
UCC Library and UCC researchers have made this item openly available.
Please let us know how this has helped you. Thanks!

Title CacheL: A cache algorithm using leases for node data in the Internet of
Things (Best Paper Award)

Author(s) Tracey, David; Sreenan, Cormac J.

Publication date 2016-08

Original citation Tracey, D. and Sreenan, C. (2016) 'CacheL - A Cache Algorithm Using
Leases for Node Data in the Internet of Things', IEEE 4th International
Conference on Future Internet of Things and Cloud (FiCloud), Vienna,
Austria 22-24 August. doi: 10.1109/FiCloud.2016.9

Type of publication Conference item

Link to publisher's
version

https://ieeexplore.ieee.org/document/7575837
http://dx.doi.org/10.1109/FiCloud.2016.9
Access to the full text of the published version may require a
subscription.

Rights © 2016 IEEE. Personal use of this material is permitted. Permission
from IEEE must be obtained for all other uses, in any current or
future media, including reprinting/republishing this material for
advertising or promotional purposes, creating new collective works,
for resale or redistribution to servers or lists, or reuse of any
copyrighted component of this work in other works.

Item downloaded
from

http://hdl.handle.net/10468/9652

Downloaded on 2021-11-27T09:51:28Z

https://libguides.ucc.ie/openaccess/impact?suffix=9652&title=CacheL: A cache algorithm using leases for node data in the Internet of Things (Best Paper Award)
https://ieeexplore.ieee.org/document/7575837
http://dx.doi.org/10.1109/FiCloud.2016.9
http://hdl.handle.net/10468/9652

CacheL - A Cache Algorithm using Leases for Node

Data in the Internet of Things

David Tracey

Dept. Of Computer Science,

University College Cork,

Cork, Ireland.

Cormac Sreenan

Dept. Of Computer Science,

University College Cork,

Cork, Ireland,

Abstract—Wireless Sensor Networks (WSNs) allow

applications to interact with the physical world using sensing

nodes deployed in an Internet of Things (IoT). Many WSN

sensing nodes have constrained computing and memory

capabilities. This paper details a new cache algorithm suitable for

use on constrained nodes and its use in an architecture

incorporating caching and the flow of data from sensors to

services, possibly Cloud-based. This cache algorithm is

influenced by the Clock paging algorithm and manages the leases

of cached data in its replacement policy, removing the need for a

separate process for this. This paper presents implementations of

the algorithm in C on the Contiki OS and Java, compares its

performance to LRU and considers its suitability for use on

constrained WSN nodes.

Keywords—Wireless Sensor Networks, Contiki, Cache, Paging

Algorithms, Lease, LRU

I. INTRODUCTION

Cheaper processing power and the use of IP is allowing
more data to be gathered, stored and analysed in Wireless
Sensor Networks (WSNs). Micro IP stacks and IPv6 over low
power wireless (6LowPAN) [1] allow nodes to form an
“Internet of Things” integrating the physical world with the
Internet [2] in a distributed system of devices and applications
comprising sensing, computation, actuation and analysis. WSN
nodes have constrained processing power, memory and energy
consumption, but their wireless capability allows nodes to be
deployed close to the sensed phenomenon. Nodes may forward
data to remote data centres or collect data from other nodes.
Nodes may perform actions based on events or external input
or possibly aggregate the sensor data, as aggregation and
analysis may be required close to the source, e.g. a sensor
testing for hazardous gases must react to major events based on
timely local analysis of its own and neighbouring sensor
readings (current and for a past period) and also forward data to
a centralised, probably Cloud, system for longer term storage
and more detailed analysis.

A key requirement in the design of WSNs is to reduce the
number of messages sent (often over many hops) in order to
extend battery life, while still being able to provide data at low
latency. This is often addressed by managing node duty cycles,
but another approach to reducing transmission and supporting
local data analysis is to store data on the nodes. The limited
available storage on nodes and the fact that local analysis of

node data is often most useful for a recent time period suggests
that caching is appropriate in WSNs. Furthermore, returning
cached data from a node closer to the requesting node than the
source node will reduce the number of transmissions required,
also reducing interference effects. It will also reduce the
response time, particularly when requests from multiple nodes
are answered using the same cached data. Caching on WSN
nodes is, however, problematic due to their limited memory
and processing power, and the lack of a system architecture
that easily incorporates cached data.

This paper presents our contribution of the CacheL
algorithm and an implementation on constrained nodes using
the Contiki OS. Its novelty lies in its intrinsic use of leases in a
cache replacement policy for WSN data inspired by the Clock
algorithm, so not requiring the use of sort (like LRU) and not
requiring additional communication between WSN nodes, as in
several cooperative caches. It incorporates lease management
into the replacement process to remove the need for a separate
periodic process to manage leases. We consider that the use of
a lease for cached data is important in WSNs as it provides
self-management, i.e. cached data for nodes that have left the
network will be removed from the cache on lease expiry. A
lease can also represent the time sensitive nature of node data,
e.g. set/renew the lease based on the time of the next sensor
reading. It also allows recent data to be retained as it is more
likely to be of interest.

