

UCC Library and UCC researchers have made this item openly available. Please let us know how this has helped you. Thanks!

Title	When is a finite ring a field?
Author(s)	MacHale, Desmond
Publication date	1996-12
Original citation	MacHale, D. (1996) 'When is a Finite Ring a Field?', Bulletin of the Irish
	Mathematical Society, 37, pp. 35-38.
Type of publication	Article (peer-reviewed)
Link to publisher's	http://www.irishmathsoc.org/bull37/index.php
version	Access to the full text of the published version may require a
	subscription.
Rights	© 1996 Irish Mathematical Society
Item downloaded	http://hdl.handle.net/10468/9608
from	

Downloaded on 2021-11-27T09:37:08Z

University College Cork, Ireland Coláiste na hOllscoile Corcaigh 34

Õ

k = l = m = 0. Therefore C has order 8, in which case C = R. Therefore the commutator subset of a ring of order 8 is an ideal. We conclude that 16 is the smallest order of a ring in which the commutator subset is not an ideal.

Acknowledgement The author is grateful to P. D. MacHale for several discussions on the topic of this note.

References

 B. Fine, Classification of finite rings of order p², Mathematics Magazine 66 (1993), 248-252.

 C. R. Fletcher, Rings of small order, Mathematical Gazette 64 (1980), 9-22.

T. Creedon, Department of Mathematics, University College, Cork.

WHEN IS A FINITE RING A FIELD?

Des MacHale

When I was an undergraduate, there were two theorems in algebra that took my fancy. The first was

Theorem 1. A finite integral domain is a field.

The second was the beautiful theorem of Wedd burn (1905).

Theorem 2. A finite division ring is a field.

I often wondered why the standard proof of Theorem 1 was relatively easy and why all of the proofs of Theorem 2 are relatively difficult. I wondered too if it might be possible to prove a single theorem that would include both Theorem 1 and Theorem 2 as special cases. The following is an attempt in that direction.

Theorem 3. Let $\{R, +, \cdot\}$ be a finite non-zero ring with the property that if a and b in R satisfy ab = 0, then either a = 0 or b = 0. Then $\{R, +, \cdot\}$ is a field.

Recall that $\{R, +, \cdot\}$ is an integral domain if $\{R, +, \cdot\}$ is a commutative ring with unity $1 \neq 0$ with the property that ab = 0 implies either a = 0 or b = 0. Clearly, a finite integral domain satisfies the hypothesis of Theorem 3.

Recall too that a division ring $\{R, +, \cdot\}$ is a ring in which the non-zero elements of R form a multiplicative group with unity 1. A finite division ring $\{R, +, \cdot\}$ also satisfies the hypothesis of Theorem 3. To see this, suppose that for elements a and b of R, we have ab = 0. If a = 0, we are finished, so suppose that $a \neq 0$. Then a^{-1} exists in R. Hence $b = 1b = (a^{-1}a)b = a^{-1}(ab) = a^{-1}0 = 0$, as required. Note finally that in the hypothesis of Theorem 3,

35

Q

Ø

37

we are assuming neither commutativity of multiplication, nor the existence of inverses. These have all to be established.

Proof of Theorem 3: Since $R \neq \{0\}$, we can choose a fixed nonzero element a of R. Let

$$R = \{r_1, r_2, \ldots, r_n\}.$$

Define a function $\alpha: R \to R$ by

$$(r_i)\alpha = r_i a$$

for all *i*. Now if $(r_i)\alpha = (r_j)\alpha$, then $r_i a = r_j a$ and hence $(r_i - r_j)a = 0$. Since $a \neq 0$, this forces $r_i = r_j$, so α is one-to-one, and since *R* is finite, α is onto. Thus there exist elements *t* and t^* in *R* such that

ta = a and $t^*a = t$.

