
UCC Library and UCC researchers have made this item openly available.
Please let us know how this has helped you. Thanks!

Title The Parkinson's disease gene PINK1 activates Akt via PINK1 kinase-
dependent regulation of the phospholipid PI(3,4,5)P3

Author(s) Furlong, Rachel M.; Lindsay, Andrew; Anderson, Karen E.; Hawkins,
Phillip T.; Sullivan, Aideen M.; O'Neill, Cora

Publication date 2019-10-22

Original citation Furlong, R. M., Lindsay, A., Anderson, K. E., Hawkins, P. T., Sullivan,
A. M. and O'Neill, C. (2019) 'The Parkinson's disease gene PINK1
activates Akt via PINK1 kinase-dependent regulation of the
phospholipid PI(3,4,5)P3', Journal of Cell Science, 132(20),  jcs233221,
doi: 10.1242/jcs.233221

Type of publication Article (peer-reviewed)

Link to publisher's
version

https://jcs.biologists.org/content/132/20/jcs233221
http://dx.doi.org/10.1242/jcs.233221
Access to the full text of the published version may require a
subscription.

Rights © 2019. Published by The Company of Biologists Ltd.

Embargo information Access to this article is restricted until 12 months after publication by
request of the publisher.

Embargo lift date 2020-10-22

Item downloaded
from

http://hdl.handle.net/10468/9727

Downloaded on 2021-11-27T11:41:41Z

https://libguides.ucc.ie/openaccess/impact?suffix=9727&title=The Parkinson's disease gene PINK1 activates Akt via PINK1 kinase-dependent regulation of the phospholipid PI(3,4,5)P3
https://jcs.biologists.org/content/132/20/jcs233221
http://dx.doi.org/10.1242/jcs.233221
http://hdl.handle.net/10468/9727


RESEARCH ARTICLE

The Parkinson’s disease gene PINK1 activates Akt via PINK1
kinase-dependent regulation of the phospholipid PI(3,4,5)P3

Rachel M. Furlong1,2,3, Andrew Lindsay1, Karen E. Anderson4, Phillip T. Hawkins4, Aideen M. Sullivan2,3,* and
Cora O’Neill1,3,*,‡

ABSTRACT
Akt signalling is central to cell survival, metabolism, protein and lipid
homeostasis, and is impaired inParkinson’s disease (PD). Akt activation
is reduced in the brain in PD, and bymany PD-causing genes, including
PINK1. This study investigated the mechanisms by which PINK1
regulates Akt signalling. Our results reveal for the first time that PINK1
constitutively activates Akt in a PINK1-kinase dependent manner in the
absenceof growth factors, andenhancesAkt activation in normal growth
medium. In PINK1-modifiedMEFs, agonist-induced Akt signalling failed
in the absence of PINK1, due to PINK1 kinase-dependent increases in
PI(3,4,5)P3 at both plasma membrane and Golgi being significantly
impaired. In the absence of PINK1, PI(3,4,5)P3 levels did not increase in
the Golgi, and there was significant Golgi fragmentation, a recognised
characteristic of PD neuropathology. PINK1 kinase activity protected the
Golgi from fragmentation in an Akt-dependent fashion. This study
demonstrates a new role for PINK1 as a primary upstream activator of
Akt via PINK1 kinase-dependent regulation of its primary activator
PI(3,4,5)P3, providing novel mechanistic information on how loss of
PINK1 impairs Akt signalling in PD.

This article has an associated First Person interview with the first author
of the paper.

KEY WORDS: Akt, Parkinson’s disease, PINK1, neurodegeneration,
PIP3

INTRODUCTION
PINK1 [phosphatase and tensin homologue (PTEN)-induced
putative kinase 1] was identified as a gene upregulated by
overexpression of the tumor suppressor PTEN, the major negative
regulator of phosphoinositide-3-kinase (PI3-kinase)–Akt signalling
(Unoki and Nakamura, 2001). Subsequently, loss-of-function
mutations in PINK1 were reported to cause autosomal recessive
early onset Parkinson’s disease (PD) (Valente et al., 2004), leading
to a major research effort to understand PINK1 function. PINK1, a
ubiquitous serine-threonine kinase, has pro-survival, neuroprotective
and anti-stress signalling functions (Arena et al., 2013; Haque et al.,
2008; Li et al., 2017; MacKeigan et al., 2005; Wood-Kaczmar et al.,
2008; Yang et al., 2018). Multiple studies, from our and other

labs, have shown that PINK1 is a key regulator of mitochondrial
health, including mitophagy, fission, fusion, bioenergetics and
mitochondrial antigen presentation (Harper et al., 2018; Matheoud
et al., 2016; O’Flanagan et al., 2015; Pilsl and Winklhofer, 2012;
Youle and Narendra, 2011; Youle and van der Bliek, 2012).
Although these are the most widely documented functions of PINK1,
it also regulates several other non-mitochondrial systems central to
survival, neuroprotection and stress resistance (Dagda et al., 2009,
2014; Dickey and Strack, 2011; Fedorowicz et al., 2014; Ries et al.,
2006; Steer et al., 2015; Xiong et al., 2009; for review see Arena and
Valente, 2017; O’Flanagan and O’Neill, 2014). These include PI3-
kinase–Akt signalling (Akundi et al., 2012; Contreras-Zárate et al.,
2015; Ellis et al., 2013;Maj et al., 2010; Sánchez-Mora et al., 2012),
the cell cycle (O’Flanagan et al., 2015), protein kinase A (Dagda
et al., 2014; Dickey and Strack, 2011), NF-κB (Lee and Chung,
2012; Lee et al., 2012; Sha et al., 2010), ubiquitination, proteasomal
degradation (Xiong et al., 2009) and macroautophagy (Dagda et al.,
2009; Fedorowicz et al., 2014).

Understanding the interactions between PINK1 and the PI3-
kinase–Akt pathway is of central importance for PD research, as this
pathway is a master regulator of cell survival, metabolism and
proteostasis, key systems that fail in PD (Manning and Toker, 2017).
In concordance, in comparison with non-PD samples, Akt activation
is impaired in postmortem tissue from the substantia nigra of PD
patients (Malagelada et al., 2008; Timmons et al., 2009), and
constitutive activation of Akt protects against dopaminergic neuron
loss in a preclinical model of PD (Ries et al., 2006). Notably, several
PD risk genes, including PINK1, converge to crosstalk with the PI3-
kinase–Akt signalling system (Chuang et al., 2014; Fallon et al.,
2006; Gupta et al., 2017; Jaramillo-Gómez et al., 2015; Kim et al.,
2005; Ohta et al., 2011; Zhang et al., 2016). Akt activation by PINK1
confers protection against several cell stressors including rotenone
(Murata et al., 2011), calyculin A, FK506, staurosporine (Akundi
et al., 2012) and ceramide (Contreras-Zárate et al., 2015; Sánchez-
Mora et al., 2012). Akt-induced inhibition of FOXO3a can reduce
PINK1 mRNA levels (Mei et al., 2009), and Akt signalling regulates
PINK1-dependent mitophagy (Deas et al., 2011; Hauser et al., 2017;
Matsuda et al., 2010; McCoy et al., 2014; Soutar et al., 2018).

