
UCC Library and UCC researchers have made this item openly available.
Please let us know how this has helped you. Thanks!

Title Application of a physiologically-based pharmacokinetic model for the
prediction of bumetanide plasma and brain concentrations in the neonate

Author(s) Donovan, Maria D.; Abduljalil, Khaled; Cryan, John F.; Boylan,
Geraldine B.; Griffin, Brendan T.

Publication date 2018-01-10

Original citation Donovan, M. D., Abduljalil, K., Cryan, J. F., Boylan, G. B. and Griffin,
B. T. (2018) 'Application of a physiologically-based pharmacokinetic
model for the prediction of bumetanide plasma and brain concentrations
in the neonate', Biopharmaceutics & Drug Disposition, 39(3), pp. 125-
134. doi: 10.1002/bdd.2119

Type of publication Article (peer-reviewed)

Link to publisher's
version

https://onlinelibrary.wiley.com/doi/full/10.1002/bdd.2119
http://dx.doi.org/10.1002/bdd.2119
Access to the full text of the published version may require a
subscription.

Rights © 2018 John Wiley & Sons, Ltd. This is the peer reviewed version of
the following article: Donovan, MD, Abduljalil, K, Cryan, JF,
Boylan, GB, Griffin, BT. Application of a physiologically‐based
pharmacokinetic model for the prediction of bumetanide plasma
and brain concentrations in the neonate. Biopharm Drug Dispos.
2018; 39: 125– 134, which has been published in final form at
https://doi.org/10.1002/bdd.2119 . This article may be used for non-
commercial purposes in accordance with Wiley Terms and
Conditions for Self-Archiving.

Item downloaded
from

http://hdl.handle.net/10468/9679

Downloaded on 2021-11-27T09:45:48Z

https://libguides.ucc.ie/openaccess/impact?suffix=9679&title=Application of a physiologically-based pharmacokinetic model for the prediction of bumetanide plasma and brain concentrations in the neonate
https://onlinelibrary.wiley.com/doi/full/10.1002/bdd.2119
http://dx.doi.org/10.1002/bdd.2119
http://hdl.handle.net/10468/9679


BDD-17-0085-R1 
 

This article has been accepted for publication and undergone full peer review but has not 
been through the copyediting, typesetting, pagination and proofreading process which may 
lead to differences between this version and the Version of Record. Please cite this article as 
doi: 10.1002/bdd.2119 

 
This article is protected by copyright. All rights reserved. 

Application of a Physiologically-Based Pharmacokinetic Model for the Prediction of 

Bumetanide Plasma and Brain Concentrations in the Neonate 

Maria D. Donovan 
a, b

, Khaled Abduljalil 
c
, John F. Cryan 

b, d
, 

Geraldine B. Boylan 
e, f

 and Brendan T. Griffin 
a 

 

Affiliations: 

a) Pharmacodelivery group, School of Pharmacy, University College Cork, Cork, 

Ireland. 

b) Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland. 

c) Simcyp Ltd. (a Certara company), Sheffield, South Yorkshire, United Kingdom. 

d) Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland.  

e) Department of Paediatrics and Child Health, University College Cork, Cork, Ireland. 

f) Irish Centre for Fetal and Neonatal Translational Research, University College Cork 

and Cork University Maternity Hospital, Cork, Ireland. 

 

Running title: Bumetanide and babies: PBPK predictions 

 

Corresponding author: Brendan Griffin, School of Pharmacy, Cavanagh Pharmacy Building, 

University College Cork, Cork. Email: Brendan.Griffin@ucc.ie  

  

mailto:Brendan.Griffin@ucc.ie


BDD-17-0085-R1 

This article is protected by copyright. All rights reserved. 

Acknowledgements 

The authors would like to acknowledge their funding sources as follows: 

MD received an Irish Research Council for Science Engineering and Technology scholarship. 

GB was supported under European Community's Seventh Framework Programme 

(FP7/2007-2013) under grant agreement n° 241479 and by Science Foundation Ireland in the 

form of a centre grant (INFANT SFI/12/RC/2272).  

JFC is supported in part by Science Foundation Ireland in the form of a centre grant 

(Alimentary Pharmabiotic Centre Grant Number SFI/12/RC/2273), by the Health Research 

Board of Ireland (Grant Numbers HRA_POR/2011/23 and HRA_POR/2012/32) and by the 

European Community’s Seventh Framework Programme, Grant no. FP7/2007-2013, Grant 

Agreement number 278948 (TACTICS – Translational Adolescent and Childhood 

Therapeutic Interventions in Compulsive Syndrome).  

No funding was specifically received for the publication of this article. 

 

The authors would like to sincerely thank Dr Vincent Jullien, a member of the ‘Treatment 

of NEonatal seizures with Medication Off-patent: evaluation of efficacy and safety of 

bumetanide’ (NEMO) consortium, for sharing individual bumetanide concentrations with us 

from the NEMO clinical trial. The authors would like to extend their gratitude to Professor 

Amin Rostami-Hodjegan for facilitating meetings between MD and his research group in 

Manchester Pharmacy School, as well as with the staff of Simcyp Ltd., Sheffield. The authors 

would like to particularly thank Matthew Harwood and Gaohua Lu of Simcyp Ltd., for giving 

so generously of their time and providing guidance on the use of the simulator.  

