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Abstract

Abstract

Multimedia traffic dominates today’s Internet. In particular, the most prevalent
traffic carried over wired and wireless networks is video. Most popular streaming
providers (e.g. Netflix, Youtube) utilise HTTP adaptive streaming (HAS) for
video content delivery to end-users. The power of HAS lies in the ability to change
video quality in real time depending on the current state of the network (i.e.
available network resources). The main goal of HAS algorithms is to maximise
video quality while minimising re-buffering events and switching between different
qualities. However, these requirements are opposite in nature, so striking a perfect
blend is challenging, as there is no single widely accepted metric that captures user
experience based on the aforementioned requirements. In recent years, researchers
have put a lot of effort into designing subjectively validated metrics that can be
used to map quality, re-buffering and switching behaviour of HAS players to
the overall user experience (i.e. video QoE). This thesis demonstrates how data
analysis can contribute in improving video QoE.

One of the main characteristics of mobile networks is frequent throughput fluc-
tuations. There are various underlying factors that contribute to this behaviour,
including rapid changes in the radio channel conditions, system load and inter-
action between feedback loops at the different time scales. These fluctuations
highlight the challenge to achieve a high video user experience. In this thesis, we
tackle this issue by exploring the possibility of throughput prediction in cellular
networks. The need for better throughput prediction comes from data-based ev-
idence that standard throughput estimation techniques (e.g. exponential moving
average) exhibit low prediction accuracy. Cellular networks deploy opportunistic
exponential scheduling algorithms (i.e. proportional-fair) for resource allocation
among mobile users/devices. These algorithms take into account a user’s physical
layer information together with throughput demand. While the algorithm itself
is proprietary to the manufacturer, physical layer and throughput information
are exchanged between devices and base stations. Availability of this information
allows for a data-driven approach for throughput prediction. This thesis utilises
a machine-learning approach to predict available throughput based on measure-
ments in the near past. As a result, a prediction accuracy with an error less than
15% in 90% of samples is achieved. Adding information from other devices served
by the same base station (network-based information) further improves accuracy
while lessening the need for a large history (i.e. how far to look into the past).
Finally, the throughput prediction technique is incorporated to state-of-the-art
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Abstract

HAS algorithms. The approach is validated in a commercial cellular network
and on a stock mobile device. As a result, better throughput prediction helps in
improving user experience up to 33%, while minimising re-buffering events by up
to 85%.

In contrast to wireless networks, channel characteristics of the wired medium are
more stable, resulting in less prominent throughput variations. However, all traf-
fic traverses through network queues (i.e. a router or switch), unlike in cellular
networks where each user gets a dedicated queue at the base station. Furthermore,
network operators usually deploy a simple first-in-first-out queuing discipline at
queues. As a result, traffic can experience excessive delays due to the large queue
sizes, usually deployed in order to minimise packet loss and maximise through-
put. This effect, also known as bufferbloat, negatively impacts delay-sensitive
applications, such as web browsing and voice. While there exist guidelines for
modelling queue size, there is no work analysing its impact on video streaming
traffic generated by multiple users. To answer this question, the performance of
multiple videos clients sharing a bottleneck link is analysed. Moreover, the analy-
sis is extended to a realistic case including heterogeneous round-trip-time (RTT)
and traffic (i.e. web browsing). Based on experimental results, a simple two queue
discipline is proposed for scheduling heterogeneous traffic by taking into account
application characteristics. As a result, compared to the state-of-the-art Active
Queue Management (AQM) discipline, Controlled Delay Management (CoDel),
the proposed discipline decreases median Page Loading Time (PLT) of web traffic
by up to 80% compared to CoDel, with no significant negative impact on video
QoE.
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Chapter 1

Introduction

The number of mobile devices is projected to reach 9.1 billion by 2023, growing
from 7.1 billion at present [Eri17]. This follows an 18x growth of cellular data
traffic in the last five years, primarily due to video traffic, which is expected to
reach 78% of all mobile traffic by 2021 [Cis17]. Furthermore, interactive real-
time applications (e.g. VoIP, messaging) account for over 2.6 billion active users
per month1. While video traffic has high throughput requirements, interactive
applications on the other hand require low latency from the network.

Recent years have witnessed a tremendous rise in the use of HAS due to its wide
adoption by major video content providers. In HAS video systems, each video
file is split into a series of contiguous chunks, each with a duration of several
seconds. Each chunk is encoded into a set of different quality representations,
having different sizes and corresponding to different average throughput rates.
These are stored on a server and fetched in sequence by a client (i.e. video player)
using HyperText Transfer Protocol (HTTP), resulting in a flow of video from
the server to the client. The HAS client implements an adaptation algorithm
that determines the best quality to select for the next segment based on the
current operating conditions. The effective design of HAS adaptation algorithms
is complex and has been a focus of sustained research [BTB+19].

This thesis focuses on improving HAS user experience by analysing network data
and design. HAS performance is analysed in wireless and wired networks, includ-
ing cases with competing traffic (i.e. other HAS and Web clients). This chapter
starts by introducing cellular networks, followed by HAS performance shortcom-
ings in these networks. Motivation for the throughput prediction is presented

1https://www.statista.com/topics/1523/mobile-messenger-apps/
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1. Introduction 1.1 Overview of 4G cellular networks

next, and benefits of throughput prediction for HAS clients are presented, fol-
lowed by an introduction of challenges when multiple HAS and non-HAS clients
share network resources. Finally thesis contributions are presented followed by
an outline of the remaining of thesis.

1.1 Overview of 4G cellular networks

Since the dawn of the first wireless cellular network in the late 70’s mobile net-
work evolution has exploded, resulting in capabilities and services beyond the
original voice communication design. Forty years later, mobile handsets are part
of our everyday routine with a wide variety of use cases, including office related
tasks (reading and sending emails, making appointments), text messaging, web
browsing, playing games and, consuming multimedia content. Cellular data (4G)
accounted for 69% of all mobile traffic in 2016, while 3G accounted for 24%,
while cellular speeds grew 3x from an average of 2 Mbps in 2015 to 6.8 Mbps in
2016 [Cis17]. These rates are expected to grow by orders of magnitude when the
next iteration of the cellular standard, known as 5G, is deployed in 2020.

Mobile devices (e.g. smartphone) connect to a cellular base station (BS), e.g.
evolved Node B (eNodeB) in 4G networks. Each HAS governs mobile devices
in two ways. First, it handles signalling information from devices, such as han-
dover commands and channel state information (information about user channel
environment). Second, it schedules data transmission by allocating its resources,
(e.g. physical resource blocks in 4G), to the connected devices. BSs deploy op-
portunistic schedulers that compromise the tradeoff between fair and efficient re-
source allocation [CPG+13]. A commonly used strategy in these schedulers is the
proportional-fair algorithm, which utilises a device’s physical layer information
(measured and sent by the device to eNodeB) together with recent throughput.

However current 4G data throughput rates can fluctuate over a period of a few
seconds, due primarily to scheduling decisions at the base station, and sudden
changes in the underlying radio channel. These changes are caused by inter-cell
interference, congestion due to a number of devices per cell, and location of the
device relative to the cell edge. This throughput variation is inherently a part of
the underlying communication system since the first wireless networks and will
be further exacerbated in 5G due to technical issues such as non-line of sight
and a reduction in overall transmission distance. These variations in through-
put can limit the user QoE, especially when they cause visible degradation in
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1. Introduction 1.2 HAS performance in cellular networks

viewable quality as can occur while streaming audio or video. Underlying net-
work protocols can mitigate these issues, such as Transmission Control Protocol
(TCP) whose design reflects throughput variation by embedding an Exponential
Weighted Moving Average (EWMA) statistic to adapt to rate-distortion [For02].
Additionally, adaptation algorithms proposed for HAS [Sto11] can further combat
the challenge of consistent quality through buffering and graceful adaptation of
video quality. One of the main hurdles for these adaptation algorithms is a lack
of a broad cellular dataset that captures these throughput variations, especially
when combined with channel and context metrics, on which a solution can be
designed and compared with other state-of-art algorithms. Recently, researchers
have recognised this problem, which resulted in a number of datasets collected
over different wireless technologies and video content datasets [SME17].

Due to the operational aspects of cellular networks outlined, information beyond
throughput values, information about channel condition for the client regarding
serving eNodeB and neighbouring cells, Global Positioning System (GPS) posi-
tions of the client and serving eNodeB, client’s speed, and handover events, can
aid in decision making for a HAS player and improve overall user experience. Fur-
thermore, all of this information allows a multi-purpose analysis beyond original
HAS use cases, such as handover prediction, coverage analysis, mobility predic-
tion. However, such a dataset has been unavailable to the research community.

1.2 HAS performance in cellular networks

Cellular networks are a challenging environment for HAS video streaming due to
various reasons. Radio channel conditions and cell load are continuously chang-
ing. Data transmission to a mobile device is coordinated by protocols that operate
at diverse time scales, e.g. radio channel scheduling at millisecond level vs. con-
gestion control at hundreds of milliseconds to seconds level. Furthermore, the
base station scheduler allocates the wireless resources based on the bandwidth
demand of each device and their channel conditions; this can cause burstiness
in the cellular data traffic. State-of-the-art video clients employ adaptation al-
gorithms that use network and application state to determine the quality of the
next video chunk to download. There are several recent algorithms based on
approaches such as optimisation [YJSS15a, ZQR+16], control theory [CCPM13],
game theory [BBHZ18], machine learning [MNA17], and other heuristics inte-
grating well-known averaging techniques. While these algorithms differ in the
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1.3 Throughput prediction in cellular

networks

specifics of their decision making, most of them need to know the available net-
work bandwidth to determine the quality of the video to download. Since this
information is not readily available to them, clients typically use recent through-
put measurements to estimate the likely network conditions. This is combined
with application state in terms of buffer occupancy and chunk qualities to yield
decisions on the quality of future chunks to be selected. The high variability
in cellular networks, however, leads to significant throughput estimation errors
and in turn results in sub-optimal decisions (see Chapter 4). While there have
been proposals that attempt to use cellular-specific information to aid estima-
tion [XZKL16, HZM14], they are in the minority.

1.3 Throughput prediction in cellular networks

Since statistical estimation is affected by the variability in cellular networks, there
has been significant interest in exploring the possibility of accurately predict-
ing throughput instead. Indeed, several studies based on trace-driven controlled
experiments demonstrate that video streaming quality can be improved in cel-
lular networks if throughput can be predicted accurately [ZEG+15, MTAA+16,
RZS+18a]. The main reason is that stalls are avoided because the player would
not over-commit to large chunks of high bitrate when throughput drop is pre-
dicted [MZA+18]. Additionally, players can avoid streaming the lowest quality
after a stall or at startup when high throughput is predicted. Finally, accurate
prediction can help reduce the number of quality changes. However, accurate
throughput prediction in cellular networks is challenging due to the complex chan-
ges and interactions in the network state [ZPC+15]. It is also unclear whether
a typical mobile device can extract appropriate network-level information and
leverage it to make accurate throughput predictions.

Artificial Intelligence (AI) techniques, especially Machine and Deep Learning
(ML/DL), have been successfully applied to several problems in networking, such
as cellular traffic forecasting, pattern recognition, and classification [ZPH19]. By
examining large amounts of data, these techniques can build sophisticated mod-
els, learning patterns that cannot be deduced using traditional statistical data
analysis. Machine Learning (ML) and Deep Learning (DL) have been very suc-
cessful in tackling complex problems that: (1) reflect a pattern, (2) cannot be
solved mathematically or described structurally, and (3) have large amounts of
example data available. Cellular networks provide data in abundance. Each mo-
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1.4 Interaction between HAS and non-HAS

traffic

bile device measures and collects a wide range of control and data information,
some of which it reports to its BS. Each HAS then dynamically schedules its
resources based on multitudinous parameters including user environment, traffic
demands, device capabilities and system load, leading to noticeable variations in
the user throughput. While HAS schedulers are vendor-specific black boxes, the
scheduling algorithms represent a collection of predefined steps and actions and
thus exhibits consistent behaviour (i.e. for the same inputs, it will produce the
same output).

Hence, ML/DL represents an attractive method to extract underlying information
and correlations in resource scheduling and make accurate throughput predictions
for users based on the abundantly available cellular data. The research challenge
is to collect and analyse multi-feature data. Also, how to use data is a challenge
that is not trivial to overcome considering that feature engineering is the crucial
part that enables ML algorithms to perform with high accuracy illustrating the
predictive power of radio metrics. Also, the prediction horizon depends on the
HAS application requirements, which is tightly coupled with striking a balance
between achieving the highest quality and minimum stalls and switches. Previous
studies [SUS16, ZRS18] already show the positive impact of accurate throughput
prediction on HAS user experience. Still, implementing a prediction framework
on real devices in the real network is missing from the research literature.

1.4 Interaction between HAS and non-HAS
traffic

As the volumes of HAS traffic on the Internet increased, specific concerns
evolved regarding performance-related interactions between HAS [AABD12] and
non-HAS traffic [GN11]. For example, Mansy et al. [MVSA13] show that a
HAS client may saturate the network queue at a bottleneck, causing the well-
known bufferbloat effect for a VoIP client, and explored a client-based approach
to alleviate this effect. The focus of related research has been on the de-
sign of video adaptation at the client [CCPM13, JSZ14, LZG+14, HJM+14]
rather than consideration of the role of network operation. Several recent stud-
ies [QZRS15, HG12, ZQRS17] indicated that advanced traffic management tech-
niques, such as rate shaping, could improve streaming performance when multiple
video flows share a bottleneck link. However, such techniques require dynamic
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1. Introduction 1.5 Summary of thesis contributions

changes in routers in response to fine changes in individual HAS flows, raising
questions of scalability and efficacy in settings with large numbers of such com-
peting flows.

Furthermore, these techniques rely on information from the network that is hard
to obtain and maintain, limiting their widespread deployment in operational net-
works. AQM techniques take a traffic-agnostic approach in order to provide high
utilisation and low delay for competing traffic. These techniques typically manage
one queue for all traffic and make the decision for packet marking and dropping
based on delay measurements. However, the studies focus on analysing generic
TCP traffic flows assuming certain properties (e.g. long- and short-lived TCP
flows) measuring application-generic performance metrics, such as utilisation, la-
tency, packet-loss ratio, and fairness. The main limitation of previous studies is in
overlooking application-specific characteristics when analysing the performance
of cross-traffic sharing a bottleneck link.

The all above-mentioned papers and other studies [HMW15] raise the following
research question, Is it feasible to manage the performance interactions between
HAS and non-HAS traffic through changes to the network operation, and specif-
ically the configuration of network queuing, so as to improve the overall quality
of experience (QoE)?. To answer this question, an approach with a focus on
application (rather than the network) performance is needed which facilitates a
universal solution that does not rely on assumptions that all clients can and would
be adapted.

1.5 Summary of thesis contributions

The following is a list of the contributions contained within this thesis:

i. A novel ML-based throughput prediction technique that leverages radio
metrics to improve the throughput prediction accuracy in mobile networks
significantly. The impact of accurate prediction availability is assessed with
three state-of-the-art algorithms showing significant QoE performance met-
rics improvement when a traditional bandwidth estimators are replaced
with a throughput prediction. Finally, a field evaluation is performed in an
operational cellular network.

ii. An exhaustive realistic experimental study is performed, yielding several
important practical results. 1xBDP rule causes underutilisation in multi-
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HAS environment. Also, modern AQM queuing disciplines are ineffective
in protecting web clients from competing video traffic.

iii. An effective two-queue discipline is proposed that improves both HAS and
web clients’ QoE performances when they share network resources. The
solution arise from the exhaustive experimental study that analyses the
interaction between content (e.g. video rate), link (e.g. capacity, round-
trip time) and queue design and its impact on HAS and non-HAS QoE
performance.

iv. Tools and techniques that allow gathering and analysing application related
data. Also, a 4G dataset is produced with unique information (such as the
channel, user and throughput information) and has been released to the
research community.

1.6 Thesis statement

This thesis demonstrates that data analysis and machine learning techniques can
contribute to improving video experience in cellular networks. In wired networks,
queue discipline designed by taking application requirements can improve web
user experience in the presence of video traffic.

1.7 Thesis structure

The remainder of the thesis is organised as follows:

• Chapter 2 “Background and Related Work” presents relevant background
and related work, as well as an overview of the topics considered and the
goals of this work.

• Chapter 3 “Experimental Methodology” presents methodology and testbed
used for subsequent chapters.

• Chapter 4 “Design Issues with Throughput Prediction for HAS algorithms”
motivates the need for accurate throughput predictions by investigating the
impact of ideal and synthetically-induced error predictions on HAS QoE
performance in cellular networks.
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• Chapter 5 “Empowering Video Players with Machine Learning based
Throughput Prediction in Cellular Networks” presents a novel machine
learning prediction engine for accurate throughput prediction and quan-
tifies its impact on HAS QoE in a lab-controlled testbed and in a real
operational cellular network.

• Chapter 6 “Impact of Network Queues on video performance” presents ex-
haustive realistic evaluation of multiple HAS and non-HAS clients sharing
network resources and quantifies the impact of network queue design on
their QoE.

• Chapter 7 “Two-Queue Queuing discipline for Heterogeneous Traffic”
presents a simple two-queue scheduling discipline for heterogeneous traf-
fic (HAS and web) that significantly improves the QoE of web traffic while
having negligible impact on video QoE compared to state-of-the art AQM
disciplines.

• Chapter 8 presents conclusions and future work.
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Chapter 2

Background, Related Work, and
Problem Analysis

The past few years has witnessed a tremendous rise in multimedia communication
and content sharing over the Internet. In the past, the availability of traditional
multimedia was constrained by location and time. The internet together with
mobile networks based on Internet Protocol (IP) changed everything by removing
the main obstacle for multimedia sharing - availability. However, the Internet
is designed for best-effort and non-realtime packet delivery and thus poses a
challenge for multimedia distribution/streaming. The best effort packet delivery
means that every packet is treated equally, irrespective of context (web, video,
voice, etc.). This can deteriorate multimedia application performance, which is
susceptible to changes in packet loss, available bandwidth, delay and jitter.

One solution proposed to alleviate this form of multimedia deterioration was in-
troduced in 2005 by Move Networks [BTB+19]. They proposed a mechanism to
adapt multimedia content based on the Internet best-effort delivery by introduc-
ing adaptive delivery over the HyperText Transfer Protocol (HTTP) protocol.

HTTP adaptive streaming (HAS) has quickly become the dominant technology
for delivering video over the Internet due to its adaptation by major content and
service providers, like Netflix, YouTube, Hulu, Amazon Prime, HBO GO, and
DirecTV.

Section 2.1 outlines a short history of video delivery concepts prior to HAS adop-
tion. The section introduces the main characteristics and components of HAS
along with a summary of key differences between HAS and traditional video de-
livery systems. Section 2.3 provides the toolchain for HAS related research. This
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includes all necessary tools typically used for supporting testing new HAS ideas
and approaches (e.g. new adaptation algorithms). These tools include the HAS-
enabled video player, simulation or emulation of the delivery network, traces for
representing different bandwidth profiles, HAS-encoded video content and perfor-
mance metrics for performance assessments. Section 2.2 summarises challenges
in HAS-based systems. These challenges can be categorised in two main groups:
the challenges arising from the limited power of player visibility of network state
and network resources and the interaction of multiple video and non-video clients
sharing bandwidth resources. Section 2.4 outlines the research goals of this thesis
and Section 2.5 concludes the chapter.

2.1 Video streaming evolution

Before the introduction of the HAS approach, online video content was pushed
over IP from the media server to the client either by using a connection-oriented
protocol, e.g. Real-Time Messaging Protocol (RTMP), or connectionless Real-
Time Transport Protocol (RTP).

While the transmission was achieved using the protocols mentioned above, the
actual setup of the streaming session is conducted using the Real-Time Streaming
Protocol (RTSP). RTSP is a signalling protocol used for establishing and control-
ling media sessions between client/server. Finally, clients send reports back to
the media server using the Real-Time Control Protocol (RTCP). RTCP monitors
the Quality of Service (QoS) and provides feedback to the server on the quality of
data transmission, allowing the server to perform rate adaptation and data deliv-
ery scheduling. Figure 2.1 illustrates the pushed-based concept with RTSP/RTP
protocols at the heart of it.

Figure 2.1: Traditional Streaming with RTSP/RTP/RTCP protocols

However, this approach has two main issues. The first drawback of this technology
is that media servers are complex and expensive. Also, this approach is not
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scalable because all intelligence is at the server (the server has to keep the state
for all connections). For a few users and the small quantity of media content, this
solution is acceptable. Second, Network Address Translation (NAT) and firewalls
are often configured to block signalling RTSP protocol requiring NAT traversal
mechanism [GWZ16].

To solve these issues, HAS has taken an inverted approach. Figure 2.2 depicts the
pull-based concept of the HAS approach. First, intelligence is at the client-side.
The client pulls media content from the server. Also, clients measure and perform
rate adaptation. To adapt to varying network conditions (i.e. change of available
bandwidth during playback), HAS partitions media content into multiple smaller
files called chunks (in literature it is also called segments). Each chunk contains
video content of some duration. Chunks can be decoded independently of one
another. Chunk duration is typically in the range 2 - 10 seconds. Since the clients
request chunks independently of one another and the servers do not keep all the
state information, this solves the problem with scalability. For the chunk request,
the HTTP protocol is used. Transmission Control Protocol (TCP) is the most
widely used protocol for transport over HTTP. TCP is a connection-oriented pro-
tocol for reliable packet delivery over the Internet. TCP utilises congestion con-
trol algorithms. The congestion control algorithm constantly probes the available
bandwidth with the goal of the fair share of network resources among competing
applications [WDM01]. While TCP is the standard transportation protocol for
video delivery, its distinguishing features, reliability (through packet retransmis-
sion) and the congestion control (constant rate variation, i.e. well-known sawtooth
shape), were recognised as the major push for the “anti-TCP” dogma for video
streaming in the past [KLW01]. Briefly, packet retransmission may cause un-
acceptable end-to-end latency, while continuous rate variation (over the short
timescale) may cause frequent video quality changes adding to user annoyance.
However, for the Video on Demand (VoD) service, latency requirements are less
stringent, while the playback buffer and adaptation algorithms can counter rate
variation introduced by TCP dynamics [KLW01]. Recently, a new User Data-
gram Protocol (UDP)-based secure transportation protocol, Quick UDP Internet
Connections (QUIC) [LRW+17], was developed with the aim to improve con-
nection setup speeds, reduce latency and enable multiple data connections over
the same connection. A combination of HTTP/TCP(QUIC) solves the problem
of traversing through NAT and firewalls. Also, it allows usage of conventional
HTTP servers and web caches for storing content closer to the end-users.

A HAS session starts by the client requesting the manifest file. This file contains
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Figure 2.2: HAS Streaming Concepts over TCP transport protocol using chun-
ked video content (different colours represent chunk quality, red = low qual-
ity, 235Kbps, yellow = medium quality, 1750Kbps, and green = high quality,
4300Kbps)

all the necessary information about the video content, including the number of
chunks, the chunk duration, resolutions and bitrate quality, the addresses of each
chunk (URLs), and other features. After parsing the manifest file, the client
issues HTTP GET request for the chunks. During the download of the chunks,
the client measures throughput and monitors the playback buffer levels and other
parameters. After downloading a chunk, the client estimates available capacity
from the network and/or uses information from the playback buffer to select
appropriate bitrate quality for the next chunk.

The client’s objective is to stream with the highest bitrate quality possible, while,
at the same time, minimising the possibility of stalling (event when the playback
buffer is depleted) and switching between different bitrate qualities. However,
striking the right balance of these contrasting objectives is not trivial in the
process of achieving the highest possible Quality of Experience (QoE) for the
user.

Table 2.1 summarises the main aspects of HAS- and RTP-based systems.

Table 2.1: Comparison between HAS- and RTP-based streaming systems

Features HAS RTP
Delivery Pull-based Push-based
Protocols HTTP, TCP, QUIC RTP, RTSP, RTCP, TCP, UDP
Intelligence at Client side Server side
Caching Yes Yes, protocol specific

Moving from the HAS server/client request model illustrated so far, we now
present an end-to-end content generation and delivery in HAS systems, which
typically includes the following components, as depicted in Figure 2.3.
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Figure 2.3: HAS System Components for content generation and delivery using
adaptive streaming technique

• Input feeds represent the source of video content. There are two types of
input feeds: pre-recorded for VoD service and live, for live streaming ser-
vice. For example, streaming services like Netflix and YouTube provide
pre-recorded content (i.e. movies, TV shows, podcasts) which are available
all the time to the user. Live streaming events (e.g. football matches, live
concerts) are recorded in real time during the actual event and sent imme-
diately back to the user.

• The encoder takes a raw stream from the input feed and transforms/con-
verts it to a specific digital format. The digital format represents a com-
pressed raw input allowing video content transportation over the Internet.
However, compression results in quality degradation, so striking the right
balance is crucial. Higher quality will require more storage, driving the
need for higher throughput to deliver the content over the network. The
format depends on the player’s ability to decode encoded content. The
specification for compressing and decompressing video (and audio) digi-
tal format is called codec. The most used video codec for HAS is Ad-
vanced Video Coding (AVC)/H.264 [ITU10]. However, newer codecs such as
High Efficiency Video Coding (HEVC)/H.265 [SOHW12], AOMedia Video
1 (AV1) [CMH+18], VP9 [FBGP+17] offer up to 70% better compression
than H.264. The device support is still limited for these newer codecs slow-
ing down their widespread adoption. Typically, for the HAS system, the
encoder generates multiple video/audio encoded streams with different bi-
trate quality and resolution profiles.

• Packager has the role of taking streams from encoder (e.g. H.264 encoded
video/audio streams) and packing them for a HAS delivery. This includes
fragmenting video content into various bitrate qualities and resolutions.
The output of the packager are files ready for delivery over HTTP.
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• The role of the Delivery network is to deliver the content from the server
to the client. The packager provides chunked content to the server. Service
providers usually use Content Delivery Networks (CDN) and caching, plac-
ing the content closer to the end-users and improving overall performance.

• The role of a client is to send requests for video content, store and decode
video chunks. Clients use adaptation algorithms responsible for monitoring
network resources and deciding chunk bitrate quality. Adaptation algo-
rithms are the essential component of the client. Over the years, most
of the efforts by the research community were centred around improving
adaptation algorithms performance.

2.2 Challenges in HTTP adaptive streaming

While the introduction of the HAS systems solves drawbacks of previous server-
based streaming approaches (RTP), new problems related to the heterogeneous
nature of networks arise, e.g. increasing number of users and demand for high-
quality content. [BTB+19].

The HTTP adaptive algorithm is at the heart of the HAS system. Any well
designed HAS algorithm should meet the following key objectives:

• High utilisation - efficient use of network resources;

• Fairness - multiple HAS clients should share resources equally;

• Stability - avoid frequent switching which leads to quality fluctuations and
stalling, negatively affecting QoE.

2.2.1 Network resource estimation

Adapting to changing conditions in the network depends on the accuracy of the
measurement and estimation of available network resources (i.e. throughput).
The typical application loop of the HAS client is depicted in Figure 2.4.

The application control loop requests chunk and passes control to TCP. Then the
Measurement block monitors chunk download and measures available throughput
based on the chunk download time and chunk size. Also, the measurement block
monitors buffer level as well, getting an indirect estimate on the throughput.
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Figure 2.4: Interaction between Application and Transport layer in HAS client

Based on the type of measurement used, adaptation algorithms can accordingly
be grouped into three groups: rate-based [JSZ14], buffer-based [HJM+14, SUS16],
and hybrid [CCPM13, LZG+14, ZQR+16]. Many adaptation algorithms have
been developed over the last decade [KAB17, SME17]. Rate-based approaches
use throughput estimates for deciding on the quality for the next chunk. Sim-
ilarly, buffer-based approaches monitor buffer levels and map it to the chunk
quality. However, the third class of algorithms employ a hybrid approach us-
ing both throughput estimate and buffer information for a quality decision on
the next chunk. There are different approaches and heuristics designed for opti-
mising quality chunk selection. Li et al. [LZG+14] proposed a heuristic inspired
by an Adaptive Increase Multiplicative Decrease (AIMD) principle from TCP
congestion control for bandwidth estimation. In [CCPM13], the authors apply
a proportional-integral-derivative principle with the harmonic mean for driving
chunk quality selection. Similar, Yin et al. [YJSS15b] leverage a Model Predictive
Control (MPC) optimisation framework and use QoE score as a model objective
to optimise chunk rate selection. However, these bandwidth-based adaptation al-
gorithms suffer from low QoE because of frequent stalls and bitrate oscillations, as
commonly used bandwidth estimation techniques (e.g. mean, harmonic, median
and exponential moving average) exhibit low estimation accuracy.

Out of all environments, cellular networks represent the most challenging environ-
ment for throughput estimation and thus HAS clients. Radio channel conditions
and cell load are continuously changing. Data transmission to a mobile device is
coordinated by protocols that operate at diverse time scales, e.g. radio channel
scheduling at millisecond-level vs congestion control at hundreds of milliseconds
to seconds level. Furthermore, the base station scheduler allocates the wireless
resources based on the bandwidth demand of each device and their channel con-
ditions; this can cause burstiness in the cellular data traffic. For mobile clients
that are in motion, the above-mentioned issues are even more exaggerated. As a
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result, HAS clients are unable to capture the bandwidth variations in cellular net-
works. Many studies have shown that existing bandwidth estimation techniques
largely over/underestimate the bandwidth share [YXC17, CMK+13, ESS+13].

To solve this issue, researchers propose various throughput prediction techniques.
Existing solutions for throughput prediction can be grouped into two general cat-
egories: non-machine learning and machine learning approaches. Furthermore,
additional useful categorisation can be made regarding prediction horizon (e.g.
short, the order of milliseconds, or medium, the order of seconds) and whether
solutions are application-specific (e.g. video or voice).

2.2.1.1 Non-machine learning approaches

Non-machine learning approaches include different techniques for throughput es-
timation. Lots of work has been done in order to improve TCP estimation per-
formance over cellular networks [WSB13, HRX08a, VKD02, WB13].

Active measurements were also proposed to estimate throughput, round trip time,
and packet losses by sending carefully crafted sequences of short data pack-
ets [JD03]. Instead of passive measurements, other studies rely on using the
device’s instantaneous radio Channel Quality Indicator (CQI) and the Discontin-
uous Transmission Ratio (DTX) for throughput estimation [SYJ+16, LDJ+15].