The remainder of this paper is organised as follows. We
present prior work in section II and the CacheL Algorithm in
Section III. Section IV presents a prototype implementation of
the CacheL Algorithm and its integration into our architecture
[3]. Section V presents performance results using the Yahoo
Cloud Server Benchmark (YCSB) [4]. The paper concludes in
Section VI.

II. EXISTING CACHE ALGORITHMS

The use of caching in WSNs has the potential to reduce
energy use across nodes by reducing transmissions, to support
local data analysis and to lower latency. A cache replacement
policy aims to maximize the use of resources, e.g. memory or
network bandwidth and can be based on [5]:

1. Application provided future access hints, e.g. based on
a query to be performed.

2. Explicit detection of access patterns unfriendly to LRU
and a switch to other replacement strategies.

3. Tracing and history of accesses (only useful if they
reflect future use).

Least Recently Used (LRU) replaces the item which has not
been accessed for the longest time from a list ordered by last
access time. It is simple, but has the cost of maintaining order.
It suits workloads showing locality, where an item is accessed
shortly after a previous access. Most Recently Used (MRU) is
useful when older items are more likely to be accessed. LRU
does not distinguish a recently added, never accessed, entry
from one accessed frequently but not recently, so a scan
accessing a series of items once only flushes pages which may
be accessed again. LRU/k [6] improves this by prioritising
items based on their kth most recent access, but is log(n) to
manage a priority queue. 2Q [7] provides constant overhead
per access as in LRU with a similar page replacement
performance to LRU/k, by using an LRU main queue and a
FIFO queue for “hot” items. MQ [8] uses LRU queues based
on page frequency. The page frequency is incremented on a hit
and that item becomes the MRU in that queue. On an access, a
constant (expireTime) of the LRU item per queue is checked
and if expired that items becomes the next queue’s MRU.

 Least Frequently Used (LFU) removes items with the
lowest count first using a linked list for O(n) removal,
insertion, but it allows a previously frequently accessed item to
remain cached and not be replaced by more recent items. LFU-
Aging includes the recency of last access, while LFU with
Dynamic Aging (LFUDA) adds a cache age factor (less than or
equal to minimum value in the cache) to the reference count
[9]. Greedy-Dual Size (GDS) considers the item's size and a
cost function associated with fetch.

A TimeToLive (TTL) is often used where weak
consistency is acceptable. Redis 2.x [10] actively removes
timed-out keys on access and it also periodically tests a number
of random keys and deletes the expired ones.

The CLOCK algorithm [11] uses a circular list of fixed
sized pages. A “clock” hand points to the oldest page in the
circular list. On a page fault, the reference bit (set on page
access) of the page at the clock hand is checked. If it is not set,
the page is replaced by the faulting page, otherwise it is reset
and the hand moves through the list clearing page reference
bits until it finds one not set and replaces that page. This
algorithm approximates LRU and avoids its ordering of the list,
but shares its lack of scan resistance.

The WSClock Algorithm [12] uses the task’s virtual time
and a page’s last reference time to determine if the page should
be replaced. GCLOCK [13] increments a page's counter on a
hit and the clock hand sweeps the pages decrementing the
counters until it finds and replaces a page with a zero count.
CLOCK-Pro [14] keeps track of a limited number of replaced
pages to overcome the LRU problems with scan and loop,
using the LIRS (Low Inter-reference Recency Set) [15] policy
of replacing a page with a high reuse distance even if recent. A
single list of pages is ordered with small recencies at the head
and large ones at the tail. Cold pages stay in the list for a test
period (set to the largest recency of the hot pages, becoming

hot if accessed in that period. Three hands sweep the list:
pointing to the last hot page, the last cold page and the last cold
page in a test period. Clock with Adaptive Replacement (CAR)
[16] is self-tuning and uses two clock lists: T1 for pages with
“recency” and T2 for pages with “frequency”. New pages are
added to T1 and move to T2 based on a test of long-term utility
or frequency. A list with history of recently evicted pages from
T1 and T2 is used to adaptively set the list sizes.

ARC uses two variably-sized lists (combined size of twice
the number of pages) to hold the history access information for
referenced pages [17]. One list holds cold pages (touched once
recently) and the other holds hot pages (touched at least twice
recently). The memory for each list is managed based on which
list had the most recent misses using a ratio of cold/hot page
accesses. It does not handle the locality of pages in the two
lists, so a page that is regularly accessed with a reuse distance a
little more than the memory size may get no hits.

 In general terms, LFU and MQ are more expensive than
LRU, while LIRS and ARC have a cost similar to LRU. CAR
has a cost close to CLOCK, but with similar performance to
ARC and better scan resistance than LRU.