Akt activation mechanisms and Akt signalling are the subject of
intensive investigation in cell biology in health and disease (for
review see Manning and Toker, 2017). Accumulation of the
membrane lipid phosphatidylinositol (3,4,5)-trisphosphate
[PI(3,4,5)P3 or PIP3], via agonist-induced phosphorylation of
PI(4,5)P2 by PI3-kinases, is an essential prerequisite for Akt
activation. PIP3 acts by recruiting inactive cytosolic Akt to
membranes by interacting with its pleckstrin homology (PH)
domain (Bellacosa et al., 1998). This interaction induces a
conformational change in Akt, essential for Akt activation,
allowing phosphorylation at two regulatory residues, Ser473 by
mammalian target of rapamycin complex 2 (mTORC2) (Alessi et al.,Received 18 April 2019; Accepted 12 September 2019
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1996; Sarbassov et al., 2005; Stokoe et al., 1997), and Thr308, by
phosphoinositide-dependent kinase 1 (PDK1, also known as PDPK1)
(Calleja et al., 2007; Stokoe et al., 1997). Termination of PI3-kinase–
PIP3–Akt signalling is predominantly due to dephosphorylation of
PIP3 to PI(4,5)P2 by the phosphatase PTEN (Maehama and Dixon,
1998; Stokoe et al., 1997). It is increasingly recognised that PIP3 can
equilibrate between endomembranes via membrane trafficking
routes, and can also be generated within endomembranes in situ
(Braccini et al., 2015; Ebner et al., 2017; Jethwa et al., 2015; Salamon
and Backer, 2013; Sato et al., 2003). The observation that Akt
localises to endomembranes, in addition to the plasmamembrane, has
led to the modification of Akt signalling models to incorporate
compartment-specific patterns of activation (Ebner et al., 2017;
Manning and Toker, 2017).
While it is clear that PINK1 can activate Akt (Akundi et al., 2012;

Boonying et al., 2019; Contreras-Zárate et al., 2015; Ellis et al.,
2013; Hauser et al., 2017; Maj et al., 2010; Mei et al., 2009; Murata
et al., 2011; O’Flanagan and O’Neill, 2014; Sánchez-Mora et al.,
2012; Soutar et al., 2018), and that PINK1 deletion reduces Akt
activation, the mechanism by which this occurs and its dependence
on PINK1 kinase activity remain unclear. Initial studies revealed
that PINK1markedly enhanced the phosphorylation of Akt at Ser473

but not Thr308, inducing Akt activation that was essential for
protection from a variety of cytotoxic agents (Murata et al., 2011).
PINK1-induced Akt activation was reported to occur independently
of PI3-kinases, via PINK1-mediated activation of mTORC2 via
Rictor (Murata et al., 2011). In contrast, subsequent studies revealed
that mouse embryonic fibroblasts (MEFs) from PINK1−/−mice had
reduced IGF-1- and insulin-induced activation of Akt, with reduced
phosphorylation at both Akt activation residues, Thr308 and Ser473,
and protection from apoptosis and metabolic dysfunction (Akundi
et al., 2012). Together, these studies show that PINK1 promotes Akt
activation via a mechanism upstream of Akt phosphorylation
(Akundi et al., 2012; Contreras-Zárate et al., 2015; Ellis et al.,
2013; Maj et al., 2010; Manning and Toker, 2017; Mei et al.,
2009; Murata et al., 2011; Sánchez-Mora et al., 2012). However,
various mechanisms have been proposed and there is no clear
information on whether Akt activation requires PINK1 kinase
activity.
In this study, we employed PINK1-modifed cell systems (Morais

et al., 2009; O’Flanagan et al., 2015) to investigate the mechanism
by which PINK1 activates Akt. We identify PINK1 as a major
upstream activator of Akt, and provide a new mechanism involving
PINK1 kinase-dependent regulation of the plasma membrane and
endomembrane localisation of PIP3, the essential lipid activator of
Akt. This study significantly advances knowledge on the
mechanisms by which loss of function of PINK1 impairs Akt
activation in PD.

RESULTS
PINK1 activates Akt in a PINK1 kinase-dependent manner
Initial results show that terminally-differentiated mouse
embryonic fibroblasts (MEFs) derived from PINK1−/− mice
(Morais et al., 2009; O’Flanagan et al., 2015) displayed
significantly reduced Akt phosphorylation at both Ser473 and
Thr308 activating residues when cultured in normal growth medium
(Fig. 1A). Total Akt levels were equivalent in PINK1−/− and PINK1+/+

cells, indicating that deletion of PINK1 significantly reduced activation
of Akt (phospho-Akt/Akt ratio). These findings were confirmed in
BE(2)-M17 neuroblastoma cells transduced with shRNA to PINK1
(Fig. 1B). Stable expression of human PINK1 (hPINK1res) in
PINK1−/−MEFs fully restored phosphorylation at the Ser473 residue

(P<0.05), and partially restored phosphorylation at Thr308 (P=0.09)
(Fig. 1A). In contrast, a triple kinase-dead PINK1 mutant
(hPINK1TKD) did not restore phosphorylation at either residue
(Fig. 1A). Deletion of PINK1 did not alter Akt1, Akt2 or Akt3
isoform levels; however expression of hPINK1TKD resulted in a
significant decrease in the level of Akt1, which indicates that PINK1
kinase activity can specifically regulate the levels of Akt1 (Fig. 1C).
We further demonstrate that PINK1 overexpression in PINK1−/−

MEFs resulted in constitutive activation of Akt at both activating
residues, in the absence of serum, whereas Akt activation was
markedly impaired in wild type, PINK1−/− and hPINK1TKD
mutants (Fig. 1D). Total Akt levels were similar in all cell lines
(Fig. 1D). Together, these data show that PINK1 activates Akt by
inducing phosphorylation at both the mTORC2-dependent Ser473

and PDK1-dependent Thr308 activation sites, without affecting Akt
isoform levels. Additionally, these results indicate that PINK1 can
constitutively activate Akt, even in the absence of serum, and that
this requires PINK1 kinase activity.

Plasma membrane localisation of Akt is enhanced by PINK1
kinase activity
GFP–Akt-PH transfection allows visualisation of Akt plasma
membrane localisation (Calleja et al., 2007; Ebner et al., 2017;
Meyer et al., 2012), which is known to be critical for Akt activation
(Bellacosa et al., 1998). We next examined whether increased Akt
activation induced by PINK1 was mechanistically associated with
increased recruitment of Akt to the plasma membrane. Our results
show that, under normal growth conditions, GFP–Akt-PH was
localised to the plasmamembrane at a number of focal points, where
clear areas with increased GFP–Akt-PH were evident in PINK1+/+

and hPINK1res cells, but not in PINK1−/− and hPINK1TKD MEFs
(Fig. 2A). This was visualised by analysis of the fluorescence
intensity along a line that bisected the cell, with sharp peaks of
fluorescence intensity observed where the line crosses the plasma
membrane in PINK1+/+ and hPINK1res cells but not in PINK1−/−

and hPINK1TKD MEFs (Fig. S1A). The percentage of cells with
GFP–Akt-PH at the plasma membrane was quantified, revealing a
significant reduction in PINK1−/− and hPINK1TKD MEFs
(P<0.0001) in comparison to PINK1+/+ and hPINK1res MEFs
(Fig. 2B).

This impairment in GFP–Akt-PH localisation to the plasma
membrane was also evident in PINK1−/− and hPINK1TKD cells in
response to the agonist IGF-1, a major activator of Akt (Fig. 3). In
unstimulated cells, GFP–Akt-PH was distributed diffusely
throughout the cytoplasm in all four MEF cell lines (Fig. 3A).
After 2-min stimulation with IGF-1, a rapid and significant increase
in the percentage of cells with GFP–Akt-PH at the plasma
membrane was evident in both PINK1+/+ and hPINK1res MEFs.
This was significantly lower (P<0.0001), remaining at baseline
levels, in both PINK1−/− or hPINK1TKD MEFs (Fig. 3A,B). The
percentage of cells displaying plasma membrane localisation of
GFP–Akt-PH in the PINK1−/− and hPINK1TKD cells increased
following 10-min IGF-1 stimulation, but remained significantly
lower than that observed in PINK1+/+ and hPINK1res MEFs cell
lines (P=0.0002) (Fig. 3B). Plasma membrane localisation of full
length GFP–Akt is also enhanced by PINK1 kinase activity in the
same manner, verifying that this is not due to truncation of Akt
(Fig. S2). Thus, it can be concluded that the localisation of Akt at
the plasma membrane, which is known to be critical for Akt
activation, is regulated by PINK1 kinase activity, both under
normal growth conditions and in response to short-term
stimulation with IGF-1.
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Fig. 1. See next page for legend.
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PI3-kinase p85α subunit phosphorylation is reduced in the
absence of PINK1 kinase activity
Next, we sought to identify mechanisms by which PINK1
activates Akt. Firstly, we determined whether PINK1 regulated
Akt activity by enhancing either PDK1- and/or mTORC2-
induced phosphorylation of AktThr308 and AktSer473,
respectively. PDK1 activation was assessed indirectly by
measuring PDK-1Ser241 phosphorylation (necessary for PDK-1
activation) (Casamayor et al., 1999; Komander et al., 2005; Wick
et al., 2003), SGK-1 (a protein downstream of PDK-1 and
regulated by its activation) (Castel et al., 2016; Hall et al., 2012)

and mTORC2 via Rictor levels (Sarbassov et al., 2004).
Comparative western immunoblot analysis revealed that there
was no significant alteration in PDK1Ser241, SGK-1 or Rictor
levels when comparing wild-type, PINK1−/−, hPINK1res or
hPINK1TKD cells (Fig. 4A).