2.2.1.2 Machine learning approaches

Over the years, applying machine learning in throughput forecasting has slowly
gained momentum. Most of the work is concerned with improving TCP estimates
over shorter horizons [WB13, MSBZ10, XMML13]. Recently, Mei et al. [MHC+19]
use Long Short-Term Memory (LSTM) recurrent neural network for a throughput
prediction in mobile networks. In their approach, authors use up to 10 seconds
of throughput past information to predict up to 5 seconds of future throughput.
Authors do not predict average throughput over future horizon; Instead, they
predict on a per second basis. For example, for a 5-second future window, model
outputs predicted value for each future second. Also, they rely only on informa-
tion about past throughput and do not leverage any channel information. They
compare their solution against Recursive Least Squares (RLS) estimation showing
significant improvement in prediction accuracy. Similarly, Yang et al. [YTHL19]
applies an RF algorithm for CQI prediction. Authors map predicted CQI value
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to achievable throughput. Similar, Samba et al. [SBB+18] test several Machine
Learning (ML) algorithms to predict average throughput in the LTE network.
Unlike similar approaches, the authors methodology consists of downloading a
file of fixed size (4MB-50MB) and measuring its download rate. Authors analyse
different information (channel-related context, such as velocity and distance from
the cell, and information from the base station, such as average base station (BS)
throughput) and report prediction accuracy depending on which information is
used. The introduction of adaptive streaming and the rise of multimedia stream-
ing consumption over cellular networks motivated an investigation of the ability
to predict longer horizons. Sayeed et al. use an Autoregressive Integrated Moving
Average (ARIMA) based time-series model taking very specific parameters such
as Signal to Interference and Noise Ratio (SINR) and Modulation and Coding
Scheme (MCS) as inputs to first predict the number of received bits per Physical
resource Block (PRB) and then translate that to effective throughput [SGFS15].
Their experiments are evaluated for a stationary device under different channel
configurations. Also, some solutions are crafted with a video application in mind.
For example, Zou et al. propose an algorithm for HTTP adaptive streaming that
relies on an accurate forecast of average throughput [ZEG+15]. Their solution
leads to significant improvements in video QoE compared to other state-of-the-
art approaches [HJM+14, JSZ14]. In a similar vein, Mangla et al. design an
adaptation algorithm that takes prediction errors into account when making a
decision for the next chunk [MTAA+16]. Yan et al. [YAZ+19] developed Fugu, a
neural network based adaptation algorithm. The algorithm learns continually (by
a retraining model based on last week’s data) to make more informed predictions
for chunk quality selection. Unlike traditional adaptation algorithms that rely on
throughput estimation, Fugu uses a probabilistic model and predicts chunk down-
load time instead of throughput. In addition, Fugu outputs a probability distribu-
tion for chunk download time and does not rely only on one value. Some solutions
look for patterns of similarity between sessions to predict what QoE the new ses-
sion will have, where similarity is determined through coarse-grained geographic
and network features, not precise network performance measurements [SYJ+16].
Xie et al. propose a framework for HTTP adaptive streaming application where
authors leverage Long-Term Evolution (LTE) resource structure by monitoring
available bandwidth based on PRBs utilisation of the cell, enabling more accu-
rate estimation of available bandwidth. Their approach enables the HAS client
to track changes in available bandwidth more accurately resulting in high video
quality while minimising stalling rate [XZKL16].
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Machine learning has also been used to develop the adaptation logic for video
streaming algorithms. In [MNA17], authors propose a reinforcement neural net-
work backed algorithm that learns from real traces the best strategy for adapting
to different network conditions.

The literature includes limited studies tackling the throughput prediction prob-
lem for video streaming applications using a machine learning approach, con-
sidering variable prediction horizons and realistic mobility conditions. Yue et
al. [YJS+18] also investigate prediction using only device-level metrics. However,
they rely on a UDP based technique for measuring throughput and use the aver-
age as their summarization technique. For the horizon, they consider one second.
While the framework is based on measurement of radio channel metrics from An-
droid Operating System (OS) they do not quantify its impact on video streaming
performance. Furthermore, they compute prediction accuracy using the holdout
method (a method where x% of data, e.g. 60%, is used for training, and remaining
for testing). However cross-validation is a more reliable method for estimating
the model performance. This method is similar to the holdout method but it is
repeated multiply times, with different data splits on each iteration. Xie et al.
conducted experiments on real mobile devices in a real cellular network [XZKL16].
However, in their approach, they used specialised hardware (Universal Software
Radio Peripheral - USRP) for monitoring the wireless channel between device
and evolved Node B (eNodeB) and estimating PRB utilisation. Furthermore, all
the calculations are done on a laptop which feeds the information back to the de-
vice through a USB cable. In real-world experimentation, all the measurements
and decisions are done at the mobile device which limits their approach to wide
deployment.

2.2.2 Multiple HAS clients coexistence

HAS streaming sessions consist of two phases, buffer filling and steady
state [ANBD12] as illustrated in Figure 2.5. In this context, the buffer-filling
state (ON) means that the client is downloading a chunk while the steady state
(OFF) corresponds to the period when the client must wait to have sufficient
space in its buffer to request the next chunk.

Several recent studies, e.g. [AABD12, HG12, HHH+12] pointed out streaming
performance issues, such as frequent quality switches and unfairness when mul-
tiple video clients share a bottleneck link. The “ON-OFF” behaviour of HAS
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Figure 2.5: Buffer-filling and steady states in a HAS session

clients in the steady state is recognised as the main cause for the aforemen-
tioned issues [AABD12]. In [HHH+12], TCP congestion window (cwnd) issues
are identified as an additional factor, leading to the behaviour recognised as the
“downward spiral effect” (a phenomenon where video representation rate drops in
the presence of a competing TCP flow), which can be mitigated through the use
of larger chunks allowing TCP to have a better estimate of the available band-
width. However, most state-of-the-art adaptation algorithm’s heuristics account
for this problem and employ different strategies for mitigating it.

2.2.2.1 Video and other traffic

The impact of video on the performance of other traffic sharing a bottleneck
becomes a concern. Video traffic stands accused of triggering bufferbloat phe-
nomena occurring on the Internet [GN11]. This phenomenon occurs when large
network buffers get full with video packets causing unnecessarily high latency.
This latency negatively affects the TCP congestion avoidance algorithm, creat-
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ing a standing queue, when the number of outstanding packets in the network is
larger than the Bandwidth Delay Product (BDP) [NJ12]. The number of surplus
packets causes the delay, which has a negative impact on interactive applications
such as web browsing, VoIP and video conferencing. Mansy et al. [MVSA13]
investigated the performance when one video client shares a bottleneck link with
one voice client and showed that HTTP adaptive streaming application can cause
bufferbloat and harm other delay-sensitive applications sharing the same bottle-
neck. Similar, Hong et al. [HMW15] analysed the impact on application perfor-
mance of different traffic types (HAS, VoIP, web, FTP) for different scheduling
techniques (including active queue management) in broadband cable networks.
The authors performed experiments in ns-2 network simulator.

2.2.2.2 Video and network queues

There are two well known approaches for dimensioning network First In First
Out (FIFO) queues, the rule-of-thumb [VS94] and the Stanford rule [AKM04].
The rule-of-thumb approach specifies that the bottleneck queue size should be
equal to the BDP (RTTxC, where RTT is round-time-delay and C is the bottle-
neck capacity). This rule is often applied at the edge part of the network, where
the number of flows and bandwidth capacity is relatively small. The Stanford
rule is recommended for a large number of TCP flows (over 250) and very high
speed links. Then the recommended router queue size is BDP/

√
F , where F

is the number of TCP flows sharing the bottleneck link [AKM04]. Dhamdhere
et. al. [DD06] analyse long-lived TCP flows in ns-2 and its performances. The
authors show the benefit of large buffers (2xBDP) compared to tiny buffers (Stan-
ford rule) regarding packet-loss ratio and fairness. However, as pointed out by
the authors, implication of buffer sizing on application performance is an open
issue. Also, most of the studies argue that full utilisation of long-lived TCP flows
can be achieved with a fraction of BDP [AKM04, PDT07, DJD05]. However,
prior work has not investigated if these recommended sizes are appropriate when
video traffic dominates. HAS exhibits characteristics of both long-lived flows
(during ON phase) and short-lived flows (going between ON and OFF phase).
Also, compressed video is typically Variable Bit-Rate (VBR) in nature. Hence,
HAS operates at a discrete set of rates that vary because of both adaptation
decisions and VBR encoding. Adaptive queue management algorithms [Ada13],
notably Random Early Detection (RED), are often recognised as a key solution for
bounding latency for longer bottleneck queues. However, its complex and tedious
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configuration presents a formidable stumbling block, often leading to misconfigu-
ration [NJ12]. Hence, the popular FIFO drop-tail mechanism is still widely used
due to its inherent simplicity.

Splitting heterogeneous traffic flows into multiple queues is considered to reduce
the impact of traffic interaction. After splitting, various techniques are adopted
to handle traffic in these queues, such as Weighted Fair Queuing (WFQ), traf-
fic shaping (excess packets are buffered) or traffic policing (excess packets are
dropped) [FPT+16]. Zinner et al [ZJB+14] leverage the Software-Defined Net-
working (SDN) approach for assessing the impact of dynamic resource allocation
for two competing flows (file download and progressive YouTube video stream).
Two scheduling techniques were evaluated, namely WFQ and Priority Queuing
(PQ). Additionally, different queue lengths were tested and their impact on appli-
cation throughput, packet drop and duplicate rates. However, in all experiments,
competing flows were isolated. Similarly, Hu et al. [HBC+16] propose a Trin-
ity framework for bandwidth shaping in the cloud between competing tenants.
They leverage the use of Explicit Congestion Notification (ECN) and priority
queuing to achieve bandwidth demands and delay constraints for different users
sharing a bottleneck link. Their solution produces minimum bandwidth guaran-
tees for large flows, while at the same time protect short flows (e.g. online web
services) from an increased delay. To perform bandwidth shaping at large scale
(i.e. scalable) common practice includes moving these operations to end hosts.
However, increased CPU and memory usage requires more efficient and scalable
solutions [SDV+17].

The majority of these studies focus on analysing generic TCP traffic flows
assuming certain properties (e.g. long- and short-lived TCP flows) measuring
application-generic performance metrics, such as utilisation, latency, packet-loss
ratio, and fairness. The main limitation of previous studies is in overlooking
application-specific characteristics when analysing the performance of cross-traffic
sharing a bottleneck link. Furthermore, an understanding of the impact of net-
work queuing design (including modern Active Queue Management (AQM) tech-
niques) on application-level metrics is needed, with the focus on using real ex-
periments and traffic. Specifically, the interplay between content, network, and
application in various scenarios needs to be analysed.
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2.3 Methods for analysing HAS systems

Many challenges and pitfalls arise in HAS-based systems. To analyse and identify
many of the problems, researchers typically analyse real systems or build the
HAS system in a controlled environment. The most common approach in the
community is building a simplified lab testbed. The following components are
necessary to support HAS evaluation:

• HAS video player : player that is capable of parsing the manifest file, down-
loading HAS content and optionally decoding and displaying it on the
screen.

• HAS encoded video content: video content approximates input feed (e.g.
source of video content), encoder and packager. This content is encoded
and split into chunks with multiple resolutions, and encoders.

• Bandwidth trace: summarises network conditions for video content delivery
from the CDNs to end-users.

• QoE model: used for quantifying HAS performance of different approaches.

2.3.1 HAS-enabled players

Depending on whether the HAS-enabled player decodes and displays video, play-
ers can be grouped into three categories. Typical players decode and display video
content. There are several players available in the literature. ExoPlayer 1 is a Java
based media player for Android OS. GPAC 2 is an open-source multimedia frame-
work written in C. It is one of the oldest players available dating back to 2002. It
supports many protocols and standards, including HAS. dash.js is a JavaScript
multimedia framework for HAS streaming initiated by the Dynamic Adaptive
Streaming over HTTP (DASH) Industry Forum. Hybrid players allow for switch-
ing between decoding and displaying video content. TAPAS [DCCPM14] is a
Python based HAS player with this feature. Emulation players don’t decode
or display video content. Apart from decoding/displaying, they behave in the
same way as regular players. There are several emulation players developed over
the past few years. AStream [JTM15] is a Python based emulation HAS player.
Similar, dashc [RZS18b] is an Ocaml based emulation HAS player. Due to a lack

1https://github.com/google/ExoPlayer
2https://gpac.wp.imt.fr/player/
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of decoding and displaying capabilities, these players have lower system require-
ments allowing researchers to perform experiments with a large number of video
clients.

Also, these players vary in their support for experimentation through provided
documentation, ease of extending the player with a new adaptation logic, and
logging functionalities.

2.3.2 HAS encoded video content

One of the main issues when it comes to testing different adaptation algorithms
is the fact that there is a relatively small number of HAS enabled datasets in the
video research community. Over time, the content of these datasets has evolved
in resolution, encoders and bitrates. Lederer et al. [LMT12], in 2012, released
the first publicly available DASH dataset encoded with the H.264 encoder. That
dataset consists of 6 Full High Definition (HD) clips encoded in 20 quality bi-
trates ranging from 50Kbps to 8Mbps. Also the content was encoded in five
different chunk duration, 1, 2, 4, 6 10, and 15 seconds. The same authors later
released the Distributed DASH dataset [LMT+13], which extended the selection
of bitrate to encompass a diverse range of geographical content servers. The
datasets of Quinlan et al. [Jas16] provide DASH content with H.265 in addition
to H.264 encoded video content. In total 23 clips were encoded with ten quality
bitrates, five chunk duration (2, 4, 6, 8, and 10 seconds). Similarly, Zabrovskiy
et. al [ZFT18] released content encoded using multiple encoders (H.264, H.265,
VP9, and AV1). This dataset consists of 4K content with quality bitrates going
up to 20Mbps. 4K datasets with Ultra High Definition resolutions (3840x2160)
were generated [LFTP+14, QS18] with 40Mbps maximum quality bitrate.

For video compression, there are two main concepts used in practice: Constant
Bit-Rate (CBR) and VBR. CBR encodes video at constant bitrate regardless of
the scene complexity. For example, the same bit budget is assigned to a simple
scene (low-motion) and a more complex scene (high-motion). As a result, CBR
produces video content with varying quality and constant rate. On the other
hand, VBR uses the opposite approach, allowing different bit budget for different
scene types. For a simple scene, a smaller number of bits is used compared to a
complex scene where more bits are used to encode the content. This approach
produces varying bitrate with consistent quality. While VBR provides better
quality and lowers network requirements (i.e. bandwidth), this is approach has a
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more convoluted architecture for encoding, storing and delivering VBR-encoded
content [QHP+18].

H.264 is a video compression technology. H.264 is the most widely used codec
for HAS. H.264 compresses video content by exploiting redundancy in the signal,
i.e. spatial and temporal redundancy. H.264 uses intra-frame prediction (using
values of pixels in adjacent parts of the frame to predict values of other pixels) and
inter-frame prediction (values of pixels from previous frames in time are a good
predictor of current pixels) [WSBL03]. Similarly, H.265 is a successor of H.264
promising 2x better compression than H.264. VP9 is a video codec developed
by Google. The main goal of VP9 is to reduce the final video bitrate. VP9
uses progressive encoding and divides the picture in super-blocks of size 64x64
pixels. These blocks can be further divided into 4x4 pixel blocks. This process
is called subdivision. Unlike H.265, VP9 supports both horizontal and vertical
subdivision [FBGP+17].

2.3.3 Bandwidth datasets

Bandwidth datasets are datasets that contain measurements of available through-
put collected over some time period. These datasets can be used to replicate band-
width characteristics in a controlled environment against different HAS-based so-
lutions, enabling comparison of theirs performance. Existing bandwidth datasets
focused primarily on the variance in available bandwidth and typically offered a
very limited set of device metrics, such as velocity, Global Positioning System
(GPS) and signal strength. Bokani et al. [BHK+16], who offered a dataset, col-
lected from 3G and 4G networks, consists of throughput measurements logged
every ten seconds, a timestamp for same and GPS coordinates of the user device
itself. The authors utilised a single mobile commute pattern in a metropolitan
scenario, and repeated multiple trails within this pattern, warranted by the evi-
dence that network throughput can vary significantly for the same route. They
collected a large number of samples across the same path to get statistically signif-
icant results on network performance. However, their dataset has a low sampling
granularity (ten seconds) and only contains throughput and a very limited set of
device values.

Similarly, Xiao et al. and Li et al. collected bandwidth traces over 3G and
4G network respectively [XXW+14, LXW+15]. In both papers, the authors use
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MobiNet3, a custom developed non-rooted android application for downloading
content using TCP. The majority of both datasets are collected in high-speed mo-
bility environments (train) where speeds can rise to 310 kph. The content of the
datasets consists of information such as application throughput, signal strength,
device velocity and eNodeB id. Riiser et al. [RVGH13] obtained bandwidth logs
from a 3G network using different mobility patterns; these included tram, train,
metro, bus, ferry, and car. The dataset contains a sample granularity in the order
of seconds and provides additional information such as timestamp, GPS coordi-
nates of the device, and bandwidth throughput. Also, Hooft et al. [vdHPW+16]
used the same approach for collecting 4G network traces for analogous mobility
patterns, foot, bicycle, bus, tram, train, and car. However, all these traces focus
on acquiring throughput values with high sample granularity. Even though col-
lected in a wireless environment, none of these datasets contain any information
about the cellular channel.

The above-mentioned datasets provide sufficient throughput information to eval-
uate the performance of state-of-the-art HAS algorithms that determine the
streamed video quality in response to changes in the operating conditions. How-
ever, Xie et al. [XZKL15] use channel information from the wireless channel in
addition to the throughput rate to make a more intelligent decision for the next
chunk quality. Also, context information such as User Equipment (UE)’s GPS
position, velocity, eNodeB GPS position and distance between UE and serving eN-
odeB can be used for user movement prediction and resource allocation [SBS16].
Wang et al. [WKHC14] utilise these metrics for UE movement and direction pre-
diction to minimise the number of handovers.

To enable the investigation of new approaches that rely on information other
than throughput for improving HAS (e.g. combining physical layer information
about channel with machine learning algorithms for the throughput prediction)
researchers need new datasets with additional information. This opens a space for
a collection of new datasets with additional information such as additional channel
quality information (e.g. channel quality indicator, reference signal received power
etc.), supporting new research ideas for HAS performance improvement.

3http://www.wandoujia.com/apps/thu.kejiafan.mobinet
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2.3.4 Quality of experience

Improving the user perceived QoE is one of the key objective of all solutions.
This subjective metric has the highest influence on the design of HAS systems
(either at the client side i.e. adaptation logic, or server-side i.e. chunk size, video
codec or intermediate point i.e. router configuration). However, deriving QoE is
a challenging task as one needs to map objective QoS metrics (average quality,
switching frequency, re-buffering events, initial delay) onto subjective QoE scores.
Studies show that re-buffering events (stalls) have the highest negative impact
on overall user experience. On the other hand, the initial delay up to 16 seconds
has a negligible negative effect on QoE [SES+15]. Similarly, switching between
different qualities does not have a significant impact on QoE where QoE is mainly
driven by quality amplitude itself [HSSZ14]. However, Asan et al. [ARhM+17]
show that switching between different resolutions can affect user experience. All
these metrics are mutually interdependent, e.g. increasing quality level increases
the probability of stall, while low quality leads to low QoE. Striking optimal
equity between those metrics represents a formidable task. As a result, a number
of QoE models for HAS were developed [DDR13, LDU+15]. These models are
subjectively derived and validated either in a lab-controlled environment or with
the crowd-sourced approach. Recently, standardised ITU-T Rec. P.1203.1 video
QoE model [RGR+17] was published. The P.1203.1 QoE model is derived from
subjective studies. It uses MOS (mean opinion score, 5-point scale) to capture
user experience of the streaming session, taking into account both video and audio
impairments. The main drawback of the standardised model is its limitation to
H.264/AVC encoding content to a maximum resolution of Full HD (1920x1080).

Unlike video QoE, for the most part, web QoE is dominated by the delay compo-
nent. To capture user experience several metrics have been proposed for capturing
delay influence on overall QoE. This delay is defined as the User Perceived Page
Loading Time (UPPLT). OnLoad is the most widely used metric in literature
for measuring UPPLT [BDCR16], and represents an elapsed time between send-
ing a request and loading all objects on the web page. However, perceived Page
Loading Time (PLT) might only reflect the loading of the visible area of a web
page in which case OnLoad overestimates observed PLT. Similarly, objects can
continue loading after onLoad finishes causing underestimation [VBNP16]. Sev-
eral other metrics were proposed to alleviate these limitations [Inc, BDCR16].
Varvello et al. [VBNP16] developed an EYEORG, a crowdsourcing framework
for measuring and capturing UPPLT and web QoE. Surprisingly, onLoad shows
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the highest correlation (0.85) with the UPPLT, outperforming more sophisticated
PLT metrics.

2.4 Research goals

This thesis explores different approaches and techniques for improving video QoE
in cellular and wired networks.

2.4.1 Thesis goals

The thesis goals are as follows:

• Improve video QoE by improving throughput estimation in HAS players;

Classical throughput estimation techniques produce large prediction errors
that can force algorithms to make wrong decisions. This is especially true
in highly variable environments, such as cellular networks. These environ-
ments exhibit non-linear variations in throughput that linear estimators do
not capture.

• Assess the error in throughput prediction values and its impact on HAS
QoE-related metrics;

HAS systems operate on a discrete set of bitrates. This can lessen the need
for highly accurate throughput prediction. For example, there is a 30%
difference between subsequent rates. This means that predicting any value
in that range would lead to the same algorithm decision.

• Implement and evaluate the proposed solution in an operational network;

Assessing the proposed solution in an operational network enables identi-
fying challenges and limitations of deploying throughput prediction backed
HAS player in practice.

• From the network queuing perspective, assess and identify key interactions
when multiple HAS and non-HAS players share a bottleneck link;

Resource sharing between HAS players and delay-sensitive applications
(such as web traffic) need exhaustive experimentation to identify all the
key interactions from the perspectives of network queues.
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• Design a new queuing discipline for improving QoE of both HAS and non-
HAS applications.

Identified interactions between HAS and non-HAS players laydown a foun-
dation for designing a new queuing discipline for improving performance of
both HAS and non-HAS applications.

2.5 Conclusion

HTTP adaptive streaming solved many issues plaguing traditional streaming ap-
proaches such as scalability, availability, network efficiency, and quality of deliv-
ered content. However, HAS performance is still limited, especially in an environ-
ment with rapid throughput fluctuations (i.e. wireless) and when multiple HAS,
and non-HAS clients share a bottleneck link. The following chapters introduce
solutions to these problems by exploring the possibility of improving throughput
estimation in cellular networks by applying ML techniques (Chapter 4, and 5).
Furthermore, an exhaustive analysis is conducted in the realistic environment
with multiple HAS and non-HAS clients, identifying challenges from the network
perspective (Chapter 6). Finally, a solution is proposed for improving the qual-
ity of experience for both HAS and non-HAS clients in a shared environment
(Chapter 7).
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Chapter 3

Experimental Methodology

This chapter introduces tools and methodology for analysing performance of
HTTP adaptive streaming (HAS)-based system conducted in Chapters 4, 5, 6,
and 7. The following chapters use the presented tools for analysing existing and
proposing new schemes for the improvement of HAS performance.

There are four crucial components when analysing the performance of HAS-based
systems. These are: video content for streaming (sufficiently large dataset of
mixed content - resolutions, encoders and genres), bandwidth traces, a range
of HAS algorithms to compare against (with different demands and objectives),
and objective Quality of Experience (QoE) model (standardised if possible) for
performance evaluation.

There exist a few HAS enabled video datasets (Section 2.3.2) in the literature
encoded in various quality bitrates, resolutions and codecs. Over the last decade,
many HAS algorithms were developed with different approaches in designing their
adaptation logic (Section 2.2.1). Similarly, there is a limited set of bandwidth
traces collected over a wireless channel (Section 2.3.3). Bandwidth traces col-
lected over the wireless channel are more compelling for the research community.
Characteristics of the wireless channel can result in more frequent throughput
variations than in wired, where throughput is much more stable. The main aim
of all HAS-based systems is to achieve the highest QoE irrespective of whether
the adaptation is client-focused, a network focused or distributed between both.
Because of its subjective nature, QoE is typically difficult to measure and gen-
eralise. To help alleviate this problem, researchers have proposed various QoE
models over the years, mapping different streaming video QoE-related metrics
(e.g. average quality, switching, stalls) to a QoE score, typically in the range (0-5).
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While most of these models only take into consideration a subset of the mentioned
QoE-related metrics to find an “optimal” blend between them, some efforts have
been made in proposing subjectively-validated QoE models (Section 2.3.4).

This chapter presents all these components in detail. Also, this chapter presents
two contributions:

• 4G wireless bandwidth traces including channel metrics

• Two HAS-enabled testbeds for wired and wireless experiments

Previous datasets in this area, focused primarily on the variance in available
bandwidth and typically offered a very limited set of device metrics, such as
velocity, Global Positioning System (GPS) and signal strength. For compari-
son of HyperText Transfer Protocol (HTTP) adaptive algorithms, information
about bandwidths is sufficient, as most of the algorithms logic rely on estimat-
ing throughput values from chunk downloads. However, as explained in detail
in Chapters 4, and 5, using additional information about user environment and
context can significantly improve user QoE.

Currently, to evaluate their proposed solutions, researchers need to create a frame-
work and numerous state-of-the-art algorithms. Often, these frameworks lack
flexibility and scalability, covering only a limited set of scenarios. To fill this gap,
this chapter introduces highly customisable real-time frameworks for testing HAS
algorithms in both, wired and wireless environment.

3.1 4G dataset

Current 4G data throughput rates can fluctuate over a period of few seconds,
due primarily to scheduling decisions at the cell tower, and sudden changes in
the underlying radio channel [ZEG+15, MTAA+16, YJS+18]. These changes are
caused by inter-cell interference, congestion due to the number of devices per cell,
and location of the device relative to the cell edge. This throughput variation is
inherently a part of the underlying communication system since the first wireless
networks and will be further exacerbated in 5G due to technical issues such as
non-line of sight and a reduction in overall transmission distance. These varia-
tions in throughput can impact the user QoE, especially when they cause visible
degradation in quality, which can occur while streaming video. Underlying net-
work protocols can mitigate these issues, such as Transmission Control Protocol
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(TCP) whose design reflects throughput variation by embedding an Exponential
Weighted Moving Average (EWMA) statistic to adapt to rate-distortion [For02].
Additionally, adaptation algorithms proposed for HAS [Sto11] can further com-
bat the challenge of consistent quality through buffering and graceful adaptation
of video quality. One of the main hurdles for these adaptation algorithms is a
lack of a broad cellular dataset that captures these throughput variations, es-
pecially when combined with channel and context metrics, on which a solution
can be designed and compared with other state-of-the-art algorithms. Recently,
researchers have recognised this problem, which resulted in a number of datasets
collected over different wireless technologies and video content datasets [SME17].

This chapter presents a dataset collected from real 4G production networks. The
production dataset, contains traces from two major Irish mobile operators, with
different mobility patterns (static, pedestrian, car, bus and train). While the
dataset can be used for comparison of various HAS streaming approaches, infor-
mation captured in this dataset allows for broader analysis beyond adaptive video
streaming research. In addition to throughput values, the dataset includes infor-
mation about channel condition for the client in respect to serving evolved Node
B (eNodeB) and neighbouring cells, GPS positions of the client and serving eN-
odeB, client’s speed, and handover events. All of this information allows a multi-
purpose analysis beyond our original HAS use cases, such as handover prediction,
coverage analysis, mobility prediction etc. This dataset is the first publicly avail-
able dataset that contains throughput, channel and context information for 4G
networks and is freely available to the research community. The dataset can be
found at the following link: http://www.cs.ucc.ie/∼dr11/4G_Dataset/.

3.1.1 Possible use-cases for 4G dataset

This section outlines some of the possible use-cases for the dataset. Starting
with the HAS algorithms, the dataset enables the comparison of different algo-
rithm strategies depending on the information they require for optimisation of
chunk selection. Most algorithms calculate on throughput samples only, with
some of them requiring finer granularity than chunk duration. However, going
beyond the throughput requirement, new strategies mandate channel and con-
text information, allowing them to make more accurate throughput prediction.
The proliferation of Commercial Virtual Reality (VR) technology is increasing
download demands and is a distinct candidate for evaluation using our dataset.
Although VR typically uses progressive download, it is expected that VR will
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switch to HAS mechanism in the near future [QJHG16]. This switch will result
in the need for designing new adaptation algorithms suitable for VR specific needs
(adapting the quality level of tiles).

Another use-case would be handover analysis and prediction. The handover pro-
cedure is crucial in cellular networks as it allows continuous connection across
different eNodeBs. There are various mechanisms and approaches for handover
prediction [GWZ+09, BSJ+11, LFCZ11]. To benefit these approaches, the dataset
contains information about handover events and also information about GPS po-
sition of the current cell and device, channel metrics for the serving and the
neighbouring cell. Finally, generating new bandwidth traces based on the exist-
ing traces is an exciting and demanding challenge, as multidimensional statistical
analysis is needed over all available metrics. For this task, one approach could
be leveraging machine learning techniques. Finally, generating new bandwidth
traces based on the existing traces is an exciting and demanding challenge, as
multidimensional statistical analysis is needed over all available metrics. For
this task, one approach could be leveraging machine learning techniques. For
example, Generative Adversarial Networks (GANs) [GPAM+14] can be used to
learn high-dimensional probability distributions and provide synthetic bandwidth
traces with the same distribution as the original traces. As a result, a large
number of realistic traces would be generated and thus relieving researchers of
manually collecting vast amounts of network traces, which can be a very tedious
task.

3.1.2 Dataset collection

For the production dataset collection, the Android device G-NetTrack Pro mo-
bile network monitoring tool1 is used. This tool enables the capturing of various
channel-related metrics, context-related metrics, downlink and uplink through-
put, and also cell-related information. The main advantage of this application
is that it does not require a rooted phone. In contrast to G-NetTrack, Li et al.
developed an open-source software tool MobileInsight [LPY+16] that can capture
radio information directly from the chipsets in real-time. However, the software
requires a rooted mobile phone and works with Qualcomm System on Chip (SoC)
only. This tool is similar to proprietary Qualcomm’s QXDM2 diagnostic software.
While the non-rooted aspect of G-NetTrack is beneficial, there are several limita-

1http://www.gyokovsolutions.com/
2https://www.qualcomm.com/
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tions to the application. First, the minimum granularity of the collected samples
is one second. Second, the tool uses the standard Android library (telephony
class) for reporting channel metrics. Implementation of these callback functions
depends on the manufacturer of the mobile SoC chipsets. Also, not all parameters
are reported for different cellular technologies (2G/3G/4G). For our dataset, we
test mobile devices from three major mobile chipsets manufactures, Qualcomm
(Snapdragon), Samsung (Exynos) and Huawei (Kirin). Ultimately, the mobile de-
vice chosen is a Samsung J5, which provides a means of capturing all 4G network
metrics.

The production dataset has 135 traces capturing various mobility patterns across
two major Irish operators, with different data limit caps. The first provider
(operator A) gives unlimited 4G data, while the second provider (operator B)
offers only 15GB per month. However, the second operator provides 60GB on
social media, including Youtube streaming. For the first mobile operator, a file is
continuously downloaded (connection-oriented, TCP) with an average duration
of 15 minutes per trace (with a five-second pause after the download completes).
A similar approach is used for the second operator, but once the data cap is
reached, the procedure is changed by downloading content from Youtube. A
URL is generated for the video from Youtube to exploit the higher data cap for
social media. For each trial, regardless of the measurement approach, a large file
is used (> 50MB) to allow the TCP sending window to ramp up to the maximum
size. For the congestion control algorithm, TCP Cubic [HRX08b] is used (a
default TCP congestion algorithm in Android OS). As stated, every sample is
logged with one-second granularity. As a result, the average trace duration is 15
minutes.

To provide a fair comparison between operators, measurement trials are per-
formed for both operators at the same time (same mobile device model is used
to limit the impact of device hardware on throughput rate and channel metrics).
This subset of traces permits comparison of mobile operators performances across
different parameters (throughput and channel metrics). Competing tests use the
same download approach for both cellular operators (file or video download).

