
ON THE REPRESENTATION DIMENSION OF TILTED

AND LAURA ALGEBRAS
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Abstract. We prove that the representation dimension of a tilted,
or of a strict laura algebra, is at most three.

The chief objective of the representation theory of artin algebras
is to characterise such an algebra by properties of its module cate-
gory. For this purpose, homological dimensions are useful invariants.
They are meant to measure how much an algebra or a module devi-
ates from a situation considered to be ”nice”. Among these invariants
is the representation dimension, introduced by Maurice Auslander in
the early seventies, see [7]. It measures the least global dimension of
all endomorphism rings of those finitely generated modules which are
both generators and cogenerators of the module category. The inter-
est in the representation dimension was recently revived by works of
Xi [25, 26] and also because of its relationship with the finitistic and
the Nakayama conjectures: it was shown by Igusa and Todorov in [18]
that if the representation dimension of an algebra is at most 3, then
its finitistic dimension is finite. It was already proven by Auslander in
[7] that an artin algebra A is representation-finite if and only if its rep-
resentation dimension rep.dim.A is at most two and, also, that if A is
either hereditary or has radical square zero, then rep.dim.A ≤ 3. Many
important classes of algebras have been shown to have representation
dimension at most 3, see, for instance, [14,15]. It was shown by Iyama
that, for any artin algebra A, rep.dim.A < ∞, see [19], and Rouquier
has constructed examples of algebras with representation dimension
larger than or equal to 4, see [23].

1991 Mathematics Subject Classification. 16G70, 16G20, 16E10.
Key words and phrases. artin algebras, representation dimension, tilted and

quasi-tilted algebras, laura algebras.
The first author gratefully acknowledges partial support from NSERC of Canada,

and the second from Universidad Nacional del Sur and CONICET, of Argentina.
The second author is a researcher from CONICET. This work was done while the
second and third authors visited Sherbrooke. They would like to thank the first
author for his hospitality.

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CONICET Digital

https://core.ac.uk/display/287880799?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 ASSEM, PLATZECK, AND TREPODE

In this paper we consider two rather large classes of algebras which
play an important role in representation theory, namely, the tilted alge-
bras (see, for instance [21, 1]) and the laura algebras (see, for instance
[2, 3, 24]). We prove the following theorem, which generalises [14] (2.2),
(2.3).

THEOREM. Let A be a tilted, or a strict laura algebra. Then

rep.dim.A ≤ 3.

As a direct consequence, the weak representation dimension of any
laura algebra is at most three, and hence the finitistic dimension con-
jecture holds for laura algebras (which, we recall, may have infinite
global dimension and even infinitely many isomorphism classes of in-
decomposables with infinite projective dimension). We conjecture that,
if A is quasi-tilted, in the sense of [16], then rep.dim.A ≤ 3. We do
not prove here this conjecture, but we show that the representation
dimension of a quasi-tilted algebra is at most 4.

The paper is organised as follows. After a short preliminary section
we prove in Section 2 that the representation dimension of a tilted
algebra is at most 3. Sections 3 and 4 are respectively devoted to the
cases of quasi-tilted, and strict laura algebras.

1. Representation dimension of artin algebras

1.1. Notation. Throughout this paper, all algebras are connected artin
algebras and all modules are finitely generated right modules. For an
artin algebra A, we denote by modA the category of A-modules and by
indA a full subcategory of modA containing exactly one representative
of each isomorphism class of indecomposable A-modules. We denote
by gl.dim.A the global dimension of A and by D the standard duality
between modA and modAop.

If C is a subcategory of modA, we sometimes write X ∈ C to express
that X is an object of C. We denote by addC the full subcategory having
as objects the direct sums of indecomposable summands of objects
in C and, if M is a module, we abbreviate add{M} as addM . We
denote by GenM (or CogenM) the full subcategory having as objects
those modules X such that there is an epimorphism M0 −→ X (or a
monomorphism X −→ M0, respectively), with M0 ∈ addM . Finally,
we denote the projective (or injective) dimension of a module X by
pdX (or idX, respectively).

