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Abstract—Wireless Sensor Networks (WSNs) allow 

applications to interact with the physical world using sensing 

nodes deployed in an Internet of Things (IoT). Many WSN 

sensing nodes have constrained computing and memory 

capabilities. This paper details a new cache algorithm suitable for 

use on constrained nodes and its use in an architecture 

incorporating caching and the flow of data from sensors to 

services, possibly Cloud-based. This cache algorithm is 

influenced by the Clock paging algorithm and manages the leases 

of cached data in its replacement policy, removing the need for a 

separate process for this. This paper presents implementations of 

the algorithm in C on the Contiki OS and Java, compares its 

performance to LRU and considers its suitability for use on 

constrained WSN nodes. 

Keywords—Wireless Sensor Networks, Contiki, Cache, Paging 

Algorithms, Lease, LRU 

I.  INTRODUCTION 

Cheaper processing power and the use of IP is allowing 
more data to be gathered, stored and analysed in Wireless 
Sensor Networks (WSNs). Micro IP stacks and IPv6 over low 
power wireless (6LowPAN) [1] allow nodes to form an 
“Internet of Things” integrating the physical world with the 
Internet [2] in a distributed system of devices and applications 
comprising sensing, computation, actuation and analysis. WSN 
nodes have constrained processing power, memory and energy 
consumption, but their wireless capability allows nodes to be 
deployed close to the sensed phenomenon. Nodes may forward 
data to remote data centres or collect data from other nodes. 
Nodes may perform actions based on events or external input 
or possibly aggregate the sensor data, as aggregation and 
analysis may be required close to the source, e.g. a sensor 
testing for hazardous gases must react to major events based on 
timely local analysis of its own and neighbouring sensor 
readings (current and for a past period) and also forward data to 
a centralised, probably Cloud, system for longer term storage 
and more detailed analysis. 

A key requirement in the design of WSNs is to reduce the 
number of messages sent (often over many hops) in order to 
extend battery life, while still being able to provide data at low 
latency. This is often addressed by managing node duty cycles, 
but another approach to reducing transmission and supporting 
local data analysis is to store data on the nodes. The limited 
available storage on nodes and the fact that local analysis of 

node data is often most useful for a recent time period suggests 
that caching is appropriate in WSNs. Furthermore, returning 
cached data from a node closer to the requesting node than the 
source node will reduce the number of transmissions required, 
also reducing interference effects. It will also reduce the 
response time, particularly when requests from multiple nodes 
are answered using the same cached data. Caching on WSN 
nodes is, however, problematic due to their limited memory 
and processing power, and the lack of a system architecture 
that easily incorporates cached data. 

This paper presents our contribution of the CacheL 
algorithm and an implementation on constrained nodes using 
the Contiki OS. Its novelty lies in its intrinsic use  of leases in a 
cache replacement policy for WSN data inspired by the Clock 
algorithm, so not requiring the use of sort (like LRU) and not 
requiring additional communication between WSN nodes, as in 
several cooperative caches. It incorporates lease management 
into the replacement process to remove the need for a separate 
periodic process to manage leases. We consider that the use of 
a lease for cached data is important in WSNs as it provides 
self-management, i.e. cached data for nodes that have left the 
network will be removed from the cache on lease expiry. A 
lease can also represent the time sensitive nature of node data, 
e.g. set/renew the lease based on the time of the next sensor 
reading. It also allows recent data to be retained as it is more 
likely to be of interest.  

The remainder of this paper is organised as follows. We 
present prior work in section II and the CacheL Algorithm in 
Section III. Section IV presents a prototype implementation of 
the CacheL Algorithm and its integration into our architecture 
[3]. Section V presents performance results using the Yahoo 
Cloud Server Benchmark (YCSB) [4]. The paper concludes in 
Section VI. 