The following Table 3.1 outlines the various metrics within production dataset
(note that channel metrics are part of 4G standard):

Metric Description
Timestamp Timestamp of sample
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Longitude and Latitude GPS coordinates of mobile de-
vice

Velocity (kph) Velocity of mobile device
Operatorname Cellular operator name

(anonymised)
CellId Serving cell for mobile device
NetworkMode Mobile communication stan-

dard (2G/3G/4G)
RSRQ (dB) Reference Signal Received

Quality represents a ratio
between Reference Signal
Received Power (RSRP) and
Received Signal Strength Indi-
cator (RSSI). Signal strength
(signal quality) is measured
across all Resource Elements
(REs), including interference
from all sources

RSRP (dBm) Reference Signal Received
Power represents an average
power over cell-specific refer-
ence symbols carried inside
distinct RE. RSRP is used for
measuring cell signal strength-
/coverage and therefore cell
selection

RSSI (dBm) RSSI represents a received
power (wideband) including
a serving cell and interfer-
ence and noise from other
sources. Reference Signal Re-
ceived Quality (RSRQ), RSRP
and RSSI are used for measur-
ing cell strength/coverage and
therefore cell selection (han-
dover)

Signal to Noise Ratio (SNR) (dB) Value for Signal-to-Noise Ratio
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Channel Quality Indicator (CQI) Channel Quality Indicator of a
mobile device. CQI is feedback
provided by User Equipment
(UE) to eNodeB. It indicates
data rate that could be trans-
mitted over a channel (high-
est Modulation and Coding
Scheme (MCS) with a Block
Error Rate (BLER) probabil-
ity less than 10%), as the
function of Signal to Interfer-
ence and Noise Ratio (SINR)
and UE’s receiver characteris-
tics. Based on UE’s predic-
tion of the channel, eNodeB se-
lects an appropriate modula-
tion scheme and coding rate

DL_bitrate (Kbps) Download rate measured at
the device (application layer)

UL_bitrate (Kbps) Uplink rate measured at the
device (application layer)

State State of the download process.
It has two values, either I (idle,
not downloading) or D (down-
loading)

NRxRSRQ & NRxRSRP RSRQ and RSRP values for
the neighbouring cell

Cell_Longitude & Cell_Latitude GPS coordinates of serving
eNodeB. OpenCellid3, is
the largest community open
database that provides GPS
coordinates of cell towers

Distance (m) The distance between the serv-
ing cell and mobile device

Table 3.1: Collected Metrics

3https://opencellid.org/
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4G measurement trials are performed (unless otherwise stated) across six different
mobility patterns summarised in Table 3.2.

Table 3.2: Mobility Patterns

Type Summary
Static Static trials (indoor)
Pedestrian Walking trials around Cork city, Ireland
Bus Trials include urban and suburban cases
Car Trials include urban and suburban scenarios
Train Travelling between Cork - Dublin (240km)

and Cork - Farranfore (75km). Combination
of 3G and 4G.

3.1.3 Dataset overview

This section gives a short overview of the dataset. Traces are categorised as
commute traces as we collected the majority of traces during morning and evening
hours while going from home to work and back, and begin with an overview of
our trace models:

• Static: As the name implies, these traces were collected indoors with mobile
devices being stationary. This scenario represents how people typically tend
to use their smart devices. Characteristic for the majority of static traces
is that throughput is quite stable with relatively low variations compared
to mobile traces.

• Pedestrian: Outdoor traces while walking around Cork city centre using
several different routes. Characteristics of collected traces (average rate
and standard deviation) are similar to the static case with slightly more
variation due to channel condition and handovers.

• Bus: Bus traces using public transport around Cork city. Traces are gath-
ered during weekdays and at the weekends to capture different congestion
patterns.

• Car: Car traces over the city and suburban routes. This sub-category of a
dataset contains the most traces.

• Train: Majority of the train traces are a mixture of 3G and 4G for both
operators, due to the availability of 4G within major urban areas only.
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Following sections provide a more detailed overview of the Throughput, Channel
and Context information provided in the dataset: Figure 3.1, 3.2, and 3.3 illus-
trate a time-series of application throughput for both network operators across
static, train and car mobility pattern setups, respectively (randomly selected
competing traces are shown).
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Figure 3.1: Time-series of application throughput for static mobility pattern and
two different mobile operators

3.1.3.1 Throughput

Table 3.3: Average and Variation Range of Application Throughput (Mbps)
across different mobility patterns and mobile operators

Mobility Patterns
Operator Static Pedestrian Bus Car Train

A
B

Avg.
5.3
42.6

Var. Range
(0.9, 9.3)
(21.3, 77.2)

Avg.
9.9
18.2

Var. Range
(0.4, 28.0)
(5.6, 34.2)

Avg.
8.0
13.5

Var. Range
(0.08, 20.3)
(2.0, 29.1)

Avg.
11.4
22.3

Var. Range
(0.92, 27.9)
(3.2, 49.1)

Avg.
4.7
6.6

Var. Range
(0, 11.3)
(0.3, 16.5)

Num. Traces 15 31 16 53 20
Trace Dur. (mins) 254 560 180 1265 650

Furthermore, Table 3.3 depicts average application throughput and variation,
including the number of traces and total trace duration across all traces for
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Figure 3.2: Time-series of application throughput for bus mobility pattern and
two different mobile operators

different mobility pattern categories and two mobile operators. By definition,
variation range is a percentile-wise measure of variation. Let’s define R as appli-
cation throughput during time interval the (t, t+1). Then we can define variation
range as the interval [RL, RH ], where RL represents a 10th percentile of R, and
analogously RH a 90th percentile of R [JD05]. This range defines boundaries
where 80% of measured throughput lies. From the values shown in Table 3.3,
operator B has a significantly higher average than operator A for all mobility
pattern cases. There could be different reasons for this observation, including
better coverage, and the operator’s internal traffic policy (e.g. traffic limitation
and shaping). Looking at each case individually, there are different changes in
average value and variation range depending on the operator itself, e.g. for A, a
static case has a significantly lower average than the pedestrian case. A rationale
for this result could be in coverage discrepancy for indoor and outdoor scenarios.
We note that experiments run indoor have a weaker signal in 90% of cases.
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Figure 3.3: Time-series of application throughput for car mobility pattern and
two different mobile operators

3.1.3.2 Channel

Measured throughput is a combination of the eNodeB environment (load, sched-
uler policy), wireless channel characteristics and mobile device receiver capabili-
ties. Additional information about the channel environment other than through-
put values can increase accuracy and granularity, paving a way to more accurate
prediction. In Figure 3.4 and 3.5, we analyse this relationship and show boxplot of
CQI against application throughput for operators A and B respectively. The box-
plot shows the range of throughput values for each CQI separately. Overall, we
can observe an increasing trend in throughput proportional to CQI. However, the
range of throughput values oscillates significantly for each CQI. Furthermore, for
operator A, the average throughput of CQI equals 14 is lower than the through-
put for CQI 15. A similar observation holds for operator B as well. Finally,
this result is strengthened even more with the calculation of Pearson correlation
(which depicts linear relationships) between throughput and CQI, yielding a cor-
relation coefficient of 0.6 and 0.38, for operator A and B, respectively. However,
this correlation is even lower for other cases; in particular for the static case
where the correlation coefficient equals 0.35. While CQI shows correlation with
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Figure 3.4: Boxplot of CQI vs application throughput (car mobility pattern) for
network operator A

throughput, the actual values may be lower than expected. The CQI is calcu-
lated on the mobile device (based on wireless channel condition) and represents
the maximum rate the device can receive with low error (taking only channel and
devices characteristics). However, the actual rate (number of allocated resources
blocks per frame) depends on multiple factors and not CQI alone. For example,
a user may have lower throughput demand downloading on a lower rate than the
available bandwidth. Also, depending on the number of users sharing network
bandwidth (users connected to the same base station), eNodeB scheduler may
assign lower throughput to the user to accommodate other user’s throughput de-
mands. This explains why the correlation coefficient is in the lower region (∼0.6)
and not higher than 0.8. This observation is consistent with the results obtained
in [YJS+18].

3.1.3.3 Context

The dataset provides additional context information such as the device’s GPS po-
sitions and velocity. Figure 3.6 shows GPS coordinates of all measurement points
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Figure 3.5: Boxplot of CQI vs application throughput (car mobility pattern) for
network operator B

from our dataset. We provide estimated GPS coordinates of serving eNodeBs
and distance between them using Haversine formula [Bru13].

Additionally, Table 3.4 shows the average and variation range of device veloc-
ity across different mobility patterns and network operators. Intuitively, speed
increases as we move from static (not shown) to pedestrian and finally train sce-
nario. A similar observation holds for variation range as well. Velocity values are
alike for both network operators as the same phones/patterns were used for both
operators.

Table 3.4: Average and Variation Range of device velocity (kph) across different
mobility patterns and mobile operators

Mobility Patterns
Operator Pedestrian Bus Car Train

A
B

Avg.
2.4
1.5

Var. Range
(0.0, 4.0)
(0.0, 3.0)

Avg.
17.2
10.7

Var. Range
(0.0, 34.0)
(0.0, 30.0)

Avg.
23.7
35.1

Var. Range
(0.0, 54.0)
(0.0, 56.0)

Avg.
60.6
53.9

Var. Range
(0.0, 109.4)
(0.0, 114.0)
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Figure 3.6: GPS coordinate for the all measurement points across Ireland

3.1.3.4 Caveats

This production dataset contains a considerable amount of information. However,
there are several limitations. First, the sampling granularity is only one second.
This limitation is due to G-NetTrack and the Google channel Application Pro-
gramming Interface (API). Even with direct access to the API, granularity does
not significantly increase [YJS+18]. Second, not all records have all the val-
ues. The most prominent example represents RSSI, which isn’t logged for every
sample. Similarly, geolocation of eNodeB is obtained from the opencell.org
database. Unfortunately, this database doesn’t contain GPS coordinates for all
eNodeBs. One approach to deal with missing data is to use one of an imputa-
tion method. Several imputations methods exist, from replacing missing values
with simple mean or median, or using simple machine learning algorithms like
k-nearest neighbours algorithm [BM03], to more sophisticated techniques like
soft-impute [MHT10].

Autocorrelation Function (ACF), measures the linear dependence between the
current and past values of a variable.
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The rationale of ACF is that low values (<0.4) indicate that past values of a
metric do not bring many benefits in predicting its current value, either because
the past values are too old or because of the intrinsic randomness associated with
the metric. High ACF values (>0.8) suggest instead that incorporating such past
values is beneficial in predicting the current and future values of the metric.
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Figure 3.7: The autocorrelation coefficient of throughput (car mobility pattern)

Figure 3.7 shows the average ACF computed across all car mobility pattern traces
collected of the application throughput metric. Time lag denotes how far in the
past do we consider the value of the metric, and we vary it between 0 and 50
seconds. The shaded area represents a standard deviation band. From the figure,
it is clear that after the 38-second lag, the autocorrelation coefficient goes below
0.4, indicating no significant correlation after a 38-second delay. However, for
other traces, the coefficient value after 20 seconds into the past is low being
indistinguishable to noise.

3.2 Testbed frameworks

The following chapters analyse HAS performance in wireless (cellular in particu-
lar) and wired environments. Experiments in the wireless environment consider
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one device under various mobility patterns represented by the 4G dataset ex-
plained in the previous section. To represent a typical mobile user and its envi-
ronment as realistically as possible, the wireless testbed uses a real mobile device
and wireless access point connected to the video server. On the other hand,
wired experiments are concerned with multiple heterogeneous clients, represent-
ing a typical home environment. In this case, the Mininet emulation environment
is used for emulating a large number of competing users. While the testbeds are
distinct enough to warrant two separate implementations, some components are
shared by both implementations. To minimise repetition, the main characteris-
tics of a testbed for wireless experiments are explained, followed by details about
key different components composing the wired-based testbed.

Figure 3.8: Testbed Architecture

3.2.1 Testbed for wireless experiments

Figure 3.8 depicts the testbed architecture which consists of a mobile device
(Nexus 6 running Android Operating System (OS) version 7.1.1), a wireless Ac-
cess Point (AP), and a server (PC running Ubuntu 16.04 equipped with 16GB
of RAM and Intel i7 CPU). The mobile device streams video content from the
server through the AP. Simultaneously, through Android Debug Bridge (ADB),
additional controls and information can be transmitted directly to the device.
ADB is a powerful client-server program that allows communication with the
Android device. It provides functionalities such as debugging and installing app
and access to Unix shell. ADB consists of three components: client (sending com-
mands to the device), daemon (running on Android device) and server (manages
communication between client and daemon). ADB allows communicating with
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the device either through WiFi or USB 4.

The server also acts as a traffic shaper by inserting bandwidth profiles from 4G
traces (Section 3.1.2) between itself and the AP. This is achieved using Linux
traffic control (tc5). Modelling link capacity from real traces implicitly reflect the
impact of cross-traffic on available throughput. Usage of Mininet and tc-based
bandwidth shaping results in emulation-based experiments. Experiments are run
in real-time on PC. As a consequence, each experiment can produce different
results (e.g. running tc multiple times on the same bandwidth trace). To address
this, multiple runs for the same bandwidth trace were performed. However, HAS
algorithm operates on a discrete set of bitrates, so changes in bandwidth profile
do not have a significant impact. Experiments are run in real-time and repeated
for each bandwidth trace. This limits the number of runs. As the balance, ten
runs were selected.

The mobile device runs a video player built using ExoPlayer6. ExoPlayer is
a highly customisable open-source application-level media player for Android.
It supports HAS technologies (e.g. Dynamic Adaptive Streaming over HTTP
(DASH) and HTTP Live Streaming (HLS)) for video streaming. ExoPlayer is
written in java. ExoPlayer supports the DASH standard via a stand-alone library
and also provides a default adaptation algorithm, which referred to as EXO in
the remainder of the text.

3.2.2 Testbed for wired experiments

In wired experiments, the base assumption is that link capacity is constant due
to medium (wire) properties compared to wireless channel characteristics. These
experiments quantify scenarios such as broadband home access network with few
users or edge part of the network with tens of users competing for network re-
sources. Due to stable throughput capacity, a disturbing factor for application
performance comes from cross-traffic generated by other applications. The goal
is to have a platform that supports a large number of users generating real traffic
from various applications over a bottleneck in real-time. One solution is to use the
full hardware approach, representing each user with a physical hardware device
(e.g. PC or laptop). However, this is a costly approach limiting the number of
competing user. Alternatively, simulation is the most cost-effective solution and

4https://developer.android.com/studio/command-line/adb
5https://wiki.debian.org/TrafficControl
6https://exoplayer.dev/
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virtually can support a large number of users. Still, simulation is based on math-
ematical models for the network, channel, protocols and applications. Finally,
network emulation acts as the middle ground, allowing running and assessing the
performance of real applications over a virtualised network, and is the approach
taken for creating the testbed.

The testbed platform is created using the popular open-source Mininet sys-
tem [LHM10], which allows emulating large networks in real-time. By employing
virtualisation, Mininet can scale experiments at low cost with matching accuracy
compared to an actual hardware experiment. All the clients, server and switches
are modelled as Linux nodes within the Mininet environment. Mininet uses real
Linux code for TCP, queuing mechanisms, etc. thus increasing realism in the
evaluation. Experiments are performed on a single laptop with Intel i7 CPU and
dedicated GPU (Graphics Processing Unit) coupled together with 16GB RAM
and 500GB SSD drive.

Note that using real traces in wireless scenarios implicitly reflect the impact of
cross-traffic on available throughput. However, as cross-traffic characteristics are
unknown, further qualification of impact, either on video performance by cross-
traffic or vice versa, is not possible. On the other hand, full network emulation
allows for further analysis of the interaction between video and different types of
traffic.

Figure 3.9 depicts a common dumbbell topology for wired experiments. This
topology is commonly used in scenarios where multiple clients share network re-
sources [CCPM13, JSZ14, LZG+14, AABD12, HG12, HJM+14, MVSA13]. N

clients are sharing a bottleneck link and request their data from a remote HTTP
server. Video and web content is stored on the HTTP server. The role of the
bottleneck link and network elements is to emulate scenarios with different queue
size, queue scheduling techniques, link capacity, and round-trip-time (RTT). Per-
formance metrics for different applications are collected at the client-side.

GPAC is used as the video player. GPAC (ver. 0.57) a well-known open-source
video player that supports the HAS technique. GPAC is a full-fledged player that
decodes video content in real-time. By default, GPAC uses a HAS algorithm that
requests the representation whose rate is just below the throughput of the last
downloaded segment.

7https://gpac.wp.mines-telecom.fr/
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Figure 3.9: Testbed framework architecture for wired experiments

3.2.3 Key features of frameworks

3.2.3.1 Video content

For video content, the High Definition dataset [QZS16] is used. The dataset pro-
vides both Advanced Video Coding (AVC) (H.264), and High Efficiency Video
Coding (HEVC) (H.265) encoded video content, with 23 clips encoded in ten
different rates. The duration of the video clips ranges between 10 and 14 min-
utes. For segmentation and encoding the dataset, the following tools were used:
FFmpeg - encoding original content to lossless YUV format; x264/x265 codec
for encoding to AVC/HEVC format; MP4Box for segmentation and multi-profile
MPD generation. Furthermore, the video content is generated for five different
segment durations (2, 4, 6, 8 and 10 seconds), allowing for a greater variety of
experiments. This helps a researcher to better quantify the impact of different
segment durations on the underlying adaptive delivery service. Table 3.5 shows
the encoding settings used for the dataset (frame rates depend on video clip).

3.2.3.2 Implemented HAS algorithms

Every video player is enhanced with additional adaptation algorithms. Further-
more, after video players finish streaming, a log file is saved. All logging func-
tionalities are additionally added to video players. While players support logging,
these logs are mainly used for debugging purposes. For this reason, a new log-
ging library is added to each player, allowing easier calculation of video-related
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Table 3.5: Ladder for the average HD encoding rate, resolution and frame rate
for the used dataset [QZS16]

# Bitrate Resolution Frame Rate
10 4.3Mbps 1920x872 24, 60
9 3.85Mbps 1920x872 24, 60
8 3Mbps 1280x582 24, 60
7 2.35Mbps 1280x582 24, 60
6 1.75Mbps 720x328 24, 60
5 1.05Mbps 640x292 24, 60
4 750Kbps 512x234 24, 60
3 560Kbps 512x234 24, 60
2 375Kbps 384x174 24, 60
1 235Kbps 320x146 24, 60

metrics. Table 3.6 shows an example of the output from the player. The logs
contain values for each segment selection decision. Within this log file, we provide
a rich set of various metrics, which can be used for later analysis. In addition to
the standard performance metrics (quality rate, buffer level, and stall duration)
which are commonly used to generate QoE related metrics (Section 3.2.3.4), such
as the average video quality, switching rate (i.e. instability) and video stalls (i.e.
total stall duration and number of stalls). Detailed information is provided for
each segment (its delivery rate, actual rate, which is a function of segment size
and segment duration).

Table 3.6: Sample trace output from modified dashc

Seg_# Arr_time Del_Time Stall_Dur Rep_Level Del_Rate Act_Rate Byte_Size Buff_Level
1 109 109 0.000000 232 9070 248 124131 4.000
2 1375 59 0.000000 232 18704 276 138452 8.000
3 3116 533 0.000000 4275 39881 5323 2661696 11.466
4 4621 268 0.000000 4275 47542 3187 1593595 15.198
5 6012 113 0.000000 4275 53917 1524 762041 19.085

The selected HAS algorithms are widely used in the literature and show good per-
formance in various conditions. These algorithms are based on different design
requirements, i.e. rate-based (FESTIVE and Conventional), buffer-based (LO-
GISTIC and BOLA-E) or hybrid (ARBITER+ and BBA-2). Also, they use dif-
ferent bandwidth estimation techniques (e.g. harmonic and exponential moving
average) which makes the basis for additional classification on more conservative
(e.g. FESTIVE and ELASTIC) and more opportunistic algorithms (e.g. AR-
BITER+). Note, while frameworks implement a relatively large number of HAS
algorithms, not all algorithms are used for evaluation in forthcoming chapters.
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The following adaptation algorithms are implemented across video players:

• The BBA-2 algorithm [HJM+14] mainly selects the next segment represen-
tation by mapping the buffer level to a target segment size. It also incorpo-
rates a throughput-based decision in its “startup” phase while taking into
account future (up to 480 seconds) video segment sizes.

• The FESTIVE algorithm [JSZ14] is a rate-based algorithm that uses a har-
monic estimator for the network throughput. It employs three components,
namely, randomised chunk scheduling (avoiding ON/OFF issues), stateful
bitrate selection (the algorithm will switch to the next subsequent higher
rate only if it stream at the current rate for a couple of chunks) and a
delayed update approach (trade-off between frequently switching between
different rates and staying on the same rate for a longer period. This com-
ponent monitors the number of switches over the last 20 seconds to decide
should the player switch to different rate).

• The ARBITER+ algorithm [ZRS18] is a hybrid-based algorithm that uses
the EWMA of the last ten chunk rates. Alongside EWMA Arbiter+ em-
ploys two additional rate scale factors, to track variation in throughput
samples and buffer occupancy. The first factor tracks variation in through-
put samples and reduces the estimated rate if bandwidth fluctuation in-
creases. The second one tracks buffer occupancy drain and lowers the rate
if the buffer is too low to prevent stalls. However, for higher buffer levels,
this factor will increase the bandwidth estimate, resulting in the algorithm
being less cautious and requesting a higher quality bitrate. This potentially
increases downloading time and thus slows buffer saturation avoiding OFF
phase.

• The ELASTIC algorithm [CCPM13] is a hybrid-based algorithm which uses
a harmonic average of the recent five segment rates. The harmonic average
is a conservative estimate of available throughput (by its nature, harmonic
mean is a conservative estimate, AGH inequality [Mer14]). Furthermore,
Elastic employs control-theory to combine the throughput estimate and
buffer levels when making video rate selection decisions.

• Conventional - Conventional [LZG+14] represents a rate-based adaptation
algorithm. It makes its choice on the next segment, by using an exponential
moving average of past segments delivery rate.

• The BOLA-E algorithm is an extension to BOLA adaptive algo-
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rithm [SUS16]. BOLA is a buffer-based algorithm that relies on Lyapunov
optimisation to maximise video rate and minimise stall (rebuffering) events.
The utility function increases with average bitrate, while the increase in
stalls reduces it. However, the algorithm is flexible to allow optimisation
of different QoE metrics (by defining different utility functions). BOLA-
E [SSS18] introduces a throughput estimate to improve startup, seek and
low-latency performance of BOLA. The throughput estimate is an average
of the last five chunk delivery rates.

• The LOGISTIC algorithm [SME15] is a buffer-based algorithm that selects
the next segment quality by mapping the buffer level to a target segment
quality. Logistic uses a log function to map buffer levels to video bitrate.

• The EXO algorithm is a hybrid type of HAS algorithm 8. For rate estima-
tion, it calculates the sliding median of a specified number of recent chunk
rates, where a chunk is taken into measurement only if the size of the chunk
is at least 512KB or download duration took at least 2 seconds. Intuitively,
median (resistant to outliers) also represents a slightly less conservative es-
timate compared to the harmonic mean. The buffer is used to decide for
requesting already downloaded segment with a higher rate. If the buffer
level is high enough, the algorithm will try to download the last segment
with higher quality. This is one approach in alleviating OFF phase and
improving overall quality.

3.2.3.3 Web behavioural traffic models

The web behavioural traffic model is based on previously published and widely
used studies regarding user behaviour during a web session and types of web
content.

Web clients are based on Firefox that is driven by Selenium, a web browser
automation tool9. A user typically opens a page, spends some time on it (dwell
time) before proceeding to the next page [TZS14]. The dwell times depend on
the type of the content and attention span of the user [TZS14]. Dwell times
are modelled with a Weibull distribution, whose scale parameter λ depends on
the type of content, as justified and detailed in [LWD10]. In over 80% of their
data, dwell times are in the range between 2 and 70 seconds. Selected web pages

8https://exoplayer.dev/
9http://www.seleniumhq.org/
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represent the top 250 most visited pages in the following categories [LWD10]:
Science, Travel, Recreation, Computers, Entertainment, Finance, Relationships,
Education, Society, and Vehicles. These categories were taken from [LWD10], for
which the authors have provided parameters to generate appropriate dwell times.
The HTTrack tool10 is used for downloading the entire webpages and storing it
on a local webserver. The median size for all webpages is 4058 kB, while 1st and
3rd Quartiles are 939.5 and 13007 kB, respectively. Very small page sizes (0.7 kB)
represent sites that only have a redirection link (e.g. www.google.com). Because
our experiments are controlled, web clients cannot access those links, which is
manifested as a not found page. Although not frequent, we decided to leave these
redirection links to simulate situations when the user open this type of page on
the Internet. When this happens, our client will immediately move to the next
page as they would in a real-world scenario.

The web user randomly selects a page, persists on it for some random time which
depends on the content [LWD10], and then proceeds to request the following
page. If a page loading time is greater than 15 seconds, the user abandons the
page, selecting the next one from the list [IT14].

The main issue with web browsers such as Firefox are the memory require-
ments limiting the number of concurrent clients running at the same time.
In a similar vein as dashc a scalable web behavioural browsing client is
needed. Many researchers analysed web content and user behaviour when brows-
ing [BC98, LGC07, HL99]. However, few web behavioural tools are released to
the research community. The existing ones (e.g. SURGE [BC97]) are developed
over two decades ago and do not represent the current webpage content architec-
ture. To fill the gap, the SPEED, Scalable Python wEb bEhavioural moDel, is
developed.

The Firefox web browser can be modelled as an on/off process [HL99] as depicted
in Figure 3.10.

The “ON” process consists of requesting and loading the webpage after the user
moves to the “OFF” phase (reading time of the page). Then, the user requests
the next webpage and process repeats. The webpage incorporates the main ob-
ject which holds the structure of a webpage, including information (links) about
additional elements (inline objects) such as images, scripts, and stylesheets. At
the transport layer, the client opens a TCP connection to download the main ob-
ject. After parsing the main object, the client starts parallel TCP connections to

10https://www.httrack.com/
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Figure 3.10: Simplified Web Behavioural Model

download the remaining inline objects. By default, Firefox uses up to six parallel
connections.

SPEED is based on aiohttp11 asynchronous HTTP client/server library, which
allows the opening of multiple parallel TCP connections to a web server. SPEED
doesn’t decode actual objects. This feature demands a custom creation of web-
pages and objects. Pries et al. [PMT12] performed large-scale measurements,
including one million webpages. From these measurements, the authors provide
statistical data about webpages, including details such as size and the number of
main and inline objects. These stats are modelled using well known statistical
distributions that provide the best fit to empirical measurements. Table 3.7 sum-
marises the model parameters used for the synthetic generation of webpages. The
remaining parameters (reading time) are modelled the same as for the Firefox-
based web behavioural model.

11https://aiohttp.readthedocs.io/en/stable/
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Table 3.7: Webpage content parameters [PMT12]
Parameter Mean Median Max Standard Deviation Best Fit

Main object size 31,561 Byte 19,471 Byte 8MB 49,219 Byte Weibull (28242.8,0.814944)
Num. of main objects 2.19 1 212 2.63 Lognormal µ= 0.473844, σ = 0.688471

Inline object size 23,915 Byte 10,284 Byte 8MB 128,079 Byte Lognormal µ = 9.17979, σ = 1.24646
Num. of inline objects 31.93 22 1920 37.65 Exponential µ = 31.9291

3.2.3.4 Performance metrics

To evaluate the performance of HAS algorithms, we analyse standardised QoE
metrics, such as average video bitrate, switching behaviour (e.g. stability), stall
frequency and duration.

The bandwidth utilisation metric captures the total amount of bandwidth that
all video clients are using. Even if they have equal shares of available bandwidth
(video clients streaming with the same bitrate), there is a chance that they do not
utilise the bandwidth efficiently. The average bandwidth utilisation represents the
percentage of bandwidth used over the session lifetime and is estimated as the
ratio of the transmitted data to the maximum amount of data that could have
been sent during the session activity.

The player instability metric (i) captures the frequency of performing quality
switches and is evaluated as [JSZ14, AABD12]:

i =
∑k−1

d=0 | bx,t−d − bx,t−d−1 | ·w(d)∑k
d=1 bx,t−d · w(d)

(3.1)

where k is usually set to 20 seconds, bx,t is the bitrate for client x at time t and
w(d) = k− d is a weight function for adding a linear penalty for recent switches.
Clients performing more quality switches have higher instability values.

Stall performance is one of the most critical factors that can influence the Quality
of Experience [SES+15]. A stall is experienced when the client is forced to pause
the video because it has insufficient data in its buffer. Stall duration is expressed
in second in all the results in the remaining chapters.

However, to compare algorithms performance, these metrics cannot be studied
independently. For example, an algorithm achieving the highest average through-
put but frequent stalls is inferior to a more cautious algorithm with no stalls, as
it provides a better end-user experience. Capturing subjective user experience
and mapping it to objective score is a challenging task. To alleviate this issue, we
select two QoE models developed for HAS. These models blend individual QoE
metrics to compute a score representing user QoE. Both models are derived from
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subjective testing of users grading video clips with various induced impairments.
The first model (Yao QoE) was derived from data collected in a lab environ-
ment [LDU+15]. This model shows a high accuracy for up to five minutes long
video sessions. Such limitation does not apply to the second model, which relies
on data crowdsourced from users watching videos posted on a website [DDR13].
However, in their evaluation, the authors did not consider stall events. As a re-
sult, we select an enhanced model [PFC+15], which extends the preceding model
with stall information (Clay QoE). The following equations summarise the scores
derived from these QoE models:

Clay_QoEscore = ν ×QoEmax − (κT Q × IT Q + κV Q × IV Q) (3.2)

Y ao_QoEscore = ν ×QoEmax − (κT Q × IT Q + κV Q × IV Q)+

+Υ(IT Q, IV Q)
(3.3)

Where IT Q, and IV Q, represent temporal and visual quality impairment factors,
respectively. Similar, κT Q and κV Q represent their respective weights. Temporal
quality impairments refer to degradation due to initial delay and stall events (stall
number and stall duration). Analogously, visual quality impairments take into
account average rate and switching behaviour. QoEmax indicates the maximum
value (score) of QoE or growth factor depending on QoE model. Similar to
impairment weights, ν is a weight for the QoEmax score. Finally, Υ(IT Q, IV Q)
represents a cross-effect function of impairment factors occurring simultaneously.
When multiple impairments happen, their cumulative subjective effect is not
simply the sum of individual impairment [LDU+15]. Function Υ compensates for
this effect.

The Yao QoE score starts at 100 and is reduced by impairments, compensated by
Υ function of the stall, switching and initial delay impairments. The Clay QoE
initial score is based on average rate, reduced by impairments capturing stall
and switching impairment. Clay QoE doesn’t include cross-effect compensation
function Υ.

Analysing both QoE models across different traces, the following observations
are made: Both models perceive stall impairments similarly with high correla-
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tion (0.9); Models calculate switching impairment differently (Clay uses standard
deviation between rates, while Yao relies on the difference in Video Quality Met-
ric (VQM) between chunks); Unlike Clay, Yao uses a cross-effect compensation
function which limits the negative impact of multiple impairments; While Clay
QoE is calculated over the entire session, Yao QoE calculation is split into 1-min
windows, for which a QoE score is calculated separately. Total QoE equals an
arithmetic average of five windows.

Because of the observations mentioned above, when applicable, we use the ge-
ometric mean of the two models to represent an overall QoE score. We chose
geometric mean instead of the arithmetic mean because model scores are on a
different scale. Next, we outline the main QoE metrics and their characteristics.