For unexplained notions and facts needed on modA we refer the
reader to [8, 21].
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1.2. Representation dimension. We refer the reader to [7] for the
original definition. We shall rather use the following characterisation,
used in [7].

Definition. Let A be a nonsemisimple artin algebra. The representa-

tion dimension rep.dim.A of A is the infimum of the global dimensions

of the algebras EndM , where M is a generator and a cogenerator of

modA.

The following language is useful when dealing with representation
dimension. Given an A-module M , a functor F from (addM)op to the
category Ab of abelian groups is called finitely presented (or coherent)
if there exists a morphism f : M1 −→ M0 in add M inducing an exact
sequence of abelian groups

HomA(M, M1)
HomA(M,f)

−→ HomA(M, M0) −→ F (M) −→ 0.

We denote by FM the category of all finitely presented functors from
(addM)op to Ab. Thus, a functor F : (addM)op −→ Ab is finitely
presented if and only if there exists a morphism f : M1 −→ M0 inducing
an exact sequence of functors

HomA(−, M1)
HomA(−,f)

−→ HomA(−, M0) −→ F −→ 0

from (addM)op to Ab. It was shown in [7] that the categories FM and
mod(EndM) are equivalent. The next lemma is well known [14, 15, 7,
26].

Lemma. Let A be an artin algebra, n be a positive integer, and M be

a generator-cogenerator of modA. Then gl.dim.EndM ≤ n + 1 if and

only if for each A-module X, there exists an exact sequence

0 −→ Mn −→ · · · −→ M1 −→ X −→ 0

with Mi in addM for all i, such that the induced sequence of functors

0 −→ HomA(−, Mn) −→ · · · −→ HomA(−, M1) −→ HomA(−, X) −→ 0

is exact in FM . In particular, rep.dim.A ≤ n + 1

The above considerations may equivalently be expressed in the lan-
guage of relative homological algebra, as developed by Auslander and
Solberg in [10]: indeed, the lemma above says exactly that, for each
module X, there exists an exact sequence

0 −→ Mn −→ · · · −→ M1 −→ X −→ 0
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(with Mi in addM for all i), which is addM -exact.

1.3. The following lemma is also well known and follows from the
fact that, for any (finitely generated) module M over an artin algebra
A, any A-module X admits an addM -approximation. We include the
proof because it is useful for our future considerations.

Lemma. Let A be an artin algebra and M be any A-module. Then,

for any A-module X, the functor HomA(−, X) : (addM)op −→ Ab is

finitely presented.

Proof. Let {g1, · · · , gd} be a set of generators of the EndM -module
HomA(M, X). The morphism g0 = [g1, · · · , gd] from M0 = Md to X
has the property that the induced sequence

HomA(−, M0)
HomA(−,g0)

−→ HomA(−, X) −→ 0

is exact in FM . Considering the kernel of g0 yields similarly a module
M1 in addM , and a morphism g1 : M1 −→ M0 such that the sequence

HomA(−, M1)
HomA(−,g1)

−→ HomA(−, M0)
HomA(−,g0)

−→ HomA(−, X) −→ 0

is exact in FM . �

We note that the displayed projective presentation of HomA(−, X)
is usually not induced by an exact sequence

M1 −→ M0 −→ X −→ 0.

This is however clearly the case when both X and Ker(g0) are generated
by M . In Section 2 we give conditions for this to be the case.

1.4. We have considered a projective presentation for the functor
HomA(−, X). We now look at a projective cover.

Lemma. Let A be an artin algebra, and M be any A-module. If

X ∈ GenM , then there exists an epimorphism f0 : M0 −→ X, with

M0 ∈ addM , and such that

HomA(−, M0)
HomA(−,f0)

−→ HomA(−, X) −→ 0

is a projective cover in FM .
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Proof. Since X ∈ GenM , there exists, by the discussion in (1.3), an
epimorphism f1 : M1 −→ X, with M1 ∈ addM such that

HomA(−, M1) −→ HomA(−, X) −→ 0

is exact in FM . Since FM is equivalent to mod(EndM), we have a
projective cover

HomA(−, M0)
π

−→ HomA(−, X) −→ 0

in FM , with M0 ∈ addM . We now claim that there exists a mor-
phism f0 : M0 −→ X such that π = HomA(−, f0). The projectiv-
ity of HomA(−, M0) in FM yields a morphism σ : HomA(−, M0) −→
HomA(−, M1) such that π = HomA(−, f1) σ. Since M0, M1 ∈ addM ,
Yoneda’s lemma gives a morphism h : M0 −→ M1 such that σ =
HomA(−, h). Hence π = HomA(−, f1) HomA(−, h) = HomA(−, f1h)
and setting f0 = f1h establishes our claim.

