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Abstract

We analyze the multipole excitation of atoms with twisted light, i.e, by a vortex light field that carries
orbital angular momentum. A single trapped *°Ca™ ion serves as alocalized and positioned probe of
the exciting field. We drive the S; /, — D5/, transition and observe the relative strengths of different
transitions, depending on the ion’s transversal position with respect to the center of the vortex light
field. On the other hand, transition amplitudes are calculated for a twisted light field in form of a Bessel
beam, a Bessel-Gauss and a Laguerre—Gauss mode. Analyzing experimental obtained transition
amplitudes we find agreement with the theoretical predictions at alevel of better than 3%. Finally, we
propose measurement schemes with two-ion crystals to enhance the sensing accuracy of vortex modes
in future experiments.

1. Introduction

The light with orbital angular momentum (OAM), or the twisted light has been a subject of many studies for the
past 25 years. The novel features of the twisted light are due to its azimuthal phase dependence that at a quantum
level results in multiple OAM-projection eigenstates that are orthogonal and therefore independently
detectable, leading to the applications such as enhanced quantum communications, quantum encryption, and
quantum computing. For most recent reviews of the subject, the reader is referred to [ 1, 2].

In this paper we focus on the angular-momentum quantum selection rules for the excitation of quantum
systems with twisted light, using atomic photoexcitation as an example. On the history of this question, it was
initially shown by Babiker and collaborators [3] that in order to pass light’s OAM to the internal degrees of
freedom of an atom, it is required that corresponding transitions have multipolarity higher than dipole. Direct
calculations by Picon et al[4] of atomic photoionization demonstrated that final electrons indeed carry OAM of
the incident photons. In [5], it was shown that atomic photoexcitation amplitudes with the twisted light depend
on atom’s position through Bessel-function factors, independently of the specific atomic structure. The next
step was made by authors of [6] who derived one-to-one correspondence between twisted- and plane-wave-
amplitudes for atomic photo-excitation. Based on this formalism, novel features of high-multipole transitions
with twisted photons were analyzed theoretically in [7], with spin—orbit effects computed in [8]. The formalism
of [6] was extended to Laguerre-Gaussian (LG) beams in [9]. In other theoretical developments, the authors of
[10] considered excitation of Rydberg atoms with OAM beams, additional quantum selection rules with recoil
effects were analyzed in [11], and optical vortex interaction with multi-electron atoms was formulated in the
impact-parameter space in [12].

Two circumstances, namely (a) the need to observe higher-multipole atomic transitions that are much
weaker than dipole, and (b) high sensitivity of the transition amplitudes to atom’s location within the optical
vortex complicate verification of the novel quantum selection rules. The first experimental demonstration that
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OAM of the twisted light can be passed to the internal degrees of freedom of an atom was done recently [13] by
measuring Rabi frequencies for **Ca™ ions placed in a Paul trap. In such way, the ion wavepacket with an
extension of <60 nm serves as a well-localized and positioned probe of the light field. Using an approach [14]
relating Rabi oscillations to dipole-like and quadrupole-like interaction operators, the authors of [ 13] measured
relative strengths of the corresponding transitions with sub-wavelength position resolution for the target **Ca™
ions. The data [13] appear to be sensitive to the longitudinal component of the electric field in the OAM

beam [15].

Here we present new measurements of the complete sets of 425, /, — 3%Ds /, transition amplitudes with
*0Ca™ ions obtained with the same apparatus as in [13]. The data are presented as a function of ion’s position
with respect to the optical vortex center and compared with position-dependent selection rules for various OAM
beam modes, namely, for Bessel, Bessel-Gauss (BG) and Laguerre—Gaussian. The results allow us to claim full
understanding of the excitation strength of the atoms by the twisted light. The work is the basis of extending the
studies of excitation in twisted light fields from a single ion, to the excitation of ensembled, e.g. linear trapped
crystals. We further discuss twisted light field multi-ion entanglement can be generated or, alternatively,
entangled ion crystals that could be employed to analyze even with higher accuracy the polarization and vortex
degrees of freedom of shaped light fields.

The paper is organized as follows. Section 2 describes a theoretical formalism of quantum selection rules for
twisted photoabsorption amplitudes for various laser beam modes, predicting relative strengths of transitions
into Zeeman sub-levels with given magnetic quantum numbers. Section 3 describes the apparatus and the
experimental methods, section 4 presents comparison of the data with theory, and section 5 is dedicated to
summary and outlook.

2. Twisted light modes and plane wave factorization

2.1.Bessel mode
One of the most convenient and straightforward ways to mathematically describe a beam-like behavior of EM-
fields generated by lasers is by solving the scalar Helmholtz equation in cylindrical coordinates. The resulting
Bessel modes were considered by Durnin ef al [ 16], where it was also reported on first generation of Bessel
beams (BBs).

Let us briefly review the formalism described in [5] and consider a BB mode with total angular momentum
(TAM) projection m.,, which is defined with respect to the beam’s propagation axis z. Bessel mode of frequency

w = |k|is the family of exact normalized non-diverging solutions of the scalar wave equation in cylindrical
coordinates

U (@ py £) = A ™, () elben )
which is mathematically defined everywhere in space, and the normalization constantis A = /x/27. Here

=2 22, . . .
k = \ k= — k; isthetransverse part of the wave-vector for a non-paraxial beam, { p, ¢,, z} are the cylindrical
coordinateswith g | Z.We proceed following the notations introduced in [5], and write the plane wave
expansion of the Bessel mode

S : , d’k - W)
U Gr ) = et [ B @), @
where ¢}" (7, t) are the plane wave states and ay ;. (EL) is the corresponding Fourier amplitude
- 2TA . ;
e, (k1) = T(—l)m’ e (k. — k), (3)

where ki, = |k |and k = (k,, ki, &,).

