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Abstract

Motivation: The sensitivity of de novo short linear motif (SLiM) prediction is limited by the number

of patterns (the motif space) being assessed for enrichment. QSLiMFinder uses specific query pro-

tein information to restrict the motif space and thereby increase the sensitivity and specificity of

predictions.

Results: QSLiMFinder was extensively benchmarked using known SLiM-containing proteins and

simulated protein interaction datasets of real human proteins. Exploiting prior knowledge of a

query protein likely to be involved in a SLiM-mediated interaction increased the proportion of true

positives correctly returned and reduced the proportion of datasets returning a false positive pre-

diction. The biggest improvement was seen if a short region of the query protein flanking the inter-

action site was known.

Availability and implementation: All the tools and data used in this study, including QSLiMFinder

and the SLiMBench benchmarking software, are freely available under a GNU license as part of

SLiMSuite, at: http://bioware.soton.ac.uk.

Contact: richard.edwards@unsw.edu.au

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

All biological processes are underpinned by protein–protein inter-

actions (PPI). To understand the ‘interactome’, we must know how

PPI are regulated in time and space to produce biological functions

(Tuncbag et al., 2009). An emerging field of biology is the study of

the role in PPI networks of intrinsically disordered protein regions

(Babu et al., 2011; Tompa, 2011), which lack a stable (unbound)

three-dimensional structure. Of particular interest, short linear

motifs (SLiMs) mediate an important subset of the cell’s disordered

PPI via domain-motif interactions (Neduva and Russell, 2005;

Pancsa and Fuxreiter, 2012; Russell and Gibson, 2008). SLiMs are

typically 2–15 amino acids in length with fewer than six (and as few

as two) functionally specific residues (Davey et al., 2012a). SLiMs

are involved in an incredibly diverse range of biological processes,

including cell cycle, cell signalling, post-translational modification,

subcellular localization, gene expression, membrane binding, pro-

tein folding, cell adhesion and cell death, with over 200 annotated

classes (Dinkel et al., 2014). SLiMs usually bind with low affinity,

making them ideal for quick or transient responses, and are likely to

be particularly enriched in signalling pathways (Diella et al., 2008).

The small protein sequence signature of SLiMs, combined with

their low affinity PPI, makes experimental discovery difficult.

Considerable attention has therefore been given to computational

methods for SLiM prediction (Davey et al., 2010a; Edwards and

Palopoli, 2015). These same features confer evolutionary plasticity

on SLiM-mediated PPI and enable high functional density, which is

frequently exploited by pathogens to hijack host cellular processes

(Davey et al., 2011). Convergent (i.e. independent) evolution is also

prevalent within species. Consequently, identifying over-represented

motifs by explicitly modelling convergent evolution is among the

most successful approaches for de novo prediction of SLiMs from
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protein sequences and PPI data (Davey et al., 2006, 2010a, 2010c;

Edwards et al., 2007, 2012; Neduva and Russell, 2005, 2006). Of

these, SLiMFinder was the first to introduce a robust (if slightly con-

servative) statistical model for de novo SLiM prediction that ac-

counted for both the evolutionary relationships within the data (i.e.

shared motifs due to homology) and the size of the motif space being

search (i.e. the number of patterns being assessed for enrichment)

(Davey et al., 2010b; Edwards et al., 2007).

The SLiMChance statistical model gives very high specificity pre-

dictions on benchmarking data (Edwards et al., 2007), making it suit-

able for large-scale analyses (Edwards et al., 2012). However, the

specificity of SLiMChance is achieved at the expense of prediction

sensitivity because the number of patterns being assessed—the motif

space—is typically very large. Even without undefined positions, there

are 20L possible patterns for a SLiM of length L, which demands a

large multiple testing correction on enrichment statistics.

A second limitation of searching for over-representation in PPI

datasets derives from the nature of the interactome itself. The search

strategy makes the implicit assumption that any observed over-

representation is causally linked to the reason for assembling that

dataset, e.g. analysing proteins with a common interaction partner, as-

sumes over-representation due to an interaction between that partner

and the enriched motif. In reality, motifs can be enriched due to over-

lapping sets of shared PPI and/or proteome-wide motif enrichment

(Edwards et al., 2012). Analysing a whole interactome by correlating

motif presence/absence with PPI partners might offset this issue to

some extent. FIRE-pro, for example, uses mutual information and net-

work randomizations to identify SLiMs associated with PPI partners

or biological processes/functions (Lieber et al., 2010). However, these

approaches need to analyse full interactomes, making them computa-

tionally challenging and unable to fully correct for protein homology.

Similarly, interactome-wide analyses and using random assemblies of

proteins can identify recurring motifs (Edwards et al., 2012) but are

not applicable to individual datasets of proteins.