III. A CACHE ALGORITHM FOR WSN NODES

A. Cache Approaches in WSNs

Caching has been investigated for WSNs in the context of
co-operative caching to serve data with low latency and reduce
energy consumption. Each node constructs responses to queries
by cooperating with its neighbours. A key aspect is identifying
which nodes will implement the co-operative caching
decisions, e.g. which node makes forwarding decisions or
which nodes get the requests for data [18], with little focus on
the cache replacement algorithm itself. Some approaches
calculate a Node Importance Index, requiring nodes to hold
their neighbours' connectivity state and lack robustness [19].
Data replication and caching strategies have been considered in
Mobile Ad-hoc Networks (MANETs) [20], but some schemes
[21] require knowledge of network topology and involve
periodically moving data, both of which reduce their
effectiveness in a WSN, especially if data access patterns vary
or nodes join/leave. Static approaches to cache placement [22]
are similarly limited in the WSN scenario. COOP [23] keeps a
table of previous requests and the nearest relevant cache, using
flooding to find the data only in the case of a miss. The hybrid
cache for cooperative caching in MANETs [24] does not
require the selection of special nodes and shares data only on
the path between source and requester. When forwarding data,
a node may cache either the data or the path according to the
data size, TTL and number of hops to be saved.

Directed Diffusion [25] is a data-centric approach, where
node data is named by attribute-value pairs. A node sends
interests with a duration to request named data and the concept
of a gradient (a value and direction) moves data according to
these interests. Intermediate nodes may cache recently sent data
messages or aggregate data, although the emphasis is on the
routing and filtering of data and the matching of interests rather
than cache implementations.

The Constrained Application Protocol (CoAP) [26] uses
Internet approaches, e.g. the RESTFul architectural style [27].
It is designed to be easy to proxy to/from HTTP and uses a
small, simple header of less than 10 bytes and a UDP binding
with reliability and multicast support. CoAP supports a simple
cache in an endpoint or an intermediary, using freshness and
validity information in the CoAP responses. The cache allows
an earlier response message or a stored response for the current
request. The origin server provides an expiration time using the
Max-AgeOption and an ETag Option in the GET request
allows an origin server select a stored response to use and to
update its freshness.

B. System Model

We assume a WSN that consists of sensor nodes using bi-
directional links in a multi-hop manner. No assumptions are
made about the size of the network. We require that the cache
algorithm imposes little communication overhead, e.g. does not
require flooding and can handle the dynamic nature of the
WSN in terms of the source and destination of requests. We do
not assume a static topology or require data relocation or
recalculation to update topology related data when nodes
join/leave. We do not assume that all nodes have the same
capability; some nodes will be able to cache data and other less
capable nodes will only act as sources (or sinks) or forwarders
of data. Data will be retrieved from the source node in the
absence of a cache. We do not make any assumptions about the
routing algorithm used and assume only that data may be
cached as it is forwarded, preferably peer to peer. While such
forwarding may be as a response to a request, data may also be
pushed from nodes. Unlike the cooperative caching approaches
above, no cache management protocol across nodes is required.

Fig. 1. Example of HPP Data Model Service Layer Interaction

This system model is supported by the Holistic Peer to Peer
(HPP) Architecture [3] which has a Data Model (DM) Service
layer to represent nodes and services (on node or Cloud) using
defined roles based on capabilities. A node uses a data store
modelled as a tuple space, with a simple protocol for the data

flow between sensor and service(s). It includes commands for
nodes and services to add/remove instances to/from the tuple
space for their capabilities, interests and data, including setting
leases on the data. Figure 1 shows a DM_SOURCE_SRV
adding its service and node classes (or templates) and instances
to a DM_STORE_SRV (holding local and peer data) on a node
that is able to cache data. A DM_SINK_SRV queries this
DM_STORE_SRV for its capabilities and then its node data,
which may be returned from the DM_SOURCE_SRV or an
intermediate DM_STORE_SRV (if cached there). HPP also
includes roles for DM_FORWARDER_SRV (forwards to
peers), DM_MATCHER_SRV (for advanced matching
queries) and DM_AGGREGATOR_SRV (aggregates peer
data).

C. Rationale for the CacheL Algorithm

The successful use of a cache enables reduced
communication and so extends the battery life of WSN nodes,
but also reduces interference effects. It should also reduce the
response time to queries. We consider the key requirements for
a cache on a WSN node to be:

1. Simple to implement and efficient in CPU and memory
use.

2. Use of a single abstraction for data storage. There
should not be separate stores for the node's own data,
remote node data and lease management.

3. A lease associated with cache data. The lease is set and
renewed by the source node as the data may only be
useful for a limited period, e.g. only the latest copy
needs to be held by a node. Permanently stored data
will have an infinite lease.

The use of leases provides a self-managing means to handle
WSN failures, e.g. if a node fails then leases on its data will not
be renewed so the data will be removed from the cache on
expiry, freeing valuable storage space.