Conflict of Interest Disclosure 

Maria Donovan, Khaled Abduljalil, Geraldine Boylan, John Cryan and Brendan Griffin have 

no conflicts of interest to declare.  

 

  



BDD-17-0085-R1 

This article is protected by copyright. All rights reserved. 

Application of a Physiologically-Based Pharmacokinetic Model for the Prediction of 

Bumetanide Plasma and Brain Concentrations in the Neonate 

Abstract  

Bumetanide is a loop diuretic that is proposed to possess a beneficial effect on disorders of 

the central nervous system, including neonatal seizures. Therefore, prediction of unbound 

bumetanide concentrations in brain is relevant from a pharmacological prospective. A 

physiologically-based pharmacokinetic (PBPK) model was developed for the prediction of 

bumetanide disposition in plasma and brain in adult and pediatric populations. 

A compound file was built for bumetanide integrating physicochemical data and in vitro data. 

Bumetanide concentration profiles were simulated in both plasma and brain using Simcyp 

PBPK model. Simulations of plasma bumetanide concentrations were compared against 

plasma levels published in literature. The model performance was verified with data from 

adult studies before predictions in the pediatric population were undertaken.  

The adult and pediatric intravenous models predicted pharmacokinetic factors, namely area 

under the concentration-time curve, maximum concentration in plasma and time to maximum 

plasma concentration, within two-fold of observed values. However, predictions of plasma 

concentrations within the neonatal intravenous model did not produce a good fit with 

observed values.  

The PBPK approach used in this study produced reasonable predictions of plasma 

concentrations of bumetanide, except in the critically ill neonatal population. This PBPK 

model requires more information regarding metabolic intrinsic clearance and transport 

parameters prior to further validation of drug disposition predictions in the neonatal 

population. Given the lack of information surrounding certain parameters in this special 

population, the model is not appropriately robust to support the recommendation of a suitable 

dose of bumetanide for use as an adjunct antiepileptic in neonates.  

ClinicalTrials.gov trial registry, NCT01434225 

Keywords: Bumetanide, Brain, Physiologically-based pharmacokinetic modeling, Pediatrics, 

Disposition 
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Abbreviations 

AUC: area under the concentration-time curve; BBB: blood-brain barrier; Cl: clearance; 

CLint: hepatic intrinsic clearance; Cmax: peak plasma concentration;  CNS: central nervous 

system; fu: fraction unbound; IV: intravenous; Kp,brain: brain-to-plasma partition coefficient; 

MRP4: multidrug resistance protein 4; NKCC1: Na-K-Cl cotransporter; OAT3: organic anion 

transporter 3; Oatp1a4: organic anion-transporting polypeptide 1a4; Obs: observed; PBPK: 

physiologically-based pharmacokinetic modeling; Pred: predicted; tmax: time to reach peak 

plasma concentration.  
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Introduction 

Bumetanide is an inhibitor of Na-K-2Cl cation chloride cotransporter (NKCC1) that was 

initially developed as a loop diuretic for the treatment of edema in adults and children (Cook 

et al., 1988; Holazo, Colburn, Gustafson, Young, & Parsonnet, 1984; Lau, Hyneck, Berardi, 

Swartz, & Smith, 1986; Marcantonio et al., 1982; Marshall, Wells, Letzig, & Kearns, 1998; 

Oberbauer, Krivanek, & Turnheim, 1995). It had been suggested that bumetanide may be 

used as an adjunct antiepileptic with phenobarbital in the treatment of neonatal seizures and a 

dose-finding clinical trial of bumetanide has been undertaken in a critically ill neonatal cohort 

(Dzhala, Brumback, & Staley, 2008; Pressler et al., 2015). The mechanism underlying 

bumetanide’s adjunct antiepileptic activity has been elucidated to be due to the inhibition of 

intracellular chloride accumulation through NKCC1, thereby facilitating the excitatory to 

inhibitory switch in gamma-aminobutyric acid signaling (Ben-Ari, 2002). However, 

permeability of bumetanide across the blood-brain barrier (BBB) has been predicted and 

shown experimentally to be a limiting factor,  as it is a highly plasma protein bound, diprotic 

acid with pKa values of 3.6 and 7.7 (Fiori et al., 2003), therefore is >99% ionized at 

physiological pH and bumetanide has been shown to be a substrate of human organic anion 

transporter 3 (OAT3), murine organic anion-transporting polypeptide 1a4 (Oatp1a4) and 

human multidrug resistance protein 4 (MRP4), which all operate as efflux transporters at the 

BBB at physiological pH (Donovan, O'Brien, Boylan, Cryan, & Griffin, 2015; M. D. 