The Bessel solutions of the wave (Helmholtz) equation for the photon vector potential can be written in the
form of the superposition of plane waves with the fixed longitudinal momenta k, and pitch angle
= arctan(|lzl| / k) as follows

. | db
f:z,{mﬁA(T, t)=A eilkzz—wt) f—;bk (—1)™~ el % ek 65/\’ 4)
! ™

where A is helicity of a plane-wave component propagating along the direction k.
The explicit form of the polarization state of a plane-wave photon with a wave vector k is

" ] a0 A
el = e 1A cps? —knx + eiMigin? TkvyﬁA + —251n Oxnls (5)
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where {7/} ,, 7/} are the polarization basis vectors

1 .
ni[\ = f(o) :FA: -1 0)7 ng = (Oy 0,0, 1) (6)

Thelocal energy flux can be expressed, e.g. [5], as a function of a pitch angle as follows

f(p) = cos(6) (IEI* + |B|*) /4

2,,2 9
- {0054 zk m,—A(kp) + sin* _]m NG

sin 9"1 (np)} %)

where the topological effects are controlled both by the explicit 6;-dependence in the directional cosines and the
Bessel functions.

Photo-absorption of BB by the hydrogen-like atom was developed in [5-7, 17]. The transition amplitude can
be written in the form

MG AB) = (ngjems|Hinlnijimis ke m,As b), ®)

mfm
where {ng, jf, my} and {n;, j,, m;} are respectively final and initial atomic states, Hj, is interaction Hamiltonian

(in the form —(e/m)p - A, where p is bound electron’s momentum operator), b is an impact paramer, or the
distance between the atom’s c.m. and the optical vortex center, and some superscripts are tacit. Replacing the
plane wave photon state by Bessel mode, and using rotation operators with the quantization axis along z-
direction, we obtain the following factorization property of the twisted-wave transition amplitude, see [6]:

PN T [ S— (nb)Z a) O] 0

A
M;*;;j)mmm,m(ek =0l — ©)
We note that since specific hydrogen-like wave functions were not used in above derivation, this factorization
property also applies to other atoms and ions as long as the atomic size is much smaller than the wavelength of
light. Another essential difference from [6] is that equation (9) applies to TAM of initial and final states, including
their spin. It allows consideration of both spin-dependent and spin-independent transitions for arbitrary
angular-momentum eigenstates.

The general equation only requires that Hiy, is rotation invariant. If Hi, is also spin independent (as is the
interaction — (e / m)p - A ) and if the initial state is an orbital S-state, the general expression can be further
developed. We can expand the final state into its orbital and spin parts, bringing in Clebsch—Gordan coefficients,
and with suitable changes to the subscripts on the photoexcitation amplitude obtain for transitions from a
groundstate (; = 0, j; = 1/2):

MEY i imin Ok = 0)

"fffmf
_ ]f lf 1/2 (pw)
ml l}z S]{_Z nflflﬁ,l/Zsﬁ;n,-,l/Z,m,v;A

i
[mf

where we remember that H,,, is spin independent for this development and the last matrix element is calculated
using only the orbital parts of the electron states.

With suitable manipulation, the overall matrix element can be given as a product with no sums, and for a
transition to a fine structure state with fixed Iras well as fixed j;

j
]rnf mj— mny("'<v )( / ‘ fiml )

l (pw)
X d,,»;f,mx_, A(é)k)M,{;,fA,nx 2Ok = 2— (11)

Or = 0)

Iy 172
. ! ]M@“,?M“A(ekzox (10)

IMEB) (b)) =

mym;m.,

Two main effects related to the topology of the incoming photon state should be noticed: rotational
transformation described by the Wigner d-function and topological phase factor J,,,, (1b). These two novel
factors in the absorption amplitude modify the angular momentum selection rules for BB versus the plane-wave

3
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case. In the electron-photon interaction we neglect effects of electron spin that are in general suppressed for
atomic photo-excitation if electric multipoles are allowed. For this reason we can replace the difference

my — m; = my — my;, where my;(myr) are OAM projections of initial (final) electron states. We emphasize that
the above formalism of equation (9) automatically includes electron-spin-dependent interaction, while the next
step, i.e. separation into the orbital and spin part of the electron wave function (10) implies that the electron spin
remains intact during photo-excitation.

2.2. BGmode
Bessel modes accurately describe the observed behavior of EM-fields at the beam center. However, for the
peripheral behavior the diverging nature of this solution of the Maxwell equations becomes non-negligible. A
convenient generalization of the fundamental Bessel mode, BG mode, was first considered by Sheppard and
Wilson [18]. It belongs to the family of Helmholtz—Gauss beams and satisfies the paraxial wave equation. Its
characteristic behavior mimics BB in vicinity to the quantization axis, while secondary maxima get strongly
suppressed by the Gaussian factor
EEHGW) (0, 1) =A el o”]mﬁ, (5p) eilkez—wn) e,pz/WDZ’ (12)

where A is the overall constant coming from the Fresnel expansion (e.g., see [19]). Other parameters are defined
identically to the conventions of the Gaussian and Bessel modes: wy is the waist of the beam and 6y, is the pitch
angle.