Phosphatidylinositol (3,4,5)-trisphosphate [PI(3,4,5)P3 or PIP3]
accumulation in membranes is essential for the recruitment of Akt
to membrane compartments for subsequent mTORC2- and PDK1-
induced activation of Akt via phosphorylation of Akt at Ser473 and
Thr308, respectively (Alessi et al., 1996; Manning and Toker,
2017). As PINK1 enhances Akt phosphorylation at both Ser473

and Thr308 sites, we hypothesised that PINK1 may regulate PI3-
kinases and PTEN, the primary enzymes that control the synthesis
and degradation of PIP3, respectively (Hers et al., 2011). The
levels of the PI3-kinase catalytic subunit p110α (also known as
PIK3CA) were not altered by PINK1 expression (Fig. 4B).
However, activation of the regulatory subunit PI3-kinase p85
[composed of p85α (PIK3R1) and p85β (PIK3R2)], as measured
by the phospho-p85 (pTyr458)/p85α ratio (Aweida et al., 2018;
Ibrahim et al., 2019; Pedrosa et al., 2019; Zheng et al., 2019), was
significantly decreased by PINK1 deletion. This p85 activation
was restored in hPINK1res, but not in hPINK1TKD (Fig. 4B). In
contrast, neither total PTEN levels, nor its phosphorylation at
Ser380 (inactivating residue), were significantly altered by PINK1
knockout or overexpression (Fig. 4C). Taken together, these data
indicate that activation of Akt by PINK1 may be mechanistically
linked to PI3-kinase phosphorylation, specifically the p85
regulatory subunit.

Fig. 1. PINK1 is a major regulator of Akt activation. (A) Representative
immunoblot analysis showing phosphorylation of Akt at Ser473 and Thr308 in
PINK1+/+, PINK1−/−, hPINK1res and hPINK1TKD MEFs, which were grown for
24 h in DMEM-Hi supplemented with 10% FBS. (B) Representative
immunoblot analysis showing phosphorylation of Akt at Ser473 and Thr308 in
BE(2)-M17 cells, which were grown for 24 h in DMEM-Hi supplemented with
10% FBS. (C) Representative immunoblot analysis showing levels of Akt1,
Akt2 and Akt3 in PINK1+/+, PINK1−/−, hPINK1res and hPINK1TKD MEFs,
which were grown for 24 h in DMEM-Hi supplemented with 10% FBS.
(D) Representative immunoblot analysis showing phosphorylation of Akt at
Ser473 and Thr308 in PINK1+/+, PINK1−/−, hPINK1res and hPINK1TKD MEFs,
which were grown in the absence of serum. Data information: In A–C, data are
presented in corresponding graphs as mean±s.e.m. (n=3 biological replicates
for each). *P<0.05, **P<0.01 and ***P<0.0001 (one-way ANOVA) with respect
to PINK1+/+ MEFs. #P<0.05 and ##P<0.01 with respect to hPINK1res MEFs. In
D, data are presented in corresponding graphs asmean±s.e.m. (n=3 biological
replicates). **P<0.01 and ***P<0.0001 (one-way ANOVA) with respect to
PINK1+/+, hPINK1res and hPINK1TKD MEFs.

Fig. 2. PINK1 regulates the localisation of Akt to the plasmamembrane. (A) Representative confocal images showing GFP–Akt-PH localisation in PINK1+/+,
PINK1−/−, hPINK1res and hPINK1TKDMEFs, which were grown in DMEM-Hi supplemented with 10%FBS, transfected with GFP–Akt-PH for 24 h and stained with
DAPI (blue). White line shows path of fluorescence intensity analysis (see Fig. S1 for fluorescence intensity profiles). Scale bar: 10 μm. (B) Histogram
depicting the percentage of transfected cells with Akt accumulations at the plasma membrane. Data are presented as mean±s.e.m. (n=3 biological replicates for
each). ***P<0.0001 with respect to PINK1+/+ MEFs. ###P<0.0001 with respect to PINK1−/− MEFs and hPINK1TKD MEFs (one-way ANOVA).
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Fig. 3. PINK1 decreases the time taken for Akt to get to
the plasmamembrane in response to IGF-1 stimulation.
(A) Representative confocal images showing GFP–Akt-PH
localisation in PINK1+/+, PINK1−/−, hPINK1res and
hPINK1TKD MEFs, following transfection with GFP–Akt-PH
for 24 h and stained with DAPI (blue). Serum-starved cells
were stimulated with 10 ng/ml IGF-1 for the indicated times
(n=3 biological replicates). White line shows path of
fluorescence intensity analysis (see Fig. S1 for
fluorescence intensity profiles). Scale bars: 10 μm.
(B) Histograms depicting the percentage of transfected cells
with Akt accumulations at the plasma membrane. Data are
presented as mean±s.e.m. (n=3 biological replicates).
**P<0.01 and ***P<0.0001 with respect to PINK1+/+ MEFs.
##P<0.01 and ###P<0.0001 with respect to PINK1−/− and
hPINK1TKD MEFs (one-way ANOVA).
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PINK1 kinase activity regulates the dynamic subcellular
localisation of PIP3 at the plasma membrane and Golgi in
response to IGF-1
Initial rapid plasma membrane and subsequent longer-term
endomembrane localisation of PIP3, particularly in the Golgi and
ER, in response to agonists and/or growth factors are critical
determinants of compartment-specific Akt activation (Ebner et al.,

2017; Jethwa et al., 2015; Manning and Toker, 2017; Sato et al.,
2003). We employed a PIP3-specific monoclonal antibody (Braccini
et al., 2015; Moult et al., 2010; Papakonstanti et al., 2007; Wang
et al., 2010) to determine whether PINK1 modulated the subcellular
localisation of PIP3 under normal growth conditions and in response
to short-term (2 min, 10 min) and longer-term (60 min) IGF-1
stimulation. Following 24 h serum deprivation, PIP3 was diffusely

Fig. 4. Phosphorylation and activation of PI3-kinases is PINK1 kinase-dependent. (A–C)Representative immunoblot analysis showing relative expression of
proteins that regulate Akt activation through indicators of PDK-1 activation (A), PI3-kinase activity (B) or PTEN activity (C) in PINK1+/+, PINK1−/−, hPINK1res and
hPINK1TKD MEFs, which were grown in DMEM-Hi supplemented with 10% FBS. Data are presented in corresponding graphs as mean±s.e.m. (n=3 biological
replicates for each). *P<0.05 and **P<0.01 with respect to PINK1+/+ MEFs and ##P<0.01 with respect to PINK1−/− and hPINK1TKD MEFs (one-way ANOVA).
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distributed throughout all cells (Fig. 5A). Non-uniform
accumulations of PIP3 at the plasma membrane in response to
IGF-1 were evident in hPINK1res after 2 min, but not in PINK1+/+,
PINK1−/− or PINK1TKD MEFs (Fig. 5A). After 10 min of IGF-1
stimulation, PIP3 was observed at specific plasma membrane
domains in all four cell lines (Fig. 5A). Importantly, PI3-kinase
inhibition, by pretreatment with LY294002 (10 μM), prevented
production of PIP3 at the plasma membrane in PINK1+/+,
PINK1−/− or PINK1TKD MEFs. However, hPINK1res-expressing
cells had distinctly increased PIP3 levels near the plasma
membrane, in the presence of LY294002 10 μM (Fig. 5A) and
also using increased concentrations of LY294002 50 μM (data
not shown).
We observed that PIP3 localises predominantly in the

