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Abstract

Abstract

The internet is ubiquitous in our lives today, enabling instantaneous access to

information, increased international collaboration, and even real-time remote

surgery. It has changed how we socialise and how we see the world. From

2017 to 2022, global internet traffic is forecasted to triple, creating severe

pressure on optical communication systems. Delivering the capacity required

to support this traffic presents significant challenges in terms of system design,

device performance, and optical fibre capabilities. Novel solutions are needed

now, if we are to meet the demands of the near future. While solutions to

increase system capacity and bandwidth efficiency of optical communication

systems at 1.55 µm is widely discussed in the literature, shifting transmission

to the 2 µm wavelength window could open possibilities to new discoveries in

optical components, improved bandwidth efficiency, innovative optical fibres,

and other applications transcending beyond optical communications.

This thesis explores opening the 2 µm transmission window for optical

communications. The focus of this work investigates the feasibility of

implementing dense wavelength division multiplexing (DWDM) systems at

2 µm, with key enabling technologies developed recently. Strained III-V

materials can produce foundry-compatible 2 µm lasers and detectors.

Hollow-core photonic band gap fibres (HC-PBGFs) can guide 2 µm light

through air, offering potentially lower losses, reduced latency and higher

power-handling capabilities (in comparison to standard silica fibre). Also,

thulium doped fibre amplifiers (TDFAs) could offer bandwidth of up to

~30 THz in the 2 µm waveband (~double that of EDFAs at 1.55 µm).

Contributions of this thesis include the demonstration of a 2 µm DWDM

system with channel spacing of 100 GHz and system capacity above

100 Gbit/s, for the first time in this new transmission window. Further

increasing the capacity of 2 µm DWDM systems requires improving the

spectral efficiency, which can be accomplished by reducing the spacing

between channels. While 50 GHz channel spacing is shown to be achievable

with current technologies in the transmitter, insufficient filtering can be a

barrier for implementation in the receiver. With this in mind, novel filtering

technologies are required and optical injection locking (OIL) is investigated as

a possible filtering solution. The first study of OIL using two slotted

Fabry-Pérot lasers at 2 µm is demonstrated, achieving a stable OIL bandwidth

of ~7 GHz and OIL-induced single mode operation over a 15 GHz range.
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Chapter 1

Introduction

Optical communication systems have enabled high-speed, high-capacity,

international communication, thus creating an increasingly globalised society

that is more connected than ever before. Thanks to the advances of optical

communication systems, people today can communicate with family and

friends all over the world, with much greater ease and convenience than those

in previous decades. Not only can people communicate with one another

almost instantaneously, through text messages or voice calls, but video calling

is becoming increasingly popular. People can now see the faces of their loved

ones as they swap stories, blow out candles on birthday cakes, or share the

view from their part of the world. This is especially meaningful, for example,

in a country like Ireland, which has a long history of emigration. There is a

massive Irish diaspora in the United States, England and Australia [1]. A 2014

study showed that nearly a fifth (17.5%) of people over the age of 15 who

were born in Ireland were residing overseas (the highest percentage of the 34

countries surveyed) [2].

In my own family history, my grandmother’s brother emigrated to America in

the 1960s. They communicated once a month by letter. In the 1980s, my

mother’s brother moved to London. Although phones had become more

popular by then, they were not yet common in most households. Every

fortnight my mother and her family would visit a relative who owned a phone

so that they could speak to her brother. With the invention of the telegram,

same-day communication was possible by this time, but it was prohibitively

expensive and reserved for emergencies. Today, my own brother lives in

Canada. We communicate almost every day and I can see his face at the click

1



1. INTRODUCTION

of a button. While this thesis focuses on the facts, figures and physical

principles of optical communication systems (with particular focus on how to

implement those systems at the 2 µm waveband), it is important to remember

the social impact of these technological advances in just a few generations.

This paragraph serves to highlight one small aspect of that impact on one

family in particular.

Today, real-time video calling is possible to most cities around the world. In

fact, mobile video traffic now accounts for more than half of all mobile data

traffic and is predicted to increase to almost four-fifths by 2022 (representing a

nine-fold increase since 2017) [3]. This, along with the rise of augmented

reality, artificial intelligence, self-driving cars, high-definition multimedia

streaming, cloud storage and increased connectivity through the ‘internet of

things’, requires preparation for a future of big data, with increasingly

bandwidth-hungry applications and rapidly growing capacity demands.

Current forecasts project global internet traffic to triple from 2017 to 2022,

along with the number of internet-connected devices becoming three times

larger than the world’s population [3].

1.1 Context

Historically, the frequencies at which we communicate information have

shifted if more bandwidth/capacity was required and the technology allowed.