After taking 2D Fourier transform one can obtain the following form for the plane wave expansion of the BG
mode:

. 2k - .
W, = e[S Ee 7, (13)

where the integral is taken over the entire reciprocal space, similar to the angular spectrum representation
technique [20], and the contribution coming from evanescent waves (k. € [k, 00))is negligible. The
corresponding Fourier kernel is

a9 (k) = Amimeim g
2 2 )
exp[_mwoz]lmq(nwo kL). "
4 2
The function Ly, (2) = "], (i2) is the modified Bessel function. Applying the formalism laid out in, e.g. [6, 7],

one can obtain for electron-spin-independent part of the transition amplitude:

Aw? )
S ML a0 = 0) e
47 Fm

| MBO) o (D) =

mI/ mj;

X f ki dk, d,l,{lfA(Hk) Jon,—my (kL b) Imd,(%wgm) ewoki/4 | (15)

This integral can be calculated, e.g. [21] (6.633 1), involving an infinite sum over hypergeometric functions. To
include the effect of electron spin in the atomic fine structure, Clebsch—Gordan coefficient factors have to be
applied as in equation (11) above.

When the parameter w is large compared with other dimensional quantities such as the wavelength, we can
evaluate the Wigner function at the pitch angle 6, and take it out of the integral. Further, we can approximate the
modified Bessel function by its asymptotic value and evaluate the integral explicitly, obtaining

IMES o (D] = e b/

m,my;
A . w

X | 2= T,y (5D) ) (00 MEY, (0 =0) |, (16)
27 T

which is a Gaussian factor times the result equation (11) for a pure non-Gaussian BB, with relevant Clebsch—
Gordan coefficients implied. That the Gaussian modification of the starting beam profile feeds through in such a
simple way to the photoexcitation amplitude works only if w, is large. For parameters of interest to us, wy is large
enough and the two photoexcitation amplitude expressions give nearly identical numerical results.

2.3.LGmode

LG mode plays a fundamental role in photonics, laser optics and resonators [22, 23]. It belongs to the family of
Gaussian solutions to the scalar paraxial equation. The spatial amplitude dependence is expressed by the
equation
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171 2\ A
6B, t=0;2) = (ﬂ) Ly (i)e w(@)

w(2) w?(2)
ko . (17)
e 2 +zpeiltil g ke ei% + c.c.
1+ 22/23

Here ¢, is the beam vorticity factor that coincides with its OAM projection in paraxial approximation;

w, = woy/ 1 + (2/2g)? isits spotsize; zg = kwp/2 is the Rayleigh range; ¢ = arctan(z/zg) is the Gouy phase of
the LG mode. The associate Laguerre polynomial is given, as can be found elsewhere, e.g. [21, 24]

Ifl 2p? ) 141 + p)! (2_p2)1 -
( JZO( (p —DILT + DY w2 ’

where p is the number of radial nodes (p + 1 concentric circles). Bessel function, being a complete set of
orthogonal functions, can be used as an expansion basis. Here we will consider the mode in focus z = 0 and
perform the Hankel transform given as

fx) = fD EF (O], (Ex)dE = F[F(©); x], (19)
(3

F() = fD xf ()], (&) dx = F[ f (x); €] (20)
3

to obtain the expression for the LG-mode expanded in Bessel modes (1), where { € D¢and x € D,. Weassume
that the transformation kernels are symmetric, such as

K(x; &) = §y(&x); K(& x) = x],(&x). (21
After applying (20) to (17) and with the help of the transform [25]
v+1
H,[x e 4P" £ = e e S/p (22)
pu+1

we get the following expression for the scalar LG mode

- gy
wLG(p) Z) = Z Bp]"

j=0
\/_f k2;+|f|+2 _kLW°/4¢k‘|f¢|kz(ﬁ)ko-’ (23)

where the BB state is given asin (1) and B lpi-”'l is the expansion coefficient defined as

gel — DAL [ w el 24
(p = DAL+ DYINV2
As aresult, the vector solution of the paraxial wave equation for LG mode can be expressed as follows
¢
Al = Z By'am
2j +|ﬂ,|+7 —w . N
j; di k7 2K %/4A;<im7,,kZA(r’ £) (25)
with Aﬁ _ A7, 1) defined as in (4). The polarization basis (5) was taken in its paraxial form
A= nje o (26)

Making use of the approach developed for BG mode earlier, as a step toward obtaining the (approximately)
factorized amplitudes, we arrive at the following expression

IMio(b, 2)| =

Ifl ¢
m,fm,,

55,‘2/\” A(O)f dk, k2]+|1’|+1 —k? WO/4]m.‘+m;,-fm;f(kLb) , (27)

where similarly to (11) and (15) factorization is possible, with 6 angle understood as Cauchy’s mean value. The
integral on the right-hand side can be calculated analytically as in [21], equation (6.643 4) with the variable
substitution x = kf_. This leads to the following representation of the transition amplitude for £; = my; = 0—S-
state, where the original LG-beam structure is apparent

5
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I
mye my;
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MPW (@, = 0) b Mlesz/wé Yol b (28)
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The parametersare { = 0.5(|,| — |n|)and = m, + my; — myr. The new coefficient is

gl _ S DAL+ G+ O] (2 )" (29)
O R — el + it \we)
where sgn(*) denotes the signum of the number, | *] ! is the Roman factorial [26] and [,Inyl(') is the extended
Laguerre polynomial
!
iy = LD e o b1, ), (30)
L] L]

3. Description of the experiment

We now describe the experimental procedure to determine the position dependent selection rules. We position
the single ion in the vortex light field and determine its variation of excitation strength for various magnetic
transitions between Zeeman sublevels of the S; /, — Ds /, transition.

Asingle **Ca™ ion is trapped and Doppler cooled in a segmented Paul trap to a thermal state with wave
packet size of about 60 nm. The ion position along one of the transverse axes of the probe beam is controlled by
applying programmable voltages on the trap electrodes. This allows positioning the ion with sub nanometer
precision along one beam axis.