perinuclear region during normal growth conditions (Fig. 5B)
compared to its localisation in distinctive loci at the plasma
membrane following 10-min stimulation with IGF-1 (Fig. 5A).
To determine the subcellular localisation of PIP3 in this
perinuclear region, we performed double immunofluorescence
co-localisation analysis of PIP3 with a number of selective
endomembrane markers [Rab14, early endosomes; Rab11a,
recycling endosomes; GRP-78 (also known as HSPA5 or BIP),
endoplasmic reticulum; giantin (also known as GOLGB1),
medial-Golgi; TGN46 (also known as TGOLN2), trans-Golgi;
Lysotracker, lysosomes] (Fig. S3). We further sought to
determine whether PINK1 deletion modified the localisation of
PIP3 within any specific endomembrane compartment. The
results revealed a selective localisation of PIP3 to the medial-
Golgi, as the medial-Golgi protein, giantin, displayed the greatest
colocalisation with PIP3 (42.9% in PINK1+/+ and 48.3%
hPINK1res cells) (Fig. 5B). Notably, there was a significant
reduction in the colocalisation of PIP3 and giantin in PINK1−/−

and hPINK1TKD MEFs (16.9% and 17.8%, respectively,
P<0.0001) (Fig. 5B). Furthermore the colocalisaton of PIP3
within the medial-Golgi was selective, since PIP3 colocalisation
with the trans-Golgi marker, TGN46, and all other
endomembrane markers was significantly lower than that
measured for giantin (15–20%) and moreover was not altered
by PINK1 deletion or PINK1 kinase activity (Fig. S3). The only
exception to this was a significant reduction of PIP3
colocalisation with Rab14 in PINK1−/− cells (P<0.0005)
compared to wild-type MEFs, although the colocalisation of
PIP3 was rather low in PINK1+/+ cells (27%). Moreover, the
reduced colocalisation of PIP3 with Rab14 was only partially
rescued by overexpression of PINK1 and was not PINK1 kinase-
dependent (Fig. S3).
Interestingly, a time lag for PIP3 localisation to the Golgi after

PDGF, EGF and insulin stimulation has been described (Ebner
et al., 2017). We sought to determine whether this was also apparent
in response to IGF-1 and, furthermore, whether this was regulated
by PINK1. Our results show that following short-term IGF-1
stimulation (10 min) the colocalisation of PIP3 with giantin was low
in all cell lines (PINK1+/+ 17.6%, PINK1−/− 10%, hPINK1res
15.7%, hPINK1TKD 17.4%) (Fig. 5C). However, longer-term
stimulation with IGF-1 (60 min) resulted in a moderate increase in
the colocalisation of PIP3 with giantin in wild-type and hPINK1res
cells (26% and 20%, respectively), but not in PINK1−/− and
hPINK1TKD MEFs (13.9% and 11.5%, respectively) (Fig. 5C).
Taken together, these results indicate that PIP3 localises to the
medial-Golgi under normal growth conditions, and that PINK1
kinase activity plays a key role in regulating the localisation of PIP3
to the medial-Golgi.

PINK1 colocalises with PIP3 and protects against Golgi
fragmentation with Akt dependency
PINK1 has been reported to have a dynamic subcellular localisation
including within the cytosol (Dagda et al., 2009, 2014; Dickey and
Strack, 2011; Fedorowicz et al., 2014; Ries et al., 2006; Steer et al.,
2015; Xiong et al., 2009), with increased localisation of PINK1 at
the mitochondria when mitochondria are depolarised (Kane et al.,
2014; Kazlauskaite et al., 2014; Kondapalli et al., 2012; Koyano
et al., 2014; Matsuda et al., 2010; Shiba-Fukushima et al., 2012;
Vincow et al., 2013; Ziviani et al., 2010). Due to our discovery that
PINK1 could modulate PIP3 localisation both at the plasma
membrane and the medial-Golgi in a PINK1-kinase dependent
fashion, we investigated the possible colocalisation of
overexpressed His-tagged hPINK1res and PIP3. Our results reveal
a clear colocalisation of His-tagged hPINK1res and PIP3 (Fig. 6A).

Golgi fragmentation is a known characteristic of PD
neuropathology (Fujita et al., 2006; Gosavi et al., 2002; Rendon
et al., 2013). Because of our findings that PINK1 could colocalise
with PIP3 and regulate levels of PIP3 in the medial-Golgi, we were
interested to determine whether PINK1 regulated Golgi
morphology. We employed both giantin and GM130 (also known
as GOLGA2) to examine Golgi morphology and we found that
PINK1−/− MEFs demonstrated significant levels of Golgi
fragmentation during serum deprivation (Fig. 6B). Notably, Golgi
fragmentation was rescued by hPINK1 overexpression and was
PINK1 kinase-dependent (Fig. 6B). We further showed that this
aberrant Golgi morphology was not altered by short-term (10 min)
or long-term (60 min) stimulation with IGF-1 in the absence of
PINK1 kinase activity. We next hypothesised that increased PINK1
kinase-induced localisation of PIP3 in the medial-Golgi protected
against Golgi fragmentation via Akt activation. To investigate this,
we treated hPINK1res MEFs with the selective Akt inhibitor
MK2206 (Yap et al., 2011). Low concentrations (1 µM) ofMK2206
prevented Akt activation with no significant effect on cell survival
in hPINK1res MEFs (Fig. 6C). Furthermore, PINK1-induced
protection from Golgi fragmentation, evident in hPINK1res
MEFs, was completely blocked by Akt inhibition (Fig. 6D).
Taken together, these results indicate that PINK1 kinase activity
promotes Akt activity, that it dynamically regulates its major
activating lipid PIP3, particularly at the medial-Golgi, and that
PINK1 kinase-dependent Akt activation protects against Golgi
fragmentation.

PINK1 can modulate the cellular levels of PIP3 and PIP2
Finally, we were interested to determine whether PINK1 could
directly regulate total cellular phosphatidylinositol (PI) levels.
Using advanced mass spectrometry approaches (Kielkowska et al.,
2014) we measured total levels of phosphatidylinositol (PI),
phosphatidylinositol phosphate (PIP), PIP2 and PIP3 in wild-type
and PINK1-modified MEFs under normal growth conditions,
following 24 h serum deprivation and upon 10-min IGF-1
stimulation. PIP3 levels were significantly reduced in PINK1−/−

MEFs in normal growth medium (but not in serum deprivation
conditions or in response to IGF-1 stimulation); this was partially
rescued by hPINK1res but was not kinase-dependent (Fig. S4B).
PIP2 levels were significantly lower in PINK1−/− cells in response
to IGF-1 stimulation (but not in normal growth medium or under
serum deprivation conditions) and this was partially rescued by
hPINK1res but was not kinase-dependent (Fig. S4C). There were no
significant differences in levels of PI and PIP between PINK1+/+,
PINK1−/−, hPINK1res and hPINK1TKD cells (Fig. S4D,E). Thus,
PINK1 kinase activity can selectively modulate the total cellular
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Fig. 5. See next page for legend.
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levels of PIP2 and PIP3 under certain conditions. However, this does
not appear to directly underpin the regulation of normal and IGF-1-
induced subcellular localisation of PIP3 by PINK1 kinase activity.

DISCUSSION
The serine-threonine kinase PINK1 has been extensively
investigated since its discovery as an autosomal recessive PD-
causing gene (Valente et al., 2004). PINK1 activates and interacts
with PI3-kinase–Akt signalling to induce cell survival,
mitochondrial integrity and stress resistance (Akundi et al., 2012;
Boonying et al., 2019; Contreras-Zárate et al., 2015; Ellis et al.,
2013; Hauser et al., 2017; Maj et al., 2010; Mei et al., 2009; Murata
et al., 2011; O’Flanagan et al., 2015; O’Flanagan and O’Neill,
2014; Sánchez-Mora et al., 2012; Soutar et al., 2018). Notably, Akt
activity is significantly reduced in both in vitro PD models and
human dopaminergic substantia nigral neurons in individuals with
PD (Malagelada et al., 2008; Timmons et al., 2009). However, the
mechanisms by which Akt activation becomes impaired due to loss
of PINK1 function in PD are unclear. In this study, we show that
PINK1 is a primary upstream activator of Akt during normal
growth, and constitutively activates Akt in the absence of growth
factors. We reveal for the first time that promotion of Akt activation
by PINK1 is PINK1 kinase-dependent, and that PINK1 kinase
activity enhances Akt recruitment to the plasma membrane during
normal growth and in response to IGF-1. We show that PINK1
regulates the phosphorylation of PI3-kinase p85, colocalises with its
product PIP3, the lipid essential for Akt membrane recruitment, vital
for Akt activation (Manning and Toker, 2017). Furthermore, we
show that PINK1 dynamically increases PIP3 levels at the plasma
membrane and Golgi in response to short- and longer-term IGF-1
stimulation, respectively, and during normal growth. We
demonstrate that PINK deletion induces Golgi fragmentation, a
known characteristic of PD neuropathology. Importantly, we show
that PINK1 overexpression restores normal Golgi morphology and
that this depends on activation of PINK1 kinase and of Akt.
Together these data provide novel insights into mechanisms by
which loss of PINK1 function causes Akt signalling defects in PD.
Full Akt activation requires mTORC2-induced phosphorylation

of Akt at Ser473 in the C-terminal hydrophobic motif (Alessi et al.,
1996; Sarbassov et al., 2005; Stokoe et al., 1997) and PDK-1
phosphorylation of Akt at Thr308 in the activation loop (Calleja
et al., 2007; Stokoe et al., 1997; for review see Manning and Toker,
2017). MEFs derived from PINK1−/−mice display impaired IGF-1-
dependent Akt phosphorylation at both Ser473/Thr308 activating

residues (Akundi et al., 2012). The present study is the first to reveal
that phosphorylation at both Akt-activating residues in PINK1−/−