II. EXISTING CACHE ALGORITHMS 

The use of caching in WSNs has the potential to reduce 
energy use across nodes by reducing transmissions, to support 
local data analysis and to lower latency. A cache replacement 
policy aims to maximize the use of resources, e.g. memory or 
network bandwidth and can be based on [5]: 

1. Application provided future access hints, e.g. based on 
a query to be performed.  



2. Explicit detection of access patterns unfriendly to LRU 
and a switch to other replacement strategies.  

3. Tracing and history of accesses (only useful if they 
reflect future use). 

Least Recently Used (LRU) replaces the item which has not 
been accessed for the longest time from a list ordered by last 
access time. It is simple, but has the cost of maintaining order. 
It suits workloads showing locality, where an item is accessed 
shortly after a previous access. Most Recently Used (MRU) is 
useful when older items are more likely to be accessed. LRU 
does not distinguish a recently added, never accessed, entry 
from one accessed frequently but not recently, so a scan 
accessing a series of items once only flushes pages which may 
be accessed again. LRU/k [6] improves this by prioritising 
items based on their kth most recent access, but is log(n) to 
manage a priority queue. 2Q [7] provides constant overhead 
per access as in LRU with a similar page replacement 
performance to LRU/k, by using an LRU main queue and a 
FIFO queue for “hot” items. MQ [8] uses LRU queues based 
on page frequency. The page frequency is incremented on a hit 
and that item becomes the MRU in that queue. On an access, a 
constant (expireTime) of the LRU item per queue is checked 
and if expired that items becomes the next queue’s MRU. 

 Least Frequently Used (LFU) removes items with the 
lowest count first using a linked list for O(n) removal, 
insertion, but it allows a previously frequently accessed item to 
remain cached and not be replaced by more recent items. LFU-
Aging includes the recency of last access, while LFU with 
Dynamic Aging (LFUDA) adds a cache age factor (less than or 
equal to minimum value in the cache) to the reference count 
[9]. Greedy-Dual Size (GDS) considers the item's size and a 
cost function associated with fetch.  

A TimeToLive (TTL) is often used where weak 
consistency is acceptable. Redis 2.x [10] actively removes 
timed-out keys on access and it also periodically tests a number 
of random keys and deletes the expired ones. 

The CLOCK algorithm [11] uses a circular list of fixed 
sized pages. A “clock” hand points to the oldest page in the 
circular list. On a page fault, the reference bit (set on page 
access) of the page at the clock hand is checked. If it is not set, 
the page is replaced by the faulting page, otherwise it is reset 
and the hand moves through the list clearing page reference 
bits until it finds one not set and replaces that page. This 
algorithm approximates LRU and avoids its ordering of the list, 
but shares its lack of scan resistance.  

The WSClock Algorithm [12] uses the task’s virtual time 
and a page’s last reference time to determine if the page should 
be replaced. GCLOCK [13] increments a page's counter on a 
hit and the clock hand sweeps the pages decrementing the 
counters until it finds and replaces a page with a zero count. 
CLOCK-Pro [14] keeps track of a limited number of replaced 
pages to overcome the LRU problems with scan and loop, 
using the LIRS (Low Inter-reference Recency Set) [15] policy 
of replacing a page with a high reuse distance even if recent. A 
single list of pages is ordered with small recencies at the head 
and large ones at the tail. Cold pages stay in the list for a test 
period (set to the largest recency of the hot pages, becoming 

hot if accessed in that period. Three hands sweep the list: 
pointing to the last hot page, the last cold page and the last cold 
page in a test period. Clock with Adaptive Replacement (CAR) 
[16] is self-tuning and uses two clock lists: T1 for pages with 
“recency” and T2 for pages with “frequency”. New pages are 
added to T1 and move to T2 based on a test of long-term utility 
or frequency. A list with history of recently evicted pages from 
T1 and T2 is used to adaptively set the list sizes.  

ARC uses two variably-sized lists (combined size of twice 
the number of pages) to hold the history access information for 
referenced pages [17]. One list holds cold pages (touched once 
recently) and the other holds hot pages (touched at least twice 
recently). The memory for each list is managed based on which 
list had the most recent misses using a ratio of cold/hot page 
accesses. It does not handle the locality of pages in the two 
lists, so a page that is regularly accessed with a reuse distance a 
little more than the memory size may get no hits. 

 In general terms, LFU and MQ are more expensive than 
LRU, while LIRS and ARC have a cost similar to LRU. CAR 
has a cost close to CLOCK, but with similar performance to 
ARC and better scan resistance than LRU. 