Our contribution regarding leases is a low overhead
replacement algorithm that performs both lease and cache
management. This removes the need for a separate periodic
lease management process to expire items. e.g. using time
buckets to hold items according to lease times and updating
these when the bucket period has passed. CacheL's
commonality of code and metadata for cache and lease
management reduces code size and memory use, as well as
making the code simpler. Furthermore, allowing the periodic
update of leases and expiry of items fits well with the WSN use
case of running only when the node is awake.

A source node requests a lease, but the lease is granted by
the caching node and it can use the size of its cache, the item's
size and the lease requested to determine the lease granted, e.g.
it may not cache items above a certain size. The lease is
granted in milliseconds and is not tied to the actual time on the
source or caching node. The lease is decremented based on
time differences using the time on a node and is renewed by the
source node, based on when it received the granted lease
response. Hence, there is no need for a global time across the
WSN to support the cache lease.

D. The CacheL Algorithm

We propose CacheL for resource constrained nodes to
manage items in a node’s datastore as a cache. CacheL extends
the Clock algorithm by adding a lease to each item cached. The
Clock algorithm was chosen as a base, because of its simplicity
compared to the cache algorithms outlined above and the ease
of extending it. CacheL combines application hints (leases set
by the source node give a hint when the item can be removed)
and history based on access. The lease has priority over access
count in determining item replacement, because the source
expects an item to be cached for the period granted and treating
access count equally would lead to removing entries with long
leases. A lease can be renewed by the data source, so that it is
not just a TimeToLive on the data. Unlike paging algorithms, it
does not assume a fixed cache size with fixed size buffers and
it updates item metadata instead of setting the reference bit.

CacheL does not keep lists sorted by access count or time,
but replaces the first one or more items it finds with expired
leases or which have not been accessed a set number of times
(similar to CLOCK-PRO’s use of access counts). It manages
leases by iterating through items on a specific event, such as
adding an item or a time epoch passing. CacheL can also
handle items without a lease and evicts them simply based on
access count, similarly to the CLOCK algorithm. Items that are
accessed frequently, but whose leases have expired can be
handled according to a policy, i.e. whether to always remove
on expiry or to retain them in the cache if accessed.

1) Algorithm Operation
The algorithm holds the entries to be managed in a list,

which does not have to be held in any specific order (unlike
LRU) and has at least one other list/queue, a pending queue, of
item references whose lease is due to expire and to check the
access count, i.e. not just based on count like 2Q. This also has
similarities to MQ, but is simpler and done per access as with
MQ, but also on a periodic basis. The algorithm sweeps
through a main queue until it has found enough items to evict
(using count or memory size). This sweep is done when an
attempt is made to add to the cache or using the fronthand and
backhand time periods, where the fronthand is less than the
backhand.

The backhand sweep is primarily for lease management,
but also moves items according to count. This sweep iterates
through all the main queue or until it finds one or a specified
number of items to remove. It puts items on the pending queue
(or a count queue) based on their remaining lease or deletes
them if they were not accessed since the previous sweep. This
sweep through the main queue decrements the access count,
but does not clear it to give some precedence to items with
multiple accesses. The previous accessed time is not stored as
that is implicitly handled by the periodic sweeps. It holds a
reference to the last item checked on a sweep to start the next
sweep.

A sweep at the fronthand frequency iterates through the
pending queue. Items on this queue are due to expire soon, so
this sweep removes them, unless they have been accessed or
had their lease renewed, and decrements the access count
(effectively setting the time for an item to be accessed before it
will be deleted). This pending queue sweep will be called on

each add and removes the specified number of entries with
expired leases. Items are added to the tail of this queue, but it is
searched from the head increasing the time an item can remain
on the queue if items expire ahead of it. Items are not held in
order of their remaining lease or recency of access as with
LRU. The pending queue means that items with short or near
expiry leases will be removed first, which is reasonable as the
source node setting a lease should know how long this data
should remain. Items may stay in the cache longer than the
lease, however, as the lists are only checked on a sweep to save
processing overhead.

A lease threshold is used to select items to put onto the
pending queue and by default is set to the time before the next
backhand sweep - increasing it may remove items that still
have some lease remaining. The period between fronthand
sweeps and a backhand sweep could be tuned using the size of
the pending queue, as the time between being put on the
pending queue on a backhand and removal on the next
fronthand allows for lease renewal (or access).

The number of items (or size of memory) to free can be set
rather than just inserting the new page at the selected location
on a page fault. It returns the number of entries removed, so the
caller can decide whether to allow a new item to be added or to
explicitly delete an item, rather than wait for leases to expire.
Deleting an item may occur outside cache management, so its
reference will either be removed immediately from the pending
queue(s) or lazily rely on the lease to expire as it will not be
renewed. Similarly, items are either immediately moved from
the pending queue on lease renewal (or on access) or lazily on
the next sweep.