Each experiment started with Doppler cooling followed by optical pumping at a fixed position. The ion was
then shifted to its probe position along the beam axis where the quadrupole beam was turned on for a given
amount of time. Then the ion was brought again to its initial position where state readout was performed. The
final state is determined by electron shelving and state dependent fluorescence [27]. We determine the final state
to bein the 4S5, /, or 3D;5 /, manifolds by observing resonance fluorescence on the 45, /,—4P /, near 397 nm for a
few milliseconds on a EMCCD camera. If the ion is in the metastable 3Ds /, manifold, then it will not fluoresce.
Contraryifisin the 45, , manifold it scatter resonant 397 nm light.

Asa probe beam we use a Ti:Sa laser tuned to the 4S; /,—3Ds /, transition near 729 nm. Its frequency is
stabilized to better than 100 Hz by locking to a high-finesse ULE reference (Stable-Lasers Inc.) cavity with finesse
close to 200 000. Using an acousto-optic modulator (AOM) in a double pass configuration, the laser can be
switched and tuned to the different Zeeman transitions spanning a range of 30 MHz. This allows us to probe all
the transitions 425, /,, m; = j:%> — |3°Ds 5, my = :i:%, j:%, i%}, which are Zeeman-split by an external field
of 13 mT. After passing the AOM, the beam is coupled into a polarization maintaining single-mode fiber for
spatial filtering. Finally, the beam is out-coupled into free space where its polarization and spatial structure are
shaped before focusing it onto the tapped ion.

We use three different spatial distributions for the beam: a plain Gaussian beam, and vortex with chirality
(OAM) one and two. For the Gaussian beam we take the shape as filtered by the single mode fiber. To produce
the vortex beams with chirality +1, 2 we additionally place a holographic fork shaped phase plate in the beam
path. A full description of the apparatus is given in [ 13] and shown in figure 1 here.

The polarization of the beam is then set by a half wave-plate on a motorized mount and a combination of
quarter-half-quarter wave-plates and dielectric mirrors. The combination of wave-plates and mirrors are set so
that by rotating the first motorized wave-plate, the polarization of the beam before focusing onto the ion can be
chosen to be either circular left (LCP) or right (RCP). The need of the extra wave plates is to compensate for the
polarization changes on the subsequent dielectric mirrors. Calibration of polarizations was done with a
polarization analyzer (Schaefter-Kirchhoff SKO10PA-NIR) and a metallic pick up mirror after the last dichroic
mirror. Polarizations were set to a Stokes parameter S; = 31 with a accuracy of 1%. However because of slight
misalignment of the calibration procedure we expect the actual polarizations to be correct between 1% and 3%.
This number varies in different experimental runs because re-calibration of the polarization was redone
periodically.

The probe beam was focused on the ion by the use of a 50 mm achromatic lens with a 67 mm focal length and
50 mm diameter objective, which allowed focusing to a beam to a waist of roughly 5 pm.

Each profile scan was done by probing the ion at different positions with a fixed interrogation time. This time
was chosen so that it would never exceed the pi time at any point of the beam. The measured excitation

6
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Figure 1. Experimental sequence. (i) First the initial state 425, /,, m; = 4-1/2 is prepared by optical pumping on the 397 nm
transition, additionally re-pumping and state reset from lower-lying D states is performed by two lasers tuned to the 866 and 854 nm
transitions. (ii) Next the ion is shuttled to the a given position by sweeping the electrode voltages where the interaction along the beam
will be measured. (iii) Following the probe beam is turned on and the ion oscillates coherently between frequency selected Zeeman
sub-levels. (iv) Finally the ion is shuttled back to the initial position the electronic state is read out by state dependent fluorescence on
the 397 nm transition with re-pumping on the 866 nm transition. See text for more details.

probability Pis related to the Rabi frequency 2by P = (1 — cos(2t)) /2. By inverting this formula we obtain
the Rabi frequencies from the measured probabilities. For each position the experiment was repeated 100 times.
The reported value is the mean with an error given by the Clopper—Pearson confidence interval at 1 sigma.

Additionally, due to the frequency-dependent diffraction efficiency of the AOM used to tune the laser, the
laser power was different for each measured transition. Additionally, different powers were chosen in some cases
to provide a better dynamic range. To account for these changes we re-scaled the obtained Rabi frequencies with
the square root of the optical power used in each case.

Finally we note that the magnetic field was set by a combination of magnetic coils which were set to nullify
the Earth and room magnetic fields and to set a field along the beam axis of 13 mT. The sense of this field could be
inverted to change the chirality of the beam’s angular momentum with respect to the ions. This option was
chosen, rather than flipping the phase plate, because it provided a more reproducible way of shifting between
beam types. The reason for this is that this procedure did not involve complete re-alignment of the beam path
and its focus as the rotation of the phase plate does.

4. Comparison of data with theory predictions

Let us compare the experimental data with theoretical predictions. To adjust theory parameters, we first use the
data on normalized Rabi frequencies for two transitions, with Am = —2, —1 (where Am is the magnetic
quantum number change in the atomic state) shown in figure 2 caused by OAM photons with wavelength
A=729 nm, TAM projection m,, = —2and A = —1(LCP), i.e. with photon’s OAM aligned with its spin. Both
BB modes and LG modes have been extensively used to model vortex beams produced by diffraction gratings
[28-31].