III. A CACHE ALGORITHM FOR WSN NODES 

A. Cache Approaches in WSNs 

Caching has been investigated for WSNs in the context of 
co-operative caching to serve data with low latency and reduce 
energy consumption. Each node constructs responses to queries 
by cooperating with its neighbours. A key aspect is identifying 
which nodes will implement the co-operative caching 
decisions, e.g. which node makes forwarding decisions or 
which nodes get the requests for data [18], with little focus on 
the cache replacement algorithm itself. Some approaches 
calculate a Node Importance Index, requiring nodes to hold 
their neighbours' connectivity state and lack robustness [19]. 
Data replication and caching strategies have been considered in 
Mobile Ad-hoc Networks (MANETs) [20], but some schemes 
[21] require knowledge of network topology and involve 
periodically moving data, both of which reduce their 
effectiveness in a WSN, especially if data access patterns vary 
or nodes join/leave. Static approaches to cache placement [22] 
are similarly limited in the WSN scenario. COOP [23] keeps a 
table of previous requests and the nearest relevant cache, using 
flooding to find the data only in the case of a miss. The hybrid 
cache for cooperative caching in MANETs [24] does not 
require the selection of special nodes and shares data only on 
the path between source and requester. When forwarding data, 
a node may cache either the data or the path according to the 
data size, TTL and number of hops to be saved. 

Directed Diffusion [25] is a data-centric approach, where 
node data is named by attribute-value pairs. A node sends 
interests with a duration to request named data and the concept 
of a gradient (a value and direction) moves data according to 
these interests. Intermediate nodes may cache recently sent data 
messages or aggregate data, although the emphasis is on the 
routing and filtering of data and the matching of interests rather 
than cache implementations. 



The Constrained Application Protocol (CoAP) [26] uses 
Internet approaches, e.g. the RESTFul architectural style [27]. 
It is designed to be easy to proxy to/from HTTP and uses a 
small, simple header of less than 10 bytes and a UDP binding 
with reliability and multicast support. CoAP supports a simple 
cache in an endpoint or an intermediary, using freshness and 
validity information in the CoAP responses. The cache allows 
an earlier response message or a stored response for the current 
request. The origin server provides an expiration time using the 
Max-AgeOption and an ETag Option in the GET request 
allows an origin server select a stored response to use and to 
update its freshness. 

B. System Model 

We assume a WSN that consists of sensor nodes using bi-
directional links in a multi-hop manner. No assumptions are 
made about the size of the network. We require that the cache 
algorithm imposes little communication overhead, e.g. does not 
require flooding and can handle the dynamic nature of the 
WSN in terms of the source and destination of requests. We do 
not assume a static topology or require data relocation or 
recalculation to update topology related data when nodes 
join/leave. We do not assume that all nodes have the same 
capability; some nodes will be able to cache data and other less 
capable nodes will only act as sources (or sinks) or forwarders 
of data. Data will be retrieved from the source node in the 
absence of a cache. We do not make any assumptions about the 
routing algorithm used and assume only that data may be 
cached as it is forwarded, preferably peer to peer. While such 
forwarding may be as a response to a request, data may also be 
pushed from nodes. Unlike the cooperative caching approaches 
above, no cache management protocol across nodes is required. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Example of HPP Data Model Service Layer Interaction 

This system model is supported by the Holistic Peer to Peer 
(HPP) Architecture [3] which has a Data Model (DM) Service 
layer to represent nodes and services (on node or  Cloud) using 
defined roles based on capabilities. A node uses a data store 
modelled as a tuple space, with a simple protocol for the data 

flow between sensor and service(s). It includes commands for 
nodes and services to add/remove instances to/from the tuple 
space for their capabilities, interests and data, including setting 
leases on the data.  Figure 1 shows a DM_SOURCE_SRV 
adding its service and node classes (or templates) and instances 
to a DM_STORE_SRV (holding local and peer data) on a node 
that is able to cache data. A DM_SINK_SRV queries this 
DM_STORE_SRV for its capabilities and then its node data, 
which may be returned from the DM_SOURCE_SRV or an 
intermediate DM_STORE_SRV (if cached there). HPP also 
includes roles for DM_FORWARDER_SRV (forwards to 
peers), DM_MATCHER_SRV (for advanced matching 
queries) and DM_AGGREGATOR_SRV (aggregates peer 
data). 

C. Rationale for the CacheL Algorithm 

The successful use of a cache enables reduced 
communication and so extends the battery life of WSN nodes, 
but also reduces interference effects. It should also reduce the 
response time to queries. We consider the key requirements for 
a cache on a WSN node to be: 

1. Simple to implement and efficient in CPU and memory 
use.  

2. Use of a single abstraction for data storage. There 
should not be separate stores for the node's own data, 
remote node data and lease management. 