Simplified pseudo-code for the sweep methods follows.
Other code stores the times of the last fronthand and backhand
(since_fhand, since_bhand) to determine which sweep to run,
even if the node had been asleep.

doSweep() {

 if (since_fhand) //based on time period or counts

 if pending Queue not empty

 deleted = pendQSweep(toDelete)

 // Optimisation added for lots of long leases

 if (min_lease – lease_threshold > since backhand)

 return

 if (since_bhand || // based on time period or counts

 deleted < toDelete))

 deleted = mainQSweep(toDelete)

}

pendQSweep() {

 for each item in pendQ

 decrement access_cnt

 if lease set {

 if (lease expired)

 remove

 else if lease > lease_threshold // was renewed

 move to mainQ behind hand pointer

 // has full sweep to be accessed.

 else if (lastAccessTime == 0)

 if access_cnt <= 0,

 remove // not accessed while on pending queue

 else // (access_cnt > 0 so was accessed)

 leave in pendQ // allows lease renewal

 } // end of lease case

 }

mainQSweep() {

 iterate mainQ starting from last_checked item

 last_checked = this item

 decrement access_cnt

 if (lease set) {

 decrement lease

 adjustLeaseByCnt

 if (lease expired)

 if (access_cnt == 0)

 remove

 else

 move to pendQ

 else if lease < threshold

 move to pendQ // else stays on mainQ

 update min_lease if lease < min_lease

 return

 } // end of lease set case

 if access_cnt <= 0

 remove

 else if access_cnt == 1

 move to pendQ // or a separate cntQ

 else // if access_cnt > 1

 leave on mainQ, // gives it more precedence than Clock

 }

Unlike LRU, it is valid for CacheL to not cache an item if

no leases have expired, so the mainQSweep() could move
through the entire cache, giving an O(N) worst case. We reduce
this cost by holding the minimum lease of an item in the main
queue and not doing a sweep if that lease has not expired. Also
unlike LRU, a sweep is done on an add or a time period rather
updating ordered lists per access.

Large, infrequently accessed objects with a long lease may
remain cached ahead of those accessed more often with short
leases. That should be handled by not granting a long lease to
large objects when they are added and by increasing the lease
based on count in adjustLeaseByCnt().

The algorithm acts like CLOCK (but with a pending queue)
to handle items without a lease; the mainQSweep sets
last_checked and decrements access count, while the
pendQSweep removes items if not accessed. Indeed, a separate
count-based list could be implemented for items without leases
or the sweep approach could be easily extended to check other
parameters, e.g. the number of hops data has taken. In the no
lease case, the algorithm resists scan patterns once the cache is
populated, as it adds to the end of the pending queue and the
main queue is not sorted.

IV. IMPLEMENTATION

This section discusses prototype ‘C’ and Java
implementations of CacheL. The implementations included
specific metadata in the cached items to avoid having to update
all entries in the cache on every sweep, e.g. the last time it was

visited on a sweep and its access count. For updating access
count, the number of times it missed being decremented (due to
the periodic nature of sweeps) is handled by holding a count
which is incremented on each sweep and using that to
decrement the count on next sweep.

A. ‘C’ Implementation

The ‘C’ prototype was implemented initially on Linux and
ported to the popular Contiki OS using the erbium REST
implementation [28] on a Sky WSN node using an MSP-430
Microprocessor with 10K RAM and 48K Flash. This node was
emulated in Contiki's Cooja simulation environment. CoAP
"resources" were created which integrated the cache into our
HPP architecture, e.g. a DM_SOURCE_SRV was created and
key value pair objects were sent to a DM_STORE_SRV node.

B. Java Implementation

CacheL was also implemented in Java so that it could be
compared to a Java LRU implementation using the Yahoo
Cloud Server Benchmark (YCSB) [4]. The Java LRU
implementation used HashMap's removeEldestEntry() method.
The CacheL implementation also used a HashMap to be
comparable, although this needed extra code for
ConcurrentModificationExceptions to mark items for deletion
in a sweep and to remove them later. It also had to hold a
separate list of index-object reference pairs so a sweep could
continue from the previous position (the C implementation did
not need as it used its own circular list).

C. YCSB Test Environment Implementation

While not representative of real WSN scenarios, the YCSB
tests compare the effectiveness of CacheL to LRU. YCSB
testing was performed on a single dual core PC with 8GB
RAM, using the default YCSB data size of 1000, 1 KB records
and 1000 operations. YCSB uses the configurable workload
options shown in Table I, where WA indicates Workload A. A
workload with a Uniform distribution (WB-Uni) was added to
represent periodically reporting sensors.

TABLE I. YCSB WORKLOADS

YCSB uses separate commands to load a database and then
a run phase test on that data, but these had to be combined to
test an in-memory cache. The update implementation was not a
simple insert as with databases, as the item to be updated may
not be cached and so had to be read and inserted. The tests
were run for LRU and CacheL (with and without leases) over a
range of cache sizes with CacheL doing fronthand/backhand

Load Ratio of Operations Dist Nature Example

WA Read/update : 50/50 Zipf Update Heavy Session store

WB Read/update : 95/5 Zipf Read Heavy Photo tags

WC Read/update : 100/0 Zipf Read Only User Profile

WD Read/update/insert:
95/0/5

Latest Read Latest Status updates

WE Scan/insert: 95/5 Zipf Short Ranges Posts in thread

WF Read/read-modify-

write: 50/50

Zipf Read-Modify-

Write

User Database

based on the number of calls to put() and not the time since last
sweep (which suits CacheL better and is likely in a WSN
scenario).