We start with BB mode that has only two independent parameters: (a) an overall normalization and (b) the
pitch angle 6. Fixing the normalization to reproduce m., = —2 amplitude at zero impact parameter, and
choosing 6y = 0.095 rad to reproduce positions of first minima for Am = —2, —1 transitions, we see from
figure 2(a) (blue dashed and green long-dashed lines) that while BB mode reproduces the data well in the central
region of thebeamat b < 3 pm, it overshoots the data at larger impact parameters. Introducing BG mode into

7
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Figure 2. (a) Normalized Rabi frequencies for OAM light with 11, = —2 compared with theory predictions for BB mode (blue dashed
and green long-dashed) and BG mode (black solid and black dotted) as a function of the impact parameter b for the transitions
Am = —2and Am = —1from the ground state with m; = —1/2, and LCP polarized photons (A = —1); (b) same transitions versus

theory for LG modes with parameters p =0, p = 1, and their linear combination (see text for details).

Intensity, arb. units
Intensity, arb. units

b ym b ym

Figure 3. Beam’s local energy flux used in the theory fits as a function of impact parameter for BG (black solid), BB (blue dashed) and
LG (purple long-dashed) modes. (a) m, = 0,(b) m, = 2.

the comparison, we see that the data are well reproduced with a choice of an additional parameter

w&sG = 7.3 um = 10\ (figure 2(a), black solid and black dotted lines). BG mode behaves nearly identical to BB in
vicinity to the optical vortex center for most transitions, however in case with BG the partial amplitudes get
suppressed on the beam’s periphery, which better reflects the physical behavior of the laser beam. Note that the
parameter w'°, when combined with a Bessel factors of equation (7), matches the beam waist of roughly 5,:m
estimated from focusing (section 3).

Theoretical description with LG mode of a given order p (figure 2(b)) requires three independent
parameters: (1) overall normalization factor; (2) waist w, that fixes the position of the minima and controls
overall height of the maxima; and (3) pitch angle 6, that controls relative height of the maxima. When
comparing the behavior of the LG beam to the data we notice that for the case of p = 0 both the first node in
beam intensity and the second maxima are either absent or largely suppressed compared to the experimental
observation, while choosing p = 1 for LG mode alone overshoots the data at large impact parameters. We found
that the theory describes the data the best if the mixture of LG-modes with the ordersp = 0 andp = las
considered figure 2. This is consistent with previous observations on vortex beams generated by diffraction
gratings [28, 29]. The waists for these two contributions were adjusted independently by parameters wy and w,
accordingly. Treating the relative ratio of p = 1 and p = 0 LG modes as an independent parameter, our LG model
has five parameters in total. Using the same pitch angle as in BG mode 6, = 0.095 rad, we find the optimal values
of other parameters as follows: wy = 4.0\ = 2.9 um, w; = 6.5\ = 4.7 um, p=1to p =0 mode ratio (by
amplitude) = 0.43.

Keeping all the above parameters unchanged, and choosing the opposite spin A = 1(RCP), we can predict
the amplitudes for m., = 0, when photons spin and OAM are anti-aligned. Corresponding intensity profiles of
BB, BG and LG beams with the above choice of parameters are shown in figure 3 as a function of the radial
distance to the optical vortex center. One can see that different theory models of the beam give similar intensity
profiles in the central region and start to noticeably differat b > 5-6 ym.
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Figure 4. Normalized Rabi frequencies as a function of impact parameter b, compared with theory predictions for BG and LG modes.
The projection of initial atomic spinis m; = —1/2. Black dashed curves (BG) and purple dashed—dotted curves (LG) correspond to
the theory predictions not accounting for the opposite-sign circular polarization admixture; solid curves in black (BG) and long-
dashed curves in purple (LG) are the theory predictions with 3% opposite-polarization admixture (by amplitude) for rows 1%, 3%,
4% and 6%, and 10% admixture for rows 2 and 5. Columns 1 through 5 correspond to the change of magnetic quantum number by
Am = =2, —1, 0, 1, 2, respectively. Rows 1 through 6 correspond photon’s total angular momentum projections

my = —2, =1, 0(A = —1), 0(A = 1), 1, 2.

Without further adjusting the theory parameters, full data sets with corresponding calculations are given as
grids in figure 4. The transitions all have j, = 5/2and Iy = 2,and m; = —1/2. Each plot has the impact
parameter on the horizontal axis and the reduced Rabi frequency, or a number proportional to the transition
amplitude magnitude, on the vertical axis.

For BB and BG beams, Bessel functions determine where the zeros of the amplitude lie, which includes
determining if the amplitude is zero at zero impact parameter b. The cases with finite amplitude at zero impact
parameter have my = m; + m. and are highlighted in red on the data plots. On the other hand, the Bessel
functions all have about the same peak magnitude for all index values, so the Bessel functions are not decisive for
setting the relative scale of the different data sets.

Additional factors come from the Clebsch—Gordan coefficients and Wigner d-functions. Figure 4 have
m; = —1/2 for all data sets, and for the grid in this figure, each element of a given column has the same 1, with
the values from left to right given as m; = —5/2, —3/2, —1/2, 1/2, 3/2. The corresponding Clebsch-Gordan

coefficients for the columns are
EEEEL o
5 5 5 5 5
in order from left to right.

More decisive for the size of the predicted amplitude is Wigner d-functions. For small angles, they are
proportional to powers of the angle, as
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Figure 5. Same as figure 4, but for the initial atomic state with an opposite m; = 1/2.

RN (R (S (32)

Since 6 ~ 0.1 rad for the data in the paper, the value of the exponent is decisive in setting the overall scale of
each amplitude.