Here, we present QSLiMFinder (‘Query’ SLiMFinder), which has

been developed as an extension of SLiMFinder to explicitly harness

additional information from interaction data in order to improve SLiM

prediction sensitivity and specificity. QSLiMFinder is designed to iden-

tify SLiMs shared between a specific ‘query’ protein (or segment

thereof) and a group of proteins that interact with the same PPI part-

ner. QSLiMFinder builds the motif space of putative SLiMs from the

query and then searches for enrichment in the remaining proteins. This

reduces the motif space and enables the search to be focused on a spe-

cific region for which high quality/confidence PPI information is avail-

able. For example, such regions could be derived or predicted from

solved structures of interacting proteins (Mosca et al., 2014; Stein and

Aloy, 2010) or binary PPI experiments, such as yeast two-hybrid frag-

ment libraries (Waaijers et al., 2013). Although improving all the time,

it is questionable whether current PPI data are of sufficient quality and

coverage for efficient SLiM discovery (Edwards et al., 2012).

Therefore, we present a comprehensive benchmark of QSLiMFinder

on carefully controlled protein datasets of known SLiMs from ELM

(Dinkel et al., 2012) and simulated PPI datasets of real human proteins.

Results show that QSLiMFinder can predict SLiMs with higher

sensitivity than SLiMFinder where specific PPI data are available.

2 Algorithm

2.1 The SLiMChance algorithm
The SLiMChance statistical model has been described (Edwards

et al., 2007) and expanded (Davey et al., 2010b) in previous

publications but it is useful to highlight key features here before ex-

plaining the alterations made by the QSLiMFinder algorithm.

SLiMChance uses multiple rounds of the cumulative binomial func-

tion, f(kþ;n;p), which calculates the probability of observing k or

more successes from n independent trials (with replacement), each

of which has a probability of success, p (Equation 1). When k is 1,

this simplifies to Equation 2.

f kþ; n; pð Þ ¼ 1�
Xi<k

i¼0

n

i

 !
pi 1� pð Þn�i (1)

f 1þ; n; pð Þ ¼ 1� 1� pð Þn (2)

SLiMChance uses three cycles of the binomial function in which

the probability calculated becomes P for the next calculation

(Table 1). First, confounding evolutionary relationships are removed

by grouping proteins through BLAST homology into ‘unrelated pro-

tein clusters’ (UPC), such that no protein in one UPC has BLAST-de-

tectable homology (E<1e-4) with a protein in another UPC. For

each SLiM, the probability of occurrence in each UPC (as deter-

mined by masked amino acid frequencies) is used to calculate the

probability of the observed UPC support. The final SLiMChance

probability correction for each motif produces the significance esti-

mate Sig, which is dependent on the motif search space, M. M is

determined by SLiMBuild parameter settings (Edwards et al., 2007),

namely the number of defined positions, L, and the maximum wild-

card spacer length between defined positions, W (Equation 3). As

such, it is calculated independently for each length, L.

M ¼ 20L W þ 1ð ÞL�1 (3)

Although SLiMChance is a heuristic estimation of significance

(due to the underlying assumptions of independence) it performs

very well on both benchmarking data (Edwards et al., 2007) and

real interaction data (Edwards et al., 2012). It has been shown to be

a slightly conservative metric, which helps reduce false positives

(FPs) but could miss some real motifs as a consequence (Davey

et al., 2010b; Edwards et al., 2007, 2012). (For this reason, the de-

fault cut-off for SLiMFinder is 0.1 rather than 0.05.)

2.2 Query SLiMFinder motif space correction
QSLiMFinder aims to improve search sensitivity by using prior

knowledge concerning one of the motif occurrences to reduce the

motif search space, M (Table 1). Under this model, a specific

‘Query’ protein (or region thereof) is defined on the basis of external

data suggesting that it contains the SLiM of interest. For the ELM

LIG_PCNA, for example, PDB (Berman et al., 2000) structure

1U76, which features a 15 amino acid peptide of POLD3 interacting

with PCNA (Bruning and Shamoo, 2004), could be used to define a

query for the PCNA interactome. QSLiMFinder then empirically

identifies all motifs within the specified query/region, as constrained

by the SLiMBuild parameter settings, to determine M. The query is

then removed from the search dataset along with any proteins

within the same UPC (Supplementary Fig. S1).