MEFs can be rescued by PINK1 overexpression and is PINK1
kinase-dependent. Our results further indicate that the impact of
PINK1 appears to be more prominent for phosphorylation at Ser473

than Thr308. Notably, the activation of Akt is extremely diminished
in the absence of Ser473 phosphorylation (Alessi et al., 1996; Yang
et al., 2002). One recent study concluded that PIP3 activation of Akt
is predominantly due to recruitment of Akt to PIP3 in membranes to
facilitate PDK1 and mTORC2 catalysed Akt phosphorylation (Chu
et al., 2018). However in contrast, another recent study found that
PIP3 binding allosterically activates Akt and that dissociation from
PIP3 is rate limiting for Akt dephosphorylation (Ebner et al., 2017).
It is thus possible that our results indicate that PINK1 inhibits PIP3
dissociation that favours Akt phosphorylation at Ser473 over Thr308

by more effectively blocking Ser473 dephosphorylation. The more
pronounced effect of PINK1 on Ser473 phosphorylation may be
further due to regulation of a number of properties reported for
Ser473 phosphorylation (Chu et al., 2018; Luc ̌ic ́ et al., 2018;
Manning and Toker, 2017) or possible regulation by mTORC2
(Murata et al., 2011).

Furthermore, our results demonstrate that PINK1 can
constitutively activate Akt, increasing phosphorylation at both
activating residues, even in the absence of growth factors, and that
this is dependent on PINK1 kinase activity. This places PINK1
kinase as a primary upstream activator of Akt, in agreement with
studies which showed that PINK1 is necessary for maximal
responses of Akt to growth factors (Akundi et al., 2012;
Contreras-Zárate et al., 2015; Ellis et al., 2013; Maj et al., 2010;
Manning and Toker, 2017; Mei et al., 2009; Murata et al., 2011;
Sánchez-Mora et al., 2012), preventing apoptosis, promoting cell
survival and protecting against several cell stressors (Akundi et al.,
2012; Contreras-Zárate et al., 2015; Murata et al., 2011; Sánchez-
Mora et al., 2012). Importantly, it has been shown that PINK1
mRNA expression is induced by FOXO3a, a major stress-resistant
transcription factor, which is upregulated in the absence of Akt
activation when growth factors and nutrients are absent (Mei et al.,
2009). Our results showing that PINK1 can activate Akt
constitutively when growth factors and nutrients are absent may
indicate a role for this pathway in the short-term protection
necessary to sustain cells until growth factors are available. The PI3-
kinase–Akt pathway is intimately linked with mitochondrial
respiration, prevention of mitochondrial apoptosis, and metabolic
rewiring via enhanced glycolysis, including in cancer cells (for
review see O’Flanagan and O’Neill, 2014). PINK1 has been most
studied as a key regulator of mitochondrial health, particularly in the
regulation of mitophagy via the PINK1/parkin mitophagy pathway
(Harper et al., 2018; Kane et al., 2014; Kawajiri et al., 2010;
Kazlauskaite et al., 2014; Kondapalli et al., 2012; Koyano et al.,
2014; Matsuda et al., 2010; Pilsl and Winklhofer, 2012; Soutar
et al., 2018; Vincow et al., 2013; Youle and Narendra, 2011; Youle
and van der Bliek, 2012). Previous studies showed that inhibition of
Akt with MK2206 blocks the PINK1/parkin pathway (Hauser et al.,
2017; McCoy et al., 2014). More recent studies show that Akt
signalling regulates PINK1-dependent mitophagy (Soutar et al.,
2018). In these contexts, Akt activation was placed upstream of
PINK1 and it was recognised that the reciprocal regulation of
PINK1 by Akt and Akt by PINKI is important in mitophagy
regulation (Soutar et al., 2018).

Our major aim was to determine the mechanism by which
PINK1 promotes Akt activation. We hypothesised that PINK1
may induce both PDK-1 phosphorylation of Akt at Thr308 and

Fig. 5. PIP3 localisation is PINK1 kinase-dependent. (A) Representative
confocal images showing PIP3 localisation in PINK1+/+, PINK1−/−, hPINK1res
and hPINK1TKDMEFs. Serum-starved cells were stimulatedwith 10 ng/ml IGF-
1 for the indicated times, or pre-incubated with 10 μM LY294002 and
subsequently stimulated with 10 ng/ml IGF-1, and immunostained for PIP3

(green) and DAPI (blue) (n=3 biological replicates). Scale bar: 10 μm.
(B) Representative confocal images showing PIP3 localisation in PINK1+/+,
PINK1−/−, hPINK1res and hPINK1TKD MEFs, which were grown in DMEM-Hi
supplemented with 10% FBS, and immunostained for PIP3 (green) and giantin
(red). Scale bar: 10 μm. The accompanying histogram shows the proportion of
colocalisation of PIP3 and giantin in each cell type (n=3 biological replicates).
(C) Representative confocal images showing PIP3 localisation in PINK1+/+,
PINK1−/−, hPINK1res and hPINK1TKD MEFs. Serum-starved cells were
stimulated with 10 ng/ml IGF-1 for the indicated times, and immunostained for
PIP3 (green) and giantin (red). Scale bar: 10 μm. The accompanying histogram
shows the proportion of colocalisation PIP3 and giantin (n=3 biological
replicates). Data are presented as mean±s.e.m. *P<0.05, **P<0.01 with
respect to PINK1+/+ MEFs and hPINK1res MEFs, ###P<0.0001 with respect to
PINK1−/− MEFs (one-way ANOVA).
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Fig. 6. See next page for legend.
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mTORC2-induced phosphorylation of Akt at Ser473 (Alessi et al.,
1996; Sarbassov et al., 2005; Stokoe et al., 1997). Interestingly,
previous studies showed that PINK1 can induce mTORC2
activation of Ser473 in the absence of Thr308 phosphorylation.
This was indicated to be via Rictor, and to occur independently of
PI3-kinases (Murata et al., 2011). In contrast, we found that
PINK1-induced increased phosphorylation of Akt at both Ser473

and Thr308 residues was not associated with altered levels of active
PDK1 or of Rictor. The discrepancies between these studies
regarding the mechanisms by which PINK1 can activate Akt may
be due to cell- or agonist-specific effects.
Dynamic, rapid, and transient agonist-induced accumulation of

Akt at the plasma membrane is essential for growth factor- and
agonist-induced Akt activation (for review see Manning and Toker,
2017), and can be monitored by GFP–Akt-PH transfection (Calleja
et al., 2007; Ebner et al., 2017; Meyer et al., 2012). Our results
provide novel data showing that PINK1 significantly accelerates this
recruitment of GFP–Akt-PH and GFP–Akt to the plasma membrane
with PINK1 kinase-dependency, both in normal growth media and
in response to shorter-term IGF-1 stimulation. The recruitment of
Akt to the plasma membrane occurs via its PH domain and relies
predominantly on increased, localised and rapid production of PIP3
(Calleja et al., 2007; Manning and Toker, 2017). These initial rapid
plasma membrane and subsequent longer-term endomembrane
localisations of PIP3, particularly in the Golgi and ER, in response
to agonists and/or growth factors are critical determinants of
compartment-specific Akt activation (Ebner et al., 2017; Jethwa
et al., 2015; Manning and Toker, 2017; Sato et al., 2003). These
results drew us to explore the possibility that PINK1 may regulate
the production of PIP3 within the plasma membrane and
endomembranes. We show that PINK1 kinase activity accelerates
the production of PIP3 towards the plasma membrane in response to
short-term stimulation by IGF-1 (2 min and 10 min). Interestingly,
several cells expressing hPINK1res had distinct areas of PIP3
immunoreactivity near the plasma membrane, even in the presence
of the PI3-kinase inhibitor. There may be both PI3-kinase
dependent and independent mechanisms responsible for the
PINK1-induced PIP3 increases. The changes in PI3-kinase
phosphorylation indicate that activation of Akt by PINK1 may be
mechanistically linked to the p85 regulatory subunit. However,
p85α and p85β have many functions that do not involve PI3-kinase
activation, for example, p85α can regulate PTEN (Chagpar et al.,
2010; Cheung et al., 2015; Rabinovsky et al., 2009) and the PI3-
kinase p110α subunit catalytic activity can occur independently of
p85α and p85β (Thorpe et al., 2017; Tsolakos et al., 2018).