The first three rows of figure 4 allhave A = — 1 (LCP) and the last three rows allhave A = 1 (RCP). Hence as
we go across any of the first three rows from left to right, the d-functions give factors proportional to

(ek)1> (ek)o’ (ek)l’ (ek)za (6/()3' (33)

The effects of these factors upon the normalization of the amplitudes is easily seen in the labeling of the vertical
axes of the respective figures in figures 4, 5: the amplitude’s overall scale is the largest for the closest match
between spin (A) and OAM projection of the final state. The corresponding factors for the last three rows are

(ek)S) (ek)z) (ek)l) (ek)o) (ek)l) (34)

and the effects of these factors are equally easy to see.

For corresponding data sets with m; = +1/2, figures 5, the m,values are again the same for each element of
agiven column, and are arranged as mp = —3/2, —1/2, 1/2, 3/2, 5/2. The Clebsch—Gordan coefficients are in
order just the reverse of equation (31). The factors of  are, however, the same as in equations (32) and (33).
(The value of 11; has changed by one unit, but the mlabeling of the columns is also offset by one unit.)

Using the theoretical model, we can evaluate the radius of prenumbra introduced in [13] that we can define as
an impact parameter b for which Am = —2 transition with m., = —2 (forbidden for plane-wave photons)
equals Am = —1 (allowed for plane waves). For BB modes the estimate is most straightforward,
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Table 1. Measured Rabi frequencies from [1] in units of
kHz W taken at zero impact parameter b = 0 and
compared to theoretical predictions with overall

normalization fixed to Am., = —2 transition and

m; = —1/2 initial state.

mi=—1/2 BB BG LG Data
Am = -2 2.92 2.92 2.92 2.92(8)
Am = —1 27.1 29.7 21.7 31.21(87)
Am =0 2.76 3.11 2.76 2.78 (8)
Am =0 2.76 3.11 2.76 2.78(7)
Am =1 19.2 21 15.3 19.22(62)
Am =2 1.3 1.31 1.31 1.26 (4)

Table 2. Same as table 1 with overall normalization fixed to
Am. = 2transitionand m; = 1/2 initial state.

m;=1/2 BB BG LG Data
Am = -2 1.24 1.24 1.24 1.33(4)
Am = —1 18.2 19.9 14.5 23.89 (66)
Am =0 2.62 2.95 2.62 2.87(8)
Am =0 2.62 2.95 2.62 2.61(8)
Am =1 25.7 28.2 20.6 34.08(92)
Am =2 2.77 2.77 2.77 2.77 (8)

1 4
mi === Jo(kb)dsY (0r) = \Eflmb)df?(ek)

1 1 2
m=ti [Luenadon = [2rendpon, G3)
Expanding above expressions for small 0y, we obtain for prenumbra radius b = /\g = 0.26 pm for
m; = —1/2and b = % = 0.16 pm for m; = 1/2, that can be checked against figure 2. It is about twice as

large for the initial electron spin aligned with photon’s TAM projection r.,.

Let us compare the peak values of non-vanishing amplitudes at the optical vortex center (b = 0)—indicated
by red plots in figures 4, 5 with theory predictions, see tables 1, 2, with data taken from [13] (supplementary
material). They appear to be in good agreement. The relative peak values at zero impact parameter for BB and
(factorized) BB modes are determined only by Wigner d-functions. For example, for m., = —2, A = —1versus
for m, = 0, A = 1 we compare Wigner d-functions d% (6 (Am = —2)and d§? (6) (for Am = 0): the
latter is larger by a factor \/% in a small-angle limit, predicting that the ratio of squares of the corresponding
Rabi frequencies should equal 3 /2. Forming an electron spin-averaged sum of the squared Rabi frequencies
from the tables 1, 2, we find the experimental value of the ratio = 1.48(8) to be a good match. This is also an
experimental evidence that the twisted light should develop circular dichroism in the high-multipole absorption
by unpolarized atomic target, the effect predicted in [8]. A different approach was used in [15] to predict ratios of
b = 0 Rabi frequencies, where the role of longitudinal component of the electric was analyzed; this approach is
consistent with the one presented here.

The theory calculations initially assumed that the laser beam is fully circularly polarized, i.e. A = 1(LCP) or
-1 (RCP). Comparison with data suggested, however, that the beams are slightly elliptic, with deviations from
fully circular polarization at 1% or less, that is well within the accuracy of measured polarization, as outlined in
section 3. Adding the amplitudes of opposite helicity (but the same OAM) with appropriate weight bring the
theory and data into agreement. Comparing the black solid plots with black short-dashed plots (for BG) and
purple long-dashed with purple dashed—dotted (for LG) in figures 4 and 5, one can see that the transition
amplitudes most affected by this small ellipticity are the amplitudes that have large-strength counterparts with
opposite circular polarization. Namely, for A = —1 (LCP) the amplitudes significantly modified by the
opposite-sign polarization admixture are for Am = 1, 2, and vice versa for the opposite A.

We also present data for the topological charge 77, = m., — A = £2, with the corresponding theory
predictions, in figure 6. In the paraxial limit, 7z, would be the OAM value. The previous figures all had |77, | < 1.
We find here that the non-zero transition at the vortex center for spin and OAM anti-aligned is indeed non-zero,
indicating that photon’s OAM fully reversed the sign of the magnetic quantum number compared to the plane-
wave case. However an admixture of the opposite-helicity photon state at 10% (by amplitude) obscures this

11



I0OP Publishing New J. Phys. 20 (2018) 023032 A Afanasev et al

Figure 6. Similar to figure 4, but here the photons have |77, | = 2. (In the paraxial limit, 77, would be the orbital angular momentum.)
The quantum numbers are m, = —1, A = 1(OAM and spin anti-aligned in upper plots) and m, = —3, A = —1(OAM and spin
aligned in lower plots), m; = —1/2. The curves are BG and LG theory, with the black dashed (BG) and purple dashed—dotted (LG)
curves having no admixture of opposite helicity photons, while the black solid (BG) and purple long-dashed (LG) curves have 10% by
amplitude of opposite helicity photons.

effect away from the vortex center. It follows from figure 6 that enforcing the purity of beam’s circular
polarization—so that opposite-helicity contamination is below 1% (by amplitude) - would allow to test selection
rules for the interesting case of topological charge 77, = 2.