Donovan, H. Schellekens, G. B. Boylan, J. F. Cryan, & B. T. Griffin, 2016; Puskarjov, Kahle, 

Ruusuvuori, & Kaila, 2014; Römermann et al., 2017). Despite knowing that the half-maximal 

inhibitory concentration of bumetanide for NKCC1 is between 200 and 300nM, it is unknown 

if, and at what systemic dose, this unbound concentration of bumetanide in the brain can be 

achieved (Puskarjov et al., 2014).  
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Bumetanide is not licensed for use in the pediatric population as ‘no clinical trials have been 

carried out in children’, but its use has been reported in critically ill edematous children 

(Health Products Regulatory Authority, 2016; Marshall et al., 1998; Sullivan, Witte, 

Yamashita, Myers, & Blumer, 1996). Bumetanide pharmacokinetics in healthy adult 

volunteers have been described; absorption following oral administration occurs rapidly, with 

a reported bioavailability of 95% and the maximum plasma concentration measured by two 

hours post dosing (Ward & Heel, 1984). Bumetanide is highly plasma-protein bound (up to 

95%), but the range of volumes of distribution is nonetheless large (12-35 litres). The 

elimination half-life of bumetanide is approximately 1.25 hours. Half of the administered 

dose is eliminated unchanged in urine, with hepatic metabolism and biliary excretion 

accounting for the remainder of the excretion (Halladay, Carter, Glenn Sipes, Brodie, & 

Bressler, 1975; Ward & Heel, 1984). The main Phase I metabolic route for bumetanide is 

oxidation of the N-butyl side chain forming inactive alcohol metabolites. Glucuronidation by 

UDP-glucuronosyl transferase occurs prior to excretion in the urine and bile (Zisaki, 

Miskovic, & Hatzimanikatis, 2015). It has been estimated that up to 20% of the dose is 

excreted via the feces (Halladay et al., 1975). Age is a major source of variability in all 

aspects of pharmacokinetics, including absorption, distribution, metabolism and elimination, 

and any of the above pharmacokinetic processes could potentially lead to inter-population 

(adults vs neonates) variation due to developmental changes (Marshall, Wells, Letzig, & 

Kearns, 1998). Despite these potentially large pharmacokinetic differences, legislation 

requiring pediatric clinical drug trials to be conducted is relatively new (Leong et al., 2012).  

The extensive practice of off-label prescribing in the pediatric population not only leads to a 

higher risk of adverse drug reactions, but also to low levels of efficacy due to suboptimal 

dosing of the therapeutic agent (Leong et al., 2012). One of the reasons for this is that 

maturation of pharmacokinetic processes, such as metabolism and elimination, are not linear 
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with age or bodyweight, thus allometric scaling of adult drug doses to pediatric dosing 

regimens results in unpredictable and often inaccurate pediatric doses (Espie, Tytgat, 

Sargentini-Maier, Poggesi, & Watelet, 2009; T. N. Johnson, Rostami-Hodjegan, & Tucker, 

2006). Allometric scaling methods, including bodyweight, the three-quarters exponent of 

bodyweight and body surface area, have been shown to both over- and under-predict suitable 

doses across the pediatric dose range, emphasizing that children are not just small adults 

(Bouzom & Walther, 2008; T. N. Johnson, 2008). Conversely, the physiologically-based 

pharmacokinetic (PBPK) approach, which integrates both physicochemical properties of the 

drug and physiological properties in a physiologically relevant compartmental structure, has 

demonstrated usefulness in the prediction of drug pharmacokinetics and inter-individual 

variability (Nestorov, 2003; Rostami-Hodjegan, 2012; Sager, Yu, Ragueneau-Majlessi, & 

Isoherranen, 2015). When applied to a pediatric population, the system properties are 

parameterized with age-dependent physiological parameters, such as tissue volumes and 

enzyme ontogeny (T. N. Johnson & Rostami-Hodjegan, 2011).  

PBPK models are reported to produce superior predictions of concentration-time profiles 

compared to classic compartmental models, but are burdened by many disadvantages also, 

such as the need for detailed physiological and drug data which may not be readily available 

(Bouzom & Walther, 2008; Sager et al., 2015). The PBPK model can be used to predict drug 

exposure in different tissues as it encompasses each organ as a separate compartment, 

including inaccessible compartments such as the brain (Sager et al., 2015). In this study, a 

PBPK model is employed to predict the concentration-time profiles produced by bumetanide 

in plasma in the adult population and extend it to pediatric population. Validations of these 

predictions are based on human data which has been published and is available in the 

literature. One of the main aims of this research was to predict the concentration of 

bumetanide achieved in the brain compartment of a simulated neonatal population. Ideally, 
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observed brain or cerebrospinal fluid (CSF) concentrations would be compared with 

predicted values in adults initially, if available, prior to predicting brain/CSF concentrations 

in neonates. This would improve confidence in the predictions made (Maharaj, Barrett, & 