There remains to show that f0 is surjective. Since M1 ∈ addM , the
morphism f0 induces an exact sequence

HomA(M1, M0)
HomA(M1,f0)

−→ HomA(M1, X) −→ 0

in Ab. Thus, we find g : M1 −→ M0 such that f0g = f1. Since f1 is
surjective, so is f0. �

1.5. We leave to the reader the straightforward proof of the following
lemma.

Lemma. Let A be an artin algebra and f0 : P0 −→ X be a projective

cover in modA. If we have a commutative diagram

P0 X

P

-f0

?
h

�
�

���f

with P projective, then h is a section. �

2. Tilting and tilted algebras.

2.1. Let A be an artin algebra. An A-module T is a tilting module

if pd TA ≤ 1, Ext1
A(T, T ) = 0 and there exists a short exact sequence

0 −→ AA −→ T ′
A −→ T ′′

A −→ 0, with T ′, T ′′ ∈ addT . It is well
known that any tilting module TA induces a torsion pair (T (T ),F(T ))
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in modA, where T (T ) = GenT = {XA |Ext1
A(T, X) = 0} and F(T ) =

{XA |HomA(T, X) = 0}. Thus, in particular, DA ∈ T (T ).
The endomorphism algebra of a tilting module over a hereditary

algebra is said to be tilted. Tilted algebras are characterised by the
presence of complete slices in their module categories. For further
details about tilting, tilted algebras or complete slices, we refer the
reader to [1, 21, 22].

In order to prove the next lemma (which appears to be a new char-
acterisation of tilted algebras), we need some terminology. Let A be
an artin algebra, a path in indA from X to Y is a sequence of nonzero
morphisms

(∗) X = X0 −→ X1 −→ · · · −→ Xn = Y

with all the Xi indecomposable. A set Σ of indecomposable modules
is convex if for any X, Y ∈ Σ and any path (*) from X to Y in indA,
all the Xi lie in Σ. A tilting module T is convex provided the set
ΣT = indA ∩ addT of all indecomposable summands of T is convex.

Lemma. An artin algebra A is tilted if and only if there exists a convex

tilting A-module T . In this case, (T (T ),F(T )) is a split torsion pair

and ΣT is a complete slice.

Proof. Since the necessity follows from the well known properties of
complete slices, we prove the sufficiency using Bakke’s theorem (see
[11] or [1] (5.3)). Let T be a convex tilting A-module. We define a
torsion pair (T ,F) as follows: Let T be the full additive subcategory
of modA having as indecomposable objects the modules X such that
there is a path T ′ −→ · · · −→ X, with T ′ ∈ ΣT , and let F be the
full additive subcategory generated by the remaining indecomposables.
Then (T ,F) is a split torsion pair. It is shown in [11], [1](5.3) that,
if U denotes the direct sum of a complete set of representatives of the
isomorphism classes of indecomposable Ext-projectives in T (in the
sense of Auslander and Smalø [9]), then U is a tilting module and
T = T (U), F = F(U). Moreover EndU is hereditary (so that A is
tilted).

In order to complete the proof, it suffices to show that U = T . For
this purpose, we claim that T is Ext-projective in T : indeed, assume
there exist T ′ ∈ ΣT , an indecomposable module X ′ in T and a non-split
short exact sequence

0 −→ X ′ −→ E −→ T ′ −→ 0
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Then there exist an indecomposable summand E ′ of E and a path
X ′ −→ E ′ −→ T ′ in indA. On the other hand, X ′ ∈ T , so there
exist T ′′ ∈ ΣT and a path T ′′ −→ · · · −→ X ′ in indA. Considering
the composed path T ′′ −→ · · · −→ X ′ −→ E ′ −→ T ′ and applying
convexity yields X ′ ∈ ΣT . Therefore, X ′ ∈ addT and the given short
exact sequence splits, a contradiction which establishes our claim.