One of the primary imperatives for the networks with finite available resources
(e.g. Internet) is sharing resources equally among competing users, together with
high resource utilisation. However, quantifying this proportion through a per-
formance metric is challenging. Usually, some Quality of Service (QoS) metric
would be used as a basis for representing this fair share among users (e.g. for
video streaming applications, average representation rate for each user is often
used to depict this ratio). Nevertheless, a fair QoS allocation does not necessarily
translate to fair QoE allocation [Bri07, MFA15].

Therefore, we opt for the preceding QoE model instead of objective met-
rics introduced earlier. Jain fairness index was one of the most popular
fairness metrics used for depicting how equitably resources had been shared
among multiple users [JCH98]. However, in their recent work, Hoffeld et
al. [HSKHV17, HSKHV18] point out limitations of the Jain index. In summary,
the following properties are not satisfied with the Jain index:

1. Scale and metric independent - This property means that any linear
transformation of underlying QoE metric should not change the resulting
fairness index.

2. Intuitive - Highest index value should be equal to an entirely fair system,
while the lowest index value means a minimum fair system

3. Deviation symmetric - index should not depend on sign and value of
deviation from the mean value

4. QoE level independent

Improving Video Streaming Experience
through Network Measurements and Analysis

56 Darijo Raca



3. Experimental Methodology 3.3 Conclusion

As a result, the authors propose a new QoE fairness metric, F-Index defined as:

F = 1− 2σ
H − L

(3.4)

where σ represents a standard deviation of QoE values assigned to each user,
while H and L are upper and lower bound of QoE metric, respectively.

For web clients, we capture Page Loading Time (PLT) as a key performance met-
ric. Additionally, we introduce Web QoE based on PLT as defined in [ERHS12]:

Q(t) = −a× log(PLT ) + b (3.5)

with a = 1.5 and b = 4.25.

PLT is a more intuitive metric than web QoE. Also, the web QoE model is a
function of PLT only. However, for the experiments performed in Chapters 6
and 7, multiple metrics relative to some value are shown in the same figure. For
this type of plot, depicting web QoE is more intuitive than PLT (higher values
for web QoE indicate better performance while in the case with PLT opposite is
true). Still, both metrics are shown in the following chapters.

3.3 Conclusion

This chapter presented tools used for performance evaluation in HAS-based sys-
tems and represents the foundation for the following chapters, which uses the
presented tools for analysis and proposal of the novel schemes to improve video
QoE.

In particular, in addition to presented tools, the chapter made two contributions:

• The 4G trace dataset, with low bandwidth throughput sampling granu-
larity, and client-side cellular channel and context information, from a di-
verse set of routes across two mobile operators (production) and a large
range of clients in a multi-cell cluster (synthetic). The throughput values
dataset permit detailed analysis with respect to oscillation in the transmis-
sion medium, while the channel and context metrics of the dataset far exceed
the original goal of the dataset concerning HAS evaluation for throughput
prediction presented in following chapters.

• Flexible, scalable, and customizable real-time framework for testing HAS
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algorithms in wireless and wired environments.
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Chapter 4

Design Issues with Throughput
Prediction for HAS algorithms

This chapter explores integrating throughput prediction in three HTTP adaptive
streaming (HAS) adaptation algorithms and quantifies its impact on overall user
Quality of Experience (QoE).

The reason for the potential benefits of throughput prediction for HAS adaptation
algorithms comes from HAS design itself. The main building component that
goes into the decision-making process for the next chunk quality of rate-based
algorithms is a throughput estimate from a bandwidth estimator. This single
value represents a starting point for algorithm logic, an indicator of how much
throughput is available. In other words, this value can be seen as throughput
prediction. While both terms can be used in this context, there is a distinct
difference. Estimation refers to estimate future values based on by smoothing
history values over some predefined window. However, prediction in this context
involves trying to predict (infer) actual future value. For the “pure” buffer-based
algorithms throughput prediction wouldn’t have any impact as algorithm logic
solely relies on buffer levels. However, most of the state-of-the-art algorithms use
both information to make a more informed decision.

This step is natural due to the modular design of HAS algorithms, that facili-
tates making changes to the adaptation logic, and would allow existing clients
to take advantage of predictions when they are available. Also, neither of previ-
ous studies [ZEG+15, MTAA+16] considered applying prediction to existing HAS
approaches. These studies propose prediction-based HAS algorithms and demon-
strate that they can improve the streaming performance in comparison to typical
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4. Design Issues with Throughput
Prediction for HAS algorithms

4.1 Analysis of traditional bandwidth
estimators used in HAS players

HAS algorithms.

More specifically, this chapter focuses on addressing the following research ques-
tions:

1. How the predicted throughput should be integrated in the adaptation algo-
rithms?

There are two choices, feeding prediction values directly to adaptation logic
or through bandwidth estimator and perform additional smoothing.

2. How the predicted throughput horizon may influence QoE?

Prediction horizon is simply how far in future prediction value is referring
to.

3. How inaccurate prediction may impact the streaming performance and user
QoE?

In practice, throughput predictions will be contaminated with the error.
However, the effect of error level impact in not apparent at first, justifying
the further analysis

These questions are investigated in a real experimental testbed explained in Sec-
tion 3.2.1 that uses collected real 4G cellular traces (Section 3.1) and real video
content. As a result of these experiments, the following observations are made:

• Assisting HAS clients with accurate predictions improve users QoE by up
to 40% for all tested algorithms

• Longer prediction horizon helps in eliminating stall events and improving
overall switching behaviour

• Even with the 30% induced average prediction error, prediction assisted
HAS algorithms can achieve 14% improvement in user QoE

4.1 Analysis of traditional bandwidth estima-
tors used in HAS players

By its nature, quality adaptation algorithms have a modular design. The band-
width estimation module captures the network state, while the application moni-
toring module captures the video player state by monitoring playback buffer and
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streamed video quality. Finally, the bitrate adaptation module combines informa-
tion from previous modules to decide the quality of the chunks to be requested.

For the evaluation, three algorithms: ARBITER+, ELASTIC and EXO (see Sec-
tion 3.2.3.2 for details about each algorithm) are selected. Selected algorithms
use information from both bandwidth estimators, as well as from buffer occu-
pancy when deciding on the rate of the next chunk. As bandwidth estimators,
ARBITER+, ELASTIC, and EXO use Exponential Weighted Moving Average
(EWMA), Harmonic and Median, respectively.

Figure 4.1 shows a time-series of instantaneous throughput (blue line) for a highly-
variable trace (see Section 4.3.1) taken from previously collected 4G dataset (Sec-
tion 3.1). In addition to actual throughput, throughput estimates are plotted
from the bandwidth estimators used by each algorithm, i.e. ARBITER+, EXO,
and ELASTIC (red, green, and yellow line, respectively).
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Figure 4.1: Time-series of instantaneous throughput measured every second

EWMA shows the highest average throughput among all bandwidth estimators.
Compared to the actual throughput, EWMA tends to overestimate throughput
(58% of the times) while harmonic and median show neutral bias, and overall
lower values compared to EWMA. Trend-wise, EWMA follows actual through-
put closely with resistance to small variations due to smoothing effect. Instead,
harmonic reacts to throughput changes slower than both EWMA and median.
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Figure 4.2: Boxplot of residual error for different bandwidth estimators

To further showcase the limitation of current throughput estimation mechanisms,
we analyse the absolute value of residual error between throughput estimates and
the actual download rate of a chunk. Figure 4.2 shows boxplots of the residual
error for EWMA, median, and harmonic, measured while experimenting with the
selected 4G trace. Figure 4.2 shows that EWMA achieves, overall, the lowest
residual error while median and harmonic perform comparable. Nevertheless,
EWMA’s average residual error is still 50% (green dot).

The selected trace is characterised with frequent throughput oscillation causing
high estimation error of analysed bandwidth estimators. For traces with low
variation, the performance of bandwidth estimation would improve, but as shown
in Section 4.3.2.2, accurate throughput prediction can still significantly improve
user QoE.

From the above analysis, it is intuitive to ask what will happen with the perfor-
mance of HAS algorithm if bandwidth estimation accuracy improves.
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HAS algorithm

Next research challenge is how to feed the prediction value to the algorithm logic.
In previous studies [ZEG+15, MTAA+16] authors design specific “prediction-
aware” adaptation logic assuming that accurate value is available. However, to
only quantify the impact of accurate predictions on HAS performance, design
logic of existing algorithms should be intact. Intuitively, this constraint leads to
only two ways of feeding predictions to existing algorithms.

The predicted throughput can be integrated into the adaptation logic in two
different ways. First, the predicted throughput may replace the entire throughput
estimation in the algorithm (E-type). Alternatively, the predicted throughput
may be used to replace the estimated throughput samples (S-type). Figure 4.3
shows both E-type and S-type approaches.

The following research question is, what throughput prediction represents regard-
ing the future? When the chunk is downloaded, HAS algorithms decide for the
bitrate quality of the next chunk. Therefore, the prediction value should reflect
only the near future. In steady-state, this future is equal to chunk duration. This
way, buffer drain rate (i.e. playback) and arrival rate of a chunk are equal. How-
ever, as throughput varies over time, the algorithm would try to match the arrival
rate. Note that bitrate quality of chunk is average bitrate over all chunk sizes
divided by chunk duration. Matching arrival rate for every chunk would lead to
frequent switching between different bitrates thus lowering user QoE. This leads
to another role of bandwidth estimator. It does not only estimate throughput
for the next chunk, but it also smooths the estimate value so that switching is
minimised.

Comparing S-type and E-type predictions, E-type prediction would result in more
switches compared to S-type prediction, especially if the prediction horizon is rel-
atively small. Prediction horizon is defined as averaged predicted value over next
x seconds into the future. Also, while longer horizon improves switching per-
formance, stall performance can decline because longer horizon can hide sudden
drops in throughput (due to averaging).

Another factor that affects performance is the bandwidth estimator. Harmonic
and median estimators are by design more conservative compared to EWMA esti-
mator. In this case, the E-type approach could have a more positive impact than

Improving Video Streaming Experience
through Network Measurements and Analysis

63 Darijo Raca



4. Design Issues with Throughput
Prediction for HAS algorithms 4.3 Evaluation

S-type as the average quality would increase and potentially outweigh switching
instability.

The prediction engine is responsible for obtaining throughput predictions. This
prediction can come from the network [KMC17] or from the device itself (by lever-
aging radio metrics and machine learning techniques, see Chapter 5). For each
of these approaches, the impact of the throughput horizon on the performance is
further investigated.

Figure 4.3: Two approaches in feeding prediction to HAS algorithm

4.3 Evaluation

For evaluation, a testbed for wireless experiments is used, described in Sec-
tion 3.2.1. The wireless environment is more challenging for HAS players com-
pared to wired (on average throughput oscillations in a wired environment are
significantly less frequent compared to wireless). All the prospective evaluation
is performed on the wireless channel, more specifically in 4G networks. For band-
width traces, the collected 4G dataset described in Section 3.1 is used. As previ-
ously mentioned in Section 4.1, three HAS algorithms are analysed: ARBITER+,
ELASTIC, and EXO. The control channel (Android Debug Bridge (ADB)) is used
to feed ideal predictions back to the device. Video sessions are 5-minutes long
with every scenario repeated ten times and results averaged. Finally, Table 4.1
summarises QoE metrics and its notation.
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Table 4.1: QoE Metrics Notation

Metric Summary
ravg Average bitrate (Kbps)
iavg Average instability (i), Section 3.2.3.4
snum Average number of stalls
sdur Average stall duration (s)
QoE Geometric mean of Clay and Yao QoE,

Section 3.2.3.4

4.3.1 Trace classification

Based on the results in Mangla et. al [MTAA+16], the standard deviation of
throughput is considered within a trace as a discriminant of (potentially) good or
bad input traces. The hypothesis is that prediction will be most effective in the
presence of traces with high throughput standard deviation (in particular when
the standard deviation is higher than the highest representation rate resulting in
bandwidth fluctuations spanning across all available rates). From the dataset, we
select highly variable traces with a standard deviation in the range [4.2, 6.3]Mbps,
and low variable traces with a standard deviation in the range of [0.6, 1.2]Mbps
are selected. We further filter out traces with very high average throughput
(6Mbps), i.e. average throughput larger than the highest video quality (4.3Mbps).
The rationale here is to avoid testing scenarios where all algorithms converge to
the highest quality level regardless of throughput variation (as fluctuations will
get averaged out by the throughput estimator). Out of 130 traces, 26 traces
satisfied the latter constraint. As expected, the majority of high-variable traces
are collected in the highly mobile environment (car), while low-variable traces
where collected while devices were static or moving with low velocity (pedestrian).

4.3.2 Accurate predictions

In the following, the impact of integrating error-free throughput predictions with
different horizons on video QoE is explored. Based on the discussion at the begin-
ning of this section, different prediction horizons are evaluated as longer horizons
will produce more smoothed values leading to better switching performance (less
number of switches) but could potentially decrease average bitrate quality and
have deteriorated impact on stall performance.

As a design choice and with no loss of generality, three prediction horizons as
multiples of chunk duration, i.e. 4, 8, and 12 seconds are considered. In the
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following plots, prediction horizons are associated with the red, blue, and green
colour, respectively. As a notation mark, we use S to denote usage of prediction
as a sample (S-type) and E for prediction as an estimate (E-type). We further
visually separate sample and estimate results using a diagonal pattern. Finally,
note that each metric is normalised with respect to the original algorithm perfor-
mance (referred to as no-prediction setup), whose actual metric values are offered
in the figure.

4.3.2.1 Traces with high variability

Results obtained when considering traces with high variability, i.e. traces char-
acterised by a high value of throughput standard deviation are analysed first.
Figure 4.4, 4.5, and 4.6 show that integrating prediction noticeably improves
the QoE metrics of all adaptation algorithms. Specifically, prediction enables all
algorithms to reduce/eliminate stalls. Additionally, prediction enables the algo-
rithms to reduce the switching instability. In particular, average instability can be
reduced by 12%-37%. Furthermore, improving the accuracy of bandwidth estima-
tion enables the algorithm to enhance their selected chunk quality. For example,
integrating prediction fixes throughput underestimation with ELASTIC and EXO
leading to a higher chunk quality. On the other hand, integrating the prediction
with ARBITER+ results in a lower average quality bitrate. While EWMA tracks
changes in throughput reasonably well, most of the time it overestimates avail-
able throughput, causing a higher average quality bitrate (see Figure 4.1 for the
illustration). All these improvements add up thus boosting the overall user QoE
by 23%-55%.

Increasing horizon duration has a positive impact on stall performance and switch-
ing behaviour. Extending the horizon results in averaging over a longer period
and thus reducing variability between subsequent prediction values. This leads
to improved switching performance. Longer horizon enables a client to promptly
reduce quality and avoid stalls when the throughput drops for a relatively long
time that can deplete the buffer. For all algorithms, 3-chunk horizon shows the
highest gain. Longer horizon improves performance even further. However, after
the horizon value gets too high (although not shown, this value for an analysed
subset of traces is 28-second horizon), overall QoE performance starts to deteri-
orate as algorithms are unable to avoid stalls.

Results illustrate that the favoured prediction integration approach varies among
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different HAS algorithms. Results show that ARBITER+ favours S-type inte-
gration while ELASTIC and EXO favour E-type integration. This is attributed
to the nature of EWMA that features a memory element in the throughput es-
timation. This feature introduces temporal correlation to subsequent estimates
leading to improving both stability and quality rate. By passing the throughput
as a direct estimate, these benefits are invalidated leading to a degraded streaming
performance. On the contrary, conservative estimators (e.g. harmonic mean and
median) tend to suppress temporal improvement in network conditions. Note
that the median would overlook high throughput samples until they dominate
and harmonic mean would deem them outliers. By supplying the throughput di-
rectly to the adaptation logic, the adaptation logic would have a better vision of
the underlying network changes. However, such benefits become more noticeable
with larger prediction horizons.

Figure 4.4: EXO: Performance evaluation of QoE metrics for high-variable band-
width traces (The metrics are normalised to the no-prediction case with numbers
above bars representing the value of each metric for the no-prediction case)
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Figure 4.5: ELASTIC: Performance evaluation of QoE metrics for high-variable
bandwidth traces (The metrics are normalised to the no-prediction case with num-
bers above the bars representing the value of each metric for the no-prediction
case)

4.3.2.2 Traces with low variability

Next we focus on results obtained when considering traces with low variability,
i.e. traces characterised by a low value of throughput standard deviation. Fig-
ure 4.7, 4.8, and 4.9 show that HAS algorithms achieve stall-free sessions due
to relatively low variation in available throughput. HAS algorithms can counter
small variance in bandwidth throughput, as averaging smooths out variations.
However, even with the absence of stalls, integrating prediction helps in improv-
ing QoE metrics across different algorithms. In particular, prediction improves
average instability by 5%-38%. Average representation rate shows a similar trend
for HAS algorithms as for the high-variable case. Accurate bandwidth estimates
correct throughput underestimation with ELASTIC and EXO, while reducing
overestimation for ARBITER+. As a result, overall user QoE improves by 7%-
11%.

Similar to the previous scenario, increasing horizon improves switching stability.
Overall, the 3-chunk horizon gives the best performance across all algorithms.

Our findings confirm observation from the previous section, with ARBITER+
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Figure 4.6: ARBITER+: Performance evaluation of QoE metrics for high-
variable bandwidth traces (The metrics are normalised to the no-prediction case
with numbers above the bars representing the value of each metric for the no-
prediction case)

algorithm showing the highest boost with S-type prediction, while ELASTIC and
EXO prefer E-type prediction.

4.3.3 Inaccurate predictions

In practice, obtaining an ideal prediction is unattainable. To evaluate the impact
of prediction errors, errors are induced to throughput values for different horizons.
Similar analysis has been carried out in [MTAA+16], where the authors add errors
to their prediction values. However, their approach is not applicable to existing
HAS algorithms as they assumed having multiple disjoint prediction values for a
future horizon, with error increasing as the horizon increases (e.g. for 64-second
horizon average prediction value is provided for every 4 seconds). On the other
hand, having one prediction value for the next x seconds is considered. The error-
induced predicted throughput sample RE

Hki
is the sum of ideal value and error,

modelled as:
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Figure 4.7: EXO: Performance evaluation of QoE metrics for low-variable band-
width traces (The metrics are normalised to the no-prediction case with numbers
above the bars representing the value of each metric for the no-prediction case)

RE
Hki

= RHki
+RHki

×N(0, σ2) (4.1)

where RHki
is a sample i of ideal average throughput over next k seconds (hori-

zon k), N(0, σ2) represents added error term represented as Gaussian (normal)
distribution with zero mean and σ2 variance.

The absolute value of residual error (ARE) is the difference between the actual
predicted value and the error-induced values. As a result, mean ARE is mean
absolute value of the product of error term and throughput sample (|E(RHk ×
N(0, σ2)|). Different values of σ2 (5, 10, 20, 30) are used to induce an ARE of
(5%, 10%, 20%, 30%), respectively.

The impact of adding errors to prediction values is analysed. Experiments are
conducted for the traces with high variability only. 3-chunk horizon is used as it
shows the highest improvement across all HAS algorithms. ARBITER+ incor-
porates S-type prediction, while direct estimate is used for ELASTIC and EXO.
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Figure 4.8: ELASTIC: Performance evaluation of QoE metrics for low-variable
bandwidth traces (The metrics are normalised to the no-prediction case with num-
bers above the bars representing the value of each metric for the no-prediction
case)

Figure. 4.10, 4.11, and 4.12 show performance across different QoE metrics and
algorithms. Similar to previous sections, normalised values are shown against
performance of each algorithm without prediction as the reference point (black
dotted line). We use red colour to mark ideal prediction, while predictions with
5%, 10%, 20%, and 30% are coloured blue, green, yellow and gray, respectively.
There are no significant differences in average rate quality across different error
levels for all HAS algorithms. In particular, even with the 30% induced prediction
errors, the difference to (ideal) rate quality is less than 2% for ARBITER+ and
EXO, and less than 6% for ELASTIC. On the other hand, switching behaviour
and stall performance worsen with the error increase. On average, average insta-
bility increases by 60%. This results in higher instability than in the no-prediction
case when the error reaches 30%. Intuitively, overall user QoE drops with the
increase in error levels. However, 5% prediction error lowers QoE by 20% and 4%
compared to the ideal prediction for EXO and ARBITER+, respectively, while
the loss in QoE is negligible with ELASTIC. Overall, this limits prediction im-
pact. This result is intuitive, as ELASTIC and ARBITER+ employ additional
functions limiting bandwidth estimation effects (e.g. ELASTIC uses more cau-
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Figure 4.9: ARBITER+: Performance evaluation of QoE metrics for low-variable
bandwidth traces (The metrics are normalised to the no-prediction case with num-
bers above the bars representing the value of each metric for the no-prediction
case)

Figure 4.10: Performance evaluation of QoE metrics for high-variable bandwidth
traces using error-induced predictions (EXO)

Improving Video Streaming Experience
through Network Measurements and Analysis

72 Darijo Raca



4. Design Issues with Throughput
Prediction for HAS algorithms 4.3 Evaluation

Figure 4.11: Performance evaluation of QoE metrics for high-variable bandwidth
traces using error-induced predictions (ELASTIC)

Figure 4.12: Performance evaluation of QoE metrics for high-variable bandwidth
traces using error-induced predictions (ARBITER+)
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tious approach by insisting on minimising stall events). On the other hand, EXO
relies heavily on rate estimation as the additional module that monitors buffer
occupancy is only activated for chunk replacement function. As a consequence,
error-induced prediction doesn’t cause high QoE drop. Still, applying predic-
tion with the significantly high errors (30%) provides overall higher QoE than in
no-prediction case. The average increase in QoE across all algorithms with the
30% prediction error is 15%. While this result may be surprising, there are three
leading causes of this. First, algorithms use predicted value as a guide and ap-
ply additional logic limiting the overall impact of prediction. Second, algorithms
operate on a discrete set of bitrate rates. On average, the distance between
subsequent rates is 30%. As long as the average error is below this threshold,
the algorithm will have a significant boost in overall QoE. Third, bandwidth es-
timators produce significantly higher prediction errors (around 50% and more,
depending on bandwidth estimator type).

4.4 Conclusion

This chapter investigated how to integrate throughput prediction with state-of-
the-art HAS algorithms and quantify its impact on overall user QoE. The different
ways prediction can be delivered to the player’s bandwidth estimator, either as
a direct estimate or a sample were explored. Furthermore, prediction horizons
beyond one chunk duration are explored and examined how different levels of
error-induced predictions negatively impact the user experience.

Regardless of the algorithm in use, user QoE improves by a significant 23% in
the presence of accurate throughput prediction. Furthermore, the highest QoE is
observed in the presence of longer throughput prediction horizons. Most notably,
accurate prediction eliminates stall events in an environment with highly fluc-
tuating throughput. While error-induced predictions lower significantly the user
QoE in some instances, it still provides a clear 15% gap on average, compared to
HAS algorithms with no prediction.

The presented results are very encouraging and motivate the next chapter. The
next challenge is moving from “offline” analysis to obtaining accurate predictions
in real-time. By leveraging channel information, the next chapter introduces a
machine learning framework for throughput prediction.
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Chapter 5

Empowering Video Players with
Machine Learning based
Throughput Prediction in
Cellular Networks

The previous chapter motivated the need for accurate throughput predictions,
showcasing the significant positive impact on HTTP adaptive streaming (HAS)
Quality of Experience (QoE). This chapter presents novel accurate throughput
prediction in cellular networks through leveraging Machine Learning (ML) tech-
niques. Also, this chapter builds on results in the previous chapter, performing a
similar analysis of HAS algorithms in cellular networks. Furthermore, analysis is
extended to a real operational cellular network by implementing the ML model
on a real device.

The achievable throughput at any mobile device is coordinated by protocols that
operate at diverse time scales, e.g. radio channel scheduling at millisecond-level vs
congestion control at hundreds of milliseconds to seconds level. Furthermore, the
base station (BS) scheduler allocates the wireless resources based on the band-
width demand of each device and its channel conditions. While BS schedulers
are vendor-specific black boxes, the scheduling algorithms represent a collection
of predefined steps and actions and thus exhibits consistent behaviour (i.e. for
the same inputs, it will produce the same output). Hence, ML represents an
attractive methodology to extract underlying information and correlations in re-
source scheduling and make accurate throughput prediction for users based on
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the abundantly available cellular data.

This chapter makes the following contributions:

• A novel ML-based throughput prediction engine for use by mobile devices
in cellular networks. This engine predicts average network throughput for a
future time window (horizon) based on radio-specific metrics and network
throughput observed over a historical window

• A novel statistical data summarisation method used by the prediction en-
gine that significantly improves the throughput estimation accuracy in com-
parison to both ML throughput estimation based on raw data samples and
application-level bandwidth estimation commonly used in HAS clients. This
result illustrates not only the predictive power of radio metrics but also the
effectiveness of our summarisation technique.

• Three HAS algorithms are evaluated with and without a ML-based predic-
tion engine. Results are based on 4G cellular traces, real video content and
an Android client of a broadly-adopted video player, ExoPlayer. The eval-
uation considers the impact of essential parameters, such as chunk duration
and prediction horizon. In all the tested scenarios, the performance metrics
show a clear improvement when using ML, leading to better user QoE.

• To complement the lab-based evaluation, a field evaluation is performed in
an operational cellular network. This exercise confirmed results obtained
in lab-controlled environment and to identify challenges that merit further
research and will be of interest to practitioners seeking to implement ML-
based prediction in real systems.

Combining ML with radio channel information allows achieving high prediction
accuracy with 90% of errors (the absolute relative difference between actual and
predicted throughput) below 18%. All evaluated adaptation algorithms improve
their stall (up to 85%) and switching (up to 40%) performance in all tested
scenarios. The average quality also improves in most scenarios. Overall, the
tested algorithms show improvements of 6%-33% in QoE score.

5.1 Analysis of HAS player architecture design

HAS algorithms commonly consider combinations of network and/or application
states for the quality selection decision, as illustrated in Figure 5.1. The estimator
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module captures the network state, while the application monitoring module cap-
tures the video player state by monitoring the playback buffer and streamed video
quality. The Estimator consists of a sample processor sub-module (not shown in
the figure) responsible for collecting significant statistics from the Chunk loader
module in order to estimate the available bandwidth for the chunk. For exam-
ple, depending on the algorithm design, it can track the rate sample for each
chunk or multiple rate samples per chunk. The sample processor feeds the sam-
ple array to one of the smoothing functions, from which the final throughput
estimate for the next chunk is passed to the adaptation logic module. Finally, the
adaptation logic module combines information from the estimator and application
monitoring modules to decide on the quality of the chunks to be requested. The
Chunk loader module carries out the decision from the adaptation logic module
and requests the next chunk. While most of the literature focuses on enhancing
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Figure 5.1: Simplified HAS player architecture and addition of the measurement
and prediction modules

adaptation logic, little or no work has been done in improving bandwidth estima-
tion. Most of the algorithms employ one of the standard smoothing techniques
(e.g. arithmetic, harmonic or exponential moving average to name a few) applied
over the n last measured rate samples, where rate samples can be chunk, time or
size based. For example, ARBITER+ [ZRS18] combines chunk and time-based
sampling with an exponential moving average for bandwidth estimation.

The approach taken in this chapter is to leverage Android Operating System
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(OS), which provides Application Programming Interfaces (APIs) for capturing
measurements of radio channel metrics, velocity and throughput samples. This
capability is used to build a prediction engine that captures those metrics at
one-second granularity to provide more accurate throughput prediction (see Fig-
ure 5.1, dotted boxes). As a result, this module feeds the predicted value to the
estimator module. The Estimator module may process this value through stan-
dard smoothing techniques or feed it directly to the adaptation logic to improve
the decision-making process for the next chunk.

5.1.1 Revisiting bandwidth estimation techniques

Section 4.1 revealed low prediction power of traditional bandwidth estimation
techniques in cellular networks. Also, results in Chapter 4 illustrate the positive
impact of longer prediction horizons on QoE. To provide a fair comparison, this
section extends the analysis from Section 4.1. The analysis is repeated as in
Chapter 4 for cases with no throughput guidance. The estimate is compared
against a delivery rate of a requested chunk (information from logs is used allowing
calculating delivery rates of “future” requested chunks). This case is labelled
as “1-chunk”. Furthermore, analysis is extended by looking beyond one chunk.
For “2-chunk” and “5-chunk” scenarios, the average value of delivery rates is
calculated for the next two/five chunks requested. Figure 5.2 depicts accuracy of
three classical bandwidth estimation techniques, Exponential Weighted Moving
Average (EWMA), average and median. For accuracy, the absolute value of the
residual error between throughput estimates and the actual average download
rate of chunks is analysed.

The main takeaway from Figure 5.2 is that none of these techniques exhibit
high estimation (not prediction) accuracy regardless of how far into the future is
looked.

To further illustrate potential gain in improving the estimator module, Figure 5.3
shows one randomly selected video session played using Exoplayer and its default
HAS algorithm, with and without accurate throughput guidance. With accurate
prediction, the player starts at a higher quality and settles to the optimal rate
earlier (i.e. highest) than when relying on classical bandwidth estimation (e.g.
median). Furthermore, prediction helps to recognise the level of drop in band-
width more accurately, forcing the client to switch to the lowest quality quickly.
As a result, buffer underrun is cut by 90%, improving the overall user experience.
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Figure 5.2: Accuracy of different throughput estimation techniques for different
prediction horizon values

Figure 5.3: Comparing ExoPlayer sessions with throughput prediction (green, 12
sec. horizon) and without (blue)
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5.2 Throughput prediction via ML

This section presents the proposed throughput prediction approach and exten-
sively evaluates its performance under different scenarios and configurations.
First a possible architecture for the throughput prediction system is outlined.
While the majority of work is centred around device-based prediction (explained
in the following section), the throughput prediction architecture considers both
approaches, including both network and device-based cases.

5.2.1 Throughput Prediction System Overview

There are three main components of the throughput prediction system: the
Collector, Predictor and Trainer, as depicted in Figure 5.4. The Collector
gathers measurement metrics and prepares them for the Trainer and Predictor.
The Trainer creates and updates the prediction models using training records
that include both data and ground-truth. The Predictor translates online col-
lected data records to a throughput estimate.

Figure 5.4 also illustrates different architectural options for each of these compo-
nents. The Collector aggregates a combination of device-level and network-level
data through existing interfaces. Device-level data collection is distributed, and
hence scalable, but only allows for a local view of the operating context and
hence can be less accurate than combined network-level and device-level data.
The Trainer is typically located in-network (e.g. a datacenter) but can also be
located in the device. Training the model in-network can leverage the processing
power of datacenters resulting in more robust prediction models. Alternatively, a
device-based trainer can pose a bottleneck due to limited computing and power
capacities of end-devices. The Predictor can run at the device or in-network.
A device-based predictor would be usually limited to device-level information
but facilitates low prediction delays for end-device applications. Alternatively,
a network-based predictor involves both delay and communication overhead but
can have access to network-level data. Hence, throughput prediction systems
have various architectural choices featuring different advantages and disadvan-
tages. Figure 5.4 illustrates two examples for the architecture of the throughput
prediction systems. The first features a device-based collector and predictor with
an in-network trainer. The second utilises a full network view with a network-
based collector, trainer, and predictor components.
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Figure 5.4: Components, implementation, architectural options and examples of
AI-driven throughput prediction system

5.2.1.1 Collector

For the Collector, the selected metrics and their representation are the key
design elements. These metrics can be classified as channel-specific data (e.g. CQI
- Channel Quality Indicator), network-specific data (e.g. cell load), application-
specific (e.g. application throughput), and context-specific data (e.g. mobility
mode).