Edginton, 2013). CSF sampling in adults of bumetanide concentration is unlikely to be 

feasible or ethical, as the treatment of seizures with bumetanide is particular to pediatric 

populations.  Nonetheless, the maximum concentrations achieved in brain in the neonatal 

population can be estimated; however the reliability of this data is weak, as brain/CSF 

predictions were not validated in an adult population first and CSF samples were not taken 

from the neonatal study of bumetanide, NEMO (Treatment of NEonatal seizures 

with Medication Off-patent: evaluation of efficacy and safety of bumetanide, 

Clinicaltrials.gov identifier - NCT 01434225). This bumetanide PBPK model will enrich our 

understanding of the mechanisms that underpin the pharmacokinetic differences seen 

between adults and neonates. This study shows the usefulness of in silico predictions in 

bridging between preclinical in vitro and in vivo experiments to first-in-neonate trials in the 

context of this particular clinical situation (bumetanide in critically-ill neonates with 

seizures).    
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Materials and Methods 

Model structure 

Simcyp Simulator V14 (Simcyp Ltd, Sheffield, UK) was used to provide the general structure 

of the developed PBPK model. The 4-compartmental permeability-limited brain 4brain 

model which is  incorporated into the human whole body PBPK model of the Simcyp 

Simulator and has been described previously (Gaohua, Neuhoff, Johnson, Rostami-Hodjegan, 

& Jamei, 2016) was used to predict drug concentrations in the central nervous system (CNS) 

for this study. Simcyp
®
 is a population-based simulator that performs ‘bottom-up’ 

mechanistic modeling and simulation of absorption, distribution, metabolism and excretion 

processes to predict pharmacokinetic profiles and parameters of drugs and their variation 

between virtual subjects (Jamei et al., 2009).  

Model development 

The model of bumetanide was developed as described in Figure 1. The human PBPK model 

was used to predict bumetanide concentrations in a virtual adult population of healthy 

volunteers divided into ten trials with ten patients in each trial. Pharmacokinetic parameters 

from the simulated trials were compared with actual published plasma data from healthy 

volunteer adults from a total of five different studies (Cook et al., 1988; Holazo et al., 1984; 

Lau et al., 1986; Marcantonio et al., 1982; Oberbauer et al., 1995). The developed model was 

ultimately used to predict the pharmacokinetics of bumetanide using Simcyp’s Paediatric 

PBPK model, which was checked for accuracy using plasma samples collected from two 

trials, one involving a heterogeneous population of nine children with edema (ranging from 3 

months to 11.5 years, with one participant aged 25 years) and the NEMO clinical study with 

fourteen critically-ill neonates with seizures (Marshall et al., 1998; Pressler et al., 2015; US 

National Institutes of Health, 2015). Simulated trial designs, including the age ranges, 
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male/female ratios and dosing schedules for each respective virtual trial were based on 

published clinical trials. 

Relevant physicochemical properties of bumetanide such as molecular weight, lipophilicity, 

ionization constants, and fraction unbound in plasma were collated from publications and 

entered as model inputs (Table 1). Total intravenous clearance of bumetanide was calculated 

as the mean of the intravenous clearance reported in three studies, weighted based on sample 

size (Marcantonio et al., 1982; Oberbauer et al., 1995; Pentikainen, Pasternack, Lampainen, 

Neuvonen, & Penttila, 1985).  Tissue partition coefficients of bumetanide were calculated 

using the Rodgers and Rowland algorithm (Simcyp Kp prediction method 2) (Rodgers & 

Rowland, 2007). The brain: plasma partition coefficient (Kp brain) was manually changed 

from that predicted by the Rodgers and Rowland method from physicochemical properties of 

bumetanide (0.058) to values reported in rodents (0.01 in adult rats, 0.015 in adult mice, 0.06-

0.26 in both adult and juvenile rats with seizures induced using different seizure models 

(Brandt, Nozadze, Heuchert, Rattka, & Loscher, 2010; Donovan et al., 2015; Tollner, Brandt, 

Romermann, & Loscher, 2015). There are a number of limitations with the predictions of 

bumetanide concentrations in brain: large interindividual variability in observed plasma 

concentrations makes it very difficult to compare the concentrations predicted by the model 

with observed concentrations; there are differences between the predicted Kp brain values 

based on physicochemical properties and observed Kp brain values in rodents; the 

translatability of rodent data such as Kp brain to humans, especially critically ill neonates, may 

not be accurate (Zamek-Gliszczynski et al., 2013) and Kp brain in critically ill neonates is 

unknown. Thus, the prediction of bumetanide concentrations in brain is a theoretical exercise 

to explore if predicted concentrations are in the effective range. All available Kp brain values 

were used to predict brain concentration. The default physiological parameters for healthy 

adult volunteers and pediatric populations were used. The pediatric population within Simcyp 
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Simulator has extensive information on pediatric demography, developmental physiology and 

biochemistry built into it (T. N. Johnson, Zhou, & Bui, 2014). Due to the lack of quantitative 

in vitro data on the hepatic metabolism of bumetanide, hepatic intrinsic clearance was back 

calculated from the weighted mean of adult intravenous clearance using the retrograde model 

available in the Simcyp Simulator. Once the hepatic clearance is established in adult, then the 

adult hepatic intrinsic clearance is scaled to neonates based on the blood flow, liver size, 

protein binding and ontogeny in children. Thus, a perfusion-limited model incorporating 

adult clearance values was utilizsed for adult and pediatric simulations.  
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Model verification 