3. A lease associated with cache data. The lease is set and 
renewed by the source node as the data may only be 
useful for a limited period, e.g. only the latest copy 
needs to be held by a node. Permanently stored data 
will have an infinite lease. 

The use of leases provides a self-managing means to handle 
WSN failures, e.g. if a node fails then leases on its data will not 
be renewed so the data will be removed from the cache on 
expiry, freeing valuable storage space.  

Our contribution regarding leases is a low overhead 
replacement algorithm that performs both lease and cache 
management. This removes the need for a separate periodic 
lease management process to expire items. e.g. using time 
buckets to hold items according to lease times and updating 
these when the bucket period has passed. CacheL's 
commonality of code and metadata for cache and lease 
management reduces code size and memory use, as well as 
making the code simpler. Furthermore, allowing the periodic 
update of leases and expiry of items fits well with the WSN use 
case of running only when the node is awake. 

A source node requests a lease, but the lease is granted by 
the caching node and it can use the size of its cache, the item's 
size and the lease requested to determine the lease granted, e.g. 
it may not cache items above a certain size. The lease is 
granted in milliseconds and is not tied to the actual time on the 
source or caching node. The lease is decremented based on 
time differences using the time on a node and is renewed by the 
source node, based on when it received the granted lease 
response. Hence, there is no need for a global time across the 
WSN to support the cache lease. 

 



D. The CacheL Algorithm 

We propose CacheL for resource constrained nodes to 
manage items in a node’s datastore as a cache. CacheL extends 
the Clock algorithm by adding a lease to each item cached. The 
Clock algorithm was chosen as a base, because of its simplicity 
compared to the cache algorithms outlined above and the ease 
of extending it. CacheL combines application hints (leases set 
by the source node give a hint when the item can be removed) 
and history based on access. The lease has priority over access 
count in determining item replacement, because the source 
expects an item to be cached for the period granted and treating 
access count equally would lead to removing entries with long 
leases. A lease can be renewed by the data source, so that it is 
not just a TimeToLive on the data. Unlike paging algorithms, it 
does not assume a fixed cache size with fixed size buffers and 
it updates item metadata instead of setting the reference bit. 

CacheL does not keep lists sorted by access count or time, 
but replaces the first one or more items it finds with expired 
leases or which have not been accessed a set number of times 
(similar to CLOCK-PRO’s use of access counts). It manages 
leases by iterating through items on a specific event, such as 
adding an item or a time epoch passing. CacheL can also 
handle items without a lease and evicts them simply based on 
access count, similarly to the CLOCK algorithm. Items that are 
accessed frequently, but whose leases have expired can be 
handled according to a policy, i.e. whether to always remove 
on expiry or to retain them in the cache if accessed.  

1) Algorithm Operation 
The algorithm holds the entries to be managed in a list, 

which does not have to be held in any specific order (unlike 
LRU) and has at least one other list/queue, a pending queue, of 
item references whose lease is due to expire and to check the 
access count, i.e. not just based on count like 2Q. This also has 
similarities to MQ, but is simpler and done per access as with 
MQ, but also on a periodic basis. The algorithm sweeps 
through a main queue until it has found enough items to evict 
(using count or memory size). This sweep is done when an 
attempt is made to add to the cache or using the fronthand and 
backhand time periods, where the fronthand is less than the 
backhand.  

The backhand sweep is primarily for lease management, 
but also moves items according to count. This sweep iterates 
through all the main queue or until it finds one or a specified 
number of items to remove. It puts items on the pending queue 
(or a count queue) based on their remaining lease or deletes 
them if they were not accessed since the previous sweep. This 
sweep through the main queue decrements the access count, 
but does not clear it to give some precedence to items with 
multiple accesses. The previous accessed time is not stored as 
that is implicitly handled by the periodic sweeps. It holds a 
reference to the last item checked on a sweep to start the next 
sweep. 