Device-level data represents an individual device environment and can be col-
lected at the mobile device using its Operating System (OS) Application Pro-
gramming Interface (API), e.g. Android telephony. However, this approach relies
on OS implementation and typically have a medium time resolution, e.g. one-
second. While device metrics can be collected at millisecond granularity, this
requires specialised software and hardware equipment. In Section 5.5, we further
illustrate the impact of higher resolution metrics, collected using unconventional
methods, on the prediction accuracy.

Network-level data represents a comprehensive view of metrics for multiple users
served by one BS or more BSs. In the current generation (i.e. 4G) of cellu-
lar networks, there is no unifying approach for measuring and reporting various
network-level metrics. Different vendors use different approaches to collect and
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report various metrics, requiring immense effort to consolidate data from various
sources.

5.2.1.2 Predictor & Trainer

The Predictor and Trainer are tightly coupled. For these two components, the
selection of the machine learning algorithm is the most crucial design decision.

5.2.2 Proposed prediction technique

In the proposed design, the focus is on the prediction of average throughput
rather than instantaneous throughput. The needs of HAS applications motivate
this decision. To illustrate, when a streaming client downloads video chunks,
throughput fluctuations over the future x seconds is of little concern for the player.
What matters is the average throughput that the video player will observe in the
next x seconds, as this will drive the behaviour of the video adaptation algorithm.
x is the prediction horizon and it is an application specific design parameter. The
data driving this prediction includes both radio metrics and throughput samples
collected at the device at arbitrary granularity. Granularity of 1 second is used;
this is driven by the sampling period used in capturing radio data as explained
in Chapter 3.1. However, the proposed prediction technique can also be used in
conjunction with other sampling time scales. A typical prediction engine input
would consist of one or more historic radio metrics and throughput samples. In
the following sections, several scenarios for the combination of prediction horizon
and history length are investigated. The notation used is PyFx, where Py denotes
the past y seconds of historical data, and Fx denotes a prediction horizon of x
seconds. In Section 5.2.5, the impact of varying Py and Fx on the prediction
accuracy used is shown.

The combination of channel conditions and the current state of a cell largely
determines the number of allocated radio resources blocks; this translates to
achievable throughput at the device. To capture these dimensions, the following
radio channel metrics in conjunction with physical mobility speed (in kph) and
historical application throughput are used (more details about each metric can
be found in Chapter 3.1):

• Reference Signal Received Power (RSRP)

• Reference Signal Received Quality (RSRQ)
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• Signal to Noise Ratio (SNR)

• Channel Quality Indicator (CQI)

• NRxRSRQ, NRxRSRP

• Downlink Throughput/Uplink Throughput

Random Forest (RF) is used as the ML algorithm. RF [Bre01] represents an
ensemble/boosting learning method for regression and classification tasks. The
main reasons for selecting the RF are the following:

1. RF works by growing a collection of decision trees (weak learners) and then
making a prediction by taking the mean of individual trees. This approach
reduces overfitting because each tree is constructed on a randomly selected
subset of features. They are further de-correlated (which minimises the
overfitting) by considering a random subset of features for each split of the
decision tree.

2. RF can be used for feature ranking, enabling analysis of the importance
of each metrics used for training. Finally, it requires minimal tuning
(the number of trees is the most critical hyperparameter). Also previous
studies show that RF outperforms other ML techniques for this problem
space [TKV18, RZS+17].

5.2.2.1 Quantile summarization techniques

When applying machine learning techniques, the first step includes feeding data
without any processing (except normalization methods). For throughput predic-
tion, the full history of each metric (raw in the list below) is used. However,
classical ML algorithms usually require high-level features extracted from raw
data (i.e. feature engineering) to achieve high accuracy. For example, history
may be summarised, e.g. by the average value. However, the average and entire
history can be affected by outliers and can react slowly to changes if maintain-
ing a long history. Having outliers in real data is an unavoidable hurdle. For
throughput prediction, capturing patterns based on historical data is the main
interest. Instead of feeding every sample collected at the arbitrary time inter-
val to the ML algorithm, only key values that best summarise the data are fed.
Collected historical data represents a distribution for each metric. To infer un-
known distribution from empirical data, percentiles are used (if historical data
follows a normal distribution, using mean and standard deviation is enough to
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explain the whole distribution). Different combinations of percentiles (including
the mean) are tested empirically. Finally, the inter-quartile range, mean and
90th percentile give the highest prediction accuracy and are selected in further
analysis. Motivated by this, the following Quantile summarization techniques is
proposed; for a (mn

i−1,m
n
i−2,m

n
i−3, ..) array of values we calculate the following

metrics: 25th, 50th, 75th, 90th and mean of the input array, where mn
i represent

nth metric at time i.

This summarization technique is compared to the strawman prediction based on
raw data;i.e. using (mn

i−1,m
n
i−2,m

n
i−3, ..) for every n as input to the prediction

model.

5.2.3 Evaluation of the prediction techniques

5.2.3.1 4G Dataset

Evaluation is based on the previously collected 4G dataset with Radio Access
Network (RAN) metrics, see Chapter 3. Traces reflect the use of the Android
API by providing previously mentioned device-level metrics. The collected trace
profiles are a mixture of five different mobility patterns: static, pedestrian, bus,
train, car and highway. In [YJS+18], the authors show 500 records are enough for
successfully training an ML model (authors use similar RF algorithm). Following
their result, we filter out all traces with less than 500 records.

5.2.3.2 Metrics

The Quantile and raw ML-based throughput prediction techniques described
above are compared using two key metrics: the absolute value of residual error
(ARE) and coefficient of determination (R2).

ARE is the ratio of absolute residual error and actual throughput, where the
residual error is the difference between actual and predicted throughput. The
following equation defines ARE:

ARE = |max(10, Ri)−max(10, R̂i)|
max(10, Ri)

× 100 , (5.1)

where Ri and R̂i is the actual measured throughput and predicted (estimated)
throughput (in Kbps), respectively. To avoid cases when actual bandwidth drops
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to zero causing zero division in equation 5.1 we bound all values less than 10Kbps
to 10Kbps.

R2 score (0-1) is a measure of the goodness of a model compared to a naive
model. e.g. a R2 score of 0.8 (respectively 0.9) implies that the naive model
has five (respectively ten) times higher error than the model in question. The
following equation defines R2:

R2 = 1−
∑N

i=0(Ri − R̂i)2∑N
i=0(Ri − R̄)2

, (5.2)

where N is the number of samples in the test dataset, and R̄ the average through-
put for the test dataset.

When evaluating performance of RF, it is crucial to analyse generalisation error
(also called out-of-sample error), which represents the model’s ability to represent
unseen data. Generalisation error is a composition of bias, variance, and noise.
Bias represents error introduced by approximation of a more complex problem
with a simpler model. In other words, if the model assumes a certain relationship
for data which does not reflect the actual data generation mechanism, bias exists
in estimate. To capture this, training error (i.e. ARE metric for our specific case)
is used. However, low training error does not necessarily translate to low bias.
Low training error could be a consequence of limited data that do not entirely
capture the nature of actual problem. In this case, you could have low training
error but significant bias. Variance represents the variability of error as we vary
the dataset (e.g. re-sampling the training set). Generalisation error is quantified
using Cross-Validation (CV) data to test a model. If the resulting error is low,
then the model is said to have a small generalisation error, implying that it can
successfully predict new values on unknown data. A high error indicates that
the model overfits the training data, and is thus only capable of predicting values
based on data similar to the training data. The desirable outcome is to have both
low training and CV errors.

Unless otherwise noted, the RF algorithm is tuned and estimates its quality
using 10-fold cross-validation1. Cross-validation is computationally more expen-
sive than alternative techniques like “holdout”, but it guarantees higher accu-
racy [HTF09].

In the following evaluation, a large set of parameters are explored (e.g. hori-
zon, history length, and summarization techniques). Furthermore, a majority of

1sckit-learn tool is used as the main ML framework (https://scikit-learn.org)
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experiments are done in a mobile case (highway scenario), as it is the most chal-
lenging environment (see section 5.2.6). Hence, a funnel-based approach is used
where progressively some parameters are fixed after investigating their impact on
throughput accuracy as presented in the following subsections.

5.2.4 Impact of the Quantile summarization technique

Figure 5.5, 5.6 and 5.7 show the ARE for two approaches: feeding raw input,
and applying the quantile summarization technique to the input data. These two
approaches are compared using various combinations of PxFy; i.e. history and
horizon duration.

Figure 5.5: ARE values as a function of history (horizon = 4 seconds)

Regardless of the prediction horizon, the proposed quantile summarization tech-
nique achieves lower ARE (higher prediction accuracy) than the raw technique.
This difference gets bigger with a longer metric history. For example, with a
prediction history of 20 seconds (P20Fx) the quantile technique lowers the ARE
compared to raw by 20% (75th percentile) and 40% (90th percentile). For R2
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Figure 5.6: ARE values as a function of history (horizon = 8 seconds)

score, we observe a similar trend as for ARE, e.g. a value of 0.99 for large his-
tory when using the quantile strategy which is a 0.05 boost compared to the raw
approach.

To understand the causes of different prediction accuracy across different history
lengths, the standard approach of analysing the learning curve is used. The
learning curve represents a ratio/difference between training and cross-validation
error metric. The choice of error metric is arbitrary, as more emphasis is on
the difference obtained from training and CV data. For the following analysis,
Coefficient of Determination (CoD) is chosen for the error metric. Next, both
training and CV error are investigated (see Section 5.2.3.2) for RF. Table 5.1
shows both training and CV error for the RF algorithm above as a function of
the history length, i.e. amount of training data considered. RF does not suffer
from high bias for any history and horizon combinations. However, for history
lengths shorter than eight seconds, the RF model relatively overfits the training
data. This effect is countered as the history length increases.
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Figure 5.7: ARE values as a function of horizon (history = 8 seconds)

Table 5.1: Learning Curves for RF algorithm as a function of history interval and
12-second horizon

Px = 4s 8s 12s 16s 20s
Train sc. 1.0 1.0 1.0 1.0 1.0
CV sc. 0.93 0.97 0.98 0.99 0.99

5.2.5 Impact of prediction horizon and history length

Figure 5.7 also shows that throughput prediction accuracy improves when in-
creasing the prediction horizon. At first, this result appears counter-intuitive as
one would expect that predicting throughput for a near future should be easier
than for the more distant future. This observation is true for classical estimation
techniques, such as EWMA, AVERAGE, and MEDIAN (Figure 5.2) which rely
solely on past throughput values and coarse granularity of history samples to
estimate future capacity.

However, when predicting the average throughput over the next x seconds by
using both radio metrics and throughput, overall accuracy improves with the
longer horizons. Reason for improved accuracy is that larger horizon results in
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variance decrease among throughput values. Figure 5.8 illustrates the effects of
averaging over different horizons resulting in a flatter throughput curve.

Figure 5.8: Prediction horizon analysis

To underpin above observation, mathematical analysis is performed. Traditional
and well-established notation is used in describing traces as sample realisations
from an infinite population of time series generated by the stochastic process.

Let xi be measured samples of instantaneous throughput. New samples of process
F k is defined as:

fk
i = 1

k

k∑
j=1

xi+j for i ∈ [1, N − k] (5.3)

where N is number of samples in trace, and k is averaging window size. The
average value of the transformed trace is:

E(F k) = 1
N − k

N−k∑
i=1

fk
i (5.4)

Average value would depend on properties of measured time series. Using Aug-
mented Dickey-Fuller [Wil16] test, the majority of our traces have properties of
stationary stochastic processes. This property results in values oscillating about
a constant mean across all time points.
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Using this feature, (5.3) results in:

fk
i = 1

k

k∑
j=1

xi+j ≈ µ (5.5)

where µ = 1
N
×∑N

i=1 xi. Using (5.5) in (5.4):

E(F k) ≈ µ (5.6)
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Figure 5.9: Relative average throughput values across different intervals (real
trace)

Figure 5.9 depicts relative average value for different averaging windows as a ratio
between average instantaneous throughput and average throughput for a given
interval. Average value fluctuates around reference value depending on window
size. Maximum difference is less than 2%, and for cases of interest (2s, 4s, 8s,
12s) average values differ by 0.5%. This concludes that (5.6) holds, and mean
value does not significantly change with window size.

Next, variance of process F k is defined as:

V ar(F k) = 1
N − k

N−k∑
i=1

(fk
i − µ)2 (5.7)
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For each sample fk
i :

(fk
i − µ)2 = 1

k2 [
k−1∑
j=0

(xi+j+1 − µ)2 (5.8)

+2
k−2∑
j=0

k−1∑
z=j+1

(xi+j+1 − µ)(xi+z+1 − µ)] (5.9)

Term ∑k−2
j=0

∑k−1
z=j+1(xi+j+1−µ)(xi+z+1−µ) represents an auto-covariance. For un-

correlated data, this term equals to zero. Assuming that data is uncorrelated (5.8)
becomes:

(fk
i − µ)2 = 1

k2

k−1∑
j=0

(xi+j+1 − µ)2 (5.10)

Combining (5.10) and (5.7) leads to:

V ar(F k) = 1
N − k

1
k2

N−k∑
i=1

k−1∑
j=0

(xi+j+1 − µ)2 (5.11)

Using ∑N−k
i=1

∑k−1
j=0(xi+j+1 − µ)2 ≤ k

∑N
i=1(xi − µ)2 in (5.11):

V ar(F k) ≤ N

N − k
1
k
V ar(X) (5.12)

For large N variance of transformed process decreases as we increase averaging
window size.

However, data is correlated, as depicted in Figure 5.10.

Next, (5.12) becomes:

V ar(F k) ≤ N

N − k
1
k
V ar(X)

+ 2 1
N − k

1
k2

N−k∑
i=1

k−2∑
j=0

k−1∑
z=j+1

(xi+j+1 − µ)(xi+z+1 − µ) (5.13)

The total variance of process F k now also depends on the value of auto-covariance.
However, covariance will be reduced by the k2 factor. Expectation is that in
majority of cases the resulting variance will be lower than V ar(X).

Figure 5.11 illustrates relative variance for different averaging window sizes. Rel-
ative variance is defined as the ratio between variance for “original” time-series
and variance of transformed time-series with averaging interval k. Variance drops
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Figure 5.10: The average ACF of throughput vs. time lag across all traces

as we increase k as expected. Variance drops by 3.5%, 7%, 12%, and 16.5% for
2s, 4s, 8s, and 12s respectively. In conclusion, variance significantly decreases as
averaging window size is increased.
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Figure 5.11: Relative variance of throughput values across different intervals (real
trace)

Similar to the increasing horizon, analysis also suggests a decrease of ARE as
the history length increases. To confirm this, Figure 5.12 shows the ARE as a
function of increasing history length. The figure shows that increasing history
length is beneficial in term of ARE reduction up to a saturation point of 20
seconds, beyond which the ARE reduction is marginal. Furthermore, similar
observations hold for 4 and 8-second horizons. The same trend can also be seen
for the R2. In [YJS+18] authors show that increasing history decreases prediction
accuracy countering results of our own. Authors argue that having large history
results in predictor having less power in reacting to sudden changes in the wireless
channel. This intuition comes from the inability of sudden changes to be reflected
when averaging over a large history period. However, having multiple measures
of variability helps in countering this effect. e.g. 25th, percentile can capture small
changes in link variability. Based on this result, in the following, history length
up to 20 seconds is considered.
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Figure 5.12: ARE for 12s horizon and varying history length

5.2.6 Impact of different mobility patterns

The performance of proposed ML technique is analysed across different mobility
patterns. Table 5.2 shows average, standard deviation and Coefficient of Varia-
tion (CoV) for all five mobility patterns. Intuitively, a static case has the lowest

Table 5.2: Throughput stats for various mobility patterns

Mobility Pattern Mean (Mbps) Std (Mbps) CoV
Static 12.37 5.04 0.4
Pedestrian 10.22 7.59 0.74
Bus 13.97 12.35 0.88
Car 16.29 12.53 0.77
Highway 14.56 12.65 0.87

standard deviation. We expect that static case should yield higher prediction
accuracy due to lower variation in throughput values. The larger standard de-
viation implies a throughput time series that is less “stable” around the mean.
The higher variability of the mobile scenarios (we classify bus, pedestrian, car,
and highway as mobile cases) is due to environmental changes, e.g. channel and
cell load. Intuitively, predicting a throughput with lower variation is an easier
challenge; following analysis quantifies this observation further.

Improving Video Streaming Experience
through Network Measurements and Analysis

94 Darijo Raca



5. Empowering Video Players with
Machine Learning based
Throughput Prediction in
Cellular Networks 5.2 Throughput prediction via ML

P4F12 P8F12 P12F12 P16F12 P20F12
History and Horizon Combination (s)

0

10

20

30

40
A

b
so

lu
te

 V
a
lu

e
 o

f 
R

e
si

d
u
a
l 
E
rr

o
r 

(%
)

Static

Pedestrian

Bus

Car

Highway

Figure 5.13: Comparison of ARE for various mobility use-cases (PxF12)

Figure 5.13 shows ARE values for static and mobile use-cases. The prediction
horizon is fixed to 12 seconds but vary the history duration. Overall, the figure
shows much better accuracy (lower ARE) in the static scenario. The influence of
history length on accuracy for static and mobile cases is compared. With a history
length of 4 seconds, 90% of time prediction error is less than 30%, for static case,
while for the highway case this increases to 43%. However, extending history to 8
seconds (4 seconds is used as a threshold to exploit the full benefits of the quantile
approach), benefits both mobile and static cases, as the 90th percentile of ARE
drops by 20% on average for different mobile cases, while in static scenarios this
drop is 16%. Increasing history follows the same trend, e.g. 90th of ARE decreases
by 40% and 46%, for the mobile and static case, respectively. Nevertheless, the
pattern changes for history length beyond 12 seconds, as relative error difference
becomes more prominent (e.g. 20-second history lowers 90th percentile by 74% and
71% for static and mobile, respectively). Among mobile cases, overall highway
scenario shows the highest prediction error. However, the difference between
different mobile patterns is negligible.

Similar trends are observed for other values of prediction horizon, e.g. for P20F8
the 90th of ARE for static and mobile cases is 12% and 16%, respectively. Sim-
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ilarly, for P20F4 the 90th of ARE for static and mobile cases is 19% and 26%,
respectively.

The key conclusion is that utilisation of the quantile technique allows high predic-
tion throughput accuracy for longer prediction horizons, regardless of the mobility
environment.

5.2.7 Metric contribution to prediction accuracy

The importance of metrics in throughput prediction is investigated next. Instead
of reporting individual metrics (the reader is referred to [YJS+18] for analysis
of each feature individually), metrics are divided into three groups reporting the
importance of each group. Each group represents a distinctive set of features. For
example, CQI, RSRP, and SNR are all features related to channel characteristics.
In the same vein, uplink and downlink throughput is grouped separately.

Metrics are divided into the following groups: throughput (which includes the
history of both downloads and uploads throughput values), radio (which consists
of the history of RSRP, RSRQ, SNR, etc.) and device velocity.

Table 5.3a shows how feature importance changes as we vary the history length.
For the P4F4 case, historical throughput contributes to 71% of future throughput
prediction, and radio metrics and velocity contribute 25% and 4%, respectively.

With an even longer history, the quantile approach can finally be applied, getting
a greater contribution from radio metrics. As the history increases from 2 to 20
seconds, radio metrics importance increases to 41%, while throughput importance
drops to 53%. Table 5.3b shows that for fixed a history length, throughput

Table 5.3: Feature Importance for PxF4 and P4Fx cases

(a) PxF4

P4F4 P8F4 P20F4
Radio 25% 31% 41%

Throughput 71% 65% 53%
Velocity 4% 4% 6%

(b) P4Fx

P4F4 P4F8 P4F12
25% 32% 36%
71% 62% 57%
4% 6% 7%

importance goes down with longer horizons. For example, for P4, the importance
of throughput goes down from 71% for F4 to 57% for F12. The drop is significant,
and similar trends are observed for other values of history length as well.
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For example, in the P20Fx scenario, throughput importance drops from 53% to
48% to 44% for 4-second, 8-second, and 12-second horizon, respectively.

Finally, when predicting for longer horizons, the ML model learns more on non-
throughput metrics for making a more accurate prediction. This result explains
why relying only on throughput is not a good indicator of distant throughput in
a highly mobile scenario.

5.2.8 Mobility impact on prediction accuracy

Many factors skew prediction accuracy, including the choice of ML algorithm,
radio metrics and random outliers coming from real measurements. In evalua-
tion, boxplot notation is used to counter occurrence of outliers. However, in the
mobility scenario, there is an additional limiting factor that cannot be addressed
with the current model. Figure 5.14 shows ARE and RSRP values for a mobile
device moving between two cells. The prediction case with the 12-second horizon
is analysed. The black dotted line represents a handover event. RSRP is selected
as it is a good indicator of edge conditions. The RSRP represents an average
over future 12-seconds and thus matches the prediction horizon. It is clear that
the error is relatively low except around the cell-edge region. As the device ap-
proaches the edge region, RSRP sharply drops while error increases significantly.
There are two main reasons for this result. When predicting future values, the
prediction model relies on past as the input. However at the time prediction is
made, current channel metrics have relatively high values indicating good channel
conditions. Nevertheless, as shown in the figure, RSRP drops suddenly due to
device mobility.

Next, for all traces, records are split based on calculated future RSRP into two
categories: records with RSRP larger than -100 are grouped and vice versa. This
value is chosen to extract the edge region around cells. Finally, Cumulative
Distribution Function (CDF) of ARE is plotted for two cases, as depicted in
Figure 5.15. For the records with RSRP smaller than -100, CDF is left of the
case with larger RSRP, indicating overall higher errors.

One possible solution to counter higher errors in the cell-edge region is to use a
shorter history. However, this approach would result in overall higher ARE. On
the other hand, enhancing the dataset by adding new features related to edge
conditions is another approach. For example, geographical distance between the
current serving cell and all neighbouring cells could be added. Then the prediction

Improving Video Streaming Experience
through Network Measurements and Analysis

97 Darijo Raca



5. Empowering Video Players with
Machine Learning based
Throughput Prediction in
Cellular Networks 5.2 Throughput prediction via ML

0 10 20 30 40 50 60 70
Time (s)

0

10

20

30

40

50

60

70

80

90
A

b
so

lu
te

 V
a
lu

e
 o

f 
R

e
si

d
u
a
l 
E
rr

o
r 

(%
)

96

94

92

90

88

86

84

82

80

78

R
S
R

P
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model could identify devices approaching the edge region more accurately. Also
adding signal-related information for neighbouring cells could help in decreasing
errors in the edge region of the cell.

5.3 Video experiments in a controlled environ-
ment

This section evaluates the impact of improved throughput estimation on the
streaming performance using a lab testbed. The testbed described in Section 3.2.1
is used. Next, the setup is presented, followed by streaming performance results.

For evaluation, three algorithms are selected: ARBITER+, BOLA-E, and EXO,
with more information about each algorithm outlined in Section 3.2.3.2. Selected
algorithms use information from both bandwidth estimators, as well as from buffer
occupancy when deciding on the rate of the next chunk. These three algorithms
use different bandwidth estimation techniques (EWMA, average and median).
These techniques represent different approaches in bandwidth estimation, rang-
ing from more conservative estimate (median) to more aggressive (EWMA and
average).

For buffer length, the recommended values for each algorithm are used (60-
seconds for ARBITER+, 32 seconds for BOLA-E, and 30-seconds for EXO).
The initial delay is set to two chunks. After a stall event, play is resumed after
one chunk finishes downloading.

5.3.1 Throughput prediction module

Experiments are based on a subset of the 4G dataset traces to illustrate the benefit
of prediction. The same reasoning for trace selection is used as in Section 4.3.1.
For characterisation of selected traces, standard deviation of throughput within
a trace is considered. We sort traces based on standard deviation of bandwidth.
Table 5.4 shows throughput statistics for the top 20% and bottom 20% of sorted
traces.

Majority of traces with high bandwidth variability are collected in the highly mo-
bile environment (car), while traces with low bandwidth variability were collected
while devices were static or moving at low velocity (pedestrian).
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Table 5.4: Throughput for selected traces

Type Avg (Kbps) Std (min - max, Kbps)
Low-variable traces 1656 591 - 1166
High-variable traces 4451 4010 - 6447

The throughput prediction module is implemented using the proposed prediction
approach described in Chapter 5. When testing the streaming performance using
one of the selected traces, this trace is eliminated from the training set of the
prediction engine used in this experiment. The prediction engine is then used to
identify the predicted throughput for every record in the trace. The predicted
throughput is stored offline and provided to the video client during the experi-
mentation. In summary, the tested trace is removed from the training procedure
to ensure unbiased prediction values.

The presented prediction setup is close to reality as it does not imply the knowl-
edge of the transportation mode (e.g. static, pedestrian, car etc.). Note that the
prediction engine is based on traces with mixed mobility patterns. History is set
to 20 seconds and different horizon values from 12 seconds-32 seconds are tested.
The choice of horizon values was driven by results in Chapter 4, indicating that
longer horizons benefit HAS players more than shorter horizons.

Figure 5.16 shows ARE across five different prediction horizons with history set
at 20 seconds. Mixing mobility patterns does not change the performance trends
established in Section 5.2.6. The prediction accuracy increases with the horizon.
For the 12-second horizon, 90th percentile ARE is less than 16%. Furthermore,
this error drops below 10% for the longest, 32-second horizon.

5.3.2 Integrating predicted throughput in HAS algorithm

The predicted throughput can be integrated into the adaptation logic in two
different ways. First, the predicted throughput may replace the entire throughput
estimation in the algorithm (E-type). Alternatively, the predicted throughput
may be used to replace the estimated throughput samples (S-type). Chapter 4
shows that for ideal prediction, algorithms with more conservative bandwidth
estimation (harmonic, median) have higher improvement with direct estimate
while algorithms with more aggressive bandwidth estimation (EWMA) prefer
feeding prediction as a sample. As a result, for the EXO and BOLA-E direct
estimate is used for prediction value, while for the ARBITER+ values are fed
through bandwidth estimation module.
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Figure 5.16: ARE accuracy for five different prediction horizons (mixed-mobility
ML model)

5.3.3 Video QoE models

To evaluate the performance of HAS algorithms, standardised QoE metrics are
analysed, such as average video bitrate, switching behaviour (e.g. stability), stall
frequency and duration. In addition two video QoE models are used, Yao and
Clay. The definition and main characteristics of these metrics and models can be
found in Section 3.2.3.4.

To represent an overall QoE score, the geometric mean of the two QoE models
is calculated. Both models are derived based on subjective tests, making it chal-
lenging to select only one. The geometric mean is chosen instead of the arithmetic
mean because model scores are on a different scale (Clay 0-5, and Yao 0 - 100).
Table 5.5 summarises QoE metrics and their notation.
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Table 5.5: QoE Metrics Notation

Metric Summary
Bitrate Average bitrate
Stability Average stability, equal to

1 − i with i being instabil-
ity as defined in [JSZ14]

Stallsnum Average number of stalls
Stallsdur Average stall duration
QoE Geometric mean of Clay

and Yao QoE

5.3.4 Streaming performance results

Streaming performance is evaluated without prediction as a base case and with
prediction using different horizon durations. Evaluation is repeated for two sce-
narios, including 4-second and 8-second chunk duration (typically chunk duration
is 2-10 seconds [BBHZ19]). The shown performance results represent the average
of 10 runs (results are consistent even with five runs).
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Figure 5.17: ARBITER+: Relative improvement of different QoE metrics for
the 4-second chunk duration (The metrics are normalised to the no-prediction
case with numbers in white boxes representing the value of each metric for the
no-prediction case)

For the 4-second scenario, Figure 5.17, 5.18, and 5.19 plot the relative improve-
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Figure 5.18: BOLA-E: Relative improvement of different QoE metrics for the 4-
second chunk duration (The metrics are normalised to the no-prediction case with
numbers in white boxes representing the value of each metric for the no-prediction
case)

ment in performance metrics, for the evaluated algorithms, relative to the no
prediction case. Hence, a larger relative improvement in the streaming bitrate
means a higher rate while a larger relative improvement in the number of stalls
means fewer stalls. The performance metrics of the no prediction case for every
algorithm are shown in the white boxes just above the x-axis. Figures show that
integrating our prediction noticeably improves the QoE metrics of different algo-
rithms. Specifically, prediction enables all algorithms to reduce/eliminate stalls.
Additionally, prediction allows HAS algorithms to improve switching stability. In
particular, average stability can be improved by 15%-47%. Furthermore, improv-
ing the accuracy of bandwidth estimation enables the algorithm to enhance their
selected chunk quality. For example, integrating prediction fixes throughput un-
derestimation with EXO leading to a higher chunk quality (by 16%), Figure 5.19.
On the other hand, incorporating the prediction with ARBITER+ results in a
negligible lower average chunk quality (2%), Figure 5.17. All these improvements
add up leading to boosting the overall user QoE by 8%-27% in the 4-second chunk
scenario. It is evident that BOLA-E is the least beneficiary of the compared algo-
rithms, Figure 5.18. However, this is expected due to its design relies on a buffer
level as the main quality selection decision and only uses throughput estimates
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Figure 5.19: EXO: Relative improvement of different QoE metrics for the 4-
second chunk duration (The metrics are normalised to the no-prediction case with
numbers in white boxes representing the value of each metric for the no-prediction
case)

in very limited cases as illustrated in Section 3.2.3.2.

In the 8-second scenario, Figure 5.20, 5.21, and 5.22 depict the relative improve-
ment of the performance metrics for the evaluated algorithms. Similar to the
4-second case, the prediction shows a positive impact on all metrics in the ma-
jority of the traces. Overall, QoE can be improved by 19%, 13% and 33% for
ARBITER+, BOLA-E, and EXO, respectively. This improvement is higher than
that attained in the 4-second scenario. Fewer opportunities to change the qual-
ity and react to sudden changes to channel capacity in the longer chunk case
explains this behaviour. In both 4-second and 8-second scenario, EXO features
the highest relative improvement in QoE score. This improvement is attributed
to the increase in the average bitrate (15% improvement compared to 1-5% for
ARBITER+ and BOLA-E).

Identifying the optimal horizon duration is an essential design parameter. For
the 4-second scenario, the algorithms show a similar QoE improvement for 20-24
second horizon. In the 8-second chunk duration scenario, algorithms show distinct
performance as the prediction horizon increases. ARBITER+ shows the best
QoE relative improvement with a 32-second horizon, while BOLA-E and EXO
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Figure 5.20: ARBITER+: Relative improvement of different QoE metrics for
the 8-second chunk duration (The metrics are normalised to the no-prediction
case with numbers in white boxes representing the value of each metric for the
no-prediction case)

achieve the best performance with a 24-second horizon. Extending the horizon
results in averaging over a longer period and thus reducing variability between
subsequent prediction values. This leads to an improved switching performance.
Additionally, longer horizon enables a client to proactively switch quality and
avoid stalls when the throughput drops for a relatively long time that can deplete
the buffer. However, increasing horizon will eventually lead to client inability
to adapt to sudden changes in channel capacity. This can be seen in case of
8-second chunk and EXO algorithm, Figure 5.22. For the 32-second horizon,
stability improves by 33%. However, this stability leads to a decrease in stall
performance (compared to other horizons) and a sharp drop in overall QoE.