Simulated trials yielded predictions of both pharmacokinetic parameters and concentration-

time profiles. Pharmacokinetic parameter predictions were compared against observed values 

expressed in the literature. Predictions of pharmacokinetic parameters within two-fold of the 

observed value were considered to be reasonable predictions, as this is a frequently used 

criterion for accuracy (Musther et al., 2015).  Predicted concentration-time profiles were 

reported as mean, 5
th

 and 95
th

 percentile confidence intervals. Visual predictive checks 

against the observed mean concentrations ± standard deviations were used to confirm the 

model accuracy.  
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Results 

Model Simulations of Plasma Bumetanide in Adult Populations 

In humans, the PBPK model of bumetanide was verified in healthy adult volunteers using 

intravenous data (Table 2 and Figure 2). The simulated output demonstrated a two-

compartment profile, consistent with published pharmacokinetic models (Jullien et al., 2015; 

Marcantonio et al., 1982; Popovic et al., 2013). Simulations of intravenous bolus injections 

generated reasonable pharmacokinetic predictions of area under the concentration-time curve 

(AUC) (0.71-1.15), peak plasma concentration (Cmax) (0.62-1) and time to reach peak 

plasma concentration (tmax) (0.5-1) as shown by the predicted/observed ratios (Table 2) and 

concentration-time profiles overlaid the observed data (Figure 2). As intravenous clearance 

differed between studies, a weighted mean of clearance was calculated from these studies 

based on sample size (Marcantonio et al., 1982; Oberbauer et al., 1995; Pentikainen et al., 

1985). Renal clearance values were similar across all studies, so a mean value was chosen 

(Marcantonio et al., 1982; Oberbauer et al., 1995). The predictions made using the Simcyp 

model were within two-fold of observed values in adults, which meets the criteria for 

reasonable pharmacokinetic predictions (Table 2). 
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Model Simulations of Plasma Bumetanide in Pediatric Populations 

A pediatric PBPK model for bumetanide was developed using a similar approach to the adult 

model, this time using the in-built pediatric population in Simcyp
®
. The pharmacokinetic 

parameters estimated by the pediatric intravenous model are compared to observed values 

(Table 3 and Figure 3). The predicted pharmacokinetic parameters from a single intravenous 

dose of bumetanide in a virtual pediatric population comprising ten trials with ten patients 

each reflected observed data from a heterogeneous edematous pediatric population well with 

predicted/observed ratios for AUC, Cmax and tmax calculated as 1, 1.39 and 1 respectively. 

Bumetanide plasma levels in neonates were shared with us by the consortium of NEMO trial 

members, and were used to compare to predicted bumetanide profiles in a virtual neonatal 

population (Table 4 and Figure 4) (Jullien et al., 2015; Pressler et al., 2015). Since the true 

ontogeny is unknown, both the fast ontogeny and slow ontogeny scenario were explored. The 

slow ontogeny function within Simcyp
®

 was used to scale clearance of bumetanide to the 

pediatric population. However, AUC, Cmax and tmax predicted by the neonatal model fell 

outside of acceptable limits in certain instances, which could be due to a number of reasons. 

The observed AUC was taken as the range (1.9-17.7 mg/L.h) reported for AUC of the first 

bumetanide dose which represents a 9.3-fold difference between maximum and minimum 

observed AUC, reflecting the large inter-individual variability in this critically ill neonatal 

population (Jullien et al., 2015). Moreover, there is wide variability between the predicted: 

observed ratios for Cmax (0.87-2.24) and tmax (0.76-2.4) depending on the dose. This may 

be partially due to sampling times as observed tmax and Cmax data were taken from the 

sampled data instead of extrapolation of the sampled point and therefore may not reflect the 

actual peak values. The estimation of tmax is complicated by the administration of 

bumetanide as a slow intravenous infusion. 
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Model Simulations of Brain Bumetanide in Pediatric Populations 

The Kp brain was first estimated using Rodgers and Rowland mechanistic method in Simcyp, 

which predicts drug distribution from physicochemical properties and in vitro data: this gave 

a predicted Kp brain in the pediatric population of 0.058. While Kp brain could have been 

estimated from previous in vitro experiments in which apparent permeability of bumetanide 

was measured (Maria D. Donovan, Harriët Schellekens, Geraldine B. Boylan, John F. Cryan, 

& Brendan T. Griffin, 2016), in vitro models have been noted to be poor at predicting of in 

vivo distribution of drugs and a battery of in vitro models would be required for accuracy 

(Garberg et al., 2005). If brain bumetanide concentrations in adults were available to verify 

predicted concentrations, a similar approach to that taken by Johnson et al., in which in vitro 

data was generated to determine apparent permeability and the efflux ratio of antipsychotics 

at the BBB, could be utilised to determine bumetanide permeability at the human BBB (M. 