V. EVALUATION

This section considers CacheL in terms of hit/miss ratio
compared to LRU, the effectiveness of a lease and its
suitability for implementation on a WSN node. It also outlines
optimisations made based on the values of counts added at key
points in the code (shown in Figure 2).

A. Implementation Complexity

The pseudo-code extract shows CacheL to be
straightforward to implement, including its use of our object
space and data model service abstractions. The C
implementation was about 150 lines of C code and used about
1KB of memory with a supporting object abstraction using a
circular list library. CPU use was not an issue during the test
runs. The CacheL implementation was about 200 lines of Java
whereas the LRU code was 30. This is reasonable as CacheL
includes code for lease handling and interfacing to the object
store, as well as the extra code due to the use of HashMap. The
YCSB driver was modelled as a DM_STORE_SRV cache with
our object API methods of new() read(), remove() and put()
integrating easily with the YCSB API methods of init(), read(),
delete(), update(), insert().

B. Optimisations to CacheL

Testing resulted in several optimisations to make better use
of access counts and reduce unnecessary sweeps. Firstly, when
a sweep does not find an expired lease, a reference to the item
with the minimum lease is held to avoid unnecessary backhand
sweeps looking for expired leases. This improved the latencies
relative to LRU, especially for lease range 0-1000ms, e.g the
backhand sweep was skipped over 900 times for WorkloadA at
all sizes and for other workloads according to cache size, e.g.
944, 795 for Workload D (Uniform) for sizes 100, 250. The
second optimisation was adjustLeaseByCnt(), which increased
the lease by the backhand period for items with an access count
above zero. This extends the time frequently accessed items
stay in the cache while still giving lease priority and allowing
smaller leases to be granted. This worked for small leases, but
had little effect for long leases, e.g. cache size 100 and
workloadb-uniform had 892 failed puts out of 1000 as no
cached item had expired. This optimisation is expected to be
useful in longer-lived tests. The third optimisation was adding
another sweep after the backhand if it did not delete the
required number of items, as the first sweep may have moved
items to the pendingQ or decremented access counts. The
fourth one was to hold the last_lease_check time at the end of
the main sweep to reduce system time-related calls.

C. Performance Comparison of LRU and CacheL

1) LRU vs CacheL without leases
CacheL works like CLOCK in this case. Table II shows the

hit ratios were comparable for LRU and CacheL, with LRU
slightly higher on Workload B for Uniform distribution, but
CacheL was equal or better on Zipf tests. Changing the time or

number of puts (default 3) between fronthand and backhand
sweeps did not affect the hit ratio, due to the short duration of
tests.

Cache

Size

100 250 500 750 1000

 lru ChL lru ChL lru ChL lru ChL lru ChL

WA-Zipf 56.4 55.6 58.4 59.9 59.2 59.5 61.7 61.8 63.9 62.6

WB-Uni 15.6 12.9 29.5 29.1 52.6 48.7 73.5 77.0 100 100

WB-Zipf 19.5 23.1 32.0 30.8 56.7 56.6 78.7 78.8 100 100

WC-Uni 10.2 11.0 28.9 24.9 52.7 49.5 72.3 77.3 100 100

WC-Zipf 9.4 19.2 23.8 26.1 47.8 50.6 71.9 73.0 100 100

WD-Lat 69.7 62.4 83 82.2 91.5 91.8 95.6 96.7 99.4 99.9

WD-Uni 10.7 11.5 27.5 27.3 50.3 50.7 62.3 74.9 96.7 98.2

WF-Uni 9.0 9.0 28.1 25.2 51.4 52.7 63.3 73.0 100 100

WF-Zipf 19.1 20.4 35.9 36.1 44.7 58.2 68.1 79.1 100 100

TABLE II. HIT RATIO PER WORKLOAD FOR CACHE SIZES (100 TO 1000)
FOR LRU AND CACHEL (WITH NO LEASES)

2) LRU vs CacheL with leases
These tests use leases uniformly distributed over a time

range of 0-100ms or 0-1000ms, which is smaller than expected
in a real WSN, but was used as the tests completed in
approximately 300 ms. These ranges show how effectively
CacheL manages leases, although not taking advantage of
CacheL being able to use a 'hint' provided by the
application/sensor. Comparing the results in Table II to Table
III, the use of CacheL with the 0-100ms lease distribution
generally has a hit ratio higher than, or comparable to, LRU for
cache size 100 and is comparable at other cache sizes, although
there is a notable reduction for the Workload D-latest
distribution (WD-Lat). Table III shows a hit ratio reduction for
CacheL in all 100 sized caches when using the 1000ms
compared to 100ms lease range as residency in the cache is
dominated by the priority given to lease. It also suggests the
granting of leases should be managed actively to ensure
appropriate expiry, e.g. based on the leases remaining in the
cache.

