal matrix with norm ||M || = λ, let µ0 be a real number |µ0| ≤ λ and let
O be any neighborhood of [M ] in the quotient space M. Then there exist in O infinitely many classes in paths [M(t)]
of extremal matrices, where each M(t) has norm λ and intermediate eigenvalue µ0 i.e. with spectrum {−λ, µ0, λ}.
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Proof of Proposition 3.18 In Formulas (3.25), (3.26) and (3.27), extremal matrices are written as, f
(

V ; eiη, eiξ, µ, λ
)

where V ∈ {vα, vβ , vχ}. The proposition follows from the equality of classes in M,

[

lim
(α,β,χ)→V

f
(

α, β, χ, eiη, eiξ, µ0, λ
)

±

]

=
[

f
(

V ; eiη, eiξ, µ, λ
)]

,

for any V ∈ {vα, vβ , vχ}, η, ξ ∈ [0, 2π), µ0, µ ∈ [−λ, λ] with λ > 0. �

Let us observe that:

• Each matrix of extremal type contains infinitely many minimal matrices in its class.

• The matrices of non-extremal type are the only minimum in their own classes.

• In the set M of minimal matrices, the matrices of non-extremal type form an open set.

Then we have the following immediate corollary,

Corollary 3.19 In the space M of minimal matrices, those of non-extremal type form an open dense set.

Commentaries on minimal curves in P(3)

The flag manifold P(3) has minimal curves given by the action of exponentials of minimal matrices, as asserted
earlier in Theorem 1.1 in page 1. The question arises, in this context, if the multiplicity of minima in a class could
lead to multiple minimal curves starting with the same initial velocity (given by the class in M).

Multiplying by the imaginary unit i an extremal matrix, we get the anti-hermitian version of an extremal matrix.
The exponentials of the multiple minima in a fixed class (possible only in this extremal type) produce matrices that
differ by a factor in the isotropy of the action, hence the corresponding minimal curves described in Theorem 1.1
are all the same. Hence in P(3) the minimal curves are unique for a given initial velocity vector X (the class of a
minimal matrix).

In conclusion, for close points in P(3), there are unique minimal curves joining them. In the following section,
we shall present the space P(4) which has infinitely many minimal curves joining arbitrarily close points.

4 An example related to minima in 4×4 hermitian matrices

In this section we shall present a low dimensional Finsler manifold which has infinitely many minimal curves
joining arbitrarily close points.

The flag manifold P(4) of 4-tuples of mutually orthogonal lines in C4

Consider the homogeneous space P(4), the flag manifold of 4-tuples of mutually orthogonal lines in C4. The group
of unitary operators in C4 acts on the left in P(4) by sending each complex line to its image by the unitary operator.
Consider the canonical flag pe = (sp {e1} , sp {e2} , sp {e3} , sp {e4}) where sp {ei} is the complex line spanned by the
canonical vector ei in C4. The isotropy of pe is the subgroup of ‘diagonal’ unitary operators.

Consider the submanifold Pd of P(4) given by

Pd = {(l1, l2, l3, l4) ∈ P(4) | sp {l1, l2} = sp {e1, e2}}

Notice that Pd = W × W where W is the flag manifold of couples of mutually orthogonal 1-dimensional complex
lines in C2. Notice also that an ordered pair of mutually orthogonal 1-dimensional complex lines in C2 is totally
determined by the first complex line of the pair, hence W = CP (2). Furthermore CP (2) = RS, the Riemann Sphere,
hence W=RS.

The minimal curves presented in this example shall be constructed in Pd. For a better geometrical view of those
curves we shall identify RS, via stereographic projection, with the unit sphere S2 in R3, hence we shall make the
identification Pd = S2 × S2.
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A description of the minimal curves

Let N = (N,N) ∈ Pd = S2 × S2 be the point whose coordinates are both the North Pole, N ∈ S2. Let Q =
(Q1, Q2) ∈ S2 × S2 be any point of Pd such that Q1 has higher latitude than Q2 in S2 (Q1 is closer to N than Q2).

We will fix Q so that Q2 is above the equator line (and Q1 is even higher) and present a family of
minimal curves Γβ(t) = (γ1,β(t), γ2(t)), for t ∈ [0, 1], all joining N to Q.