By [1] (1.8) we get an A-module V such that U = T ⊕ V . However,
T itself is a tilting module. The definition of U and Bongartz’ lemma
[1](2.6) imply U = T . The proof is now complete. �

2.2. Let A be an artin algebra, and M be an A-module. It follows
from (1.3) and (1.4) that, for X ∈ GenM , there exists a short exact
sequence

0 −→ K −→ M0
f0

−→ X −→ 0

such that HomA(−, f0) : HomA(−, M0) −→ HomA(−, X) is a projec-
tive cover in FM . We call such a sequence an addM-approximating

sequence for X. In the following technical proposition we collect some
properties of approximating sequences.

Proposition. Let A be an artin algebra, M = T ⊕ N be an A-

module, X ∈ GenM and 0 −→ K −→ M0 −→ X −→ 0 be an addM-

approximating sequence for X.

(a) If Ext1
A(T, M) = 0, then Ext1

A(T, K) = 0.
(b) If TA is a tilting module and N ∈ T (T ), then K ∈ T (T ).
(c) If N = 0 and M = T is a tilting module then, for every inde-

composable summand K ′ of K, we have HomA(K ′, T ) 6= 0.
(d) If N = 0 and M = T is a tilting module, then K ∈ addM .

(e) If N = DA and K ′ is an indecomposable summand of K such

that idK ′ ≤ 1, then HomA(K ′, T ) 6= 0.
(f) If N = DA and T is a convex tilting module, then K ∈ addT .

Proof. (a) By hypothesis, the given approximating sequence is of the
form

0 −→ K −→ T0 ⊕ N0 −→ X −→ 0

with T0 ∈ addT , N0 ∈ addN . Applying HomA(T,−) yields an exact
sequence

0 −→ Ext1
A(T, K) −→ Ext1

A(T, T0 ⊕ N0).

Since the assumption implies that Ext1
A(T, T0⊕N0) = 0, the statement

follows.
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(b) Clearly, N ∈ T (T ) implies M ∈ T (T ) and so T (T ) = GenM .
Since T is a tilting module, it follows from (a) that Ext1

A(T, K) = 0.
Hence K ∈ T (T ).

(c) This is trivial.
(d) Let K ′ be any indecomposable summand of K. Since, by (b),

K ∈ T (T ), we have HomA(T, K ′) 6= 0. Also, by (c), HomA(K ′, T ) 6= 0.
Convexity yields K ′ ∈ addT . Thus K ∈ addT .

(e) We may write the given approximating sequence in the form

0 −→ K
[ g1

g2
]

−→ T0 ⊕ I0
[f1f2]
−→ X −→ 0

with T0 ∈ addT and I0 injective. Assume K ′ is an indecomposable
summand of K such that id K ′ ≤ 1. Suppose also that HomA(K ′, T ) =
0. Thus, in particular, g1(K

′) = 0. Hence we have a commutative
diagram with exact rows

(∗)

0 −−−→ K ′ g2|K′

−−−→ I0
f ′

−−−→ I ′ −−−→ 0




y
i





y
[ 0
1 ]





y
h

0 −−−→ K
[ g1

g2
]

−−−→ T0 ⊕ I0
[f1f2]
−−−→ X −−−→ 0

where i : K ′ −→ K is the inclusion map and h is induced by passing to
cokernels. Since id K ′ ≤ 1, the module I ′ is injective. Since f2 = hf ′,
we have a commutative diagram in modA

T0 ⊕ I ′

T0 ⊕ I0 X

Q
Q

QQs

[f1h]

�
�

��3
h

1 0
0 f ′

i

-[f1f2]

which induces a commutative diagram in FM ,

HomA(−, T0 ⊕ I ′)