Cache

Size

100 250 500 750 1000

Lease

Range

100 1000 100 1000 100 1000 100 1000 100 1000

WB-Uni 20.0 13.6 28.1 27.5 52.9 54.0 75.4 75.7 99.9 99.8

WB-Zipf 16.3 13.4 27.5 29.5 51.2 54.0 74.3 75.5 100 100

WC-Uni 17.6 11.3 25.5 25.0 50.7 52.3 76.7 74.8 100 100

WC-Zipf 15.7 9.8 22.6 26.7 48.7 48.5 73.1 75.3 100 100

WD-Lat 48.6 5.6 77.4 9.9 90.7 54.2 97.4 22.2 99.7 57.0

WD-Uni 28.3 13.7 25.8 30.0 51.0 51.0 73.6 76.7 96.4 99.7

WF-Uni 21.3 10.0 26.1 24.1 49.4 50.6 73.9 75.3 100 99.9

WF-Zipf 21.5 10.0 23.1 26.3 48.5 52.0 73.5 75.6 100 100

TABLE III. HIT RATIOS FOR CACHEL (WITH UNIFORMLY DISTRIBUTED

LEASES 0-100MS AND 0-1000MS)

D. Performance Characteristics of CacheL

Figure 2 shows the values of the counts added to the code
for cache size 100 and a lease distribution of 0-100ms, where
CacheL was most effective, i.e., expiring data quickly in a
small cache. fhDeleteCount and bhDeleteCount are the number
of deletes done on a fronthand or backhand sweep as leases
expire, with fronthand having an effect on WA-ZIPF, WD-Uni
and WF-ZIPF (although fhDeleteCount drops to less than 10
for other cache sizes). The maximum number of entries on the
pending queue (pendQMax) and fhDeleteCount show it used
for cache size 100 and Workload A. SweepDeleteCount counts
the number of items deleted after a backhand sweep and shows
the impact of the third optimisation on bhDeleteCount.
bh_skipped counts the backhand sweeps not run based on the
minimum lease in the cache, showing the value of the first
optimisation above.

Other counters showed that long leases limited the value of
both access count in cache replacement and the fronthand
sweep, e.g. the 0-1000ms distribution had few leases near
expiry to populate the pending queue.

Figures 3 and 4 show the bhDeleteCount and lease_expired
counters across cache sizes using the 0-100ms lease
distribution. The lease_expired count is incremented when
deleting an item in the backhand sweep if the lease and access
count are both less than or equal to 0. The lease_expired
counter in Figure 4 and bhDeleteCount in Figure 3 show that
the larger cache sizes are dominated by lease expiry in the
backhand sweep. There is more variation at cache sizes 100
and 250 where the lease and access counts are used. Figure 5
details this for size 100.

In Figure 5, min_lease counts the number of times the item
with the minimum lease was deleted in the backhand sweep;
lease_thrshld counts items deleted by a fronthand sweep;
lease_pending_expiry counts items moved to the pending
queue by a backhand sweep; lease_expiry_removed counts the
items removed from the pending queue by a fronthand sweep.
For cache size 100 the lease_expired counter in the backhand
sweep is the main way of expiring leases, but
lease_expiry_removed indicates items were moved to the
pendingQ and lease_threshold shows they were then removed
by a fronthand sweep.

In summary, it can be seen that CacheL is comparable to
LRU and when using short leases it expires data quickly in a
small cache, as required on WSN nodes. It can also be seen that
the algorithm manages leases effectively and could take
advantage of a lease provided by source nodes as a hint.

VI. CONCLUSION

We have outlined the rationale for the use of a cache
algorithm in WSN nodes and the value of an associated lease.
We have proposed the CacheL algorithm with its inherent
management of leases for cached data. This algorithm has been
shown to be flexible enough to handle the limited node
memory for cached data and simple enough to implement and
run on a constrained node. We have also shown how CacheL
fits into our architecture [3].

The results show that the algorithm is comparable to LRU,
even without leases, and that it successfully manages the cache
using leases and access count. This shows the value of sources
using a lease to provide hints for their data and also the
importance of managing the granting of leases. This will be
investigated in further work.

We have also shown the use of YCSB to test, understand
and optimise the performance of the CacheL algorithm. Future
work will use a YCSB load generator to run tests against WSN
nodes to investigate the effectiveness of CacheL in reducing
power consumption and supporting self-management as nodes
move or leave the network.

REFERENCES

[1] N. Kushalnagar, “IPv6 over Low-Power Wireless Personal Area
Networks (6LoWPANs): Overview, Assumptions, Problem Statement,
and Goals”, RFC 4919

[2] D.A Reed, D.D. Ganno., J.R. Larus., "Imagining the Future: Thoughts
on Computing," Computer, vol. 45, no. 1, pp. 25-30, Jan. 2012.