QSLiMFinder therefore represents a trade-off as it sacrifices one

of the clusters of unrelated proteins (n) and an occurrence of the

motif (k), which increases the (uncorrected) probability of seeing the

motif over-represented by chance. In other words, QSLiMFinder ob-

serves k-1 occurrences in n�1 proteins, as opposed to SLiMFinder

observing k occurrences in n proteins. The increase in sensitivity due

to reducing the motif space potentially greatly outweighs the deficit

produced by removing the query occurrence. For example,

QSLiMFinder protein motif prediction 2285
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SLiMFinder analysis of the human PCNA interactome returned a

LIG_PCNA variant, Q.[IL].FF, which was found in 7/74 UPC with a

motif space searched (M) of 4 320 000 four-position motifs (L¼4;

W¼2; M¼204�33) (Edwards et al., 2012). If POLD3 were used

as a query, this would become 6/73 UPC containing the motif but

the motif space would be reduced to the 1029 different four-position

motifs in POLD3. If the 15 amino acid peptide of POLD3 was used,

M would be reduced further to only 44 motifs. This represents a re-

duction in motif space of 3–5 orders of magnitude and a correspond-

ing increase in the significance of over-represented motifs.

3 Methods

QSLiMFinder was thoroughly benchmarked on datasets of known

motifs and compared with the unmodified SLiMFinder algorithm.

3.1 Reduced ELM definitions inferred from known

instances
The ELM database release used in this study (downloaded June 12,

2012) contains over 150 classes of manually annotated eukaryotic

SLiMs (Dinkel et al., 2012). Because of the manual curation of the

motifs, many of the motif definitions incorporate sequence specificity

information that is not found in known occurrences of the motif. This

information is vital for accurate prediction of novel instances of these

ELMs but it presents an unwelcome challenge for de novo SLiM pre-

diction benchmarking, as it is impossible for computational tools to

achieve the same level of specificity given the lack of information in

the input data. In a similar vein, manual curation can include rare

variants that prediction methods cannot be expected to recognize.

LIG_PCNA, for example, is defined as ((^x{0,3})j(Q))x[^FHWY]

[ILM][^P][^FHILVWYP][DHFM][FMY]xx where ((^x{0,3})j(Q))

represents ‘glutamine or up to three N-terminal residues’, [^P] repre-

sents ‘anything but proline’ and x represents ‘any amino acid’ (Dinkel

et al., 2012). Each of the non-phenylalanine variants in the last two

defined positions, however, occurs in only one LIG_PCNA occurrence

in the database (Fig. 1). Complex motif definitions also make it chal-

lenging to identify whether a prediction method is returning the cor-

rect motif from a given dataset; the more degenerate a regular

expression is, the more likely it is to get a match using CompariMotif

(Edwards et al., 2008) or manual comparisons.

To counter these issues, ELM motifs were redefined purely on

the basis of the known occurrences for each motif using SLiMMaker

(http://rest.slimsuite.unsw.edu.au/slimmaker). Occurrences were

aligned and each position taken in sequence and assessed for a ‘spe-

cificity signal’ (Fig. 1):

1. Each individual amino acid variant must occur in at least 3

different occurrences.

2. At least 75% of occurrences must have an amino acid that meets

requirement 1, otherwise the position was marked as a wildcard.

3. The maximum number of amino acids for each position was 5.

If 6þ different amino acids each occurred in 3þ sequences, the

position was marked as a wildcard.

For example, position 3 of the LIG_PCNA motif is defined in

ELM as [^FHWY]. Taken together, the 18 LIG_PCNA instances in

ELM have the following amino acid composition: 1K, 4R, 5S and

8T. Amino acids R, S and T each comply with 3þ occurrences while

K has fewer than three occurrences and is ignored. The summed fre-

quency of RþSþT equals (4þ5þ8)/18¼17/18. This exceeds the

0.75 cut-off and therefore position 3 is redefined as [RST], which is

a less degenerate version of [^FHWY]. In contrast, position 5 is

defined as [^P] and has amino acids: 1A, 3D, 2E, 2L, 2M, 1N, 2S,

3T and 2Y. Although D and T have 3þ occurrences, position 5 is

not defined as [DT] because their summed frequency is only (3þ3)/

18¼6/18, which does not exceed the 0.75 threshold. Therefore,

position 5 is returned as a wildcard.

Leading and trailing wildcards were removed but end of se-

quence characters for N-terminal (^) and C-terminal ($) positions

were included. Original ELM instances that did not match the

revised motif were removed and remaining instances subject to an-

other round of SLiMMaker motif definition using the same method.

This process was iterated until all retained instances matched the

redefined motif. The final ‘reduced’ ELM data are hereon referred to

as reduced ELM (ELMred) definitions and instances (Supplementary

Table S1).

3.2 ELM benchmarking data
ELM has been used to benchmark several motif prediction algo-

rithms (Davey et al., 2006. 2009, 2010c, 2012b; Edwards et al.,

2007; Neduva et al., 2005). Previous studies have limited bench-

marking to ELMs with 3þ unrelated (non-homologous) motif in-

stances. Despite this, some ELMs had too much degeneracy and/or

too few instances to be rediscovered, even by a perfect algorithm.