Finally, let us discuss possible azimuthal dependence of the atomic transitions, where the azimuthal angle ¢,
is defined with respect to linear polarization plane of a light beam. Inspecting ¢,-dependence of the factorized
transition amplitude for OAM light that is due to the fact that both photons and electrons are eigenstates of
angular momentum projection on the propagation direction, we see an overall phase factor el">+™~=")%_ asin
equation (A13) in appendix. Hence in the measurement with a fixed value of 1, the overall phase does not affect
observables. However, for OAM light the light beam can be a coherent superposition of the states with different
values of 1., as in linearly polarized beams, for example. Again defining 77, = m, — A, we can derive
transition amplitudes with linearly polarized beams by adding the amplitudes with opposite values of A, while
keeping 77, fixed. The result reveals an azimuthal dependence that is small for all amplitudes, except Am = 0,
for which azimuthal variation is significant as shown in figure 7. The upper plots in figure 7 show the excitation
amplitude magnitudes for four different azimuthal angles, as indicated in the caption, and the lower plots give
the azimuthal dependence as contour plots in the x—y plane, with lighter colors indicating a large amplitude and
darker colors indicating a small amplitude.

5. Summary and outlook

We have presented extensive data on the photoexcitation of atomic states by twisted photons, along with a
theoretical study of the selection rules and impact parameter dependence pertinent to this process. The theory
and the data are in good agreement.

All data are for 4%S; /, to 32Ds , transitions in once ionized 40Ca. Transitions with the target atom both on
and off the photon vortex axis were measured for all possible Ds , final states, for both possible polarizations of
the initial state, and for a variety of angular momenta of the twisted photon states. In all, there are 60 data sets
presented in figures 4, 5 and 8 data sets in figure 6.

When the atom is on the vortex axis, there is a selection rule that the angular momentum of the photon must
all be absorbed into the final electronic state. This can give high magnetic quantum number final states, and is in
marked contrast to what is possible with plane wave photons. The selection rule was first observed empirically in
[13], and is seen clearly in the present data. The most relevant cases are highlighted with red data points in
figures 4, 5.

When the target atom is away from the vortex center, the data is well predicted by theory using either BG or
Laguerre—Gauss descriptions of the twisted photon beam.

The theory for the excitation amplitudes depends on four parameters. Three of them are the overall
normalization, the spatial width of the beam, and the pitch angle. The fourth parameter measures the small
amplitude of opposite helicity photons, in a beam nominally made from photons of a single helicity A. All data
sets are, excepting a few cases where the data is too sparse to make a judgement, in good agreement with
predictions based on these few parameters.

The experiments and theory on atomic photoexcitation verify and enhance our understanding of twisted
photon states. They may also eventually become valuable diagnostic tools. It has already been noted that the on-
axis selection rules are a way to determine a beam’s vorticity (OAM). Further analysis away from the vortex
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Figure 7. Predictions, using BG modes, for the azimuthal dependence of Am = 0 transition amplitudes when there is a linearly
polarized OAM beam. In the upper row we have 77, = 0, 1,and 2, as labeled, each plot with four azimuthal angles: ¢, = 0 (dashed
black), 7/2 (solid green), 7 /3 (red dotted), and 7 /4 (blue long-dashed). In the lower row are contour plots showing the magnitude of
the amplitude at each location in the x—y plane. Lighter shades (white and yellow) indicate larger amplitudes and darker shades (blue)
indicate smaller amplitudes.

center show larger differences between BG and LG predictions. Furthermore, Wigner-suppressed smaller
amplitudes appear to show high sensitivity to polarization content, which can also be used for beam polarimetry.
Since other parameters can be determined from fitting, with the demonstrated success of such fits,
measurements like those shown here may additionally become a tool to deduce other beam characteristics such
as width, pitch angle, and helicity composition.

Usual atomic spectra are dominated by electric dipole transitions. However, as transition rates increase with
the degree of ionization, the high-multipole transitions become important in highly charged ions. The longest
lifetimes are commonly observed in moderately charged ions [32]. These properties are widely used for
diagnostics of astrophysical and laboratory plasmas, making highly charged ions good candidates for atomic
clocks. For the case of OAM photons, we expect to see modified transition rates with the characteristic impact
parameter dependence. The effect is going to be the highest for the atoms located in the central region of the laser
spot, relaxing to the plane-wave-like behavior on the beam periphery. This is going to be especially evident for
the transitions different in order and multipolarity, but compatible in rates. This is a common situation in
plasma spectroscopy, e.g. [33].

The storage and recall of photon states are crucial for realizing OAM quantum memory [2, 34]. The
presented results should be instrumental for developing quantum computing with OAM light, and provide
experimentally verified foundation for atomic spectroscopy with twisted light.