[3] D. Tracey, C. J. Sreenan, “A Holistic Architecture for the Internet of
Things, Sensing Services and Big Data”, Data-intensive Process
Management in Large-Scale Sensor Systems held with CCGrid 2013

[4] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan and R. Sears,
“Benchmarking Cloud Serving Systems with YCSB”, ACM Symposium
on Cloud Computing (SoCC), 2010

[5] D. Lee et al, “On the Existence of a Spectrum of Policies that Subsumes
the Least Recently Used (LRU) and Least Frequently Used (LFU)
Policies”, Proceeding of ACMSIGMETRICS, May 1999.

[6] E. J. O’Neil, P. E. O’Neil, and G. Weikum, “The LRU-K Page
Replacement Algorithm for Database Disk Buffering”, Proceedings of
the 1993 ACM SIGMOD Conference, 1993, pp 297-306.

[7] T. Johnson, D. Shasha “2Q: A Low Overhead High-Performance Buffer
Management Replacement Algorithm”, Proc. VLDB Conf., Morgan
Kaufmann, 1994, pp 297-306

[8] Y. Zhou, J.F. Philbin, “The Multi-Queue Replacement Algorithm for
Second-Level Buffer Caches,” Proc. Usenix Ann. Tech. Conf. (Usenix
2001), Usenix, 2001, pp. 91-104.

[9] P. Cao and S. Irani, "Cost-Aware WWW Proxy Caching Algorithms",
USENIX Symposium on Internet Technologies and Systems, Monterey,
CA, pp. 193-206, Dec. 1997

[10] www.redis.io

[11] F. J. Corbato, “A Paging Experiment with the Multics System”, MIT
Project MAC Report MAC-M-384, May, 1968.

[12] W.R. Carr and J.L. Hennessy, “WSClock—A Simple and Effective
Algorithm for Virtual Memory Man- agement,” Proc. 8th Symp.
Operating System Principles, ACM Press, 1981, pp. 87-95.

[13] A. J. Smith, “Sequentiality and Prefetching in Database Systems”, ACM
Trans. on Database Systems, Vol. 3, No. 3, 1978,pp. 223-247.

[14] S. Jiang, F. Chen, X. Zhang, “CLOCK-Pro: An Effective Improvement
of Clock Replacement”, Usenix 2005.

[15] S. Jiang, X. Zhang, “LIRS: An Efficient Low InterreferenceRecency Set
Replacement Policy to Improve BufferCache Performance”, In
Proceeding of 2002 ACM SIGMETRICS, June 2002, pp. 31-42

[16] S. Bansal and D.Modha, “CAR: Clock with Adaptive Replacement”,
Proceedings 3nd USENIX Symposium on File and Storage
Technologies, March, 2004.

[17] N. Megiddo, D. Modha, “ARC: a Self-tuning, Low Overhead
Replacement Cache”, Proceedings of the 2nd USENIX Symposium on
File and Storage Technologies, March, 2003

[18] N. Dimokas, D. Katsaros, L. Tassiulas, Y. Manolopoulos, “High
performance, low complexity cooperative caching for wireless sensor
networks”, Wireless Networks, Springer, 2010

[19] N. Dimokas., D. Katsaros, Y Manolopoulos, “Cooperative caching in
wireless multimedia sensor networks”. ACM Mobile Networks and
Applications, 13(3–4), 337–356., 2008

[20] L. Yin, G.Cao, “Supporting Cooperative Caching in Ad Hoc Networks”,
IEEE Transactions on Mobile Computing, Jan. 2006

[21] T. Hara, S. Madria, “Data replication for improving data accessibility in
ad hoc networks”. IEEE Transactions on Mobile Computing, 2006

[22] K. S. Prabh, T. F. Abdelzaher, “Energy-conserving data cache placement
in sensor networks. ACM Transactions On Sensor Networks, 2005

[23] Y. Du, K.S. Gupta, “COOP: A cooperative caching service in
MANETs”, Proceedings of ICAS-ICNS (pp. 58–63), 2005

[24] S. Lim,W. C. Lee, G.Cao, C.R. Das, “ A novel caching scheme for
improving internet-based mobile ad hoc networks performance. Ad Hoc
Networks, 2006

[25] C. Intanagonwiwat, R. Govinden, D. Estrin, J. Heidemann, F. Silva,
“Directed Diffusion for Wireless Sensor Networking”, IEEE/ACM
Transactions on Networking, Vol 11, No. 1, February 2003

[26] Z. Shelby, K. Hartke, C. Bormann, “Constrained Application Protocol
(CoAP)”, draft-ietf-core-coap-18

[27] R. Fielding “Architectural Styles and the Design of Network-based
Software Architectures”, Doctoral dissertation, 2000

[28] M. Kovatsch, S. Duquennoy, A. Dunkels, “A Low Power CoAP for
Contiki”, IEEE Conference on Mobile Adhoc and Sensor Systems
(MASS), 2011