Including such datasets in a comparative benchmarking study is

pointless as all methods will fail. Therefore, an additional restriction

was applied, limiting analysis to ELMred definitions with a normal-

ized information content (Edwards et al., 2008) equal or greater

than 2.0, an equivalent of having at least two fixed positions. In

total, there were 1968 instances belonging to 156 ELM classes, rep-

resenting 1284 unique proteins. 125 classes (1182 instances) were

retained following ELMred redefinition. Of these, 55 had 3þ unre-

lated motif-containing proteins and were selected for benchmarking,

forming the ELM benchmarking (ELMBench) dataset (Fig. 2). To

control for possible artefacts due to differences between query pro-

teins, each protein in a given dataset was taken in turn and used as

the query (Supplementary Fig. S2).

3.3 Simulated and random benchmarking data
A second benchmarking dataset of simulated and random bench-

marking data (SimBench) was designed to more accurately reflect

the real FP rates of de novo SLiM discovery by using random human

proteins rather than proteins with known ELM instances. These

data consisted of simulated PPI datasets in which a known propor-

tion of any dataset contained a specific ELM motif that interacts

with the hypothetical interaction partner of the proteins. This was

Table 1. Binomial function calculations used in SLiMChance

Score Probability k n P

p1þ Occurrence of given motif in each unrelated

sequence cluster (UPC)

1þ No. sites in UPC Probability of motif

occurrence per site

Prob Observed (or greater) support in dataset Observed support(þ) No. UPC Mean p1þ
Sig Any motif with observed probability (or less) 1þ Motif space (M) Prob

2286 N.Palopoli et al.
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Fig. 1. Example reduction of LIG_PCNA motif definition. Each instance of the motif was aligned and used to generate a new motif definition in which only the

high frequency recurring residues are included. For each position, amino acids occurring in at least three sequences are identified (bold, highlighted, centre

panel). The summed frequency of these amino acids was then calculated and positions with a combined frequency �75% were redefined based on these amino

acids alone (centre panel). Instances matching the new definition were identified (highlighted, left panel) and the process repeated for this subset (right panel) to

produce the final ELMred definition and instances

Fig. 2. (a) ELMBench dataset generation. ELMs are first reduced to only those datasets for which SLiMFinder or QSLiMFinder could theoretically find the ELMred

based on the signal within the data (information content of motif and number of unrelated occurrences). For each ELM analysed, each protein is taken in turn and

used as a query. Each query is masked at six levels of resolution: (i) Full-length protein; (ii) 300 amino acid window, centred on motif where possible; (iii) 100

amino acid window; (iv) 50 amino acid window; (v) ELM instance plus 2 � 5 amino acid flanking sequences and (vi) ELM instance region only. (b) SimBench data-

set generation. ELMred definitions with a normalized IC�3.0 were searched against the human proteome and 10 queries selected (with replacement) to seed 10

replicate datasets. Next, additional ELMred-positive proteins were selected at random (without replacement) to make a total of 5 or 10 positive proteins and further

human proteins selected at random (without replacement) to make the final simulated datasets of different total sizes (TP�1, �2, �5, �10 and �20). As with

ELMBench, the SimBench queries are masked at same six different levels of site resolution

QSLiMFinder protein motif prediction 2287
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achieved by first searching a human protein dataset of 23 961 se-

quences constructed as outlined in Edwards et al. (2012) using

downloads from December 6, 2012 (Supplementary data). Searches

were performed using SLiMProb 1.2 [formerly SLiMSearch 1.x

(Davey et al., 2010)] and restricted to disordered regions [IUPred

(Dosztanyi et al., 2005) � 0.2] masked according to relative local

conservation (Davey et al., 2009; Edwards et al., 2007) as described

in Edwards et al. (2012). The 76 ELMred with a normalized infor-

mation content (Edwards et al., 2008) �3.0 were taken in turn to

generate 10 replicates of ‘true positive’ (TP) simulated datasets

(Fig. 2b). For each dataset, a different query protein was selected

(with replacement) from the positive human proteome search re-

sults, while the rest of the ‘signal’ proteins (either 5 or 10, including

the query) were selected from unrelated proteome hits. Any motif

without sufficient unrelated ‘signal’ proteins in the human proteome

was excluded. Datasets were completed with ‘noise’ proteins se-

lected at random from the proteome irrespective of whether the

motif was found in the protein or not. Five different signal-to-noise

ratios were used: 1:0 (‘signal’ only), 1:1, 1:4, 1:9 and 1:19. Each of

the simulated datasets was paired with a ‘true negative’ random

dataset with the same query protein but in which all other proteins

were selected randomly from the proteome. In total, the analysis of

each ELM comprised up to 100 pairs of simulated datasets, gener-

ated from 10 replicates of 2 different ‘signal’ protein counts and 5

signal-to-noise ratios.