Now define a function $\beta: R \to R$ by

 $(r_i)\beta = ar_i$

for all *i*. Again, if $(r_i)\beta = (r_j)\beta$, then $ar_i - ar_j = 0 = a(r_i - r_j)$, so $r_i = r_j$. Thus β is one-to-one, hence onto, and there exist elements *s* and *s*^{*} in *R* such that

$$as = a$$
 and $as^* = s$.

Now let x be any element of R. Since α and β are onto, there exist elements b and c in R such that

$$b = ba = ac.$$

We now have

$$tx = t(ac) = (ta)c = ac = x,$$

so t is a left unity for $\{R, +, \cdot\}$. Similarly,

$$xs = (ba)s = b(as) = ba = x,$$

so s is a right unity for $\{R, +, \cdot\}$. Thus t = ts = s = 1 is a unity for R.

Now as $as^* = s = 1 = t = t^*a$, it follows that a has a right inverse s^* and a left inverse t^* . Thus

$$s^* = 1s^* = (t^*a)s^* = t^*(as^*) = t^*1 = t^*,$$

so $s^* = t^* = a^{-1}$ and we see that each non-zero element a in R is invertible in R. Thus R is a finite division ring and hence by Wedderburn's theorem, R is a field. This completes the proof.

Of course, the theory now proceeds to show that $|R| = p^n$ for some prime p and positive integer n and if $R_1 = |R_2| = p^n$, then R_1 and R_2 are both isomorphic to the unique Galois field $GF(p^n)$, a rather remarkable result given the innocent looking hypothesis of Theorem 3.

Finally, we mention three other directions in which Wedderburn's theorem can be strengthened.

Theorem 4. [1] Let $\{R, +, \cdot\}$ be a finite ring with unity $1 \neq 0$ such that more than $|R| - \sqrt{|R|}$ elements of R are invertible. Then $\{R, +, \cdot\}$ is a field.

The example $\{\mathbb{Z}_{p^2}, \oplus, \odot\}$ for a prime p shows that this result is best possible.

Theorem 5. [2] Let $\{R, +, \cdot\}$ be a finite ring with unity $1 \neq 0$ in which every non-zero ring commutator xy - yx is invertible. Then $\{R, +, \cdot\}$ is commutative.

Of course, $\{R, +, \cdot\}$ need not be a field, as $\{\mathbb{Z}_4, \oplus, \odot\}$ shows.

Theorem 6. [3] Let $\{R, +, \cdot\}$ be a finite non-zero ring and suppose that for each $a \neq 0$ there exists a unique b with aba = a. Then $\{R, +, \cdot\}$ is a field.

References

- D. MacHale, Wedderburn's theorem revisited, Bull. IMS 17 (1986), 44-46.
- [2] D. MacHale, Wedderburn's theorem revisited (again), Bull. IMS 20 (1988), 49-50.

38

IMS Bulletin 37, 1996

Ø

[3] N. H. McCoy, The Theory of Rings. Macmillan: New York, 1964.

D. MacHale, Department of Mathematics, University College, Cork.

A RE-ANALYSIS OF BESSEL'S ERROR DATA

A. Kinsella

Introduction The Gaussian (Normal) probability model

$$f(x;\mu,\sigma) = \frac{\exp(-(x-\mu)^2/2\sigma^2)}{\sigma(2\pi)^{1/2}}$$

is, arguably, the most widely used probability model because of

1. the fact that it is found as a limiting form of other common probability models;

2. the operation of the Central Limit Theorem which gives rise to the Gaussian form;

3. the intuitive appeal of the model as a description of measurement errors in that it postulates that, in the long run, measurements will zone in on the "true but unknown" quantity of interest, μ , and will be close to this value, lying between $(\mu - \sigma)$ and $(\mu + \sigma)$ some 68% of the time;

4. the mathematical tractability of linear and quadratic functions of Gaussian random variables which are used in Student's t and F ratio tests;

5. the ability of the model to readily change location and shape because of the independence of μ , the location parameter, and σ , the shape parameter.

A simple transformation of the random variable, namely,

y = |x|

39