Finally, there is a discrepancy between improvement in each QoE metric and over-
all QoE improvement. This is a direct consequence of QoE model we use in this
study. To understand this behaviour, each QoE model is analysed individually.
Let’s analyse particular trace where we have high improvement in rebuffering
performance (ARBITER+, 4-second chunk duration). Reduction in a number of
stalls and total stall duration results in 35x and 1.9x higher stall impairment for
Yao and Clay, respectively. For switching, impairment is 1.6x higher for Clay,
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Figure 5.21: BOLA-E: Relative improvement of different QoE metrics for the 8-
second chunk duration (The metrics are normalised to the no-prediction case with
numbers in white boxes representing the value of each metric for the no-prediction
case)

compared to 1.25x for Yao. While Clay produces similar tradeoff between stall
and switching impairment, Yao gives much higher weight on the stall reduction.
As a result, the prediction improves Yao QoE by 40%, while for the Clay, lowers
QoE by 44%. Overall, QoE improves by 14%. A similar observation holds for
BOLA-E.

5.4 Real-Time prediction

Motivated by results of the lab experiments, prediction engine is implemented
inside mobile devices leveraging the Android API and an existing Java ML library.
For the ML library, Weka2 is used, a software framework that has an extensive
collection of state-of-art machine learning algorithms implemented in Java. While
not explicitly designed to run on mobile devices, it represents a good starting
point for testing the initial prototype.

For the collection of radio metrics and device velocity, we use classes and methods
2https://www.cs.waikato.ac.nz/ml/weka/
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Figure 5.22: EXO: Relative improvement of different QoE metrics for the 8-
second chunk duration (The metrics are normalised to the no-prediction case with
numbers in white boxes representing the value of each metric for the no-prediction
case)

detailed in Table 5.6. Values are collected periodically, every 1-second in a sepa-
rate thread inside ExoPlayer. All metrics are stored in First In First Out (FIFO)
queues with size limited to 20 values per queue. ML model (Random Forest) is
trained offline and ported to the mobile devices. For the HAS algorithm, EXO is
selected using the same parameters as outlined in Section 5.3. 20-second predic-
tion horizon (direct estimate) is used. The prediction value is generated in the
following way: every time a decision for the next quality needs to be made, the
adaptation logic requests a prediction value. This value is generated by creating
Quantile statistics based on current state of FIFO queues, followed by a call to
the model itself with statistics as input. Finally, the model returns a prediction
value for the next 20 seconds.

56 static and mobile field tests are performed in a real cellular network. Each
experiment consists of two mobile devices (same model) streaming the same video
content side by side. One mobile device stream content with no throughput
guidance, while the other one uses our throughput prediction as outlined above.
To minimise non-radio related effects, all tests are performed in the early morning
while assuming the network is not busy. The following sections explain the device
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Table 5.6: Android API classes used for collecting radio and throughput metrics

Metrics Class/Method
RSRQ CellInfoLte/getCellSignalStrength().getRsrq()
RSRP CellInfoLte/getCellSignalStrength().getDbm()
CQI CellInfoLte/getCellSignalStrength().getCqi()
SNR CellInfoLte/getCellSignalStrength().getRssnr()
Velocity LocationManager
Throughput TrafficStats

and model limitations faced while implementing the prediction engine in a mobile
device.

Device Limitation: Standard Android library is leveraged for capturing chan-
nel metrics. However, implementation of these callback functions depends on the
manufacturer of the mobile System on Chip (SoC) chipsets. Also, not all parame-
ters are reported for different cellular technologies (2G/3G/4G). We use Samsung
J5 mobile devices, as the Exynos chipset implements almost all Android callback
methods for reporting channel metrics. Furthermore, loading and running ML
model inside a mobile device can be challenging. Due to hardware limitations,
loading of the appropriate model can take up to several minutes. e.g. training
Random Forest model on all traces results in a large model (400MB) which can
not be loaded in the mobile device. As a tradeoff, the number of trees is limited to
30 and tree depth to generate a smaller model. This tradeoff results in accuracy
decrease of the model. As a result, prediction error (90th percentile) increases
from 13% to 21%.

Experiment Limitation: Running two devices side-by-side at the same time does
not necessarily mean same channel and environment conditions. There are a
couple of limitations we faced during these trials. First, devices do not necessarily
report the same values for metrics. Second, even in the static case, phones can be
connected to different evolved Node Bs (eNodeBs) or same eNodeB but different
cell sector. While effort is done to minimise these occurrences, there is little or
no control over this in mobile cases.

Figure 5.23 shows similar trend for QoE metrics as in Section 5.3. However,
there exists one major difference between experiments performed in the previous
section and experiments in a real cellular network. While we selected a certain
subset of traces in controlled experiments (in particular, traces with an average
rate close to highest video rate), in a real environment, the majority of tests
were conducted in a high channel capacity environment (with the average rate

Improving Video Streaming Experience
through Network Measurements and Analysis

108 Darijo Raca



5. Empowering Video Players with
Machine Learning based
Throughput Prediction in
Cellular Networks 5.5 Discussion

Figure 5.23: Relative improvement of different QoE metrics in real cellular net-
work with respect to the no-prediction case (EXO algorithm, 4s chunks)

greater than 6Mbps). This is most evident in the case of bitrates. Average bitrate
across all session is 3.4Mbps (compared to 1.5Mbps in a controlled environment).
As a result, the impact of prediction is limited as the highest rate is 4.3Mbps,
leaving less space for improvement. Still, prediction improves all QoE metrics.
In particular, improvement in bitrate is only 7%, capping QoE improvement to
11%.

5.5 Discussion

Arising from this chapter, a number of matters arose which merit further discus-
sion and research, which are considered here.

5.5.1 Higher data granularity

Additional analysis is performed of the summarization techniques concerning
higher measurement metrics granularity than is available using the Android API.
For these, a 250ms granularity is obtained from a Qualcomm Diagnostic Tool,
(QXDM)3 a tool capable of capturing device-level metrics at high resolution (hun-
dreds of ms) directly from the hardware. QXDM is a properiaty tool working only
with Qualcomm chipsets and thus not universally applicable. Over sixty traces

3https://www.qualcomm.com/
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are collected for different mobility patterns with an average duration of 15 min-
utes per trace. The following results are based on a mobile scenario. For 250ms
measurements granularity, higher sampling frequency results in better overall pre-
diction accuracy. Figure 5.24 depicts ARE for different combinations of history
and horizon values for 1s and 250ms data granularity. Regardless of the horizon,
higher measurement granularity results in massive improvement for ARE (com-
pared to one-second granularity), with the 90th percentile of ARE below 15% for
all cases. Furthermore, average error 7%, 5.5%, and 5% for prediction horizons
4, 8, and 12 seconds respectively (with only four-second history interval). Also,
a similar trend is observed as with one-second granularity, with prediction accu-
racy improving with increasing history and horizon lengths. In all cases higher
data granularity significantly improves prediction accuracy compared to 1-second
setup.
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Figure 5.24: Comparison of ARE for fine-grained data for 250ms and 1s granu-
larity (quantile summarization technique)
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5.5.2 Network data sources

As outlined in Section 5.2.1, device-level, and network-level metrics represent
two types of measurement data. Device-level metrics represents a device channel,
context, and throughput values. However, the predictive power of device-level
metrics is limited, as the device cannot infer the state of other devices that are
sharing network resources with this device. For example, during busy hours,
prediction values may overestimate throughput capacity as a correlation between
user channel conditions and available throughput deteriorate. To alleviate this
issue, network-level metrics are needed, e.g. cell load would indicate how busy
cell is, preventing overestimation and increased probability of rebuffering events.
Also, network operators may inflict throttling in a network [KLC+16] during
busy hours which can skew prediction system completely. Additional limited
analyses is performed including network-level metrics in throughput prediction-
related experiments. While network-level metrics provide significant improvement
in throughput prediction accuracy, their use in real-time is still open question and
requires further exploration.

For network-level metrics, the following measurements are considered:

• Competing throughput - average throughput of the devices connected to a
given cell.

• Competing CQI, RSRP, RSRQ and SNR - average per metric value of all
devices connected to the same cell

• Load - number of devices connected to the same cell and Physical resource
Block (PRB) utilisation

On representing competing device metrics, the average value is used across all
devices as the number of users per cell dynamically varies with system load.

Network-level metrics are collected by a set of instrumented cells to which the
phone and laptop were connected. For a given device, a cell is instrumented to log
its network-level metrics. Certain metrics, e.g. cell site load and PRB utilisation,
are reported with a fixed periodicity and other ’session level metrics’, e.g. CQI, are
reported for an entire session whenever the Long-Term Evolution (LTE) bearer
tears down. To tear down a bearer, one simply needs to idle a device activity
for a few seconds. Accordingly, devices are instrumented to initiate a download
(active period) and then pause for a few seconds to cause a bearer tear down
event (idle period). Selecting the length of active periods requires balancing
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among competing concerns. Because only one value is collected of any ’session
level metric’ for the entire active period, the active periods should not be too
long. At the same time, prediction horizons of reasonable lengths are needed.
But to train and test prediction horizon of length x seconds requires collection
throughput measurements from contiguous intervals of length at least x seconds.
As a compromise, active periods of 16 seconds are used.

Figure 5.25 illustrates this difference. For the same combination of history and
horizon interval, network-aided prediction improves prediction accuracy signifi-
cantly, compared to the device-only approach. Also, these results illustrate one
important characteristic of having comprehensive information about the finite
resource available. Even with few historical data, a network-aided approach
achieves higher prediction accuracy. In contrast, a device-only approach needs a
longer history to indirectly infer its environment and achieve similar prediction
accuracy as a network-aided approach.
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Figure 5.25: Comparison of ARE for device and device+network approach (ape-
riodic sampling interval)
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5.5.3 Deriving optimal high-level features

Deep learning frameworks (TensorFlow Lite for Android and Core ML for Apple
iOS) are optimised to run on mobile devices. Deep learning architectures may
help in obtaining even more accurate predictions. In Section 5.2 the presented
solution represents history with multiple measures of variability helps drive down
prediction error. However, standard statistical measures are used, which are not
necessarily the optimal ones. Also, the same statistics are used across all metrics.
However, optimal statistics for one metric may not necessarily be optimal for
other metrics. Instead of “handpicking” high-level features from raw input, using
neural networks with multiple layers can automate extraction of more significant
features from input data. This observation leads to deep learning algorithms,
and in particular recurrent neural networks. Sequence-to-sequence neural net-
works [SVL14] have a broad reach in language translation. The main power of
these networks lies in the ability to summarise a sentence from one language by
a couple of critical values (encoder) which then can be used to translate it into
another language (decoder). Similar architecture can be employed for through-
put prediction, where the history of each metric will be summarised by optimal
measures of variability independently of each other. To motivate further research,
Long Short-Term Memory (LSTM) model is trained. LSTM represents a fam-
ily of Recurrent Neural Networks (RNN), more specifically gated RNNs. RNN
represent a type of neural networks design to process sequence of data. RNN
networks are a more suitable choice over other neural networks for time-based
tasks, such as throughput prediction [ZPH19].

The ARE accuracy of LSTM is compared against RF and Support Vector Ma-
chines (SVM). SVM is based on constructing hyperplanes for making decision
boundaries that separate between points of different classes (e.g. for two class
case, hyperplane would represent a line separating them). For making separa-
tion easier, input features can be transformed by appropriate functions called
kernels [MSBZ10]. For SVM, parameters tuning represents the main drawback.
A common technique, grid search, can be used for automation of search pro-
cess in finding optimal values for algorithm parameters. However, grid search is
time-consuming.

Figure 5.26 shows the boxplot of ARE for the raw input and quantile summariza-
tion technique for different ML algorithms. These results are based on device-level
data collected at one second granularity for P20F20.
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Different ML algorithms and feature engineering approaches
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Figure 5.26: Comparison between different data representation approaches and
ML algorithms for 1-second data granularity

Results confirm the importance of extracting high-level features from raw input as
SVM yield significant improvement in throughput prediction accuracy. Addition-
ally, LSTM achieves similar results operating directly on raw input. Furthermore,
LSTM achieves lowest 90th percentile of ARE among all algorithms, indicating a
better learning ability for rare patterns.

5.6 Conclusion

It is known that the cellular radio access network offers highly variable perfor-
mance due to a variety of factors. This chapter addressed the problem faced by
applications such as video streaming in trying to estimate the available through-
put over the cellular network. Prior work has focused on the use of a small set
of performance metrics gathered by an end-user device to make predictions up
to one second. Machine learning approach is used in this chapter to leverage a
broad range of cellular measurement metrics to make predictions several seconds
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into the future. A thorough quantitative study of throughput prediction in a real
cellular network is conducted. Combining machine learning techniques with radio
channel metrics summarised by a novel quantile abstraction technique achieves
low throughput prediction errors (90% of errors below 18%). By utilising the pro-
posed abstraction technique, the prediction engine is able to capture trends and
variation in metrics data accurately, even in the environment where metrics are
updated/available at low time granularity. Furthermore, the benefit of adding
network-related information about the cell environment is quantified, showing
that it can decrease error further by 21% in some instances. The relationship be-
tween the length of historical data and the future prediction accuracy is assessed,
showing that increasing history length of measured metrics helps in improving
prediction accuracy by 50% on average and that increasing future horizon has
a similar effect, resulting in an increase of prediction accuracy by 16%. Work
outlined in this chapter provides a convincing case for further development and
deployment of cellular network prediction based on machine learning techniques.

The impact of throughput prediction generated by the ML prediction model is
investigated with state-of-the-art HAS algorithms on overall user QoE. Prediction
engine was implemented on a real mobile device, and additional experiments are
performed in a real operational cellular network. Having more accurate predic-
tions allows three adaptation algorithms to improve its performances. All tested
algorithms improve all QoE metrics when using prediction. Notably, prediction
reduces stalls by up to 85%, and bitrate switching by up to 40%, while maintain-
ing or improving video quality. As a result, QoE score improves significantly, by
up to 33%. Furthermore, experiments performed in a real operational network
has enabled identification of challenges that motivate further research and will
be of interest to practitioners seeking to implement ML-based prediction in real
systems.

This chapter completes the analysis of throughput predictions in a cellular net-
work, from the motivation for need for throughput prediction (Chapter 4) to
ways to obtain accurate predictions by leveraging physical channel information,
and finally quantifying the impact of throughput prediction on HAS performance
(this chapter).
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Chapter 6

Impact of Network Queues on
video performance

With the ongoing growth of video traffic on the Internet, conveyed through HTTP
adaptive streaming (HAS), specific concerns emerge regarding performance re-
lated interactions between video and non-video traffic. The bandwidth demand-
ing nature of HAS traffic can cause the well-known bufferbloat phenomenon harm-
ing the performance of delay-sensitive traffic such as web and VoIP. This chapter
investigates whether it is feasible to manage the performance interactions between
HAS and non-HAS traffic through changes to the network operation, specifically
the configuration of network queuing, so as to improve the overall quality of
experience.

Previous studies of network queuing have examined conventional HAS traffic.
However, HAS traffic is a relatively new traffic type whose impact on other traffic
types, and vice versa, is largely unknown. Additionally, it exhibits characteristics
of both long-lived flows (spending most of the time in HAS congestion avoidance
phase) and short-lived flows (frequently going through the Transmission Control
Protocol (TCP) slow-start phase). Furthermore, compressed video is typically
Variable Bit-Rate (VBR) in nature. Hence, HAS operates at a discrete set of
rates that vary due to both adaptation decisions and VBR encoding. Thus,
relying on prior studies of non-HAS TCP is inappropriate, and comprehensive
research is needed to better understand the application and traffic dynamics when
HAS and non-HAS compete. Of note is the work by Hong et al. [HMW15] who
investigates using network simulations, measuring fairness and utilisation when
multiple traffic types share a bottleneck employing Active Queue Management
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(AQM). However, using these objective metrics it is not possible to determine
the effect on user Quality of Experience (QoE), which for video, in particular,
is the accepted metric since it also captures changes in quality. The work in
this chapter is distinguished by its focus on using real experiments and traffic in
understanding of the impact of network queuing design (including modern AQM
techniques), and measuring the impact on application-level metrics. Specifically,
the interplay between content, network, and application in various scenarios is
analysed, while seeking to validate the following key hypotheses:

1. The well-known 1xBandwidth Delay Product (BDP) rule-of-thumb for di-
mensioning network queues can achieve full link utilisation for multiple HAS
video clients.

2. Increasing router queue length will improve fairness among competing HAS
video clients with heterogeneous round-trip-times (RTTs).

3. Use of AQM techniques will protect web client performance (in particular
page-loading time) when sharing resources with HAS video clients.

The first hypothesis seeks to confirm previous studies that argue that full link
utilisation is achievable even with a fraction of BDP. The second hypothesis leans
on TCP rate being inversely proportional to round-trip time. Flows with shorter
RTT will fill the queue more frequently and with a larger queue; those packets
will experience larger queuing delay lowering overall rate and improving overall
fairness. Finally, modern AQM techniques are designed to protect delay sensitive
traffic regardless of competing traffic characteristics. They track queue delay and
randomly drop packets keeping queuing delay low while maintaining high link
utilisation.

The research is guided by validation of these three hypotheses, and presents a
realistic experimental study that provides a definite answer to the research ques-
tion posed above. This empirical analysis sheds light on the interaction between
content (e.g. video rate), link (e.g. capacity, round-trip time) and queue design.
Our findings are based on real traffic generated from video players (using well
known HAS adaptation algorithms) and a popular web browser. Interaction be-
tween these different types of traffic is enhanced with a realistic user behavioural
model for web traffic. Finally, the last chapter introduces a two-queue scheduling
discipline that solves challenges raised by previous hypotheses.

The systematic empirical study performed in this chapter yields several important
practical results.
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1. The well-known “rule-of-thumb” (1xBDP) for network queue dimensioning
causes underutilisation (70%) when multiple HAS clients share a bottleneck.

2. Larger queues, e.g. 2xBDP, can improve utilisation and quality by 15% on
average.

3. Larger queues also help in improving system fairness for clients with het-
erogeneous RTTs. However, larger queues can negatively impact delay-
sensitive traffic, causing the bufferbloat phenomenon.

4. Replacing First In First Out (FIFO) with AQM does not improve Page
Loading Time (PLT) significantly, in which AQM is unable to counter the
bandwidth-hungry nature of HAS flows.

6.1 Methodology

First, the effects of queue size on HAS performance is investigated. Queue size is
defined as a product of link capacity and RTT. The next compelling step includes
changing values of these factors itself, quantifying their impact on overall HAS
performance. The main focus is on the multi-client environment, so analysis of
a different number of clients presents a logical stride especially because of video
clients inherent ability to adapt to available network resources. FIFO queue is
then replaced with AQM disciplines and web traffic clients are introduced in
efforts to answer the question about AQM ability to keep a low delay for delay-
sensitive applications. AQM techniques are tested with different combinations of
video and web clients quantifying the impact of HAS adaptation algorithms on
web delay.

6.1.1 System model

In the experiments, the testbed framework for wired experiments is used as de-
scribed in Section 3.2.2. N clients are considered sharing a bottleneck link and
requesting their data from a remote HyperText Transfer Protocol (HTTP) server.
Both video and web content are stored on the HTTP server. The role of the bot-
tleneck link and network elements is to emulate scenarios with different queue
size, queue scheduling techniques, link capacity, and RTT. Performance metrics
for different applications are collected at the client side.
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Table 6.1 shows default values and ranges for key parameters used in the experi-
ments.

Table 6.1: Different Parameter values for experiments

Parameter Name Default Value Range
N 6 2-8

RTT (ms) 40 20-160
C (Mbps) 6 6-30

Client Buffer(s) 60,240 60-640
Network Queue 1xBDP 1-30xBDP

6.1.2 Outline of experiments

Experiments are split into two categories depending on the type of traffic in use.
For the first part, video user QoE is analysed while varying the bottleneck link
queue size, bottleneck link bandwidth, and the client-server RTT. The bottleneck
link is configured using netem/tc [Kel]. In experiments, the bandwidth varies be-
tween 6-30Mbps and the RTT delay between 20-160ms. These values are typical
for broadband connections in Europe [Eur13]. Next, FIFO is swapped with AQM
queuing mechanism and experiments are repeated.

In the second part, the homogeneous traffic is replaced with a mixture of video
and web traffic users competing for network resources. Experiments are repeated
with FIFO and AQM queuing mechanisms and impact on video and web QoE is
analysed.

For the AQM techniques, two disciplines are evaluated: Controlled Delay Man-
agement (CoDel) and Flow Queue (FQ)-CoDel.

For the TCP variant, TCP Reno (version NewReno defined in RFC
6582 [GHFN12]) is used as a TCP congestion algorithm. TCP Reno is a loss-based
congestion algortihm [AABB19]. Compared to other TCP algorithms (Cubic and
BBR), Reno shows similar performance [ALH+18].

Finally, both AQM and FIFO queuing disciplines are evaluated in the presence
of heterogeneous RTT and its impact on video QoE is analysed. Figure 6.1 shows
the roadmap of the experiments.
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Competing Clients
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Figure 6.1: Summary of conducted experiments

6.1.2.1 HAS video client

As HAS client the well-known open-source player GPAC is used (see Sec-
tion 3.2.2 for more details). For adaptation algorithms, FESTIVE [JSZ14], BBA-
2 [HJM+14], and GPAC default algorithm are evaluated (Section 3.2.3.2 gives
overview of characteristics of these algorithms). For all algorithms, 12 seconds
of initial buffering and 4 seconds of rebuffering, when stalls occur, are consid-
ered. Different application buffer sizes are considered including 60-640 seconds.
Typical buffer sizes observed in the literature vary from 30 sec [JSZ14] to 240 sec-
onds [HJM+14]. While the 60 second buffer is a typical buffer size, the 640 second
buffer is selected purely to allow observing the impact of eliminating “ON-OFF”
behaviour on the streaming performance.

6.1.2.2 Video traffic

Eight clips (An Idiot Abroad, Casino Royale, Harry Potter, Man of Steel, Star
Trek, Avatar, Big Hero 6, and Star Wars) are randomly selected (uniform distri-
bution) from a HAS dataset described in Section 3.2.3.1. The segment duration
for all clips is 4 seconds, which again is commonly used by popular services. All
the experiments last for the duration of clips, which are 16 minutes long, served
from an APACHE1 server.

6.1.2.3 Web traffic model

For the web traffic model, a behavioural model is used as described in Sec-
tion 3.2.3.3 mimicking realistic user browsing behaviour. In experiments, number
of web clients varies between one and six.

1https://httpd.apache.org/
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6.1.2.4 Active queue management

Since its inception in 1993 with Random Early Detection (RED) [FJ93] as a
first published AQM discipline, the primary goals of these disciplines were having
high utilisation and low packet loss and delay. A certain type of traffic, e.g. web
traffic, is delay-sensitive and its performance degrades with increased delay as a
consequence of full router queues.

CoDel [NJ12] is an AQM discipline based on packet-sojourn time as the leading
indicator of packet delay. Packet-sojourn time represents a time packet spends
in the queue. Taking each packet delay results in link-rate independence. CoDel
adopts two constants target and interval. Target value is a threshold value for
determining the standing queue. If the sojourn time exceeds a threshold (target)
for at least interval, then algorithm drops the packet (in dropping state, intervals
are reduced inverse proportional to the square root of the number of drops).
CoDel’s main characteristic is that it needs no configuration, which was the main
drawback of its predecessor, RED [Ada13].

Flow Queue CoDel is a variant of CoDel that includes Deficit Round Robin
as a queue scheduler. Packets go to different queues based on a hashing func-
tion [SV96]. CoDel operates on each queue [HJMT+16].

6.1.3 Key performance metrics

Main HAS performance metrics include player instability (i) [JSZ14, AABD12],
fairness (F-Index), bandwidth utilisation (bwutil), average quality representation
rate (ravg) and stall performance.

Performance of web clients is measured by capturing page-loading time and web
QoE.

The results shown represent the average of five runs, with 95% confidence inter-
vals. In every run, each client randomly requests a video clip from the server and
starts at most 4 seconds (randomly selected with uniform distribution) after the
previous client. For web clients, the user randomly selects web page and reads a
page for some time (as explained in 3.2.3.3).
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6.2 Experiments with video traffic

This section starts by analysing how queue length impacts the QoE performance
of multiple video clients. As the queue length is dependent on multiple factors
including RTT, link capacity, and the number of competing clients, the impact
of these parameters is explored as well. However, only exciting results and obser-
vations are reported.

Figure 6.2: QoE metrics across different queue lengths

Table 6.2: Stall Performance across different queue lengths

Algorithm Min Mid Max
Default 60s (3,1,1) (5,31,38) (100,645,1348)

FESTIVE 60s (0,0,0) (0,0,0) (13,20,28)
BBA-2 60s (3,1,46) (0,0,0) (0,0,0)
Default 640s (3,7,44) (4,41,39) (100,642,1239)

FESTIVE 640s (0,0,0) (0,0,0) (0,0,0)
BBA-2 640s (0,0,0) (0,0,0) (0,0,0)

Six video clients competing for a 6Mbps link with a 40ms RTT are considered.
The size of the network queue varies from 1xBDP to 30xBDP. The 30xBDP is
selected purely to allow observing the case where there would be no packet loss.
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Figure 6.2 summarises key performance metrics for three algorithms with two
buffer configurations (60 and 640 seconds) across different queue lengths. Queue
sizes are grouped into three categories: MIN representing a 1xBDP case, MID
2-20xBDP (averaged), and MAX 30xBDP, respectively. Values are normalised
against GPAC default algorithm with 60 second buffer and 1xBDP queue size.
Similar, Table 6.2 depicts stall performance across different scenarios and config-
urations. Finally, Figure 6.3 shows F-Index of QoE between competing clients.

Figure 6.3: F-Index across different queue lengths

With the 1xBDP queue size (rule-of-thumb [VS94]) the link utilisation is 70%
on average. The impact of removing “OFF” periods (640s application buffer) has
a marginally positive effect on bandwidth utilisation (except for GPAC default
algorithm, where utilisation improves by 9% for MIN case). Increasing queue
length has a positive impact on utilisation across all algorithms. For MID queue
sizes, the bandwidth hovers around 83-89%. In the extreme case of 30xBDP,
clients achieve the highest bandwidth utilisation of around 89-96%.

All three algorithms request lower representation rates on average for the 1xBDP
case. In the middle region (2-20xBDP), algorithms show improvement, requesting
on average 900Kbps. When the queue is large enough to eliminate the packet-
loss component at the bottleneck link, algorithms request higher representation
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rates (averaging 1Mbps). The client buffer impacts the average representation
rate significantly, resulting in higher rates when the client buffer duration is 60
seconds and vice versa. This holds for all the algorithms. These results have roots
in the algorithm design. When using a large application buffer, clients access
the network all the time, causing it to estimate lower throughput, while in the
case of a smaller buffer, clients request segments at different times (randomised
scheduling component of the FESTIVE) which leads to the estimation of larger
throughput values. BBA-2 with a large buffer has slower up-switches because of
the larger cushion regions, which forces a client to download more segments with
lower quality before it can switch to higher representation rates.

Increasing the queue size has an insignificant impact on the instability of FES-
TIVE except for the extra large queue size (30xBDP). This implies FESTIVE
would be more stable when the network does not drop packets. We also noticed
that the client buffer duration affects FESTIVE’s switching behaviour. For MIN
queue size instability increases by 21% with larger application buffer. However,
this difference diminishes as we increase the queue size. The queue size has a
slight impact on the switching behaviour of BBA-2. On the contrary, a larger ap-
plication buffer significantly improves BBA-2 switching behaviour. By its design,
with larger buffer sizes, BBA-2 has a larger cushion region and hence performs
fewer switches. When the application buffer is small, the cushion region for each
nominal rate is also small, forcing the algorithm to switch too often. To illustrate,
in the case of the 60 second buffer, clients are making on average 200 switches
per clip. The clients request a new rate approximately every couple of segments,
making them very unstable. Hence, it may be unfair to draw conclusions on
BBA-2 performance with small or medium buffer sizes.

Overall user experience depends on the algorithm in use. For the GPAC default
algorithm, QoE decreases with the larger queue, resulting in a massive drop to
zero for the MAX queue size. The main reason is the stall performance as depicted
in Table 6.2. Larger queue results in all clients experiencing stalls, with a very
long stall duration (40 seconds on average). This negates the positive effect of a
larger queue on the rate and bandwidth utilisation. This result is also intuitive
as the latest studies indicate that users are most sensitive to stall performance
when streaming a video. Similarly, FESTIVE shows a similar pattern. However,
for MID queue size, QoE improves by 10% on average. However, MAX queue
size resulted in a drop of stall performance for FESTIVE with smaller application
buffer as a result of increased average rate and decreased instability (which causes
the player to switch less). This behaviour leads to 6% drop for QoE compared

Improving Video Streaming Experience
through Network Measurements and Analysis

124 Darijo Raca



6. Impact of Network Queues on
video performance 6.2 Experiments with video traffic

to MID queue size. Lower rate for the case with 640-second application buffer,
improves stall performance (neither client experience a stall), resulting in 29%
improvement of user experience compared to MIN queue size. When the queue
length is big enough to accommodate all the outstanding packets in the network,
queuing delay negatively impacts the stalls if the client algorithm is rate-based
as in FESTIVE and GPAC default. In the case of BBA-2, QoE improves with
queue size regardless of application buffer. Combines with a larger application
buffer, BBA-2 achieves higher user experience compared to the small application
buffer. This improvement is an outcome of improved switching behaviour due
to increased cushion between subsequent rates. Also, a small buffer and queue
length can lead to one client experiencing a relatively long stall.

Queue size has a marginal impact on F-Index as depicted in Figure 6.3. All
algorithms achieve high values (over 0.9), indicating the fair share of resources.
For the MAX queue size, GPAC produces a perfect score (1.0) as a consequence of
all clients having a QoE value of zero. FESTIVE achieves an almost perfect fair
share in all cases (0.99) bar combination of MAX queue size with small application
buffer in which F-Index drops to 0.91. This result is a direct outcome of stall
performance decline.

FESTIVE and BBA-2, represent two philosophies for rate picking approaches,
rate-based and buffer-based. Although the scope of the analysis is not driven by
any conclusion regarding what type of algorithm is better, we found that using a
smaller buffer for BBA-2 leads to stability and fairness problems. This is due to
shrinking the cushion region in the buffer. Hence, we expect that using a default
240 second [HJM+14] would be ideal for buffer-based strategies. That said, using
a large buffer leads to inefficient use of resources if the user prematurely abandons
the session.

In the rest of the analysis, the GPAC default algorithm is removed from the
evaluation because most of HAS players estimate an average value for throughput
samples rather than using raw throughput values for driving their decisions. In
addition, the BBA-2 is configured with its default 240 second application buffer.

6.2.1 Looking beyond queue size

Dimensioning queue size depends on three components depending on the rule in
use, namely RTT, link capacity and the number of clients competing for network
resources. The previous section explored different queue sizes with these sub-
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components fixed. In this section, however, we reverse the process, making the
queue size constant and changing the components mentioned above. The reason
for doing this is to generalise the results obtained in the previous section.

Firstly, using different bottleneck link capacities confirms the previous findings.
For all link capacity values and algorithm type combinations, clients underutilise
resources when the network queue length equals 1xBDP, using only on average
70% of the link capacity. For higher link capacity, average representation rate is
not a good indicator of how well the clients utilise bandwidth resources. Adap-
tation algorithms switch cautiously to a higher rate, usually by one step (next
subsequent rate). For higher bandwidths, a client needs more time to find the
optimal rate. More unbiased metric is median value, as shown in Table 6.3. As
the results show, both BBA-2 and FESTIVE stream with near optimal rate.