3.4 SLiM prediction
SLiM prediction was performed using both SLiMFinder 4.6 and

QSLiMFinder 1.7 with default settings. Where disorder masking

was applied, residues with an IUPred score <0.2 were masked

(Dosztanyi et al., 2005), with a minimum (dis)ordered region size of

5 amino acids. Conservation masking used settings and alignments

from Edwards et al. (2012).

3.5 Assessment of SLiM prediction
SLiM predictions were rated as TP, FP or off-target matches

(OT). This was achieved by comparing the patterns to the ELMred

definitions using CompariMotif 3.8 (Edwards et al., 2008).

Any CompariMotif hits matching at least two positions with a

MatchIC � 1.5 (approximately equivalent to one fixed and one 3-

fold degenerate position, or a pair of 2-fold degenerate positions)

and a normalized IC � 0.5 (i.e. at least half the smallest motif

is matched) were classed as motif matches. Motif matches

were defined as TP if the ELM matched was the same as (or a

variant of) that used to construct the dataset. Remaining motif

matches were classed as OT if the pattern had been recognized

as a TP in a different dataset, or it matched an ELM with a more

stringent criteria of MatchIC � 2.5 or NormIC � 1.0 (e.g. the

smaller pattern being matched entirely at sites with fixed amino

acids or low degeneracy). The remaining patterns were classed

as FP.

Once each pattern had been rated, performance metrics were cal-

culated for relevant sets of data:

1. SN, the proportion of datasets returning a TP. (Positive datasets

only for SimBench.)

2. The proportion of datasets returning a FP (FPX). (Negative data-

sets only for SimBench.)

OT motifs were ignored for clarity. Calculating FPX with OT

reclassified as TP or FP did not qualitatively affect any of the results

presented (data not shown).

For ELMBench, the different numbers of queries for each ELM

was normalized by first calculating values for each ELM and then

taking the mean values across ELMs. SLiMFinder clusters motifs

with overlapping patterns and instances into ‘clouds’. All analysis in

this article used only the top-ranked motif in each cloud. Treating

each returned pattern independently did not qualitatively affect any

of the results presented (data not shown).

3.6 Flanking region analysis
To reflect different levels of prior knowledge, six different flanking

region strategies were applied to the ELM query sequences (Fig. 2)

to reduce the motif space (QSLiMFinder) or sequence search space

(SLiMFinder):

1. Full-length proteins (‘none’). This represents the lowest resolution

prior data where a specific PPI pair has been identified but the

interacting region is totally unknown.

2. 300 amino acid window, centred on the ELM instance

(‘win300’). Where the ELM instance was within 150 amino acid

of a protein end, the terminal 300 amino acid were used. This

represents slightly higher resolution data, e.g. where chimera

studies or yeast-two-hybrid fragment experiments have nar-

rowed the site of interaction down to a region of a protein.

3. 100 amino acid window, centred on the ELM instance

(‘win100’). The terminal 100 amino acid were used if ELM in-

stance was within 50 amino acid of a protein terminus.

4. 50 amino acid window, centred on the ELM instance (‘win50’).

The terminal 50 amino acid were used if ELM instance was

within 25 amino acid of a protein terminus.

5. Motif instance plus five flanking amino acids in each direction

(‘flank5’). This represents a typical SLiM ligand bound to its

binding domain where some of the flanking residues are also im-

portant for specificity and binding even if they do not contribute

to the motif definition itself (Stein and Aloy, 2008).

6. The motif instance only (‘site’). This represents the highest quality

prior knowledge, where mutation experiments etc. have precisely

identified the key region.

3.7 Ambiguity in motif definition
SLiMBuild constructs ambiguous positions by combining different

fixed SLiM patterns according to an ‘equivalence file’ of permitted

ambiguities, provided that they extend dataset coverage (support)

versus the individual fixed patterns (Edwards et al., 2007). Because

QSLiMFinder builds the motif space from the query alone, it cannot

incorporate pattern variants found elsewhere in the data without

violating the SLiMChance model or inflating the motif space.

Therefore, unless otherwise specified, motif ambiguity was switched

off for both QSLiMFinder and SLiMFinder, even though the under-

lying ELMred definitions include ambiguity. Where ambiguity was

used, the following sets of equivalencies were used: [ILMVF],

[FYW], [FYH], [KRH], [DE], [ST].