Johnson et al., 2016). It has been proposed that animal data on Kp can be incorporated into a 

PBPK model to ensure accurate distribution if such information is available (Musther et al., 

2015). Kp brain values are available in the literature for bumetanide in rat (Kp 0.01 (Donovan 

et al., 2015)), mouse (Kp 0.015 (Tollner et al., 2015)) and rats with seizures (Kp 0.06-0.26, 

Donovan, O’Driscoll et al., unpublished (Brandt et al., 2010)). An estimation of total 

bumetanide concentration in brain mass was achieved by using each of these reported 

plasma: brain values to predict total brain bumetanide concentrations (Figure 5 and Table 5). 

Across the four doses administered to neonates, there was a 14-fold difference between the 

Cmax achieved when Kp brain was 0.01 compared to 0.26. The predicted Cmax in brain 

ranged from 0.0043 mg/L to 0.361 mg/L. These Cmax concentrations represent predictions of 

total brain concentrations of bumetanide; however, by taking into account that bumetanide 

has been shown to be highly brain-tissue bound (77% bound), the only predicted 
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concentration which achieves pharmacologically relevant unbound concentrations (0.073 

mg/L and 0.109 mg/L) is 0.361mg/L.  

 

Discussion 

The main objective of this study was to investigate if an in silico PBPK model could be used 

to predict bumetanide concentrations accurately in plasma and brain tissue in neonates with 

seizures. PBPK modeling is a method for the prediction of temporal drug concentrations in 

various organs, including the CNS (Wyska, Swierczek, Pociecha, & Przejczowska-Pomierny, 

2015). Using PBPK, it is possible to gain a prospective mechanistic understanding of the 

pharmacokinetics of a drug in the pediatric population, which facilitates optimal pediatric 

clinical trial design (Bjorkman, 2005). PBPK predictions in neonates are acknowledged to be 

difficult due to the rapidly evolving physiology in this age-group, including the changes in 

volume of distribution, hepatic and kidney function, and remodeling of the vasculature, 

leading to large inter-individual variability, as demonstrated in the predictions reported here 

(Bjorkman, 2005). Nonetheless, it may be possible to define a systemic dose of bumetanide 

that would be predicted to lead to pharmacologically relevant unbound concentrations in the 

brain using in silico PBPK models.  

There are reports of the successful use of PBPK in the prediction of pediatric 

pharmacokinetics and plasma concentration time profiles of oseltamivir (Parrott et al., 2011), 

clobazam and stiripentol (Ogungbenro & Aarons, 2015), valproic acid (Ogungbenro & 

Aarons, 2014), voriconazole (Zane & Thakker, 2014), quetiapine (T. N. Johnson et al., 2014), 

theophylline and midazolam (Bjorkman, 2005), cyclosporine (Gerard et al., 2010), 

moxifloxacin (Edginton, 2011), sotalol (Khalil & Läer, 2014), acetaminophen ((Jiang, Zhao, 

Barrett, Lesko, & Schmidt, 2013), lorazepam (Maharaj, Barrett, & Edginton, 2013), 

theophylline, sildenafil and phenytoin (Abduljalil, Jamei, Rostami-Hodjegan, & Johnson, 
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2014), paracetamol, alfentanil, morphine, theophylline and levofloxacin (Edginton, Schmitt, 

& Willmann, 2006). Even though many of the aforementioned drugs are used for disorders of 

the CNS, total and/or free drug concentrations in the brain are not reported or verified against 

animal or human data in these studies. This highlights the paucity of information available on 

the pharmacologically-relevant concentrations at the site of action of many neuroactive drugs 

in humans. Following verification of the bumetanide PBPK model built for this study using 

observed human adult data, bumetanide plasma/brain concentration profiles were predicted in 

a pediatric and a neonatal population. Predicted concentration-time plasma profiles in 

pediatrics and neonates were compared to available published data and concentration-time 

profiles shared with the group by the NEMO consortium, respectively. NEMO, a dose-

finding clinical study in neonates, investigated the effect of administering up to four doses of 

bumetanide 0.05mg/kg-0.3mg/kg at 12-hourly intervals on seizure control and reported an 

adverse benefit: risk ratio, which is likely to be partially due to low concentrations of 

bumetanide reaching the brain (Pressler et al., 2015).   