HomA(−, T0 ⊕ I0) HomA(−, X)

HHHHHHHHj

HomA(−,[f1h])

��������*HomA(−,
h

1 0
0 f ′

i

)

-HomA(−,[f1f2])

Since I ′ is injective, T0 ⊕ I ′ ∈ addM , so that HomA(−, T0 ⊕ I ′)
is projective. By (1.5), HomA(−,

[

1 0
0 f ′

]

) is a section. Since T0 ⊕ I0,
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T0 ⊕ I ′ ∈ addM , then
[

1 0
0 f ′

]

is a section. In particular, f ′ is injective.
But this implies K ′ = 0, an absurdity.

(f) Let K ′ be any indecomposable summand of K. By (b) we have
HomA(T, K ′) 6= 0. Also, by (e), HomA(K ′, T ) 6= 0. Convexity yields
K ′ ∈ addT . Hence K ∈ addT . �

2.3. We are able to prove our first main theorem.

Theorem. Let A be a tilted algebra, Σ be a complete slice in modA,

T =
⊕

U∈Σ U and M = A ⊕ T ⊕ DA. Then gl.dim.End(M) ≤ 3. In

particular, rep.dim.A ≤ 3.

Proof. By (1.2) it suffices to find, for each indecomposable A-module
X, a short exact sequence

0 −→ M1 −→ M0 −→ X −→ 0

with M0, M1 ∈ addM , such that the induced sequence

0 −→ HomA(−, M1) −→ HomA(−, M0) −→ HomA(−, X) −→ 0

is exact in FM .
Assume first that X ∈ F(T ). Then pd X ≤ 1. Let 0 −→ P1 −→

P0
f0

−→ X −→ 0 be a projective resolution of X. Since T ⊕ DA ∈
T (T ) and X ∈ F(T ), we have HomA(T ⊕ DA, X) = 0. Therefore
HomA(M, X) = HomA(A, X) and

HomA(−, P0)
HomA(−,f0)

−→ HomA(−, X) −→ 0

is exact in FM .
Let now X ∈ T (T ). Since X ∈ T (T ) = Gen(T ) = Gen(T ⊕ DA),

there exists, by (1.4), an add(T ⊕ DA)-approximation of X

0 −→ K −→ T0 ⊕ I0 −→ X −→ 0

with T0 ∈ add(T ) and I0 injective. Since, by (2.1), T is a convex tilting
module, it follows from (2.2) (f) that K ∈ addM . Since HomA(−, f0)
is a projective cover in FT⊕DA, invoking (1.2) concludes the proof. �

3. Quasi-tilted algebras

3.1. We refer to [16] for the original definition of quasi-tilted algebras.
We use the following equivalent one: an artin algebra A is quasi-tilted

if gl.dim.A ≤ 2 and, for every X ∈ indA we have pdX ≤ 1 or idX ≤ 1,
see [16]. Another characterisation is useful: let LA (or RA) be the
full subcategory of indA having as objects all the modules X such
that, whenever there exists a path Y −→ · · · −→ X (or a path X −→
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· · · −→ Y ) in indA, then pd Y ≤ 1 (or id Y ≤ 1, respectively).Then A is
quasi-tilted if and only if AA ∈ addLA, or if and only if DAA ∈ addRA

(see [16] (II.1.4)). Moreover, LA ∪ RA = indA, see [16] (II.1.13). We
conjecture that, if A is quasi-tilted, then rep.dim.A ≤ 3. A first step
in this direction is the following proposition.

Proposition. Let A be a quasi-tilted algebra which is not tilted,

and let M = A ⊕ DA. Then gl.dim.EndA(M) ≤ 4. In particular,

rep.dim.A ≤ 4.

Proof. It suffices to show that, for any indecomposable module X, we
have pd HomA(M, X)EndA(M) ≤ 2.

Assume first X ∈ LA. Then pd X ≤ 1. Let 0 −→ P1 −→ P0
f0

−→
X −→ 0 be a projective resolution. Suppose HomA(DA, X) 6= 0. Since
X ∈ LA and LA is closed under predecessors, there exists an injective
in LA. But then A is tilted, by [16] (II.3.4). Hence HomA(DA, X) = 0,

from which we deduce that HomA(−, M0)
HomA(−,f0)

−→ HomA(−, X) −→ 0
is exact in FM . Therefore pd HomA(M, X)EndA(M) ≤ 1.