The electromagnetic spectrum is shown in Figure 1.1. Coaxial cables operate

with frequencies from 1 KHz (103 Hz) to 1 GHz (109 Hz), including the AM

and FM radiowave range. Terrestrial and satellite transmission operate in the

microwave range, with frequencies from 1 GHz to 1 THz (1012 Hz). However,

optical communication systems operate at the highest frequencies in the range

of 100 THz (1014 Hz) to 1000 THz (1015 Hz). The optical carrier frequency

yields a far greater potential transmission bandwidth than radiowave or

coaxial cable systems. For example, by the year 2000, the typical bandwidth

for an optical fibre link (incorporating fibre amplifiers) was 50,000 times

greater than that of coaxial cables at the time, while also providing superior

information-carrying capacity over much longer transmission distances [4].

Optical communication systems transmit information around the world using

pulses of light travelling through optical fibres. These fibres are threaded

across our whole planet; beneath our feet and under our oceans; connecting

Dense wavelength division multiplexing at
2 µm for future optical communications
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1.1 Context

Figure 1.1: The electromagnetic spectrum. This file is licensed under the Creative Com-
mons Attribution-Share Alike 3.0 Unported license.

cities, countries and continents. This optical physical layer forms the basis of

the internet. The wavelength of light that is used to transmit information is

usually within a certain wavelength range, or transmission window. These

transmission windows have been primarily determined by the available lasers,

optical fibres and, later, optical amplifiers. The first transmission window for

optical communication systems was opened in the 1970s. This was done using

the first Corning fibres, and Gallium Arsenide (GaAs) semiconductor lasers

which operated around 0.85 µm [5]. The second window followed in the

1980s using InGaAs lasers operating at 1.33 µm [6]. Systems in this window

were developed for commercial use for the first time. In the 1990s, the third

window was opened using low-loss standard single mode fibre (SMF)

operating at 1.55 µm, called the conventional band (or C-band from 1.53 µm

to 1.56 µm) [6]. Today this transmission window is commonly used in metro,

long-haul, and submarine optical transmission systems [7]. The popularisation

of the 1.55 µm wavelength region for optical communications over the past

three decades has been made possible primarily due to the three key elements

mentioned previously; the availability of semiconductor materials for lasers (in

transmitters) and detectors (in receivers), low-loss (~0.2 dB/km) standard

SMF as a transmission medium [8], and erbium doped fibre amplifiers (EDFAs)

to enable transmission over long distances with high-gain and low-noise [9].

Dense wavelength division multiplexing (DWDM) is a method of combining a
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number of optical carriers onto a single optical fibre by using different

wavelengths (or frequencies) to carry different signals, increasing the capacity

of the overall system. Currently, commercial DWDM systems at 1.55 µm can

operate up to 100 channels at data rates of 100 Gbit/s (with a spacing of

50 GHz between channels), resulting in spectral efficiency of ~2 (bit/s)/Hz

and total capacities in the order of 10 Tbit/s [10]. However, the available

bandwidth in the 1.55 µm wavelength region for optical communications is

fundamentally limited by physical effects in silica optical fibres. These

fundamental effects include unavoidable losses (such as Rayleigh scattering)

at shorter wavelengths, infrared absorption at longer wavelengths, and

nonlinear optical phenomena that are excited in the fibre at high powers [4].

The bandwidth is also limited by the gain region of EDFAs which extends from

1.48 µm to 1.61 µm (or ~15 THz), covering the C-band and the

long-wavelength band (or L-band from 1.56 µm to 1.62 µm) [11], [6].

As the readily available bandwidth becomes more increasingly occupied,

capacity demands require much more efficient utilisation of optical bandwidth

(through advanced digital signal processing techniques) [10]. Currently, the

growth in network traffic, coupled with observed trends in commercial

practice, will result in a requirement for optical communication systems which

can support channels operating at data rates of 1 Tbit/s and, therefore, total

capacities in the order of 100 Tbit/s by 2020. Terabit single-channel bit-rates

are difficult to achieve and complex within current technological

capabilities [10].

Today, with ever-increasing capacity demands, enabling the capability for

transmission in other wavelength regions to increase the available bandwidth

is being investigated. Currently, researchers are working on technologies for

ultra-wideband optical communication systems beyond the C+L

bands [12],[13]. In fact, the Journal of Lightwave Technology is due to

publish a special issue on ultra-wideband wavelength division multiplexing

(WDM) systems in February 2020 [14]. Now is the time for new and radical

solutions. Opening the transmission window at 2 µm and enabling optical

communication systems in this new waveband could supplement the available

bandwidth and provide alternatives for future internet traffic growth.

Dense wavelength division multiplexing at
2 µm for future optical communications
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1.2 Motivation

Shifting transmission to longer wavelengths was considered as far back as the

1980s, due to the reduction of Rayleigh scattering. For this purpose, new fibre

materials were investigated, including chalcogenide, germanate and fluoride

(e.g. ZBLAN), glass fibres [15]. The first transmission in the 2 µm waveband

took place in 1987 (to the best of our knowledge), over ZBLAN fibre [16].