A sweep at the fronthand frequency iterates through the 
pending queue. Items on this queue are due to expire soon, so 
this sweep removes them, unless they have been accessed or 
had their lease renewed, and decrements the access count 
(effectively setting the time for an item to be accessed before it 
will be deleted). This pending queue sweep will be called on 

each add and removes the specified number of entries with 
expired leases. Items are added to the tail of this queue, but it is 
searched from the head increasing the time an item can remain 
on the queue if items expire ahead of it. Items are not held in 
order of their remaining lease or recency of access as with 
LRU. The pending queue means that items with short or near 
expiry leases will be removed first, which is reasonable as the 
source node setting a lease should know how long this data 
should remain. Items may stay in the cache longer than the 
lease, however, as the lists are only checked on a sweep to save 
processing overhead. 

A lease threshold is used to select items to put onto the 
pending queue and by default is set to the time before the next 
backhand sweep - increasing it may remove items that still 
have some lease remaining. The period between fronthand 
sweeps and a backhand sweep could be tuned using the size of 
the pending queue, as the time between being put on the 
pending queue on a backhand and removal on the next 
fronthand allows for lease renewal (or access). 

The number of items (or size of memory) to free can be set 
rather than just inserting the new page at the selected location 
on a page fault. It returns the number of entries removed, so the 
caller can decide whether to allow a new item to be added or to 
explicitly delete an item, rather than wait for leases to expire. 
Deleting an item may occur outside cache management, so its 
reference will either be removed immediately from the pending 
queue(s) or lazily rely on the lease to expire as it will not be 
renewed. Similarly, items are either immediately moved from 
the pending queue on lease renewal (or on access) or lazily on 
the next sweep.  

Simplified pseudo-code for the sweep methods follows. 
Other code stores the times of the last fronthand and backhand 
(since_fhand, since_bhand) to determine which sweep to run, 
even if the node had been asleep. 

doSweep() { 

 if (since_fhand) //based on time period or counts 

    if pending Queue not empty  

        deleted = pendQSweep(toDelete) 

 // Optimisation added for lots of long leases 

 if (min_lease – lease_threshold > since backhand) 

     return 

 if (since_bhand || // based on time period or counts 

     deleted < toDelete))  

     deleted = mainQSweep(toDelete)   

} 

pendQSweep() { 

 for each item in pendQ  

  decrement access_cnt 

  if lease set { 

      if (lease expired) 

          remove 

      else if lease > lease_threshold // was renewed 

          move to mainQ behind hand pointer   

          // has full sweep to be accessed.   

      else if (lastAccessTime == 0) 

          if access_cnt <= 0,  

              remove // not accessed while on pending queue  



          else // (access_cnt > 0 so was accessed) 

              leave in pendQ // allows lease renewal 

    } // end of lease case 

 } 

mainQSweep() { 

 iterate mainQ starting from last_checked item  

 last_checked = this item 

 decrement access_cnt 

 if (lease set) { 

     decrement lease           

    adjustLeaseByCnt 

    if (lease expired) 

      if (access_cnt == 0)  

          remove 

      else  

          move to pendQ 

      else if lease < threshold  

          move to pendQ // else stays on mainQ 

     update min_lease if lease < min_lease 

     return 

   } // end of lease set case 

   if access_cnt <= 0  

       remove 

    else if access_cnt == 1  

       move to pendQ // or a separate cntQ                        

    else // if access_cnt > 1 

       leave on mainQ, // gives it more precedence than Clock 

 }  

 
Unlike LRU, it is valid for CacheL to not cache an item if 

no leases have expired, so the mainQSweep() could move 
through the entire cache, giving an O(N) worst case. We reduce 
this cost by holding the minimum lease of an item in the main 
queue and not doing a sweep if that lease has not expired. Also 
unlike LRU, a sweep is done on an add or a time period rather 
updating ordered lists per access.  

Large, infrequently accessed objects with a long lease may 
remain cached ahead of those accessed more often with short 
leases. That should be handled by not granting a long lease to 
large objects when they are added and by increasing the lease 
based on count in adjustLeaseByCnt().  

The algorithm acts like CLOCK (but with a pending queue) 
to handle items without a lease; the mainQSweep sets 
last_checked and decrements access count, while the 
pendQSweep removes items if not accessed. Indeed, a separate 
count-based list could be implemented for items without leases 
or the sweep approach could be easily extended to check other 
parameters, e.g. the number of hops data has taken. In the no 
lease case, the algorithm resists scan patterns once the cache is 
populated, as it adds to the end of the pending queue and the 
main queue is not sorted. 