• The curve γ2(t) in S2 will trace the smaller arc of the great circle that contains N and Q2.

• The family of curves γ1,β(t) will vary continuously with the parameter β.

• Each of the curves of the family γ1,β(t) will parameterize the smaller arc of some circle in S2 that
joins N to Q1; the arcs will not be great circles but for β = 0.

























































A precise description of the minimal curves

To present the curves drawn above we give a more manageable description of P(4). We consider the unitary subgroup
U = U(4) of the C∗-algebra A = M4(C) of 4 × 4 complex matrices, and denote with B the subalgebra of diagonal
matrices in A. The homogeneous space P(4) is given by the quotient U/D, where D = U ∩ B is the subgroup of the
diagonal unitary matrices. The group U acts on P(4) (on the left). The tangent space at 1 (the identity class) is the
subspace of anti-hermitian matrices in A with zeroes on the diagonal.

We construct Pd ⊂ P(4) as follows. First consider the subgroup SU(2) × SU(2) ⊂ U of special unitary matrices
build with two, 2 × 2, blocks on the diagonal. We set Pd ⊂ P(4) as the quotient of SU(2)× SU(2) by the subgroup
D of diagonal special unitary matrices. This submanifold is in itself a product of two copies of the quotient W of
SU(2) by the subgroup of diagonal matrices in SU(2). For the relations among the different groups here mentioned
we suggest [7]. We write Pd = W×W and a point of Pd is a class (in a quotient) which in itself has two components
which are also classes. We shall use the notation [U ] = ([u1] , [u2]) ∈ Pd = W ×W .

The minimal curves starting at 1 ∈ Pd are of the form γ(t) =
[

etZ
]

where the matrices Z are anti-hermitian
matrices with zero trace in A built with two blocks of anti-hermitian 2 × 2 matrices on the diagonal (each one with
zero trace).

The minimality of the curves is granted by Theorem 1.1 for the matrices Z shall be minimal vectors according
to Theorem 2.2. In fact, we shall consider Z ∈ Aan of the form

Z =

(

Z1 0
0 Z2

)

where Z1 and Z2 are anti-hermitian 2 × 2 matrices of the form

Z1 =

(

z i r (− sin(α) + i cos(α))

r(sin(α) + i cos(α)) −z i

)

, (4.29)

and

Z2 =

(

0 w
−w 0

)

(4.30)

where z, r, α ∈ R, and w ∈ C.
The minimality of these matrices Z is assured in the case where |w|2 ≥ z2 + r2. In such case, ||Z||2 = |w|2 and, in

relation to Theorem 2.2, just consider the operator representation ρ of the C∗-algebra A = M4(C) on C
4, together

with the unit vector ξ = (0, 0, 0, 1) ∈ C4.
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The two components of the curves in Pd
The curve γ(t) =

[

etZ
]

=
([

etZ1

]

,
[

etZ2

])

in Pd has two components (in W).
We shall regard the Riemann Sphere RS as the complex plane C with the point “∞” added. Consider a matrix

u in SU(2)

u =

(

a −b
b a

)

, where a, b ∈ C and |a|2 + |b|2 = 1.

We consider the mapping L from SU(2) to RS is given by

L(u) =
a

b
, if b 6= 0, else L(u) = ∞.

It is clear that this mapping induces an explicit diffeomorphism from the quotient of SU(2) by its diagonal matrices
to the Riemann Sphere RS.

Consider the unit sphere S2 in R3, and let the equatorial plane, C, represent the “finite” part of the Riemann
Sphere RS. We set ϕ : RS → S2 to be the stereographic projection given as by:

ϕ(ζ) =

(

2ζ

|ζ|2 + 1
,
|ζ|2 − 1

|ζ|2 + 1

)

∈ C × R = R
3, for ζ ∈ C, and ϕ(∞) = (0, 0, 1) = N ∈ S2 ⊂ R

3.

Notice that in the class b 6= 0, if ζ = L(u) = a
b
∈ C, then ϕ(ζ) =

(

2ab , |a|2 − |b|2
)

. If b = 0, then |a| = 1, hence
ζ = L(u) = ∞, then ϕ(ζ) = (0 , 0 , 1).