We further show that His-tagged PINK1 displays a very strong
co-localisation with PIP3, throughout the cell during normal growth,
further supporting PINK1’s function as a regulator of PIP3 within
both plasma- and endo-membranes. A previous study using spatio-
temporal examination of PIP3 production in living cells, following
ligand stimulation, demonstrated that PIP3 levels increase to a larger
extent in endomembranes (ER and Golgi) than at the plasma
membrane (Sato et al., 2003). In agreement, we show that PIP3 is
predominantly localised in the perinuclear region during normal
growth. We performed a detailed analysis to determine the
endomembrane localisation of PIP3 and demonstrate a strong
selective co-localisation of PIP3 with giantin in the medial-Golgi
compartment. Importantly, we further show that PINK1 deletion
significantly and selectively reduces the localisation of PIP3 to the
medial-Golgi during normal growth, and moderately in response to
longer-term IGF-1 stimulation (60 min), and show that this is
PINK1 kinase-dependent. In agreement with our study, a time-lag
for PIP3 localisation to the Golgi has been shown following PDGF,
EGF and insulin stimulation of Akt in HeLa and MCF-7 cells
(Ebner et al., 2017). The Golgi plays a pivotal role in the
compartmentalisation of cell signalling initiating at the plasma
membrane (Peng et al., 2014). Our results thus indicate a new role
for PINK1 kinase activity in the regulation of PIP3 responses in the
plasma membrane, Golgi and endomembranes, which are known to
be important for both compartmentalised and temporal regulation of
Akt substrate phosphorylation (Ebner et al., 2017; Jethwa et al.,
2015; Manning and Toker, 2017; Sato et al., 2003). Furthermore,
PIP3 generation in situ, primarily in the Golgi and ER, has been
shown to depend on endocytosis of activating receptor tyrosine
kinases. Interestingly, in this respect it has been reported that PINK1
deficiency disturbs the intracellular localisation of the IGF-1
receptor (Contreras-Zárate et al., 2015).

Although we did not detect Akt in the Golgi network we do think
there is potential that it is also present here. The main tools
employed were GFP–Akt and GFP–Akt-PH constructs, and we do
not see any Golgi localisation with either of these. However, these
constructs may favour the plasma membrane and the concentration
of Akt may be higher at the plasma membrane than in
endomembrane compartments in these PINK1-modified MEFs.
Thus, the availability of more sensitive tools such as improved Akt-
specific antibodies may uncover Akt in the Golgi, and the
endosome–ER–Golgi network.

In healthy cells, the Golgi complex is a ribbon-like structure made
up of flattened, parallel cisternae that are interconnected in the
perinuclear region (Nakagomi et al., 2008), as we observe in wild-
type MEFs. Numerous studies have shown that during cell stress or
apoptotic cell death, Golgi stacks disassemble into tubulovesicular
clusters, a process known as fragmentation of the Golgi complex
(Alvarez-Miranda et al., 2015; Chiu et al., 2002; Fan et al., 2008;
Lane et al., 2002; Machamer, 2003). Golgi fragmentation has been
reported in nigral neurons in postmortem samples of brain from
individuals with PD (Fujita et al., 2006) and in in vitro PD models
(Gosavi et al., 2002; Rendon et al., 2013). Furthermore,
bioinformatics modelling has linked stress-induced Golgi
fragmentation to a number of neurodegenerative processes
(Alvarez-Miranda et al., 2015). We reveal for the first time that
PINK1 deletion causes significant Golgi fragmentation, and
importantly, we show that this is prevented by PINK1
overexpression and is dependent on PINK1 kinase activity. This
is a significant new function for PINK1 and furthermore is linked
mechanistically to impaired Akt signalling caused by PINK1
deletion. Thus, we show that Akt inhibition in cells overexpressing

Fig. 6. PINK1 colocalises with PIP3 and protects against Golgi
fragmentation in an Akt-dependent manner. (A) Representative confocal
images showing PIP3 colocalising with His-tagged PINK1 in hPINK1res MEFs,
which were grown in DMEM-Hi supplemented with 10% FBS, and stained with
antibodies to PIP3 (green) and His (red) (n=3 biological replicates). Scale bar:
10 μm. (B) Representative confocal images showing GM130 and giantin
localisation in PINK1+/+, PINK1−/−, hPINK1res and hPINK1TKD MEFs. Serum-
starved cells were stimulated with 10 ng/ml IGF-1 for the indicated times, and
immunostained for GM130 (green) and giantin (red) (n=3 biological replicates).
Scale bar: 10 μm. (C) Representative immunoblot analysis showing
phosphorylation of Akt at Ser473 and Thr308 in hPINK1res MEFs incubated with
1 μM MK2206 for the indicated times. Histogram depicting cell survival as
measured by crystal violet staining in hPINK1res MEFs incubated with 1 μM
MK2206 for the indicated times. Data are presented as mean±s.e.m.
(D) Representative confocal images showingGM130 and giantin localisation in
hPINK1res MEFs. Serum-starved cells were incubated with 1 μM MK2206 for
the indicated times, and immunostained for GM130 (green) and giantin (red)
(n=3 biological replicates). Scale bar: 10 μm.
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PINK1 prevents the ability of PINK1 to protect against Golgi
fragmentation. Interestingly, inhibition of PI(4,5)P2 (PIP2) synthesis
in GH3 cells has been reported to lead to Golgi fragmentation,
linking phosphoinositides with the structural integrity of the Golgi
apparatus (Siddhanta et al., 2003).
In this study, we demonstrate that impaired activation of Akt, via

loss of PINK1 kinase function, as occurs in PD, centres on defects in
PIP3 regulation upstream of Akt activation. Our mass spectrometry
analysis showed that total levels of PIP3 and PIP2, but not PIP and
PI, lipids were modulated by PINK1 deletion in some contexts, but
not regulated in a PINK1 kinase-dependent manner. This suggests
that PINK1 kinase regulates selective membrane pools of PIP3
rather than total PIP3 levels. It is important to note that several risk
genes for PD regulate the PI3-kinase–Akt signalling axis, including
parkin (PRKN) (Fallon et al., 2006; Gupta et al., 2017), DJ-1
(PARK7) (Jaramillo-Gómez et al., 2015; Kim et al., 2011; Zhang
et al., 2016), LRRK2 (Chuang et al., 2014; Ohta et al., 2011) and
SNCA (Seo et al., 2002). Importantly, defects in Akt signalling
occur in nigral neurons in the brain of individuals with PD
(Malagelada et al., 2008; Timmons et al., 2009), drawing attention
to the relevance of targeting this vital survival and metabolic system
for neuroprotection in PD. Phosphoinositide–protein interactions
are at the hub of both Akt and other major signalling axes and play
integral roles in vesicular trafficking. These are key systems known
to be regulated by PD risk genes (Cao et al., 2017; Krebs et al.,
2013; Vanhauwaert et al., 2017) and known to become impaired in
PD (Kutateladze, 2010; Wenk and De Camilli, 2004). Our study
provides new mechanistic insights for a modulation of the core
PIP3–Akt regulatory machinery by PINK1 kinase activity, presenting
a novel mechanism that may underlie impaired activation of the
vital Akt signalling machinery in PD. This draws attention to
the integration of phosphoinositide and protein networks in the
understanding and therapeutic targeting of key systems, including
Akt, that become defective in the neurodegenerative processes
underlying PD.