IV. IMPLEMENTATION 

This section discusses prototype ‘C’ and Java 
implementations of CacheL. The implementations included 
specific metadata in the cached items to avoid having to update 
all entries in the cache on every sweep, e.g. the last time it was 

visited on a sweep and its access count. For updating access 
count, the number of times it missed being decremented (due to 
the periodic nature of sweeps) is handled by holding a count 
which is incremented on each sweep and using that to 
decrement the count on next sweep. 

A. ‘C’ Implementation 

The ‘C’ prototype was implemented initially on Linux and 
ported to the popular Contiki OS using the erbium REST 
implementation [28] on a Sky WSN node using an MSP-430 
Microprocessor with 10K RAM and 48K Flash. This node was 
emulated in Contiki's Cooja simulation environment. CoAP 
"resources" were created which integrated the cache into our 
HPP architecture, e.g. a DM_SOURCE_SRV was created and 
key value pair objects were sent to a DM_STORE_SRV node.  

B. Java Implementation 

CacheL was also implemented in Java so that it could be 
compared to a Java LRU implementation using the Yahoo 
Cloud Server Benchmark (YCSB) [4]. The Java LRU 
implementation used HashMap's removeEldestEntry() method. 
The CacheL implementation also used a HashMap to be 
comparable, although this needed extra code for 
ConcurrentModificationExceptions to mark items for deletion 
in a sweep and to remove them later. It also had to hold a 
separate list of index-object reference pairs so a sweep could 
continue from the previous position (the C implementation did 
not need as it used its own circular list).  

C. YCSB Test Environment Implementation 

While not representative of real WSN scenarios, the YCSB 
tests compare the effectiveness of CacheL to LRU. YCSB 
testing was performed on a single dual core PC with 8GB 
RAM, using the default YCSB data size of 1000, 1 KB records 
and 1000 operations. YCSB uses the configurable workload 
options shown in Table I, where WA indicates Workload A. A 
workload with a Uniform distribution (WB-Uni) was added to 
represent periodically reporting sensors. 

TABLE I.  YCSB WORKLOADS 

YCSB uses separate commands to load a database and then 
a run phase test on that data, but these had to be combined to 
test an in-memory cache. The update implementation was not a 
simple insert as with databases, as the item to be updated may 
not be cached and so had to be read and inserted. The tests 
were run for LRU and CacheL (with and without leases) over a 
range of cache sizes with CacheL doing fronthand/backhand 

Load Ratio of Operations Dist Nature Example 

WA  Read/update : 50/50 Zipf  Update Heavy Session store 

WB  Read/update : 95/5 Zipf Read Heavy Photo tags  

WC  Read/update : 100/0 Zipf Read Only User Profile 

WD Read/update/insert: 
95/0/5 

Latest Read Latest Status updates 

WE Scan/insert: 95/5 Zipf  Short Ranges Posts in thread 

WF Read/read-modify-

write: 50/50 

Zipf Read-Modify-

Write 

User Database 

 



based on the number of calls to put() and not the time since last 
sweep (which suits CacheL better and is likely in a WSN 
scenario). 

V. EVALUATION 

This section considers CacheL in terms of hit/miss ratio 
compared to LRU, the effectiveness of a lease and its 
suitability for implementation on a WSN node. It also outlines 
optimisations made based on the values of counts added at key 
points in the code (shown in Figure 2).  

A. Implementation Complexity 

The pseudo-code extract shows CacheL to be 
straightforward to implement, including its use of our object 
space and data model service abstractions. The C 
implementation was about 150 lines of C code and used about 
1KB of memory with a supporting object abstraction using a 
circular list library. CPU use was not  an issue during the test 
runs. The CacheL implementation was about 200 lines of Java 
whereas the LRU code was 30. This is reasonable as CacheL 
includes code for lease handling and interfacing to the object 
store, as well as the extra code due to the use of HashMap. The 
YCSB driver was modelled as a DM_STORE_SRV cache with 
our object API methods of new() read(), remove() and put() 
integrating easily with the YCSB API methods of init(), read(), 
delete(), update(), insert().  