It is imperative that concentrations of neuroactive drugs at the site of action can be predicted, 

as they may differ greatly from exposure in other compartments due to a variety of factors 

including tissue volume, biochemical composition, active transport processes and metabolic 

clearance (de Lange, Ravenstijn, Groenendaal, & van Steeg, 2005; Kielbasa & Stratford, 

2012). The accurate prediction of drug concentrations in the human CNS from preclinical in 

vitro and in vivo data is known to be a challenging task (Westerhout, Ploeger, Smeets, 

Danhof, & de Lange, 2012). It has previously been shown that a bottom-up whole body 

PBPK modeling program simulated total brain concentrations accurately in rats (Ball, 

Bouzom, Scherrmann, Walther, & Decleves, 2014). In this study, both predicted and reported 

Kp brain values from rodent preclinical models were used to estimate total brain concentration 

of bumetanide in humans, since these values are not available for human populations (Brandt 



BDD-17-0085-R1 

This article is protected by copyright. All rights reserved. 

et al., 2010; Donovan et al., 2015; Tollner et al., 2015). Given that the half-maximal 

inhibitory concentration of bumetanide for inhibition of NKCC1 is between 200nM and 

300nM, the unbound concentration of bumetanide achieved in brain has to be within this 

range for efficacy as a neuro-active therapeutic agent, thus free bumetanide in the brain 

should be present at concentrations between 0.073mg/L and 0.109mg/L (Puskarjov et al., 

2014). As bumetanide displays high non-specific binding to brain tissue, we have calculated 

that only one of the brain mass concentrations in Table 5 is likely to result in 

pharmacologically relevant levels of unbound bumetanide in brain i.e. a dose of 0.3mg/kg 

given to a neonate with a Kp brain of 0.26 (M. D. Donovan et al., 2016; Puskarjov et al., 2014). 

There are many limitations with this approach, including that Kp brain is only measured at a 

singular time-point and the output displays total brain tissue concentration as opposed to the 

unbound active concentration. Furthermore, it should be noted that only one neonate received 

the highest dose of 0.3mg/kg, and was administered three of the four possible doses at 12-

hourly intervals (Pressler et al., 2015). While no rescue antiepileptic medicines were required 

in this participant indicating drug efficacy, adverse effects of dehydration and hearing loss, 

which are at least partially bumetanide-related, were reported (Pressler et al., 2015). 

 

Following assessment of this in silico model’s predictions, we can cautiously postulate that 

the concentration of bumetanide reaching the CNS in the neonates enrolled in NEMO was 

sub-therapeutic. Strategies which can increase unbound concentrations of bumetanide in the 

brain in a safe and effective manner, such as OAT3 efflux transporter inhibition or prodrug 

administration need further exploration (Donovan et al., 2015; M. D. Donovan et al., 2016; 

Erker et al., 2016; Tollner et al., 2015; Tollner et al., 2014) However, close monitoring would 

be required in either of these scenarios to ensure any risk of toxicity is minimized as all of 

these simulations were carried out retrospectively and fitted to clinical data (Edginton et al., 
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2006). In silico models are a useful preclinical tool for estimation of concentrations in 

pediatric and neonatal populations; however, the paucity of physiological and transporter data 

in critically ill neonates with seizures, along with a lack of adult data, means that currently, 

the PBPK model developed here is not sufficiently robust to be used to completely bridge the 

knowledge gap between in vitro and in vivo studies to first-in-neonate dosing of bumetanide. 

This research has clearly shown that in silico prediction depends on the model input 

information and reflects the unmet need for the in-depth study of neonatal physiology, 

pharmacokinetics and pharmacodynamics to understand the kinetics and pharmacological 

action of drugs when they are indicated solely in the pediatric patient.  
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Table 1 Summary of bumetanide physicochemical properties and pharmacokinetic 

parameters used for model development in Simcyp. 

Parameter Input to Human Model 

 

Molecular weight (g/mol) 364.4 

Compound type Diprotic Acid 

LogP 2.6  

pKa1 3.6 (Fiori et al., 2003) 

pKa2 7.7 (Fiori et al., 2003) 

Blood to plasma ratio 0.55 (estimated, weak acid   1-haematocrit) 

Distribution model Full PBPK model 

Prediction model Rodgers and Rowland (method 2) 

Fraction unbound in plasma 

(fu) 

0.03 (Shim, Lee, & Lee, 1991) 

Total intravenous (IV) 

Clearance (Cl) 

10.17 L/h (Weighted mean from intravenous clearance reported in 

(Marcantonio et al., 1982; Oberbauer et al., 1995; Pentikainen et al., 

1985)) 

Renal Clearance  4.84 L/h (Marcantonio et al., 1982; Oberbauer et al., 1995)  

Hepatic Intrinsic Clearance 

(CLint) (μL/min/10
6 

cells) 

17.14 (calculated using retrograde model from intravenous clearance) 
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Table 2 Summary of predicted versus observed bumetanide pharmacokinetic parameters in 

the adult population after single intravenous doses  

Observed 

data 

AUC (ng/ml.h) Tmax (h) Cmax (ng/ml) 

 Pred Obs Pred/Obs  

Ratio 

Pred Obs Pred/Obs  

Ratio 

Pred Obs Pred/Obs  

Ratio 

Lau et al.: 

(Lau et al., 

1986) 

5mg IV bolus 

492 635 0.77 0.04 0.05 0.8 847 1375 0.62 

Cook et al.: 

(Cook et al., 

1988) 

3mg IV bolus  

302 292.3 1.03 0.04 0.08 0.5 510 600 0.85 

Marcantonio 

et al.: 