4 Results

4.1 QSLiMFinder increases prediction sensitivity by

reducing motif search space
The main aim of QSLiMFinder is to increase the sensitivity of SLiM

discovery by using specific ‘query’ data to reduce the motif and

sequence search spaces. First, we investigated how well

QSLiMFinder returned known motifs from the ELMBench datasets

of known SLiM-containing proteins from the ELM database (Dinkel

2288 N.Palopoli et al.
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et al., 2012). Because ELMs are manually defined and thus contain

specificity not necessarily found within the known instances them-

selves, ELMred definitions were used that should, in principle, be

possible to discover (normalized IC � 2.0, 3þ non-homologous

occurrences). Queries were restricted to the ELM instance plus five

flanking residues on each side and proteins were masked to only

include regions predicted disorder (IUpred score � 0.2 [Dosztanyi

et al., 2005]). Although ELMred definitions could include degenerate

positions, which could feature one of several different amino acids,

SLiM predictions were restricted to fixed position motifs only. Each

ELM-containing protein was selected in turn to be the query and the

percentage of datasets returning a match to the known ELM

(CompariMotif MatchIC � 1.5, normalized IC � 0.5 [Edwards

et al., 2008]) calculated for SLiMFinder and QSLiMFinder at differ-

ent SLiMChance significance levels.

SLiMFinder is known to be conservative (Davey et al., 2010b;

Edwards et al., 2007) and TP results with at least borderline signifi-

cance (P � 0.1) were returned for one or more queries for 28 of the

55 ELMred datasets (Fig. 3). As expected, QSLiMFinder demon-

strated greater SN and returned TPs at greater significance for 25 of

these ELMs, in addition to returning TPs (P � 0.1) for a further nine

ELMs. Given its reliance on the query data to generate the motif

space, it is not surprising that QSLiMFinder showed greater varia-

bility between queries in terms of whether the ELM was returned at

a given SLiMChance cut-off. SLiMFinder also demonstrated some

query-specific significance, which is likely to result from different

variants of ambiguous ELMred motifs in different queries.

ELMBench datasets are commonly used for SLiM prediction

benchmarking but are quite limited because (i) the number of ELMs

is restricted, and (ii) the realism of a dataset in which every protein

contains the SLiM is questionable for real world applications. We

therefore sought to generate a more extensive benchmarking data-

set, SimBench, which would more accurately reflect the nature of

real world protein datasets for SLiM prediction and neither rely on,

nor be unduly biased by, experimental data. For this, the 76 ELMred

patterns with a normalized information content � 3.0 (equivalent of

3þ fixed positions) were used to generate multiple datasets of real

human proteins with different numbers of proteins and a range of

signal-to-noise ratios, plus a matching number of control datasets of

randomly selected human proteins. Again, QSLiMFinder shows

greater SN than SLiMFinder, returning TP results for a greater pro-

portion of SimBench datasets (Fig. 4). As expected, the effect is most

pronounced when the query region is smallest, as this is when the

motif space is most dramatically reduced. For the sake of clarity

only those results obtained with the whole protein and the SLiM

region with and without flanking residues are displayed, but results

with windows of intermediate sizes lie in-between, as expected (data

not shown).

4.2 QSLiMFinder predictions maintain the high

specificity of SLiMFinder
The ability to successfully return known motifs is only one side of a

useful SLiM discovery tool. In real life, it is often not known

whether a SLiM is present in the data at all, and the statistics grant-

ing the ability to successfully avoid the return of FP predictions is

critical. (For this reason, we do not benchmark predictions based on

ranked scores, which are of limited use in real-world applications of

de novo SLiM prediction.) Consistent with previous analyses,

SLiMFinder is conservative and exhibits high specificity on

SimBench, with �8% of random datasets returning a significant

motif at a relaxed significance threshold of P � 0.1 (Fig. 4).

Although QSLiMFinder does not have quite the same specificity

when the whole query protein is used, the improved SN is not

caused by over-prediction and the SLiMChance statistics are still

slightly conservative. Reducing the query region increases specificity

Fig. 3. Comparison of QSLiMFinder (QSF, top rows) and SLiMFinder (SF, bottom rows) results for the ELMBench data after searching for true instances of an ELM

using a region containing the ELM plus five flanking residues at each side. For each dataset, indicated by its ELM name, the percentage of Queries returning the

TP motif at different significance cutoffs is shown. ELMred patterns below each ELM name were used to assess predictions for both QSLiMFinder and

SLiMFinder. Fill intensity represents the percentage of queries that return the TP motif according to the scale on the lower right. Disorder masking (IUPred� 0.2)

was used for all analysis. ELMs for which neither method returned a TP prediction are not shown
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as well as SN over SLiMFinder, giving a double benefit. This is to be

expected as the reduced motif space means that there are fewer pat-

terns that could be over-represented by chance. Although this should

be compensated by the reduced multiple testing correction, there are

clearly local sequence biases that result in certain patterns being

enriched by chance in real proteins (Edwards et al., 2012) and

reducing the chance of including these in the motif space is likely to

have added benefit.