MATERIALS AND METHODS
Generation of PINK1−/− mice and derived MEF cell lines
The cell lines used in these experiments are mouse embryonic fibroblast
(MEF) cells, as previously employed and described (Glasl et al., 2012;Morais
et al., 2009; O’Flanagan et al., 2015). PINK1−/− knockout and PINK1+/−

heterozygous knockout mice were generated byWolfgangWurst and Daniela
Vogt-Weisenhorn (Helmholtz Center, Munich, Germany) and immortalised
MEFs were generated as previously described (Morais et al., 2009). In brief,
PINK1+/− mice were interbred to generate mutant mice and wild-type
littermate controls. Embryonic day 13 mice were dissected, heads and red
organs removed and used for genotyping. The rest of the bodies were chopped
up in cell culture dishes containing Dulbecco’s modified Eagle’s medium
supplied with 50% foetal bovine serum and 1% penicillin/streptomycin.
Cultures were expanded and serum decreased to 10% foetal bovine serum
after the attainment of consistent growth. Afterward cultures were
immortalised by transfection with simian virus 40 (SV40) large T-antigen.
PINK1−/− MEFs were stably transfected with a plasmid containing human
PINK1 (hPINK1 construct Origene, Rockville, MD, USA), and the triple
kinase-dead hPINK1K219A/D362A/D384A (hPINK1TKD) mutants using site-
directed mutagenesis (Stratagene, Santa Clara, CA, USA). The triple kinase-
dead mutation for PINK1 is not known to affect the stability or conformation
of the PINK1 protein (Pridgeon et al., 2007). Cells were routinely monitored
for mycoplasma and bacterial or yeast contaminations.

RT-PCR
PINK1 deletion or expression was confirmed in MEF cell lines employed in
this study using RNA extraction and RT-PCR analysis (Fig. S4A). RNAwas
extracted using the PureLink RNA Mini Kit (Thermo Fisher Scientific)

according to the instructions of the manufacturer. cDNA synthesis was
performed with the QuantiTect reverse transcription kit (Qiagen) using 1μg
of RNA. The primers and conditions used for RT-PCR are shown in
Table S1, this was performed using the GoTaq G2 Green Master Mix kit
(Promega).

Cell culture and stimulation or inhibition of the PI3-kinase–Akt
pathway
MEFs were cultured in Dulbecco’s modified Eagle’s medium: high glucose
(DMEM-Hi), supplemented with 10% foetal bovine serum (FBS) and 2 mM
L-glutamine. Cells were cultured at 37°C in a humidified incubator
supplemented with 5% CO2. In IGF-1 stimulation experiments, cells were
plated overnight with complete media, followed by incubation with serum-
free DMEM-Hi for 24 h. After 24 h, 10 ng/ml IGF-1 (Peprotech, 100-11)
was added at the specified time-points (2, 10 or 60 min). In experiments for
inhibition of PI3-kinases, cells were plated overnight with complete media,
incubated with serum-free DMEM-Hi for 24 h, followed by incubation with
10 μM LY294002 for 30 min and subsequent stimulation with 10 ng/ml
IGF-1 for 10 min. In experiments for MK2206 inhibition, cells were plated
overnight with complete media, serum-deprived for 24 h and then incubated
with 1 μMMK2206 for 1 h or 4 h. For Lysotracker and PIP3 colocalisation
analysis (Fig. 3), 75 nM of Lysotracker (Invitrogen) was added to the cells in
culture for 1 h before fixation with 3% PFA for immunocytochemistry.
BE(2)-M17 cells, transduced with PINK1 shRNA (PINK1A8, PINK1C2)
or with control shRNA (Control 1, Control 2), were kindly provided by
Mark Cookson and Alexandra Beilina (National Institute on Aging,
Bethesda, MD, USA) and were transduced and cultured as previously
described (Sandebring et al., 2009).

Plasmids
The GFP–Akt-PH construct was kindly provided byMartin Lowe (University
of Manchester, Manchester, UK). pEGFP-Akt was deposited by Julian
Downward (Addgene plasmid #39531) (Watton andDownward, 1999).MEFs
were seeded in 24-well plates to be 70% confluent the following day. Cells
were then transfected with GFP–Akt-PH or GFP–Akt using Lipofectamine
(Invitrogen) as recommended by the manufacturer’s instructions.

Western immunoblotting
Primary antibodies raised against the following were used: Akt (1:1000;
9272), Akt 1 (1:1000; 2938), Akt 2 (1:1000; 3063), Akt 3 (1:1000; 8018),
P-Akt pSer437 (1:500; 4060), P-Akt pThr308 (1:500; 9275), P-PDK1Ser241

(1:500; 3061), P-PI3-kinase p85Tyr458/p55Tyr199 (1:500; 4228), PI3-kinase
p85α (1:1000; 4257), PTEN (1:500; 9552), P-PTENSer380 (1:500; 9551),
RICTOR (1:500; 2114) (all from Cell Signaling Technology), PI3-kinase
p110α (1:500; BD Transduction Laboratories, 611399), β-actin (1:16,000;
Sigma-Aldrich, A5441). Primary antibodies were detected using horseradish
peroxidase (HRP)-conjugated isotype-specific anti-rabbit IgG or anti-mouse
IgG (1:1000; DAKO, Cambridgeshire, UK) secondary antibodies.

Western immunoblotting was carried out as described previously (Griffin
et al., 2005; Moloney et al., 2010; O’Flanagan et al., 2015). Briefly, proteins
were extracted, separated by SDS-PAGE (20 μg/lane) and transferred
electrophoretically to nitrocellulose membranes using a wet transfer
apparatus and transfer buffer consisting of 48 mM Tris base, 39 mM
glycine and 20% ethanol. After blocking for 1 h in 5% milk or 30 min in
5% bovine serum albumin (phospho antibodies), cells were incubated in
primary antibody solutions overnight at 4°C. The blot underwent three 10-min
washes in 1× TBX-T prior to secondary antibody incubation. Cells were
incubated in secondary antibody solution for 1 h at room temperature
followed by three 5-min washes in 1× TBS-T. Immunoreactive proteins were
detected with enhanced chemiluminescence (Amersham Biosciences, Little
Chalfont, UK). All quantifications are illustrated by histograms that represent
the densitometry of each protein normalised to β-actin for an n=3, as
determined by ImageJ software.

Immunofluorescence and confocal microscopy
Primary antibodies raised against the following were used: phosphatidylinositol
(3,4,5)-trisphosphate (1:150; Tebu-Bio, 117Z-P345B), giantin (1:300; kindly
provided by Martin Lowe, University of Manchester), GM130 (1:4000; BD
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Biosciences, 610822), GRP-78-BIP (1:800; Abcam, Ab21685), His (1:400;
Abcam, 9108) Rab11a (1:100; Zymed, 715300), Rab14 (1:500; Sigma-Aldrich,
R0656) and TGN46 (1:500; Serotek UK, AHP500). Primary antibodies
were detected using Cy3-conjugated anti-rabbit IgG (1:400; Jackson
ImmunoResearch Laboratories, 711-165-152) or Alexa Fluor 488-conjugated
anti-mouse IgG (1:400; Invitrogen, A11001) secondary antibodies.

Culture medium was removed from each of the wells. Cells were washed
with 1× PBS between each of the following steps: fixation in 0.5 ml 3%
paraformaldehyde (PFA) for 15 min at room temperature, quenching in 1 ml
of 50 mM NH4Cl/PBS for 15 min, permeabilisation in 1 ml buffer (0.05%
saponin/PBS, 0.2% BSA/PBS) for 5 min. Coverslips were transferred to a
humid box and primary antibodies were added at appropriate dilutions in 5%
BSA/PBS. Primary antibodies were incubated for 2 h at room temperature.
Then cells were washed twice in 1× PBS. Cells were incubated in secondary
antibody solutions in 5%BSA/PBS, as well as DAPI/PBS (1:10,000) for 1 h
at room temperature. Cells were washed twice with 1× PBS for 5 min.
Coverslips were mounted onto microscope slides using Mowiol mounting
media. Cells were dried overnight and fluorescence images were acquired
using Zeiss LSM 510 Meta confocal microscope fitted with a 63×/1.4 plan
apochromat lens (Jena, Germany).