If now X /∈ LA, then X ∈ RA. Consider an addM -approximating
sequence

0 −→ K −→ P0 ⊕ I0 −→ X −→ 0

with P0 projective and I0 injective. If K ∈ addLA then, by the first
case considered above, we have pd HomA(M, K)EndA(M) ≤ 1. Therefore
pd HomA(M, X)EndA(M) ≤ 2 and we have finished. Assume thus that
K has an indecomposable summand K ′ lying in RA \ LA. Since P0 ∈
addLA and LA is closed under predecessors, we have HomA(K ′, P0) = 0.
But then (2.2) (e) yields id K ′ ≥ 2 , a contradiction which completes
the proof. �

3.2. We notice that, if A is quasi-tilted but not tilted, then
HomA(DA, A) = 0, hence EndA(A⊕DA) ' ( A 0

DA A ), where the algebra
structure is induced from the bimodule structure of DA. This is a
(finite dimensional) quotient of the repetitive algebra of A, known as
the duplicated algebra A of A (see, for instance, [17, 5, 6]). It is shown
in [5] (1.1) that, for any artin algebra A, we have

gl.dim.A + 1 ≤ gl.dim.A ≤ 2 gl.dim.A + 1

Thus, if A is quasi-tilted but not hereditary, then

3 ≤ gl.dim.A ≤ 5.
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The above proposition improves the upper bound of the preceding in-
equality, thus answering the question in [6] (5.2). We give an example
of a (tame) quasi-tilted algebra A which is not tilted and such that
gl.dim.A = 4.

Example. Let k be a field, and A be the finite dimensional k-algebra
given by the quiver

bound by the relations αβ = 0 and γδ = 0. In this case the quiver of
A, constructed as shown in [17] (2.4) is

and

AA = 1 ⊕
2
1

⊕
3

2 2
1

⊕
4
3
2

⊕

1′

3
2
1

⊕

2′

1′ 4
3 3

2

⊕

3′

2′ 2′

1′ 4
3

⊕

4′

3′

2′

4

(where indecomposable projectives are represented by their Loewy se-
ries). It is easy to see that, if S is the simple A-module corresponding
to the point 3′, then pd SA = 4. Since by (3.1), gl.dim. A ≤ 4, we infer
that gl.dim. A = 4.

4. Laura algebras.

4.1. An artin algebra is a laura algebra if LA ∪RA is cofinite in indA,
and it is a strict laura algebra if it is laura but not quasi-tilted. We
refer to [2,3,4,20,24] for properties of laura algebras. We recall that, if
A is a strict laura algebra, then it is left and right supported [3] (4.4).
In other words, if E (or F ) denotes the direct sum of a complete set
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of representatives of the isomorphism classes of indecomposable Ext-
injectives in addLA (or Ext-projectives in addRA respectively), then
addLA = CogenE and addRA = GenF . Moreover, if Aλ is the endo-
morphism algebra of the direct sum of all indecomposable projectives
in LA, then Aλ is the direct product of tilted algebras, and the restric-
tion of E to each of the directed components of Aλ is a convex tilting
module. One defines dually Aρ, which is also a direct product of tilted
algebras, and the restriction of F to each of the connected components
of Aρ is a convex tilting module [3] (4.2) (5.1).

Here, we let A be a strict laura algebra, and we let N be the direct
sum of all indecomposable A-modules not lying in LA ∪ RA (this sum
is finite, because A is laura).

We may now prove the main result of this section.

Theorem. Let A be a strict laura algebra, and let M = A ⊕ E ⊕
N ⊕ F ⊕ DA, with E, F, N as above. Then gl.dim.EndA(M) ≤ 3. In

particular, rep.dim.A ≤ 3.

Proof. As in the proof of (2.3) it suffices to show that, for any inde-
composable A-module X, we have pd HomA(M, X)EndA(M) ≤ 1.