Our experiments and the comparison with the theoretical models have proven that a single ion serves as a
high-precision and well-localized probe oflight fields with complex vortex and polarization structures. We plan
to extend the method of probing such fields with a pair of two ions. Here, the inter-ion distance allows for an
accurate ruler of the length scale and the entire crystal is scanned in position through the beam profile. We plan
to observe the ion crystals’ fluorescence, but now with a CCD camera that allows for parallel and independent
readout of both ions. Small differences of excitation would be detected with much higher accuracy. Ultimately,
quantum entangled pairs of ions in a specific sensor Bell state of Zeeman sublevels {m = +1/2, —1/2} inthe
S; /2 ground state would be generated. The ion crystal in this state would be exposed to the vortex field and a
different AC-Stark shift would be induced for both ions. This results in phase shift difference, and consequently,
aBellstate U, = +2(| + 1/2, —1/2) + | + 1/2, —1/2)) will undergo a parity oscillation between ¥, and
W_, which is finally detected by a quantum state analysis. Recent work with Bell states have demonstrated the
advantages of quantum entanglement for magnetic field difference measurements [35], in quite similar way this
technique would lead to orders-of-magnitude improvements for sensing structured light fields.
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Appendix. Wigner rotations of the states

Here we give some detail regarding how twisted photon matrix elements are related to plane wave matrix
elements, where the electron’s spin is included in the eigenstates of TAM, see [6] where only OAM degrees of
freedom were considered.

In general, the twisted photon matrix element can be given in terms of plane wave photon matrix elements
using the Fourier decomposition,

M;Tm A(b) - <nf]fmf|I_Imt|n1],mz; kLk Wl,\,A b>
7Af (bk i~ 1m b lkib
<nf]fmf|Hint|nijimi; kLkz¢kA>. (A1)

The last matrix element has atomic states quantized along the z-axis, but the photon momentum not in the z-
direction. We isolate the plane wave matrix element as

MID A O &) = (ngjpms|Hinilnifymis kik, ¢pA). (A2)

The technique for evaluating this matrix element is to rotate the states so that the photon’s momentum is along
the z-direction, and re-expressing the rotated the atomic states in terms of states quantized along the z-direction,
using known properties of rotations.

The photon state is, with the phase convention of [36],

lk k¢ A) = R(¢y, 001k, A) = R.(¢p)R, (B0 [k, A), (A3)
where the last ket represents a state moving in the z-direction. The Hamiltonian is rotation invariant, so that
Mis;g’ A(Gk’ (bk) - <nf]fmf| R I_Ilnt|(RT(n1]l 1)) kA> (A4)

The rotated atomic states are related to states quantized along the z-axis by the Wigner rotation matrices, leading
to

M;wanl A(ek’ ) =e ~ilmy = m) Z dm Smg=m; +A(0k)

Ji (pw)
m,,mi/ (Gk)Mm}:m,»'+A,m,',A(0’ 0), (A5)
where
Mgg;f;i,, A0, 0) = (ngjpmf|Hindnijim]s kA). (A6)

Given that the momentum and state quantization are now all in the z-direction, it follows that mjf =m/ + A.
One can further develop the result by expanding the states in an LS basis. For atomic applications, only the
electric part of the electromagnetic interaction Hamiltonian is needed, and the electric part is spin independent.
For simplicity and for direct use in this paper, we will consider the case where the initial state is an orbital S-state,
or initial atomic OAM [; = 0.
The total initial angular momentum is just the initial spin, j, = s;, and the total projection is just the spin
projection, m; = s;,. The plane wave matrix element for arbitrary photon direction becomes,

jf lf Sf
(pW) : s !
mfm 2Ok dp) = /ZZ /<]fmf|R|]fmf>(mJ/( I o
mylgom|
X (nflplyspolHidni 00 sim; kA) (sim]|R |s;m;). (A7)

From the spin independence of Hi,, we obtain s; = s;, with both being s, = 1/2 when only one electron is
under consideration, and the spin projections are the same. Thus,
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MP (O, ) = e it —mdo Z d’ f i O e (B0)

mygm;
f

il s (W)
m]/( A i/ MIE:A,O,A(O’ 0)) (A8)
where
MO, 0) = (sl 1| Hindn; 005 kA) (A9)

is calculated with only the orbital wave functions.
The result is not yet at its simplest. The sum can be eliminated. One way to do this is to work with the
definition of the Wigner functions and with the LS expansion to show

]f (0 = []f lf Sf] Iy
mmf

mp |l s,

ly ¥,
1 s

z

l l/ (ek)dse /(Gk): (Alo)

and by substitution, summing on Clebsch—Gordan coefficients, and multiplying Wigner functions, obtain the

identity
jf lr s
]f se
_| Iy s
_[mf ’ my — m; m; dmf e A00. (A11)
Hence,

mf Mf —m; m;

MﬁEW) Ok, ¢p) = e 10— mz>¢k[ Jy ‘ Iy Sf)

X d) 00 MEDL(0, 0). (A12)

The same form can alternatively be obtained beginning with the plane wave matrix element for arbitrary
photon direction, and doing the LS expansions and taking the spin matrix elements before doing any rotations.

Finally, to finish the calculation of ./\/l( A(b ) as given in equation (A1), substitute the plane wave matrix
element, either equation (A5) or (A8) or (AIZ), into equation (A1), and do the ¢, integral. This gives a Bessel
function. Using the last, no sum, result as an example,

MS;;V)I,A(E) = A" ei(m¢,+mi7mf)¢>b ]mffm,'fmﬁ (kib)

I I ly AV
xdf (0 )( ‘mf T o M40, 00 (A13)

This is the form we use in the body of the paper for the Bessel and BG mode evaluations. Notice that only one
MPW)(0, 0) is needed for all the transition possibilities studied here. This can be interpreted as requiring only
one overall normalization constant to fit all the data discussed in the text of this article. The application of above
formalism to 4°S; /, to 3°Ds , transitions is discussed in section 4.
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