For GFP–Akt-PH analysis, each experiment was performed in duplicate.
For the two coverslips per condition >200 cells were counted. The threshold
of intensity used was fluorescence in the cytosol as the baseline and any
fluorescence intensity level above that at the plasma membrane (PM) was
judged as an accumulation at the PM. To quantify the localisation of Akt at
the PM the total number of transfected cells and the number of cells with Akt
at the plasma membrane were counted (determined as described above).
From these values the percentage of cells with Akt at the PM was then
calculated for n=3 and the representative histogram generated in Prism
(GraphPad). To determine fluorescence intensity at the plasma membrane a
line plot was drawn through the cell using the plot profile analysis in Carl
Zeiss Zen 2.1 image analysis software, as described previously (Lindsay and
McCaffrey, 2009). The x-axis represents distance along the line and the
y-axis is the pixel intensity. Pearson’s colocalisation coefficient was
calculated using Zeiss ZEN 2009 software as described previously (Lindsay
et al., 2013).

Mass spectrometry
Mass spectrometry was used to measure inositol lipid levels essentially as
previously described (Clark et al., 2011), using a QTRAP 4000 (AB Sciex)
mass spectrometer and employing the lipid extraction andderivitisationmethod
described for cultured cells, with the modification that 10 ng C17:0/C16:0
PtdIns(3,4,5)P3 internal standard (ISD) and 10 ng C17:0/C16:0 PtdIns ISD
were added to primary extracts, and that final samples were dried in a Speedvac
concentrator rather than under liquid N2. Measurements were conducted in
duplicate for three separate experiments, on 3×105 cells per sample. PIP, PIP2
and PIP3 response ratios were calculated by dividing PIP, PIP2 and PIP3
response areas by the corresponding response areas of PIP2 (for PIP and PIP2)
and PIP3 (PIP3 only) ISD in each sample. PIP, PIP2, and PIP3 responses were
normalised to PI response ratio to account for any cell input variability.

Crystal Violet staining
Crystal Violet staining was used for assaying cell survival in response to
treatment with MK2206. Cells were fixed with 4% PFA for 20 min,
followed by staining with 0.05% Crystal Violet in 20% ethanol for 30 min.
Cells were washed with dH20 and let to dry overnight and images were
acquired using the Odyssey imaging system.

Statistical analysis
All data were analysed using GraphPad Prism. Data are expressed as means
±s.e.m. Statistical analysis was carried out using one-way ANOVA,
followed by a post-hoc Tukey test if the ANOVA indicated significance.
Differences were considered significant at P<0.05.

Acknowledgements
We are thankful to Bart De Strooper (VIB Center for the Biology of Disease, VIB,
Leuven, Belgium and Center for Human Genetics and LIND, K.U. Leuven, Leuven,
Belgium) and Vanessa Morais (Instituto de Medicina Molecular Lisboa, Portugal),

for providing us with PINK1-modified mouse embryonic fibroblast cells. We are
grateful to Mark Cookson and Alexandra Beilina (National Institute on Aging,
Bethesda, MD, USA) for providing us with BE(2)-M17 cells transduced with control
and PINK1 shRNA. The Molecular Cell Biology group, UCC, provided access to a
Zeiss 510 confocal microscope, funded by an SFI Programme Grant to Mary
W. McCaffrey.

Competing interests
The authors declare no competing or financial interests.

Author contributions
Conceptualization: R.M.F., A.M.S., C.O.; Methodology: R.M.F., A.L., A.M.S., C.O.;
Validation: R.M.F.; Formal analysis: R.M.F.; Investigation: R.M.F., K.E.A., P.T.H.;
Resources: A.L., A.M.S., C.O.; Writing - original draft: R.M.F.; Writing - review &
editing: R.M.F., A.L., K.E.A., P.T.H., A.M.S., C.O.; Visualization: R.M.F.;
Supervision: A.M.S., C.O.; Project administration: R.M.F., A.M.S., C.O.; Funding
acquisition: R.M.F., A.M.S., C.O., K.E.A., P.T.H.

Funding
This work was funded by the Irish Research Council for Science, Engineering and
Technology Government of Ireland Postgraduate Scholarship Programme grant
number GOIPG/2015/3467. K.E.A. and P.T.H. are funded by the Biotechnology and
Biological Research Council (BBSRC) UK grant number BB/P013384/1.

Supplementary information
Supplementary information available online at
http://jcs.biologists.org/lookup/doi/10.1242/jcs.233221.supplemental

References
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Table S1. RT-PCR primer and conditions. 

Primer Set Sequences Conditions 

mPINK1 F: 5’ GCTGATCGAGGAGAAGCAG 3’ 

R: 5’ GATAATCCTCCAGACGGAAGC 3’ 

95°C 15 min, [94°C 30 secs, 

60°C 30 secs, 72°C 30 secs] 

35 cycles. 

hPINK1 F: 5’ AGACGCTTGCAGGGCTTTC 3’ 

R: 5’ GGCAATGTAGGCATGGTGG 3’ 

95°C 15 min, [94°C 30 secs, 

50°C 30 secs, 72°C 30 secs] 

35 cycles. 
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Figure S1. Increases in fluorescence intensity at the plasma membrane show that

PINK1 decreases the time taken for Akt localisation to the plasma membrane in 

response to IGF-1 stimulation. 

Representative line plots indicating the fluorescence intensity of GFP-Akt-PH along the 

white lines shown in Figure 2 (A) and 3 (A). Normal growth MEFs were grown in DMEM-

Hi supplemented with 10% FBS. Serum-starved cells were stimulated with 10 ng/ml IGF-1 

for the indicated times and subsequently stimulated with 10 ng/ml IGF-1. Scale bars 10 μm. 
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Figure S2. PINK1 regulates the localisation of Akt to the plasma membrane under

normal growth conditions and decreases the time taken for Akt to get to the plasma 

membrane in response to IGF-1 stimulation. 

A Representative confocal images showing GFP-Akt localisation in PINK1
+/+

, PINK1
-/-

,

hPINK1res and hPINK1TKD MEFs, which were grown in DMEM-Hi supplemented with 10% 

FBS, transfected with GFP-Akt for 24h and stained with DAPI (blue). B Representative 

confocal images showing GFP-Akt localisation in PINK1
+/+

, PINK1
-/-

, hPINK1res and

hPINK1TKD MEFs, following transfection with GFP-Akt for 24 h and stained with DAPI 

(blue). Serum-starved cells were stimulated with 10 ng/ml IGF-1 for the indicated times (n = 

3). Scale bar 10 μm. 
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Figure S3. Colocalisation analysis using endomembrane markers Rab14, Rab11a,

GRP-78-BIP and Lysotracker reveals selective localisation of PIP3 to the medial-Golgi.  

Representative confocal images showing PIP3 colocalisation with endomembrane markers in 

PINK1
+/+

, PINK1
-/-

, hPINK1res and hPINK1TKD MEFs, which were grown in DMEM-Hi

supplemented with 10% FBS. A, B Cells were immunostained for PIP3 (green) and Rab 14, 

Rab 11a, GRP-78-BIP, Lysotracker and TGN46 (red). Scale bar 10 μm. Data information: In 

A, B, data are presented in corresponding graphs as mean ± SEM (n=3 for each). *=p < 0.05, 

**=p < 0.01, and ***=p < 0.0001 with respect to PINK1
+/+

 MEFs (One-way ANOVA).
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Figure S4. PINK1 modification in MEFs, PINK1 modulates PIP3 and PIP2 levels.

A. Agarose Gel showing PINK1 deletion and re-expression as confirmed by RNA extraction 

and RT-PCR analysis. Total PIP3 (B), PIP2 (C), PI (D), and PIP (E) levels as measured by 

mass spectrometry in PINK1
+/+

, PINK1
-/-

, hPINK1res and hPINK1TKD MEFs grown in

DMEM-Hi supplemented with 10% FBS, serum deprived for 24h or stimulated with 10 ng/ml 

IGF-1 for 10 min (n = 3). Data information: In B-E, data are presented in corresponding 

graphs as mean ± SEM. *=p < 0.05 with respect to PINK1
+/+

 MEFs, #=p < 0.05 with respect

to PINK1
-/- 

MEFs (Two-way ANOVA).
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