B. Optimisations to CacheL 

Testing resulted in several optimisations to make better use 
of access counts and reduce unnecessary sweeps. Firstly, when 
a sweep does not find an expired lease, a reference to the item 
with the minimum lease is held to avoid unnecessary backhand 
sweeps looking for expired leases. This improved the latencies 
relative to LRU, especially for lease range 0-1000ms, e.g the 
backhand sweep was skipped over 900 times for WorkloadA at 
all sizes and for other workloads according to cache size, e.g. 
944, 795 for Workload D (Uniform) for sizes 100, 250. The 
second optimisation was adjustLeaseByCnt(), which increased 
the lease by the backhand period for items with an access count 
above zero. This extends the time frequently accessed items 
stay in the cache while still giving lease priority and allowing 
smaller leases to be granted. This worked for small leases, but 
had little effect for long leases, e.g. cache size 100 and 
workloadb-uniform had 892 failed puts out of 1000 as no 
cached item had expired. This optimisation is expected to be 
useful in longer-lived tests. The third optimisation was adding 
another sweep after the backhand if it did not delete the 
required number of items, as the first sweep may have moved 
items to the pendingQ or decremented access counts. The 
fourth one was to hold the last_lease_check time at the end of 
the main sweep to reduce system time-related calls.  

C. Performance Comparison of LRU and CacheL 

1) LRU vs CacheL without leases 
CacheL works like CLOCK in this case. Table II shows the 

hit ratios were comparable for LRU and CacheL, with LRU 
slightly higher on Workload B for Uniform distribution, but 
CacheL was equal or better on Zipf tests. Changing the time or 

number of puts (default 3) between fronthand and backhand 
sweeps did not affect the hit ratio, due to the short duration of 
tests. 

Cache 

Size 

100 250 500 750 1000 

 lru ChL lru ChL lru ChL lru ChL lru ChL 

WA-Zipf 56.4 55.6 58.4 59.9 59.2 59.5 61.7 61.8 63.9 62.6 

WB-Uni 15.6 12.9 29.5 29.1 52.6 48.7 73.5 77.0 100 100 

WB-Zipf 19.5 23.1 32.0 30.8 56.7 56.6 78.7 78.8 100 100 

WC-Uni 10.2 11.0 28.9 24.9 52.7 49.5 72.3 77.3 100 100 

WC-Zipf 9.4 19.2 23.8 26.1 47.8 50.6 71.9 73.0 100 100 

WD-Lat 69.7 62.4 83 82.2 91.5 91.8 95.6 96.7 99.4 99.9 

WD-Uni 10.7 11.5 27.5 27.3 50.3 50.7 62.3 74.9 96.7 98.2 

WF-Uni 9.0 9.0 28.1 25.2 51.4 52.7 63.3 73.0 100 100 

WF-Zipf 19.1 20.4 35.9 36.1 44.7 58.2 68.1 79.1 100 100 

TABLE II.  HIT RATIO PER WORKLOAD FOR CACHE SIZES (100 TO 1000) 
FOR LRU AND CACHEL (WITH NO LEASES) 

2) LRU vs CacheL with leases 
These tests use leases uniformly distributed over a time 

range of 0-100ms or 0-1000ms, which is smaller than expected 
in a real WSN, but was used as the tests completed in 
approximately 300 ms. These ranges show how effectively 
CacheL manages leases, although not taking advantage of 
CacheL being able to use a 'hint' provided by the 
application/sensor. Comparing the results in Table II to Table 
III, the use of CacheL with the 0-100ms lease distribution 
generally has a hit ratio higher than, or comparable to, LRU for 
cache size 100 and is comparable at other cache sizes, although 
there is a notable reduction for the Workload D-latest 
distribution (WD-Lat). Table III shows a hit ratio reduction for 
CacheL in all 100 sized caches when using the 1000ms 
compared to 100ms lease range as residency in the cache is 
dominated by the priority given to lease. It also suggests the 
granting of leases should be managed actively to ensure 
appropriate expiry, e.g. based on the leases remaining in the 
cache.  