4.3 Incorporating ambiguity in QSLiMFinder results in

over-prediction
Reducing the motif space to that of the query does not come without

cost. In addition to removing one of the TP instances, the ability to

incorporate ambiguity is compromised. SLiMBuild constructs

ambiguous positions by combining different fixed SLiM patterns

according to an ‘equivalence list’ of permitted ambiguities, provided

that they extend dataset coverage (support) versus the individual

fixed patterns. Because QSLiMFinder builds the motif space from

the query alone, it cannot incorporate pattern variants found else-

where in the data without violating the SLiMChance model.

Incorporating ambiguity in QSLiMFinder therefore results in over-

prediction and elevated FP rates, whilst SLiMFinder is less affected

(Fig. 5). However, ambiguity can be useful to providing a more

nuanced motif definition than fixed position motifs alone (Edwards

et al., 2007) and does give a marginal improvement in SN (Fig. 5a).

A possible workaround is to enable the return of ambiguous motifs

but exclude them as FPs unless a significant fixed position pattern is

returned in the same motif cloud (set of overlapping motifs

[Edwards et al., 2007]). This is provided as a new option

(cloudfix¼T) in SLiMFinder and QSLiMFinder.

4.4 Sequence masking can further improve

QSLiMFinder sensitivity
It has been previously shown that general sequence masking can

improve the sensitivity and specificity of SLiMFinder by reducing

the sequence search space (Davey et al., 2009; Edwards et al.,

2007). Therefore, we sought to examine whether additional mask-

ing could further boost QSLiMFinder performance by comparing

different dataset masking strategies. SLiM prediction was executed

with both predicted disorder and relative local conservation mask-

ing (‘Bothmask’), disorder masking alone (‘Dismask’) or neither

(‘Nomask’). Masking was applied to the entire protein dataset

including the query.

In general, reducing the sequence space through sequence mask-

ing added to the query region benefits for QSLiMFinder SN (Fig. 6).

This is to be expected, as additional masking of the query will fur-

ther reduce the motif space, whilst overall masking of the dataset

will reduce the sequence space. The FP rate was also improved,

albeit by a smaller magnitude. The exception was for the site-spe-

cific query region masking, for which the Nomask strategy was

most successful (Fig. 6). This is because it is quite rare to return the

precise motif being sought and many TP matches incorporate an

additional flanking or internal residue that is over-represented but

not part of the formal motif definition. This is particularly true

when fixed position variants of ambiguous motifs are being sought,

as in these analyses. Extremely stringent masking will eliminate the

possibility of such extended patterns being returned. For this reason,

unless the user is extremely confident about the precise location and

context of a SLiM, it is probably a good idea to include some flank-

ing sequence. In real data, the utility of masking is not so clear-cut

as it cannot be guaranteed that the SLiM occurrences being sought

meet the masking criteria. However, where there is confidence that

the criteria are met, it can make a big difference. In other scenarios,

using QSLiMFinder with precise location data for the query can

reduce the need for additional sequence masking.

4.5 Prediction accuracy is highly dependent on the

signal-to-noise ratio of the data
Real protein datasets vary wildly in terms of the number of proteins

they contain (Edwards et al., 2012). In general, an unknown fraction

Fig. 4. Comparison of (a) QSLiMFinder (QSF) and (b) SLiMFinder (SF) results on SimBench datasets after searching with fragments of the Query protein of

decreasing size. SN, the proportion of datasets returning a TP, is plotted against FPX, the proportion of datasets returning a FP, at different SLiMChance signifi-

cance cut-offs (0.1, 0.05, 0.01, 0.005, 0.001, 5e-04, 1 e-04). Searches were made with the whole protein (‘none’, circles), with a window of five residues flanking the

known ELM at each side (‘flank5’, triangles) or with the region of the motif only (‘site’, squares). For clarity, plots are truncated at the least significant cut-off for

which FPX¼0
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of these proteins will contain the SLiM being sought. The remaining

proteins are ‘noise’, which interact with the target protein via a dif-

ferent mechanism. The SimBench data were generated with two dif-

ferent TP counts (5 or 10 per dataset) and five different signal-to-

noise ratios to investigate the effects of data quality and quantity. As

expected, the composition of the dataset is highly relevant to deter-

mine the trade-off between sensitivity and specificity. Intuitively,

increasing the signal-to-noise ratio improves the sensitivity of pre-

diction for both SLiMFinder and QSLiMFinder (Fig. 7). At equal

signal-to-noise ratios, larger datasets also give a marked increase in

true motifs, indicating that the SLiMChance over-representation sta-

tistics become more sensitive as the number of occurrences increases,

which is not surprising given its foundation on the binomial distri-

bution. However, in line with previous results, increasing the dataset

size also increases the likelihood of a FP being returned (Edwards

et al., 2007, 2012). This is most likely due to the effects of small

local biases in amino acid composition being amplified as dataset

sizes increase.