Via a composition of two maps, we define the diffeomorphism Ψ from W onto S2: for [u] =

[(

a −b
b a

)]

∈ W
we set,

Ψ([u]) = ϕ (L(u)) =
(

2ab , |a|2 − |b|2
)

=
(

2ab , 1 − 2|b|2
)

∈ S2.

Considering the curve q(t) = etZ1 in SU(2) with Z1 as in formula (4.29) above, and setting λ =
√
r2 + z2, it can

be verified that L(q(t)) ∈ RS is given by,

L(q(t)) =
z (cos(α) + i sin(α))

r
+ cot(tλ)

λ (sin(α) − i cos(α))

r
, if t 6∈

{

kπ

λ
| k ∈ Z

}

and,

L(q(t)) = ∞, if t ∈
{

kπ

λ
| k ∈ Z

}

. (4.31)

Notice then that L(q(t)) parameterizes a straight line lq in RS. Hence the curve

Ψ([q(t)]) = ϕ (L(q(t)))

is an arc of a circle in S2 (not necessarily a great circle) contained in the plane in R3 that contains both the line lq,
in the equatorial plane, and the North Pole N , in S2. It can be verified that this plane has unit normal vectors given
by:

± (cos(β) cos(α) , cos(β) sin(α) , sin(β))

where cos(β) =
r

λ
, sin(β) =

z

λ
, with λ =

√

r2 + z2.

Some observations on the curves Ψ
(

[etZ1 ]
)

and Ψ
(

[etZ2 ]
)

in W.

Let γ1,β(t) = Ψ
(

[etZ1 ]
)

, where cos(β) =
r

λ
, sin(β) =

z

λ
, with λ =

√

r2 + z2, and let γ2(t) = Ψ
(

[etZ2 ]
)

.

• In the constructions above, the curve γ1,β(t) runs over a great circle in S2 if and only if β = 0 (equivalently
z = 0).

• The curve γ2(t) runs over a great circle in S2 (Z2 has parameter z = 0).

• The curve γ1,β(t) varies continuously with the parameter β.
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• The curve γ1,β(t) starts at N ∈ S2 and returns to that point exactly for t ∈
{

kπ
λ

| k ∈ Z
}

.

• The curve γ1,β(t) has constant speed 2λ cos(β) in S2.

• The curve γ2(t) has constant speed 2r in S2.

The curves Γβ(t) =
(

Ψ
(

[etZ1 ]
)

, Ψ
(

[etZ2 ]
))

in Pd.
Lets give explicit values of the “parameters” z, α, r ∈ R and w ∈ C that define Z1 and Z2 (according to formulas
(4.29) and (4.30)), so that for t ∈ [0, 1], the curves γ1,β(t) = Ψ

(

[etZ1 ]
)

and γ2(t) = Ψ
(

[etZ2 ]
)

join the point N to Q1

and Q2 respectively.
Suppose that the distances from N to Q1 and Q2 in S2 are 2φ1 and 2φ2 respectively (with φ1 < φ2).

By means of some rotation of the sphere S2 we may suppose that Q1 is in the plane generated by ̂ and k̂, as in
Figure 3 below, and we have, Q1 = (0, sin(2φ1), cos(2φ1)) and Q2 = (sin(2φ2) cos(θ2), sin(2φ2) sin(θ2), cos(2φ2)).

β 

α 

N 

Q 
1 

i 
j 

π , α β 

Figure 3: We suppose that Q1 is in the plane generated by ̂ and k̂.

For Z2 we set w = φ2 (− sin(θ2) + i cos(θ2)) so that γ2(1) = Ψ
(

[eZ2 ]
)

= Q2.
We have to choose the values z, α, r ∈ R and w ∈ C that define Z1. This is equivalent to chose β, α, λ ∈ R via

the change of variables given by the equations

cos(β) =
r

λ
, sin(β) =

z

λ
, with λ =

√

r2 + z2.

The parameters α and β are shown in Figure 3, with the only restriction that the vector

~n = (cos(β) cos(α) , cos(β) sin(α) , sin(β))

is orthogonal to a plane πα,β that contains N and Q1.
The parameter λ is determined after choosing α and β so that the short arc joining N and Q1, in the intersection

of the plane πα,β with the sphere S2 as in Figure 3, has length ℓ equal to 2λ cos(β), from where the value of λ is
drawn.
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