Cache 

Size 

100 250 500 750 1000 

Lease 

Range 

100 1000 100 1000 100 1000 100 1000 100 1000 

WB-Uni 20.0 13.6 28.1 27.5 52.9 54.0 75.4 75.7 99.9 99.8 

WB-Zipf 16.3 13.4 27.5 29.5 51.2 54.0 74.3 75.5 100 100 

WC-Uni 17.6 11.3 25.5 25.0 50.7 52.3 76.7  74.8 100 100 

WC-Zipf 15.7 9.8 22.6 26.7 48.7 48.5 73.1 75.3 100 100 

WD-Lat 48.6 5.6 77.4 9.9 90.7 54.2 97.4 22.2 99.7 57.0 

WD-Uni 28.3 13.7 25.8 30.0 51.0 51.0 73.6 76.7 96.4 99.7 

WF-Uni 21.3 10.0 26.1 24.1 49.4 50.6 73.9 75.3 100 99.9 

WF-Zipf 21.5 10.0 23.1 26.3 48.5 52.0 73.5 75.6 100 100 

TABLE III.  HIT RATIOS FOR CACHEL (WITH UNIFORMLY DISTRIBUTED 

LEASES 0-100MS AND 0-1000MS) 



D. Performance Characteristics of CacheL  

Figure 2 shows the values of the counts added to the code 
for cache size 100 and a lease distribution of 0-100ms, where 
CacheL was most effective, i.e., expiring data quickly in a 
small cache. fhDeleteCount and bhDeleteCount are the number 
of deletes done on a fronthand or backhand sweep as leases 
expire, with fronthand having an effect on WA-ZIPF, WD-Uni 
and WF-ZIPF (although fhDeleteCount drops to less than 10 
for other cache sizes). The maximum number of entries on the 
pending queue (pendQMax) and fhDeleteCount show it used 
for cache size 100 and Workload A. SweepDeleteCount counts 
the number of items deleted after a backhand sweep and shows 
the impact of the third optimisation on bhDeleteCount. 
bh_skipped counts the backhand sweeps not run based on the 
minimum lease in the cache, showing the value of the first 
optimisation above.  

 

 

 

 

 

 

 

 

Other counters showed that long leases limited the value of 
both access count in cache replacement and the fronthand 
sweep, e.g. the 0-1000ms distribution had few leases near 
expiry to populate the pending queue. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figures 3 and 4 show the bhDeleteCount and lease_expired 
counters across cache sizes using the 0-100ms lease 
distribution. The lease_expired count is incremented when 
deleting an item in the backhand sweep if the lease and access 
count are both less than or equal to 0. The lease_expired 
counter in Figure 4 and bhDeleteCount in Figure 3 show that 
the larger cache sizes are dominated by lease expiry in the 
backhand sweep. There is more variation at cache sizes 100 
and 250 where the lease and access counts are used. Figure 5 
details this for size 100. 

In Figure 5, min_lease counts the number of times the item 
with the minimum lease was deleted in the backhand sweep; 
lease_thrshld counts items deleted by a fronthand sweep; 
lease_pending_expiry counts items moved to the pending 
queue by a backhand sweep; lease_expiry_removed counts the 
items removed from the pending queue by  a fronthand sweep. 
For cache size 100 the lease_expired counter in the backhand 
sweep is the main way of expiring leases, but 
lease_expiry_removed indicates items were moved to the 
pendingQ and lease_threshold shows they were then removed 
by a fronthand sweep. 

 

 

 

 
 

 

 

 

 

 

In summary, it can be seen that CacheL is comparable to 
LRU and when using short leases it expires data quickly in a 
small cache, as required on WSN nodes. It can also be seen that 
the algorithm manages leases effectively and could take 
advantage of a lease provided by source nodes as a hint.  

VI. CONCLUSION 

We have outlined the rationale for the use of a cache 
algorithm in WSN nodes and the value of an associated lease. 
We have proposed the CacheL algorithm with its inherent 
management of leases for cached data. This algorithm has been 
shown to be flexible enough to handle the limited node 
memory for cached data and simple enough to implement and 
run on a constrained node. We have also shown how CacheL 
fits into our architecture [3].  

The results show that the algorithm is comparable to LRU, 
even without leases, and that it successfully manages the cache 
using leases and access count. This shows the value of sources 
using a lease to provide hints for their data and also the 
importance of managing the granting of leases. This will be 
investigated in further work. 

 

 

 

 



We have also shown the use of YCSB to test, understand 
and optimise the performance of the CacheL algorithm. Future 
work will use a YCSB load generator to run tests against WSN 
nodes to investigate the effectiveness of CacheL in reducing 
power consumption and supporting self-management as nodes 
move or leave the network. 
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