Fig. 5. Comparison of the effect of incorporating ambiguity on motif definition on the proportion of SimBench datasets returning (a) at least one TP (SN) and (b)

at least one FP (FPX) when searches are performed using QSLiMFinder (QSF) and SLiMFinder (SF). Results are plot at different SLiMChance significance cut-offs

(0.05, 0.01, 0.005, 0.001, 5 e-04, 1 e-04, 1 e-05, 1 e-06, 1 e-07, 1 e-08, 1 e-09, 1 e-10; in panel (b) results are truncated at 1 e-04, the least significant cut-off for which

FPX¼ 0.) Searches were made with the whole protein (‘none’, circles), with a window of five residues flanking the known ELM at each side (‘flank5’, triangles) or

with the region of the motif only (‘site’, squares)

Fig. 6. Comparison of QSLiMFinder (QSF) results on SimBench datasets with different masking strategies. The proportion of datasets returning a true motif (SN)

is plotted against the proportion of datasets returning a false hit (FPX) for average values of controlled signal-noise combinations at each different SLiMChance

significance cut-off (0.05, 0.01, 0.005, 0.001, 5 e-04, 1 e-04, 5 e-05). Searches were made (a) without further masking of the query (‘Nomask’, squares), (b) masking

out disordered regions (‘Dismask’, triangles) or (c) masking out both disordered and evolutionary conserved positions (‘Bothmask’, circles). Results were

obtained with (a) the whole protein as the query, (b) with a window of five residues at each side of the known motif or (c) with the motif only. For clarity, plots are

truncated at the least significant cut-off for which FPX¼0
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5 Discussion

Query SLiMFinder (QSLiMFinder) is a modified version of

SLiMFinder that makes use of a specific query protein (or region

thereof) to reduce the motif search space. By reducing the corre-

sponding multiple testing correction, QSLiMFinder can increase the

sensitivity of de novo SLiM prediction (Fig. 4). By reducing the num-

ber of motifs that could be susceptible to sequence biases within the

data, QSLiMFinder also reduces the number of datasets returning

FP predictions (Fig. 4). Intuitively, the more precisely the query

sequence can be restricted to the site of the interaction, the smaller

the motif space is and the larger the benefit provided by

QSLiMFinder. Furthermore, the explicit use of a specific PPI pair

will make subsequent interpretation and validation easier.

Despite these benefits, there are scenarios in which SLiMFinder

remains the more appropriate choice, even when specific PPI data

are available. QSLiMFinder reduces the motif space by sacrificing

an occurrence of the motif. For small datasets, SLiMFinder is more

likely to cope with the limited number of motif occurrences that will

challenge the sensitivity of SLiMChance. Furthermore,

QSLiMFinder cannot handle ambiguity as well as SLiMFinder (Fig.

5). Because the benefits of QSLiMFinder are small when full-length

queries are used, it might be more appropriate to use SLiMFinder in

these cases unless the query protein is itself very short. Overall, the

results of our analysis point to different applications for SLiMFinder

and QSLiMFinder, with the latter best-suited to exploit specific

information about interaction sites.

In this article, we also introduce SLiMBench, a combination of

carefully formulated benchmarking datasets and a rule-based auto-

mated benchmarking tool for consistent, repeatable comparison of

de novo SLiM prediction methods. The design and scale of these

data have provided additional insights regarding dataset design with

respect to signal-to-noise. Prediction SN (TP rate) is primarily influ-

enced by the number of proteins in the dataset containing the motif,

whereas specificity (FP rate) is predominantly influenced by overall

dataset size (Fig. 7). Due to the stringency of the SLiMChance

statistics underpinning SLiMFinder and QSLiMFinder, both pro-

grams are more tolerant of increased noise than reduced signal, con-

sistent with previous results (Edwards et al., 2007, 2012).

Therefore, an interesting dilemma may arise when building a new

search dataset, between seeking a better signal-to-noise ratio to

enhance sensitivity and increasing dataset size for extended motif

coverage. Maximizing the signal-to-noise ratio of protein datasets

will hopefully maximize the accuracy of predictions but extra cau-

tion should be taken when removing unfavourable proteins and/or

masking sequences, lest motif instances are accidentally removed.

On the other hand, if high precision (i.e. a low FP rate) is critical,

bloating the dataset with uninteresting sequences should be avoided.

The next step will be to apply these principles to real PPI data.
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