Table 6.3: Summary results for median representation rate (Kbps) across different
bottleneck link capacity values

Bandwidth Link Capacity (Kbps)

(a) BBA-2

6 12 18 24 30
1040.0 1754.0 2976.0 3818.0 4267.0

(b) FESTIVE

6 12 18 24 30
771.0 1748.0 2387.0 3097.0 4267.0

The instability drops by 90% and 50%, as the capacity changes from 6Mbps to
30Mbps for FESTIVE and BBA-2, respectively. This happens because the client
performs fewer switches as the gap between subsequent quality-rates increases,
for the rates higher than 1Mbps.

Not surprisingly improvement in QoE metrics lead to overall QoE improvement.
QoE score improves 4x and 3x as the capacity increases to 30Mbps for BBA-2
and FESTIVE, respectively. Furthermore, in all cases, clients share resources
equitably achieving minimum 0.94 for F-Index.

Next, the impact of varying RTTs is investigated on the performance of FESTIVE
and BBA-2. As previously mentioned, it is important to note that low RTT for
video streaming is expected to be more common with the current trend of bringing
the content distribution network closer to the edge of access networks.

Different RTT values are tested including 20ms, 40ms, 80ms, and 160ms. For
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every RTT value, the experiment is repeated for the bottleneck queue size from
1xBDP to 10xBDP.

For large RTT (80ms and 160ms), BBA-2 and FESTIVE show insignificant chan-
ges in bandwidth utilisation, fairness, and instability in comparison to the 40ms
RTT case. A slight drop in the average representation rate is observed as the
RTT increases. Additionally, a noticeable drop in stalls is seen for 80ms case,
and no stalls are encountered in the 160ms RTT case.

The 20ms RTT case shows a noticeable impact on both fairness and stall perfor-
mance. More specifically, 30% FESTIVE clients encounter at least one stall for
the 1xBDP case. As a result, the overall QoE score drops by 26% compared to
40ms case due to increased stall impairment. Similarly, BBA-2 clients show simi-
lar performance with 13% QoE drop compared to the default case. Furthermore,
as some clients experience stalls, these re-buffering events negatively impact the
overall fairness of the system. In particular, F-Index drops by 7% and 10% for
BBA-2 and FESTIVE, respectively.

For larger queue sizes higher than 1xBDP, FESTIVE and BBA-2 clients show
very close performance metrics similar to corresponding queue sizes for the 40ms
case.

Results indicate that the streaming performance degradation could be avoided in
the case with low RTT, by properly dimensioning the bottleneck queue size.

Finally, we run experiments with default settings, as shown in Table 6.1, only
changing the number of clients from 2 to 8 for the network queue lengths equal
to 1 and 2xBDP.

In all scenarios, using a larger queue size enables increasing network utilisation
and achievable quality rate. For FESTIVE, the average quality rate increases by
19% on average, as the network queue size goes from 1xBDP to 2xBDP regard-
less of the number of clients sharing the link. Similarly, bandwidth utilisation
increases by 17% and 12% for 1xBDP and 2xBDP, respectively, as the number
of clients increases from 2 to 8. This confirms results from [CCPM13], where
authors also show that FESTIVE utilisation increases with the number of clients.
The instability metric doubles for both cases. These results are also consistent
with results from [LZG+14] regarding instability trends (authors also have similar
conclusion for unfairness metric, but they use Jain Fairness Index), where band-
width overestimation and bitrate levels were pointed out as the possible root
causes. Also by increasing the number of TCP connections, the requirement for a
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1xBDP network queue lessens, causing higher bandwidth utilisation. As showed
in [AKM04], a large number of TCP connections do not require a 1xBDP network
queue.

For BBA-2 in the 1xBDP case, the utilisation increases by 8% as the number of
clients increases from 2 to 8. BBA-2 achieves higher utilisation than FESTIVE
for scenarios with a few clients (2 and 4). When 2xBDP is used for network
queue size, increasing the number of clients has no effect on utilisation, resulting
in same value across different cases. For both cases, instability increases linearly
with the number of clients.

Intuitively increasing the number of clients sharing resources has a negative effect
on the QoE score. Table 6.4 shows QoE values for different number of clients and
queue lengths.

Table 6.4: QoE values across different number of clients
(Vi - i HAS clients sharing bottleneck link)

(a) FESTIVE

1xBDP 2xBDP
# V2 V4 V6 V8 V2 V4 V6 V8
QoE 1.56 0.98 0.81 0.70 1.87 1.02 0.89 0.74

(b) BBA-2

1xBDP 2xBDP
# V2 V4 V6 V8 V2 V4 V6 V8
QoE 1.70 0.79 0.64 0.48 2.00 1.07 0.71 0.60

However, moving from 1xBDP to 2xBDP increases overall QoE for all scenarios re-
gardless of chosen adaptation algorithm. Improvement in QoE varies between 5%
- 35%. For FESTIVE, the conservative approach in picking higher rate (stream-
ing k segments encoded in k bitrate before moving to k + 1 quality) limits the
impact of 2xBDP compared to more aggressive rate selection in a case of BBA-2.
Second, switching impairment (in a case of Clay QoE represents a standard devi-
ation of average rate) increases for larger queue additionally limiting overall QoE
improvement. Third, the spacing between subsequent rates plays an important
role in the overall QoE score. For example, in the case of four clients compet-
ing for 6Mbps bandwidth, clients stream at 1Mbps rate quality. However larger
queue enables clients to stream at 1.7Mbps improving overall QoE significantly
(by 35%). For other cases, a gap between subsequent rates is smaller (around
30%) resulting in less noticeable improvement.
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6.3 Experiments with mixed traffic

The bottleneck link may be shared among different types of traffic, including
video, and interactive, delay-sensitive applications. Hence, next set of experi-
ments considers scenarios when multiple heterogeneous applications share a bot-
tleneck. In particular, a mixture of HAS and web clients are considered, as they
represent the most popular types of applications in today’s Internet.

All experiments consider six clients. In the rest of the analysis, we use Mn to
refer to sharing scenario with n web clients and 6− n video clients. The default
simulation parameters are used as shown in Table 6.1, for FIFO queue. In addition
to FIFO, AQM techniques are analysed as well, namely CoDel and FQ-CoDel.

Comparing QoE metrics (bandwidth utilisation, average representation rate, av-
erage instability and stall performance), there is no significant difference between
different queuing disciplines when clients stream with either BBA-2 or FESTIVE
adaptation algorithm. the biggest difference occurs for FESTIVE algorithm cou-
pled with AQM, with average representation rate lower by 6% compared to FIFO.

Finally, the impact of AQM has a negligible effect on the overall QoE score, as
depicted in Figure 6.4. For FESTIVE, AQM lowers QoE, while with BBA-2 trend
is the opposite, with an average difference around 1% compared to FIFO.

In addition to QoE score, Table 6.5 shows level of fairness among competing
clients. Similar to QoE, there is no significant difference in how QoE is distributed
among clients for different queuing disciplines.

Table 6.5: F-Index across different queuing disciplines and adaptation algorithms

Algorithm
Queuing Disc. FIFO CoDel FQ-CoDel

BBA-2 0.96 0.95 0.96
FESTIVE 0.99 0.99 0.99

6.3.1 Impact of web traffic on video performance

Before analysing the impact of video traffic on QoE performance of web clients,
video performance is compared with and without web sharing clients. As a no-
tation, Vk refers to k video clients sharing a bottleneck link. For example, when
comparing mixed and video cases, Mn is analogous to V6−n.
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Figure 6.4: QoE performance for different queuing disciplines and adaptation
algorithms

Figure 6.5 illustrates performance of QoE metrics for different combinations of
video and web clients across 1xBDP and 2xBDP cases and adaptation algorithms.

Intuitively, the average representation rate increases with the number of web
clients as fewer HAS clients are competing for the link. However, the perceived
average quality rate noticeably decreases as the number of web clients increases
in comparison to corresponding V6−n scenarios.

Instability is scenario-dependent as web clients may change this metric positively
or negatively in comparison to V6−n scenarios. Such scenario dependency is due
to the interaction between the link capacity, the number of clients, and available
video encoding rate. To illustrate, instability changes differently across differ-
ent Mn scenarios in comparison to V6−n scenarios. In the M3 and V3 scenarios
with 1xBDP for FESTIVE, median quality rate is 1Mbps. In M3 case, 700Kbps
generated by web clients (237Kbps per client), fills the gap between 1065 and
1777Kbps. This forces all the video clients to stream at the 1Mbps. Without the
web traffic, case V3, two clients select higher rates, 1777 and 2335Kbps, forcing
the third client to use 1Mbps. This increases instability, which seems counter-
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intuitive. However, FESTIVE’s probe component forces clients to periodically
select a higher rate as a function of rate. For lower rates, the algorithm will
try next higher rate more often. This explains why instability increases by 10%.
For the 2xBDP case, the same pattern can be observed, but because the larger
network queue increases available throughput, the aforementioned interpretations
shift to scenarios M2 and V4, respectively. BBA-2 relies on buffer levels to make
a decision. When video clients operate in a region around 1Mbps, the amount
of web traffic helps to decrease instability. This is a consequence of slower buffer
filling, which essentially causes clients to be more stable.

As a result, overall QoE decreases with the introduction of web clients. However,
for a smaller number of web clients (less than three), this difference is negligible.
Largest difference occurs when two video clients share resources with four web
clients with QoE dropping by 29% and 15% for 1xBDP and 2xBDP, respectively
in case of FESTIVE. Similarly, BBA-2 shows the same trend with a 27% and
20% drop in QoE for the same cases.

Next, different active queue management scheduling techniques (CoDel and FQ-
CoDel) are compared for mixed-case traffic scenarios, where two types of clients
share the bottleneck link.

For the FESTIVE adaptation algorithm, the average representation rate is higher
in the case of FIFO than CoDel and FQ-CoDel. However, the difference is slim.
When clients are streaming with BBA-2, average throughput is similar across
different queuing techniques, resulting in negligible difference. However, for the
M4 case, AQM techniques achieve higher average representation rate (5%). This
increase is countered in instability, with clients switching more. QoE performance
is scenario dependent. In most cases, the impact of AQM has a negligible effect
on QoE, with FIFO producing higher QoE in a majority of cases, as depicted in
Figure 6.6a. Still, for M4 case, AQM achieves 5% higher QoE compared to FIFO
when clients use BBA-2.

Similar, Figure 6.6b shows fairness among competing users. All queuing disci-
plines achieve consistent fairness across the majority of cases when streaming
with a FESTIVE algorithm. BBA-2 exhibits similar performance with slightly
lower fairness.
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(a) FESTIVE

(b) BBA-2

Figure 6.5: Video performance in presence of web clients for FIFO queuing disci-
pline (all values are normalised to M1 scenario values for different QoE metrics)Improving Video Streaming Experience
through Network Measurements and Analysis
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(a) QoE

(b) F-Index

Figure 6.6: Video QoE and fairness in mixed traffic scenarios for different queuing
disciplines and adaptation algorithms
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6.3.2 Impact of video traffic on web performance

First, M6 scenario is considered for different queue lengths; i.e. six web clients
sharing the link. Increasing the queue size, reduces the PLT as the network
queue increases from 1x to 2xBDP. As a result QoE increases by 2%, as depicted
in Figure 6.7. Small network queues drop packets more frequently, causing TCP
to retransmit lost packets. This adds to the overall delay, causing the user to
abandon more websites. Note that our user abandons the web page if it doesn’t
load in 15 sec [LWD10]. Also, with less retransmitted packets allows TCP to
achieve higher throughput. This result indicates that larger queues could also
benefit web clients sharing a bottleneck link. For remaining scenarios M1 - M5,
web QoE is scenario dependent. For example, theM2 scenario with 1xBDP, PLT
values drop for FESTIVE and BBA-2 increasing QoE as well. Observing the
video client’s rates, four video clients have similar rates as for M1 scenario, which
has five video clients beside one web client. Because of the gap between 1 and
1.7Mbps rate, four clients don’t have enough resources to compete for the next
higher rate. As a result, the network queue is less occupied with video traffic,
allowing web clients to achieve better user experience.

Finally, he impact of video traffic on web QoE for modern AQM techniques is
evaluated. Figure 6.7 shows web QoE performance across different competing
scenarios and adaptation algorithms. For M6 scenario, both AQM techniques
result in a 10% decrease for PLT. This translates to 4% increase for web QoE.
In the case of having five video clients and one web client sharing a bottleneck
link, QoE drops by 6.5% and 10.5% on average, for BBA-2 and FESTIVE (e.g.
PLT increases by 33% and 10% on average), respectively across different AQM
techniques. The impact on web QoE depends on a choice of adaptation algorithm.
As a more pugnacious algorithm, BBA-2 has a more significant negative impact
on QoE than FESTIVE. For the majority of scenarios, FQ-CoDel achieves higher
QoE than CoDel. For BBA-2 adaptation algorithm, the variation of QoE value
is scenario dependent. The gap between subsequent rates results in a lower value
for QoE. Looking carefully into scenariosM1,M2, andM3 the following pattern is
observed: 75th percentile of representation rate is equal to 1.7Mbps for three out
of five video users (with rest of clients having 1Mbps 75th percentile). Similar,
for the M2 case all clients have 75th percentile equal to 1.7Mbps. Furthermore,
two of three clients have 75th percentile equal to 1.7Mbps in M3 case (remaining
one having 2.3Mbps). This observation draws a natural conclusion: Decreasing
the number of video clients, their streaming rate stays the same resulting in a less
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Figure 6.7: Web QoE performance in multi-traffic scenario for FIFO queuing
discipline

occupied queue by video traffic. The gap between 1Mbps and 1.7Mbps is uniquely
higher (70%) than between rest of rates (∼30%). Larger gap limits video clients
in streaming with the higher rate even as the number of clients decreases.

Similar, for the M4, both clients are trying to stream with 3Mbps representation
rate. As a result, web client delay increases. However, in M5 case QoE increases,
although video client streams with the highest rate. In this case, 4Mbps is the
highest possible representation rate, allowing more resources for web clients.

For the FESTIVE adaptation algorithm, the difference in QoE values for different
scenario cases is notably less evident compared to BBA-2. However, both algo-
rithms have a similar trend across different cases for both CoDel and FQ-CoDel.

6.4 Experiments with heterogeneous RTTs

In practice, clients may not have homogeneous RTT values. For example, with
Content Delivery Networks (CDN) nodes close to the access network, there will be
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Figure 6.8: Web QoE performance in multi-traffic scenario for AQM queuing
discipline

lower RTT values for customers of the corresponding video service when compared
to other services that are using further away servers. Since the TCP performance
depends on perceived RTT values, we conduct experiments with clients having
different RTTs while competing over the same bottleneck link. Thus we tested
BBA-2 and FESTIVE with 240 and 60-second client buffers respectively, and
for six clients, competing for resources, with their RTT values set to 20, 40, 60,
80, 100, and 120ms. Similarly to previous sections, we repeat experiments with
different network queue lengths. Also, we test preceding AQM techniques against
heterogeneous RTT values. All network queue lengths are estimated based on the
RTT of the first client (20ms). Hence, 4xBDP for the first client is a 2xBDP queue
for the second client, which has 40ms RTT.

Figure 6.10 shows negative impact of heterogeneous RTT on QoE performance for
competing clients. For 2xBDP case, both algorithms achieve the lowest fairness
among multiple clients. Fairness drops to 0.83 and 0.79 for FESTIVE and BBA-
2, respectively. Low fairness comes from clients with low RTT having better
QoE than clients with higher RTT, as depicted in Figure 6.9a and 6.9b. For the
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(a) FESTIVE

(b) BBA-2

Figure 6.9: Queue Length impact on QoE in heterogeneous RTT environment
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Figure 6.10: Queue Length impact on Fairness in heterogeneous RTT environ-
ment

2xBDP case, a client with 20ms RTT achieves 5x and 4x higher QoE compared to
a client with 120ms, for FESTIVE and BBA-2, respectively. However, increasing
the queue size counter effect of heterogeneous RTTs, increasing overall fairness.
For queue lengths larger than 8xBDP, both algorithms achieve high fairness (
>0.95). All clients experience similar QoE score (0.7-0.8) for both algorithms.

Table 6.6: Average instability across different network queue lengths (products of
BDP) for heterogeneous RTTs

Algorithm
Queue Length 2x 4x 6x 8x 10x 12x

BBA-2 0.068 0.065 0.06 0.058 0.058 0.059
FESTIVE 0.157 0.11 0.11 0.10 0.10 0.10

Table 6.6 shows average instability for both BBA-2 and FESTIVE algorithms.
Queue length has no significant impact on instability when the adaptation al-
gorithm is BBA-2. For FESTIVE, except for 2xBDP queue length, the average
instability does not change across different queue lengths. For the 2xBDP case,
client 6 has a larger number of switches, which drives overall average instability.
An increased number of switches is a consequence of FESTIVE stability function.
The average rate for client 6 is around 500Kbps. For lower rates, FESTIVE is
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less cautious when switching-up. As the average rate increases, the number of
switches goes down, and all the clients have a similar number of switches.

As results show, clients with the smallest RTTs have preferential access to network
resources dominating all other clients with higher RTTs. This result is intuitive,
as all the clients use TCP as a transport protocol. Long-term throughput (in
steady state) of TCP connection can be expressed as [MSMO97]:

RateT CP = 1
RTT

1.22×MSS
√
p

(6.1)

where MSS is maximum segment size, and p represents probability of random
packet loss. Equation (6.1) shows that rate is inversely proportional to RTT
which confirms our results. By increasing queue length, queuing delay increases,
adding to overall RTT. Queuing delay helps to level the field for the client with
higher RTT.

Next, we analyse the QoE performance in an environment with heterogeneous
RTTs coupled with AQM. Figure 6.11 depicts the QoE of competing clients for dif-
ferent adaptation algorithms and two queuing disciplines, CoDel and FQ-CoDel.
Flow isolation helps in reducing the unfair share of resources, as the difference
between clients with highest and lowest RTT (120 and 20ms) is 50% 23% for
BBA-2 and FESTIVE, respectively. However, in the case of CoDel without flow
isolation, this difference increases by 170% and 46% for BBA-2 and FESTIVE,
respectively.

Overall, FQ-CoDel achieves high system fairness, as depicted in Table 6.7. CoDel
archives high fairness when coupled with FESTIVE adaptation algorithm, while
more aggressive adaptation strategy results in lower overall fairness.

Table 6.7: F-Index across different AQMs for heterogeneous RTTs

Algorithm
AQM CoDel FQ-CoDel

BBA-2 0.88 0.95
FESTIVE 0.94 0.97

Flow isolation helps in reducing instability when compared with using only CoDel,
as depicted in Table 6.8. However, compared to the homogeneous RTT case, there
is no significant difference when using BBA-2 as adaptation algorithm. For the
FESTIVE case, instability increases by 10% for both CoDel and FQ-CoDel.
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(a) QoE score for each client and FESTIVE adaptation algorithm

(b) QoE score for each client and BBA-2 adaptation algorithm

Figure 6.11: QoE performance in heterogeneous RTT environment with AQM
mechanisms
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Table 6.8: Average instability across different AQM mechanisms for heteroge-
neous RTTs

Algorithm
AQM CoDel FQ-CoDel

BBA-2 0.06 0.05
FESTIVE 0.11 0.1

6.5 Discussion

This section provides a summary and discussion of key results, seeking to offer
guidelines for network practitioners charged with configuring network routers to
manage a mix of HAS and non-HAS traffic.

For the first hypothesis “The well-known 1xBDP rule-of-thumb for dimensioning
network queues can achieve full link utilisation for multiple HAS video clients”
experiments indicate that the rule-of-thumb queue size leads to relatively lower
bandwidth utilisation and lower average streaming rates and has no performance
merit for other metrics. As result the first hypothesis is rejected.

For the second hypothesis “Increasing router queue length will improve fairness
among competing HAS video clients with heterogeneous RTTs” performed ex-
periments show that employing larger network queue sizes assists the system in
improving its fairness for video clients with heterogeneous RTT delays. Note
that this is a critical issue as some content providers site their CDN distribution
nodes close to, or within, the network of the Internet service provider; As result
the second hypothesis is accepted.

Finally, for the third hypothesis, “Use of AQM techniques will protect web
client performance (in particular page-loading time) when sharing resources with
HAS video clients”, experiments show that using AQM techniques improve page-
loading time when web-only clients share a bottleneck link, while in a mixed
traffic scenario, the positive effect of CoDel and FQ-CoDel on page-loading time
is negligible and is more dependent on the type of adaptation algorithm and
number of video users. As a result, the third hypotesis is rejected.

Empirical study performed in this chapter yields numerous additional interesting
observations when multiple video clients compete for the bottleneck resource.

Following conclusions are made:

• The performance degradation of low RTT can be avoided by using a queue
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size larger than 1xBDP.

• Using AQM instead of FIFO does not significantly impair video perfor-
mance.

• In the case of heterogeneous RTT delays, CoDel shows the same weakness
as FIFO, while flow isolation (FQ-CoDel) improves fairness.

When multiple web and video users share a bottleneck link, the following obser-
vations are made:

• Increasing the bottleneck queue size helps web clients that compete with
HAS clients by increasing their throughput and decreasing the number of
excessively delayed web pages, but would have a scenario-dependent impact
on the web page load time.

Based on these results, the rule-of-thumb 1xBDP queue size does not seem to be a
good choice for HAS clients sharing a bottleneck, but rather a medium queue size
strikes a sweet operating point for video clients with homogeneous RTT times.

Sharing network resources between the web and HAS clients can be a detriment
to web QoE. Deploying AQM techniques for alleviating these effects seems inef-
fectual, as the page loading time mostly depends on the gap between adjacent
representation rates and type of adaptation algorithm.

The effects of queue size on live HTTP adaptive streaming latency performance
is a compelling research problem as end-to-end latency is an important metric
when evaluating user experience. End-to-end-latency is defined as the difference
between the time point when the live event takes place and when it is played
back to the user. The leading factor contributing to end-to-end latency is chunk
duration. Minimum latency is bounded to the delivery time of one chunk plus en-
coding and network delay. However, chunk duration is usually a couple of seconds
long resulting in potential end-to-end latency of order of tens seconds [WS14]. In-
tuitively, shorter chunks would improve latency values at the cost of signalling
overhead (i.e. each chunk is preceded with a request from the client) and coding
efficiency. On the upside, HTTP/2 push-based capability alleviates this issue
allowing sub-second chunks [vdHPW+18]. Alternatively, HTTP chunked trans-
fer encoding, a technique that allows the chunk to be generated and delivered
simultaneously in small pieces (called chunks), can be used with existing HTTP
1.1 [BTBZ19]. In our experiments, the average queuing delay for large queue
sizes is up to 200 and 226ms for BBA-2 and FESTIVE, respectively. For live
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streaming using chunks, this delay would need to be allowed for in calculating
the end-to-end delay budget.

6.6 Conclusion

This chapter explores performance interactions between multiple HAS and non-
HAS clients sharing network resources from the perspective of network queue
design in a realistic environment. These experiments are based on real traffic and
realistic behaviour models for video and web clients.

The systematic empirical analysis yields several important practical results. The
well-known “rule-of-thumb” (1xBDP) for network queue dimensioning causes un-
derutilisation (70%) when multiple HAS clients share a bottleneck. Larger queues,
e.g. 2xBDP, can improve utilisation and quality by 15% on average. Also, for
median queue size, overall QoE improves by 12% on average. Larger queues also
help in improving system fairness for clients with heterogeneous RTTs. However,
larger queues can negatively impact delay-sensitive traffic, causing bufferbloat
phenomenon. While modern AQM techniques promise low delay and high util-
isation and are application-agnostic, our results show that their performance is
mostly scenario-dependant and would vary depending on bitrate distribution,
video adaptation algorithm and offered web traffic load. Replacing FIFO with
AQM does not improve PLT significantly, in which AQM is unable to counter the
bandwidth-hungry nature of HAS flows. This striking result opens a space for
developing a new AQM mechanism that can adequately protect delay-sensitive
flows in cases when they share network resources with video streams.
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Chapter 7

A solution for
experience-oriented adaptive
queuing

The previous chapter analysed the performance of multiple HTTP adaptive
streaming (HAS) clients sharing network resources. Furthermore, exhaustive ex-
periments were performed to quantify interactions between HAS and Web clients
sharing a bottleneck link. The following key observations were made:

• Larger queues (i.e. adding queuing delay) improve HAS performance (Qual-
ity of Experience (QoE))

• Active Queue Management (AQM) disciplines (i.e. Controlled Delay Man-
agement (CoDel) and Flow Queue (FQ)-CoDel) are ineffective in achieving
low page-loading time when web clients compete with HAS clients for the
resources

In the case of heterogeneous traffic with distinct requirements, isolating traffic
types and design application-aware scheduling are recommended. In [DSBTB16],
the authors propose a two queue solution for correspondent coupling between
traditional Transmission Control Protocol (TCP) and Data Centre TCP. For
HAS traffic, results from the previous chapter suggest that extended video packet
queuing would be preferable to packet dropping. This recommendation can be
integrated into various scheduling disciplines, such as the Deficit Round Robin
or Earliest Deadline First to achieve the best user experience for different ap-
plications. Typically, the number of traffic classes should remain small (2-3) for
practical implementation.
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This chapter presents ENDUE, an experience oriented adaptive two queue disci-
pline for heterogeneous traffic based on the observations made above to improve
the user experience for various traffic.

A key result is that isolating web and video traffic in conjunction with a delay-
based adaptive scheduler improves page-loading time by up to 80% compared
to state-of-the art CoDel AQM discipline with the insignificant impact on video
performance.

The Chapter starts with the rationale for the ENDUE design elements through
experimental analysis, followed by the comparison between ENDUE, First In
First Out (FIFO) and state-of-the-art AQM CoDel queuing disciplines. The
experimental methodology used for experiments is first presented.

7.1 Methodology

Similar to the previous chapter, we examine multiple HAS and web clients sharing
a bottleneck link. We compare the proposed ENDUE discipline with the CoDel
AQM discipline across various combinations of HAS and web clients.

7.1.1 Experimental testbed

The same testbed framework as described in Section 3.2.2 is used. There are
N clients sharing a bottleneck link and requesting their data from a remote
HyperText Transfer Protocol (HTTP) server. Video and web content is stored on
HTTP servers. The role of the bottleneck link and network elements is to emulate
scenarios with different queue scheduling techniques. Performance metrics for
different applications are collected at the client side. Table 7.1 shows default
values and ranges for key parameters used in the experiments.

Table 7.1: Different Parameter values for experiments

Parameter Name Default Value
N (number of clients) 6

RTT (ms) 40
C (Mbps) 6

Client Buffer(s) 15,120
Adaptation Algorithms Elastic, Logistic

Network Queue FIFO, CoDel, ENDUE
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In all experiments, there are six clients, representing a typical home environment.
The number of web clients is n, where n ∈ 1..5, and 6−n HAS clients. In the rest
of the text, as in the previous chapter, Mn refers to a sharing scenario with n web
clients. All clients start streaming/browsing at the same time. The main reason
is dashc player which crashes unexpectedly if multiple players start at random
times.

7.1.2 HAS video client

For the video player, dashc [RZS18b] is selected instead of GPAC. Dashc em-
ulates a HAS video player by adopting all the player’s logic, except the option
to decode the video content. Dashc is more flexible tool and easier to extend
with new adaptation algorithms and support running larger number of clients.
The following adaptation algorithms are evaluated: ELASTIC and LOGISTIC,
as explained in Section 3.2.3.2. These algorithms are comparable to previously
used algorithms in Chapter 6 but are newer released algorithms [CCPM13].

For video traffic, the same approach is used as in Chapter 6. More details about
video dataset can be found in Section 3.2.3.1. The segment duration for all clips
is 4 seconds. All the experiments last for the 5 minutes which allows using both
video QoE models (Section 3.2.3.4).

7.1.3 Web client

To accompany dashc emulation HAS player, we write a custom web browser
emulation tool, SPEED. Section 3.2.3.3 detailedly explains the SPEED tool. In a
nutshell, SPEED uses aiohttp library for sending parallel TCP connections similar
to the real web browser. In the first step, SPEED downloads the main object,
after it downloads the remaining inline objects using multiple connections. Unlike
a real web browser, SPEED does not decode main and inline objects, making it
unusable for downloading real web pages. To overcome this issue, dummy web
pages are created and stored on the web server. We create sizes of web page
content based on an experimental analysis of the million web pages from the
Internet [PMT12].
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7.1.4 Key performance metrics

QoE metrics for video and web clients are summarised in Table 7.2. Stall per-
formance is omitted as in most cases, all algorithms achieved a stall-free session.
However, when appropriate stall performance is included.

The results shown represent the average of ten runs. In every run, each client
starts at the same time. For web clients, the user randomly selects a web page
and reads a page for some time (as explained in the previous section).

Table 7.2: QoE Metrics Notation for Video and Web clients

Video QoE Metrics
Metric Summary
Bitrate Average bitrate
Stability Average stability, equal to 1 − i with i

being instability as defined in [JSZ14]
QoE Geometric mean of Clay and Yao QoE,

Section 3.2.3.4

Web QoE Metrics
Metric Summary
PLT Page loading time for web users, Sec-

tion 3.2.3.4
QoE QoE for web user experience as a func-

tion of PLT, Section 3.2.3.4

7.2 ENDUE’s design

Results in Chapter 6 indicate that the first step in designing a queuing discipline
is to separate video and web flows. The reason is straightforward; web flows are
delay-sensitive traffic, while video flows, as indicated by results in the previous
chapter, are delay-tolerant traffic. Figure 7.1 depicts the simplified architecture
of the ENDUE discipline. The queuing discipline comprises of two components,
queue for storing and managing packets of different flows, and scheduler for man-
aging packets based on some policy. The goal of queue disciplines is to limit
queue length (and thus queuing delay) for web traffic and allow larger delays for
video traffic. In addition, the adaptive scheduler supports this goal by increasing
available bandwidth for web traffic and increasing video queuing delay at the
same time.
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With the ENDUE, there are two main requirements for queue discipline selection.
First, queue discipline should be simple, and second, it should support easy tuning
to change queue behaviour according to traffic characteristics. Similar, scheduler
should be efficient, easy to implement and fair (in terms of allocating bandwidth
among different traffic classes).

Figure 7.1: ENDUE’s simplified architecture

For scheduling packets, Deficit Round Robin (DRR) [SV96] is used. DRR belongs
to a class of Latency Rate (LR) servers [SV98]. The behaviour of LR class servers
is determined by latency and allocated rate. DRR is a simple scheduling discipline
that achieves an almost perfect fairness among different classes, and it is efficient
(requiring O(1) to process a packet). DRR implementation is based on the usage
of quantums. In each round one quantum of bytes are added to every class. It
allows each class to send the allocated number of bytes during the round. If the
packet size is smaller than the allocated number of bytes, it adds the remaining
bytes to the next round. If the packet size is larger than the allocated number
of bytes, then the packet needs to wait for the next round and allocation of a
new quantum of bytes to the remaining bytes. To achieve O(1) operation per
packet, the quantum size needs to be larger than the Maximum Transmission
Unit (MTU) [SV96]. For quantums smaller than the MTU, a modified DRR is
proposed to preserve O(1) complexity [LMS04].

7.2.1 Selecting the queuing discipline

This section starts by analysing different queuing disciplines for the video and
web traffic. In analysis, two queuing disciplines are considered, FIFO and CoDel.
Both disciplines are relatively simple and easy to tune. The function of these
queues is to limit web queuing delay and keep it lower than video queuing delay.
For simplicity, equal quantums are assigned for both queues (scheduler policy is
fixed). This results in equal bandwidth share across different Mi scenarios.

Figure 7.2 shows a boxplot for Page Loading Time (PLT) of web clients for
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LOGISTIC and ELASTIC adaptation algorithms. Similarly, Table 7.3 shows
average video QoE for the same setup and algorithms.