Suppose first that X ∈ LA \ RA. Clearly, we may assume that
X /∈ addM and consider a projective resolution 0 −→ P1 −→ P0 −→
X −→ 0. If HomA(DA, X) 6= 0, then X ∈ addE, by [3], (3.1), so
X ∈ addM , a contradiction. Therefore HomA(DA, X) = 0. Moreover,
HomA(N, X) = 0, since N ∈ add (indA\(LA∪RA)), with X ∈ LA, and
LA is closed under predecessors. On the other hand, HomA(F, X) 6=
0 implies X ∈ RA, contradicting our assumption. This shows that
HomA(F, X) = 0. Thus the sequence

0 −→ HomA(−, P1) −→ HomA(−, P0) −→ HomA(−, X) −→ 0

is exact in FM , and so pd HomA(M, X)EndA(M) ≤ 1.
If X ∈ indA \ (LA ∪ RA), then X ∈ addN ⊆ addM and there is

nothing to show.
Finally, let X ∈ RA. Then X is an Aρ-module. Moreover, X is

generated by F . Therefore, by (1.4), there exists an add(F ⊕ DAρ)-
approximating sequence

0 −→ F1 −→ F0 ⊕ I0
f0

−→ X −→ 0

with F0 ∈ addF and I0 injective, so that

HomA(−, f0) : HomA(−, F0 ⊕ I0) −→ HomA(−, X)
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is a projective cover in FF⊕DAρ. Since F is a convex tilting Aρ-module,
it follows from (2.2) (f) that F1 ∈ addF . Moreover, F is a slice module
in modAρ and addRA = GenF , so that any morphism from a module
in indA \ RA to X factors through F , and hence through F0 ⊕ I0.
Therefore the sequence

0 −→ HomA(−, F1) −→ HomA(−, F0⊕I0)
HomA(−,f0)

−→ HomA(−, X) −→ 0

is exact in FM , and so pd HomA(M, X)EndA(M) ≤ 1. The proof is now
complete. �

As a direct consequence of this theorem, if A is a strict shod algebra
[12], or a strict weakly shod algebra [13], then rep.dim.A ≤ 3.

4.2. We recall that the weak representation dimension w.rep.dim.A of
an artin algebra A is the infimum of the global dimensions of the endo-
morphism algebras of the generators of modA. Clearly, w.rep.dim.A ≤
rep.dim.A and also w.rep.dim.A ≤ gl.dim.A. Thus, the next corollary
follows immediately from our Theorem (4.1) and the fact that quasi-
tilted algebras have global dimension at most 2.

Corollary. Let A be a laura algebra, then w.rep.dim.A ≤ 3.

Remark. In the case where A is a strict laura algebra, we can be more
precise: let M = A ⊕ N ⊕ E ⊕ F , where E, F and N are as above.
then gl.dim.EndM is at most 3. Indeed, we may repeat in this case the
proof of (4.1), since the existence of an add F -approximating sequence
0 −→ F1 −→ F0 −→ X −→ 0 for X ∈ RA, with F0, F1 ∈ addF , is
granted by (1.4) and (2.2)(d).

4.3. We recall that the global dimension of a laura algebra may be in-
finite and, even, such an algebra may have infinitely many isomorphism
classes of indecomposable modules with infinite projective dimension,
as is shown by the following example of [2] (2.3). Let k be a field, and
A be the radical square zero k-algebra given by the quiver
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It was shown in [18] that, if an artin algebra A verifies rep.dim.A ≤ 3
(or even w.rep.dim.A ≤ 3) then its finitistic dimension fin.dim.A is
finite. We thus obtain the following corollary.

Corollary.Let A be a laura algebra, then fin.dim. A < ∞.

If, for instance, A is the radical square zero algebra above, then it is
easily seen that fin.dim.A ≤ 2.
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Departamento de Matemática, Facultad de Ciencias Exactas y Nat-

urales, Funes 3350, Universidad Nacional de Mar del Plata, 7600 Mar

del Plata, Argentina

E-mail address : strepode@mdp.edu.ar