(Marcantonio 

et al., 1982) 

1mg IV bolus 

96.5 

 

136.74 0.71 

 

0.04 0.08 0.5 154 180 0.86 

Oberbauer et 

al.: 

(Oberbauer et 

al., 1995) 

0.5mg IV 

bolus 

48.7 56.4 0.86 0.04 0.04 1 83.7 100 0.84 

Holazo et al.: 

(Holazo et al., 

1984) 

102 89 1.15 0.04 0.04 1 200 200 1 
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Table 3 Summary of predicted versus observed bumetanide pharmacokinetic parameters in 

the pediatric population after single intravenous doses  

Observed data AUC (mcg/ml.min) Tmax (h) Cmax (mcg/ml) 

 Pred Obs Pred/Obs  

Ratio 

Pred Obs Pred/Obs  

Ratio 

Pred Obs Pred/Obs  

Ratio 

Marshall et al.: 

(Marshall et al., 

1998) 

0.1mg/kg IV 

bolus 

Retrograde 

CLint from 

weighted mean 

of adult IV 

clearance,  slow 

ontogeny 

36.24 36.1 1 0.04 0.04 1 1.32 0.95 1.39 
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Table 4 Summary of predicted versus observed bumetanide pharmacokinetic parameters in 

the neonatal population after multiple slow intravenous infusions  

Observed 

data 

AUCt first dose (mg/L.h) Tmax* (h) Cmax (mcg/ml) 

 Pred Obs Pred/Obs  

Ratio 

Pred Obs Pred/Obs  

Ratio 

Pred Obs Pred/Obs  

Ratio 

Jullien et al., 

2015(Jullien 

et al., 2015) 

Retrograde 

CLint from 

weighted 

mean of adult 

IV clearance,  

slow ontogeny 

0.05mg/kg 

slow IV 

infusion 

0.97 1.9-

17.7 

0.05-0.47 0.72 0.45 1.6 0.4 0.46 0.87 

0.1mg/kg 

slow IV 

infusion 

1.94 1.9-

17.7 

0.11-1.02 0.72 0.3 2.4 0.79 0.71 1.11 

0.2mg/kg 

slow IV 

infusion 

3.88 1.9-

17.7 

0.219-

2.04 

0.72 0.5 1.44 1.58 1.06 1.49 

0.3mg/kg 

slow IV 

infusion 

5.81 1.9-

17.7 

0.33-3.06 0.72 0.95 0.76 2.38 1.06 2.24 

 

* Observed tmax is the time to maximum sampled concentration 

 

 

 

 

 



BDD-17-0085-R1 

This article is protected by copyright. All rights reserved. 

Table 5 Summary of maximum brain tissue concentration of bumetanide predicted with four 

Kp brain values 

Dose bumetanide 

administered 

Cmax brain (mg/L) 

Kp 0.01 Kp 0.015 Kp 0.058 Kp 0.26 

0.05mg/kg  0.0043 0.0066 0.024 0.0602 

0.1mg/kg 0.0087 0.013 0.048 0.12 

0.2mg/kg 0.0173 0.0263 0.0959 0.241 

0.3mg/kg 0.026 0.0394 0.144 0.361 
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Figure 1 Workflow of bumetanide model development and verification in Simcyp
®
. IV = 

intravenous. Plasma concentrations from all populations used for validation were found in the 

literature and individual studies are referenced throughout. 
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Figure 2 Predicted versus observed bumetanide pharmacokinetic profiles in the adult 

population after single intravenous doses A) Cook et al. trial, B) Oberbauer et al. trial, C) 

Holazo et al. trial, D) Marcantonio et al. trial and E) Lau et al. trial. Retrograde CLint 

calculated from weighted mean of intravenous clearance reported in three studies. 
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Figure 3 Predicted versus observed bumetanide pharmacokinetic profiles in a pediatric 

population (Marshall et al. trial) after single intravenous doses. Retrograde CLint calculated 

from weighted mean of intravenous clearance reported in three studies and slow ontogeny 

applied to elimination processes. 
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Figure 4 Predicted versus observed bumetanide pharmacokinetic profiles in a neonatal 

population after multiple (up to four) slow intravenous infusions at 12-hourly intervals 

(NEMO dose-finding trial) of A) 0.05mg/kg bumetanide, B) 0.1mg/kg bumetanide, C) 

0.2mg/kg bumetanide and D) 0.3mg/kg bumetanide. Plasma samples were drawn from each 

neonate in the observed trial at up to four different time-points. Retrograde CLint calculated 

from weighted mean of intravenous clearance reported in three studies and slow ontogeny 

applied to elimination processes. 
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Figure 5 Predicted brain tissue concentrations of bumetanide following intravenous 

administration every 12 hours of A) 0.05mg/kg bumetanide, B) 0.1mg/kg bumetanide, C) 

0.2mg/kg bumetanide and D) 0.3mg/kg bumetanide in neonates. Kp brain values estimated 

from Simcyp and preclinical studies. 

 