Both disciplines achieve the same trend across different Mi scenarios. PLT in-
creases with the number of web clients. In the case with ELASTIC algorithm,
median PLT increases from 1943ms to 2853ms for M1 −M5 scenarios. Similar,
for LOGISTIC, median PLT increases from 1887ms to 3244ms. While this seems
counter-intuitive at first, traffic isolation is the main culprit of this result. With a
fixed bandwidth allocation per traffic class, web users get only half of bandwidth
on average. As the number of web users increases, more users are competing
for the bandwidth increasing overall PLT. In the single queue approach, web
clients have access to full bandwidth capacity. Similar, video QoE improves as
the number of video users decrease, allowing video clients to stream at the higher
rate.

Table 7.3: Average video QoE score across various Mi scenarios with LOGISTIC
and ELASTIC adaptation algorithms

LOGISTIC
M1 M2 M3 M4 M5

CoDel 8.62 8.59 8.95 10.0 11.51
FIFO 8.5 8.52 9.0 10.1 11.74

ELASTIC
M1 M2 M3 M4 M5

CoDel 8.02 8.19 8.8 9.36 11.83
FIFO 7.94 8.04 8.91 9.47 12.6

LOGISTIC causes higher PLT for most scenarios related to ELASTIC algorithm.
This is true regardless of the queue discipline. This result is a consequence of the
ELASTIC conservative nature (relying on harmonic bandwidth estimator). This
difference is most clear for M5 case, where PLT increases by 391ms and 191ms
for FIFO and CoDel, respectively.

Overall, both disciplines achieve a similar result across scenarios. For most sce-
narios FIFO queue achieves lower overall PLT except for the M5 case where
CoDel improves PLT significantly, especially with more aggressive LOGISTIC al-
gorithm, where difference is 305ms. This comes at the cost of average video QoE,
but the impact is less significant. Both disciplines achieve high fairness for video
clients (> 0.95) across all scenarios. Percentage of abandonment rates (ABR) for
web pages are similar, with FIFO having a slightly higher percentage (still ABR
is around 1% on average).
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Figure 7.2: Comparison of PLT between CoDel and FIFO Queuing Discipline in
two-queue discipline (equal bandwidth share)
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While the FIFO queue is the simplest queuing discipline, configuring queue length
to 2xBandwidth Delay Product (BDP), capacity, and round-trip-time (RTT) are
needed in advance. CoDel operates only by tracking local queuing delay its
configuration parameters do not depend on RTT and bandwidth capacity as
authors of CoDel claim that default configuration parameters show good results
across a wide range of RTT and capacity combinations.

For ENDUE’s design, CoDel is selected as the main queuing discipline. Next,
CoDel needs to be modified to support larger queuing delays for video traffic.
While the initial design of CoDel revolves around keeping low queuing delay, this
behaviour needs to be modified for video traffic. The next section analyses CoDel
parameters and its impact on web and video performance.

7.2.1.1 Tuning queue parameters

CoDel maintains two parameters: target and interval. By default, values for
these parameters are 5ms and 100ms, respectively. CoDel works by monitoring
per-packet latency inside interval. If the latency is larger than target for at least
one interval, CoDel starts dropping packets until latency goes down below target.
For tuning, CoDel’s target value is the most important parameter. The main
motivation for tuning this parameter lies from the observation in the previous
chapter, where added delay improve video QoE. To apply this to ENDUE, the
target value needs to be increased allowing higher delay threshold for video traf-
fic. While the authors [NJ12] of CoDel argue that increasing target value does
not significantly increase utilisation, their observation is made for a one queue
discipline only.

Similar to the previous section, evaluation is performed with equal quantum val-
ues for both queues, where each queue discipline running CoDel. Web queue is
configured with CoDel’s default parameters (5ms for target), while multiple tar-
get values, ranging from 5ms to 40ms, are tested for the video queue. Scenarios
M1 −M5 are tested with LOGISTIC and ELASTIC adaptation algorithms.

Table 7.4 shows average video QoE for LOGISTIC and ELASTIC algorithms
across different Mi scenarios. For M1 and M2 case and LOGISTIC algorithm,
video performances are similar across different target values. Higher target val-
ues result in a slight increase in the number of switches for video clients, which
increases the switching penalty of QoE models and thus reduces its overall score.
A similar observation holds for ELASTIC. For scenarios M3 −M5, video QoE
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improvement is more evident as target values increase, for both adaptation algo-
rithms.

Table 7.4: Average video QoE score across various target values and Mi scenarios
with LOGISTIC and ELASTIC adaptation algorithms

LOGISTIC
M1 M2 M3 M4 M5

T5 8.62 8.59 8.95 10.0 11.51
T10 8.61 8.54 8.95 10.04 11.55
T20 8.62 8.55 9.01 10.13 11.64
T40 8.57 8.55 9.05 10.17 11.74

ELASTIC
M1 M2 M3 M4 M5

T5 8.02 8.19 8.8 9.36 11.83
T10 7.97 8.13 8.67 9.26 11.73
T20 8.01 8.12 8.58 8.98 12.31
T40 8.08 8.23 8.95 9.36 12.85

Figure 7.3 depicts boxplots of PLT for LOGISTIC and ELASTIC adaptation
algorithms across differentMi scenarios and target values. Performance is similar
across all target values and scenarios for both algorithms.

The 20ms target value strikes a balance in video QoE - PLT tradeoff across all
scenarios. In the rest of the experiments, 20ms is used for the video queue target.

7.2.2 Delay-based adaptive scheduling

After selecting and tuning queues for storing video and web packets, the next step
is designing the scheduling logic. ENDUE extends DRR with adaptive quantum
values logic. Quantums are updated depending on average queuing delay for both
classes. Procedure 1 defines the quantum update logic.

Average delay is calculated using Little’s law [PNP+13]:

d = qlen

drateavg

(7.1)

where qlen is queue length in bits, and drateavg is the average draining rate of
the queue. The average draining rate is calculated using Exponential Weighted
Moving Average (EWMA) bandwidth estimator with 30ms interval. Expression
for drateavg is [PNP+13]:
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Figure 7.3: Comparison of PLT for different CoDel’s target values in two-queue
discipline (equal bandwidth share)
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Algorithm 1 Procedure for quantum update
1: repeat(every update interval ms)
2: Calculate: dweb, dvideo . Calculation of average delay for web and video

queues
3: rweb/video = dweb+20ms

dvideo
. Ratio between web and video delay

4: if rweb/video > 1 then . Add priority to web traffic
5: qweb = MTU × rweb/video

6: qvideo = MTU
7: else if rweb/video < 1 then . Add priority to video traffic
8: qweb = MTU
9: qvideo = MTU × rweb/video

10: else
11: qweb = MTU
12: qvideo = MTU

13: until there are packets backlogged

drateavg = (1− α)× drateavg + drate (7.2)

where α = 0.125 is averaging parameter, and drate is rate calculated for the last
30ms interval:

drate = qlen30ms/(30× 10−3) (7.3)

where qlen30ms is queue length over last 30ms.

The key idea is to update the quantum for each class based on average delay.
In the results, both queues have the same default target value (5ms). As video
clients are delay tolerant, the video queue should have a larger target value than a
web queue, allowing increased delay by decreasing the packet-loss rate. Based on
the analysis in the previous section, 20ms is chosen as target value for the video
queue. To accompany increased delay for the video queue, Procedure 1 “adds”
20ms of virtual delay to web queuing delay to match higher delay threshold
of video traffic. The reason is threefold. First, this ensures that actual web
delay is always relatively lower than video delay, and it does not depend on link
bandwidth. Second, the video queue is configured to have a higher delay (20ms
target), so 20ms of added virtual delay to web queue mirrors that. Third, keeping
web queuing delay artificially higher than video dampens maximum quantum
allocated to video class and thus limits additional delay added to web class while
waiting for video class to send all packets in one round.

Next, does this discipline protect video flow from starving? In a case with a high
load of web traffic and the low load of video traffic adaptive discipline would starve
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video traffic. However, underlying CoDel queues will indirectly manage this delay
by increasing packet dropping probability, causing a decrease in web delay and
thus a decrease in web quantum. Still, another parameter plays an essential role.
How often quantum values are updated can counter above observations.

The following experiments are performed. Five web clients are sharing bandwidth
with one video client (M5). This scenario mimics high web load and relatively
low video load. Five update intervals are tested: 25ms, 50ms, 100ms and 1000ms.
For completeness, similar experiments are repeated for scenarios M1 and M3 rep-
resenting cases with high video load and with equal web and video load scenarios
(note that this is not entirely true as HAS can adjust load during playback to
adapt to network conditions, but it does not impend observations). Note that,
Table 7.5 depicts average bandwidth allocation calculated from assigned quantum
values during the experiment.

Figure 7.4: ECDF of average queuing delay for different update intervals (M1)

Figure 7.4 depicts Cumulative Distribution Function (CDF) of web and video
average queuing delay for the M1 scenario. For 80% of the time, the web queuing
delay is near zero. This result is not surprising because of the low web load (one
web client). The allocated bandwidth share is 9% on average, as illustrated in
Table 7.5a. For video traffic, queuing delay is less than 37ms for 80% of the
time, resulting in 90% allocated bandwidth share. Different update intervals do
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not have a significant impact on performance. This result is expected, as the
discipline is biased towards web traffic. Overall, the discipline achieves the main
goal: web queuing delay is lower than video queuing delay.

For M3 scenario web delay increases with 60% of time delay being near zero,
with video delay equal to 25ms across all update intervals. The increase in delay
is followed by higher bandwidth share, as illustrated in Table 7.5b. Web traffic
receives 27% of bandwidth share on average.

Figure 7.5: ECDF of average queuing delay for different update intervals (M3)

Finally, Figure 7.6 depicts an empirical CDF for web and video average queuing
delay for M5 across different update intervals. The delay for web traffic is higher
than the delay for video traffic. This is the expected result, as only one video
client is competing with five web clients. Increasing the update interval decreases
delay for both queues.

First, the average allocated bandwidth is much higher than fair share calculated
solely based on the number of clients (this is the approach taken FQ-CoDel).
There is no significant difference across different intervals. Average offered load
of the web client is 890Kbps. On average, the scheduler will allocate 3.6Mbps
for web queue or 4x client average load. This will lead to increased latency and
higher packet loss for web queue as the outgoing capacity can not support all five
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Figure 7.6: ECDF of average queuing delay for different update intervals (M5)

Table 7.5: Average bandwidth allocation for web and video flows across different
update intervals and Mi scenarios

(a) M1

Interval Web Video
25ms 9% 91%
50ms 9% 91%
100ms 9% 91%
1000ms 9% 91%

(b) M3

Web Video
27% 73%
27% 73%
26% 74%
28% 72%

(c) M5

Web Video
57% 43%
57% 43%
57% 43%
58% 42%

clients at the same time. This observation can be confirmed looking at packet
loss for each queue. For web queue, average packet loss is 1663 ppr (packets per
run) while packet loss for video queue is 330 ppr. Packet loss for web queue is 5x
higher than for video queue, expected result as web load is higher than video load,
and the queue web has lower target threshold. At the application level forM3 and
M5 scenarios, performance unravels a clear pattern (not shown). Increasing the
update interval decreases overall video QoE while improving web page-loading
time. This decrease in video QoE is the consequence of the increased number of
switches (up to 20%) and decreased average bitrate quality.

As a tradeoff, the update interval of 100ms is selected. In any case, the proposed
discipline will not starve video traffic even in scenarios with high web load.
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7.3 FIFO vs CoDel vs ENDUE

After completing the design of the ENDUE queuing discipline, this section
presents the results of a comparison between the proposed discipline and CoDel.
Also, all experiments are evaluated against the FIFO queuing discipline (2xBDP)
as the base result.

Figure 7.7 depicts video QoE metrics, average bitrate and stability performance,
across different combinations of web and video clients for CoDel and ENDUE.
For the LOGISTIC algorithm, there is a negligible difference between CoDel and
ENDUE across different Mi scenarios for both QoE metrics. For the stability
metric, the difference is around 1% on average. In the M5 case (five web and one
video clients) average bitrate shows the highest difference, 5%. Compared with
the FIFO queuing discipline, both CoDel and ENDUE achieve a lower average
bitrate. This difference increases as the number of video clients decreases. How-
ever, with ENDUE, the difference is less than 5% for all cases. In the M5 case,
CoDel decreases average bitrate by 11%. For the stability metric, performance is
similar across all three disciplines.

For the ELASTIC algorithm, the stability metric is similar across all queuing
disciplines and Mi scenarios. For average bitrate, CoDel and ENDUE achieve
higher bitrate for scenarios M1 − M3 than FIFO. Still, difference is negligible
in all cases, expect for M5 scenario in which bitrate drops by 20% for CoDel
compared to FIFO and ENDUE. Unlike LOGISTIC algorithm, ELASTIC, similar
to many algorithms, takes rate estimation when deciding for the next chunk
quality. Also, ELASTIC does not use any gradual rate step up. This causes the
issue with one video client sharing a bottleneck with multiple web clients (M5

case). The video client overestimates its bandwidth share and starts streaming
at the highest bitrate quality. However, as web clients load webpages, download
time of chunk drastically increases and together with low buffer level causes the
player to stall (on the average CoDel produces 1.4 seconds of stall, FIFO 0.67
seconds, and ENDUE 0.87 seconds). This limits overall bitrate and explains the
vast difference between CoDel, ENDUE and FIFO discipline. Added delay for
video traffic class counter this startup behaviour and thus significantly improves
bitrate.

Table 7.6 depicts F-index for LOGISTIC adaptation algorithm across different
Mi scenarios. All queuing disciplines show the same values across all scenarios.
Clients achieve an almost perfect share in terms of QoE. This is a consequence
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Figure 7.7: Video performance in presence of web clients for CoDel and ENDUE
queuing discipline (The metrics are normalised to the FIFO case with numbers
in white boxes representing the value of each metric for the FIFO case))
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Table 7.6: F-Index across various Mi scenarios with LOGISTIC adaptation algo-
rithm (M5 is omitted as it only has one video client competing for resources)

M1 M2 M3 M4
CoDel 0.99 0.99 0.99 0.99

ENDUE 0.99 0.99 0.99 0.99
FIFO 0.99 0.99 0.99 0.99

of the LOGISTIC algorithm design. LOGISTIC is a buffer based algorithm, and
decision for next chunk quality is only depended on the buffer level.

For the ELASTIC algorithm, F-Index is significantly susceptible to bursty web
traffic, as illustrated in Table 7.7. Increasing the number of web clients negatively
affects F-Index, dropping to 0.8 for M4 scenario and CoDel discipline. Similar
observations hold for FIFO, but effect is less pronounced because of higher queue
length (2xBDP) and thus higher queuing delay, which improves fairness. Traffic
isolation and added delay of ENDUE discipline helps in alleviating this issue,
achieving constant high F-index across different scenarios.

Table 7.7: F-Index across various Mi scenarios with ELASTIC adaptation algo-
rithm (M5 is omitted as it only has one video client competing for resources)

M1 M2 M3 M4
CoDel 0.97 0.92 0.88 0.8

ENDUE 0.98 0.98 0.98 0.98
FIFO 0.94 0.96 0.94 0.91

Next, web performance is evaluated. Figure 7.8a shows PLT across different Mi

scenarios for LOGISTIC adaptation algorithm and FIFO, CoDel and ENDUE
discipline.

Increasing the number of video clients harm PLT when CoDel queuing discipline
is used. Median PLT increases by the significant 33% from M5 to M1 scenario.
However, for a ENDUE, median PLT drops leading to improved PLT with no
significant impact on video QoE metrics, thanks to extended queuing. In all
scenarios, PLT is lower compared to the same scenario with CoDel or FIFO.
Also, for the M1 scenario, median PLT is 94% and 80% lower compared to the
FIFO and CoDel disciplines, respectively.

By its design, ELASTIC adaptation algorithm is more conservative compared to
LOGISTIC. As a result, its impact is less pronounced on PLT as illustrated in
Figure 7.8b. For FIFO and CoDel, the difference in median PLT values across
different scenarios is 19% and 11% respectively. Overall, PLT is smaller compared
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Figure 7.8: Comparison of PLT between CoDel and FIFO Queuing Discipline in
two-queue discipline
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to the same scenarios with the LOGISTIC algorithm. Still, the ENDUE discipline
improves PLT in all cases, while having an insignificant impact on video QoE
metrics.

Similar abandonment ratio is achieved across all scenarios and adaptation algo-
rithms for CoDel and ENDUE. On average, this ratio is less than 2%. Considering
that median PLT is around 2 seconds on average, this result is not surprising as
the threshold for the page abandonment is 15 seconds [TZS14]. FIFO shows a
higher abandonment rate, on average, 3% across all scenarios and algorithms.
This result is intuitive FIFO does not use any random dropping techniques for
packets causing higher queuing delays for both traffic types.

Figure 7.9 depicts a scatter plot for video and web QoE. In the LOGISTIC’s case
adaptation algorithm, ENDUE improves web QoE significantly in most scenarios
(up to 40%), while having a negligible negative impact on video QoE. Similar
conclusion holds for ELASTIC except in M5 case, where deterioration in stall
performances harms overall video QoE. As already explained this is consequence
of ELASTIC design. Still, ENDUE improves web QoE up to 13%.

7.4 Discussion

Filtering web and video traffic can pose a challenge as the majority of traffic is
encrypted. However, one approach is to identify Server Name Identification (SNI)
from Hypertext Transfer Protocol Secure (HTTPS) encrypted traffic to identify
content provider and content delivery network [MZA+18]. Content filtering is
a common practice applied by most network operators. Many operators allow
an unlimited data plan for services such as YouTube and similar. Implementing
ENDUE in real routers is straightforward. All the experiments performed in this
chapter are based on real-time and real traffic evaluation. ENDUE is implemented
as part of the tc library, similar to CoDel queuing discipline. In terms of running
times, ENDUE uses simple arithmetic operations. Also, modified deficit round
robin uses MTU as the minimum quantum, ensuring efficient packet processing.
The proposed discipline scales with the increased amount of traffic. ENDUE
logic doesn’t directly depend on the number of competing flows. This is because
ENDUE only tracks the local queuing delay for both queues and update weight
based on relative difference.

Improving Video Streaming Experience
through Network Measurements and Analysis

162 Darijo Raca



7. A solution for experience-oriented
adaptive queuing 7.4 Discussion

2.4 2.6 2.8 3.0 3.2
Web QoE

8.5

9.0

9.5

10.0

10.5

11.0
Vi

de
o 

Qo
E Higher the better

FIFO
CoDel
ENDUE

(a) LOGISTIC

2.7 2.8 2.9 3.0 3.1
Web QoE

4

5

6

7

8

Vi
de

o 
Qo

E Higher the better

FIFO
CoDel
ENDUE

(b) ELASTIC

Figure 7.9: Scatter plot of video and web QoE across multiple scenarios, queuing
disciplines and adaptation algorithms

Improving Video Streaming Experience
through Network Measurements and Analysis

163 Darijo Raca



7. A solution for experience-oriented
adaptive queuing 7.5 Conclusion

7.5 Conclusion

This chapter introduced ENDUE a simple two-queue discipline with delay-based
resource allocation for the heterogeneous traffic sharing bottleneck link. Hetero-
geneous traffic consists of two traffic types: video (streamed using HTTP adaptive
concepts) and web browsing. These two types are the most popular traffic carried
over the Internet.

The ENDUE discipline takes application characteristics into account when
scheduling packets. As a result, compared to the state-of-the-art AQM discipline,
CoDel, ENDUE decreases median PLT of web traffic by up to 80% compared to
CoDel. This results in up to 27% web QoE improvement. Also, there is no sig-
nificant negative impact on video QoE regardless of the scenario and adaptation
algorithms (video QoE drops by less than 1% compared to CoDel).
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Chapter 8

Conclusion

The achievable quality of video streamed over the Internet is affected by the lim-
ited network resources (i.e. available bandwidth) shared among multiple clients.
HTTP adaptive streaming (HAS) enables seamless adaptation of video quality
to changes in the available throughput.

This is achieved by splitting video content into multiple several seconds (typi-
cally 2-10 seconds) chunks. Each chunk is encoded into multiple qualities allow-
ing multiple bitrates and resolutions per chunk. As each chunk can be decoded
independently of other chunks, changing the qualities per chunk is possible seam-
lessly. Many HAS algorithms were designed over the years to maximise streamed
quality while minimising stalls and switching between different qualities.

All the HAS algorithms base their decision on the measurement of the avail-
able throughput. There are two ways to get this information, directly by mea-
suring chunk download time and indirectly by tracking playback buffer levels.
Intuitively, the accuracy of these measurements has the most impact on HAS
performance.

However, obtaining throughput estimates is a challenging task, especially in
highly variable environments, such as cellular networks. The achievable through-
put for devices in cellular networks can fluctuate by an order of magnitude over a
span of a few seconds for a variety of reasons. There can be rapid changes in the
underlying radio channel conditions and system load as devices move and new
devices enter and existing devices leave the network.

In addition, system-specific factors such as observed network delay, network ca-
pacity, the characteristics of competing traffic, and the traffic management policy
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significantly impact the HAS performance. The combination of the relatively high
data rates of individual video flows and the popularity of video streaming led to
interest in analysis of the performance when multiple video flows compete for net-
work resources. Furthermore, specific concerns evolved regarding performance-
related interactions between HAS and non-HAS traffic.

Hence, this thesis focuses on improving throughput estimation methods in highly
variable environments such as cellular networks by utilising additional information
about channel characteristics. Also, interactions between multiple HAS and non-
HAS clients are analysed and the increase in their performance is sought by
improving the network scheduling discipline.

8.1 Contributions

The first contribution includes the analysis of state-of-the-art HAS algorithms
in the presence of ideal throughput prediction. Leveraging the modular design
of HAS algorithms enabled improving Quality of Experience (QoE) regardless of
algorithm design. Different ways to feed throughput prediction values to algo-
rithms were explored together with different prediction horizons. Regardless of
the algorithm in use, user QoE improves by a significant 23% in the presence
of accurate throughput prediction. Furthermore, the highest QoE is observed
in the presence of longer throughput prediction horizons. Most notably, accu-
rate prediction eliminates stall events in an environment with highly fluctuating
throughput. While error-induced prediction lowers significantly the user QoE in
some instances, it still provides a clear 15% gap on average, compared to HAS
algorithms with no prediction.

Motivated by these findings, a novel Machine Learning (ML)-based throughput
prediction technique is developed. This technique leverages radio metrics to im-
prove the throughput prediction accuracy in mobile networks significantly. Com-
bining machine learning techniques with radio channel metrics summarised by a
novel quantile abstraction technique enables achieving low throughput prediction
errors (90% of errors below 13%). Utilising this abstraction technique enables cap-
ture of trends and variation in metric data accurately in the environment where
metrics are updated/available at a fine time granularity. All tested algorithms
improve all QoE metrics when using realistic prediction. Notably, prediction re-
duces stalls by up to 85%, and bitrate switching by up to 40%, while maintaining
or improving video quality. As a result, the QoE score improves significantly by
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up to 33%. Finally, a prediction framework is implemented in mobile devices and
field evaluation is performed in an operational cellular network.

The second contribution is the exhaustive empirical study. The results from this
study show that the well-known “rule-of-thumb” (1xBandwidth Delay Product
(BDP)) for network queue dimensioning causes underutilisation (70%) when mul-
tiple HAS clients share a bottleneck. Larger queues, e.g. 2xBDP, can improve
utilisation and quality by 15% on average. With median queue size, overall QoE
improves by 12% on average. Larger queues also help in improving system fairness
for clients with heterogeneous round-trip-times (RTTs). However, larger queues
can negatively impact delay-sensitive traffic, causing bufferbloat phenomenon.
While modern Active Queue Management (AQM) techniques promise low de-
lay and high utilisation and are application-agnostic, our results show that their
performance is mostly scenario-dependant and would vary depending on bitrate
distribution, video adaptation algorithm and offered web traffic load.

Motivated by these results, third contribution is the design of an effective two-
queue discipline for traffic scheduling. The proposed queuing discipline takes
application characteristics into account when scheduling packets. As a result,
compared to the state-of-the-art AQM discipline, Controlled Delay Management
(CoDel), the proposed discipline decreases median Page Loading Time (PLT) of
web traffic by up to 80% compared to CoDel. This results in up to 27% web
QoE improvement. Also, there is no significant negative impact on video QoE
regardless of the scenario and adaptation algorithms (video QoE drops by less
than 1% compared to CoDel). This is preceded by an exhaustive evaluation of the
interactions between HAS and non-HAS traffic in the constrained environment.
This analysis enabled drawing observations that helped in designing the two-
queue scheme.

As the part of analysis, tools and techniques were developed that allow gathering
and analysing application related data and performing all HAS-related experi-
ments. As a result, a 4G dataset was produced with unique information (such
as the channel, user and throughput information) and has been released to the
research community. Also, a testbed framework for performing HAS-related ex-
periments has been released to the research community.
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8.2 Future work

8.2.1 Extending throughput prediction analysis

In the experiments, the bandwidth estimator is simply replaced with a prediction
value and constant horizon. However, the optimal horizon is unknown in advance.
Furthermore, none of the tested algorithms is optimised to take full benefit from
more accurate predictions. In previous studies [MTAA+16, ZEG+15], authors
show that HAS algorithms can be fully tuned based on the prediction horizon.
Furthermore, some of the algorithms take multiple horizons into account when
deciding the next quality. Arguably, having various horizons, i.e. short and long
horizon, can improve user experience even further than only taking one constant
horizon. However, generating multiple horizons in real-time is challenging. Each
horizon would require a separate prediction model. As a result, different sets of
training data are needed for each horizon and thus training appropriate ML model
per horizon. Storing and running these prediction models can pose a challenge
on power-constrained devices (e.g. smartphones). Designing a prediction-aware
adaptation algorithm is a natural next direction for improving video QoE beyond
current results.

The implementation of device-based or network-based implies a different set of
challenges for every design choice. Having a Predictor on the device represents a
timely and scalable option as the metrics sampling and prediction are collocated
in the same device. However, device capabilities can limit prediction accuracy
due to limited hardware resources, especially for ML models. Hence, loading and
running ML models on mobile devices becomes impractical due to the limited
memory and CPU power. One of the solutions is to train the model with a
subset of data, hence limiting its size and decreasing its prediction accuracy
(Section 5.4). Still, mobile technology is quickly closing the gap in terms of sheer
processing power together with dedicated hardware chips for ML tasks as a part
of a mobile device’s architecture, alleviating this drawback in the near future.

For a network-level prediction system, current cellular networks (4G) have lim-
ited support for deploying ML at scale. The lack of a standardised way for data
collection from eNodeBs across different vendors, together with restricted ac-
cess to eNodeBs makes ML integration limited to only a few eNodeBs [PJK+18].
Next-generation cellular networks (5G) offer the opportunity for successful in-
network ML deployment. One possible architecture as outlined in [PJK+18]
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proposes deploying ML applications in the Mobile Edge Cloud and leveraging
network controllers for data collection from Next Generation Node Base (ngN-
odeBs). Network controllers govern over multiple ngNodeBs striking a balance
between distributed (e.g. 4G) and a centralised architecture (e.g. one controller
controlling all ngNodeBs). Striking the right balance between the number of user
sessions, amount of traffic and the network state view per network controller al-
lows for this architecture to scale over millions of devices. Having an ML model
in the edge minimises delivery latency to possible sub-millisecond values.

The implementation of ML-based solutions in real systems is known to bring new
challenges that need further exploration. “Dataset shift” [MTRAR+12] is a com-
mon problem when training and test data come from two different distributions.
This phenomenon may occur in “non-stationary environments” where the training
environment is different from the test one. Another possible cause is training ML
model with data that does not fully represent various operational contexts, e.g.
training using only mobile users that may not fully capture behaviour of static
users. Hence, the performance of throughput prediction in real-networks still
needs exploration, possibly using techniques such as transfer and active learning.

The interplay between application traffic and metrics collection poses challenges.
Specifically, the measured throughput, which is used both as a model feature and
ground truth for training, is naturally affected by the application traffic pattern.
Existing studies rely on persistent traffic that saturates the link (e.g. downloading
a large file) to probe the available capacity. However, many applications down-
load relatively small files that may not be sufficient to probe the available system
resources. An example is video streaming where the user downloads low video
quality segments (a few hundred Kilobytes) that may lead to lower throughput
metrics [HQG+13]. Noting that physical-layer metrics are independent of the ap-
plication, the pattern offered to the predictor may produce inaccurate predictions
in such cases.

The application activity is another factor that may impact the availability and
fidelity of throughput metrics. An inactive application lacks historic throughput
information. Another prominent case is when application activity is smaller than
the sampling interval. Handling these situations still requires further research.
One possible approach is to integrate application-specific metrics as part of the
throughput prediction model.

The application using throughput prediction would benefit from knowing how
much confidence to put in the prediction. For example, a video application may

Improving Video Streaming Experience
through Network Measurements and Analysis

169 Darijo Raca



8. Conclusion 8.2 Future work

act conservatively if buffer occupancy is low and throughput prediction has low
confidence. Identifying these scenarios also gives us motivation to develop alter-
native prediction techniques to handle these problem situations.

In the experiments, predictions are calculated at the device itself. While this ap-
proach brings benefits regarding scalability and possibility to retrain the model
to suit better for local conditions, its prediction power can be limited for reasons
outlined in previous sections. Unlike device-based prediction, in-network pre-
diction does not suffer from limited computational power. The device can send
its metrics periodically and request forecast when needed. However, this im-
plies having close coordination and co-operation between end-device and network
provider/service.

8.2.2 Further analysis of the network queue impact on
user experience

The proposed ENDUE discipline shows promising results. As future work, more
theoretical analysis would be beneficial for better understanding and controlling
queuing delay. One approach is to use fluid modelling [MGT00] and a derived
fluid model for the proposed discipline. For this, the fluid model of CoDel is
needed. Recently, Patil et al. [PT19] derived a fluid model for CoDel, enabling a
detailed analysis of the proposed discipline.

While the ENDUE discipline uses a simple ratio for adaptation of quantum values,
a more sophisticated control discipline Proportional Integral Derivative (PID)
may give benefits. While PID is simple enough, it requires considerable effort to
tune parameters. However, in the literature, a PID control law has been used for
designing AQM techniques [XHY+05, PNP+13, DSBTB16]. For PID tuning, a
theoretical model is needed, as explained in the previous paragraph.

Chapters 6 and 7 examine multiple heterogeneous traffic user sharing network
resources. This scenario reflects home access networks. However, it would be
interesting to repeat the same analysis and proposed a solution in the core network
part, with a much larger number of users and traffic volume. In the scenarios
with over 100 competing users, Transmission Control Protocol (TCP) connections
become de-synchronised [AKM04] (i.e. flows do not experience packet drops at
the same time).
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8.3 Summary

Today, HAS is the most dominant technique for delivering video content. HAS
enables changing video quality seamlessly. Simplicity and low cost compared to
traditional solutions enabled the adoption of HAS across heterogeneous networks
and devices. Still, performance of HAS are desired in environments with frequent
throughput fluctuations. The rise of HAS traffic has led to performance issues
in scenarios when different applications, such as web traffic (delay sensitive),
share network resources with HAS clients. This thesis explores ways to improve
throughput prediction in cellular networks through the combination of network-
related information about channel and ML algorithms to improve HAS QoE.
Also, analysis of interactions between HAS and non-HAS clients are performed to
improve QoE of both types of traffic through better network queue scheduling.
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