However, ZBLAN fibres proved to be brittle and highly nonlinear, restricting

propagation over long distances [17], [18]. Today, other novel types of optical

fibres are available in the 2 µm wavelength window, such as hollow-core

photonic band gap fibres (HC-PBGFs).

HC-PBGFs are especially interesting as they have a unique ‘cladding’ region

that consists of a honeycomb-like microstructure which confines light in the

hollow core [19]. The transmission of light through air offers significant

advantages compared to silica transmission, such as the potential to reach

losses as low as 0.1 dB/km around 2 µm [20], near-vacuum latency [21] and a

reduction in the nonlinear coefficient by up to three orders of magnitude (i.e.

greater power-handling capabilities) [22]. The extended nonlinear threshold

and lower loss could enable capacities three to four times greater than the

current limits [23]. Shifting transmission to 2 µm has the added advantage

that signals can be transmitted over HC-PBGF, without the need to upgrade

the electronics complementary to the optical system.

In the 1.55 µm window, III-V semiconductor materials are generally preferred

for optical communication applications because of their compact size, relative

efficiency and suitable emission wavelengths [24]. When shifting transmission

to 2 µm, it would be desirable to choose compounds that are also used in the

C-band (i.e. foundry-compatible compounds), as these semiconductor

processes are mature, cost-effective and widely available. At 2 µm, photon

emission and detection can be achieved by straining the layers of indium

gallium arsenide (InGaAs) semiconductors [25], a III-V material used for

1.55 µm applications. Therefore, foundry-compatible semiconductor materials

are available at 2 µm.

Amplification at 2 µm can be achieved with thulium doped fibre amplifiers

(TDFAs). Thulium offers a potentially broad amplification range from 1.7 µm

to 2.1 µm, with similar gain and noise figures to EDFAs [26]. This ~30 THz

bandwidth makes TDFAs especially attractive, compared to the current

5 Niamh Kavanagh



1. INTRODUCTION

~15 THz (1.48 µm to 1.61 µm) offered by EDFAs [27]. If TDFAs are also used

in conjunction with holmium doped fibre amplifiers, optical amplification

around the 2 µm transmission window can be extended to over 40 THz, nearly

three times more than the current bandwidth available at 1.55 µm [28].

Moreover, there is also a wide range of applications for technologies in the

2 µm waveband beyond optical communication systems, such as medical

sensing (detecting blood glucose and carbon dioxide) [29], [30], [31], [32]

greenhouse gas detection (such as methane) [33], [34], gravitational-wave

observation (LIGO), and eye-safe LIDAR systems to detect air turbulence,

measuring water content for humidity sensors and agricultural

purposes [35], [36]. While these technologies are outside the focus of this

work, these applications mean that some commercial components are already

available in the 2 µm wavelength range [33].

1.3 Overview

The objective of this thesis is to investigate the feasibility of implementing a

DWDM system at 2 µm for the first time. The work of this thesis aims to show

that opening a new wavelength transmission window for optical

communications is possible at 2 µm, using the potential technologies available.

Chapter 2 begins with the history of optical communication, how it has

developed into what we know today, and what the key enabling technologies

were along the way. The core concepts of fibre-optic transmission are

introduced, such as light confinement in optical fibres. The development of

optical transmission windows (from 0.85 µm, to 1.33 µm, and 1.55 µm) is

discussed and historically contextualised, with the key principles explained.

Ultimately, this chapter aims to answer the question - how can we enable

optical data transmission at 2 µm?

Chapter 3 discusses the fundamentals of optical communication systems. In

general, a communication system consists of a transmitter, a receiver and a

transmission medium carrying information. This chapter discusses the physical

principles of these key elements. At the transmitter, the focus is on generating

the light carrier and converting the electrical signal into optical using various

modulation formats [37]. In the receiver, the focus is on converting the optical

data back to electrical for data processing or re-transmission, as required. A

brief overview of the development of WDM systems at 2 µm is also presented

Dense wavelength division multiplexing at
2 µm for future optical communications
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at the end of Chapter 3.

The main challenge of implementing a DWDM system at 2 µm is the lack of

commercially-available telecom-grade components that are needed in order to

implement a DWDM system at this waveband. For example, the bandwidth of

components like modulators and photodetectors is limited by immature

manufacturing technologies, in comparison to those established in the

1.55 µm window over the past three decades. Many of the components used in

the experiments throughout this thesis are first generation and non-optimal.

Many components suffer impairments such as low power, high insertion loss,

thermal fluctuations or poor frequency response. While some commercial

products are available, they tend to be more expensive than 1.55 µm

equivalents, with poorer performance in comparison. Designing these

components to work together in a cohesive DWDM system presents a

non-trivial challenge that this thesis aims to address.

Hence, Chapter 4, Chapter 5 and Chapter 6 discuss these challenges in more

detail and describe the experimental work in this thesis. The capacity of a

WDM system can be maximised by enabling a greater number of transmission

channels and optimising the spectral efficiency. As such, Chapter 4 focuses on

increasing the WDM system capacity at 2 µm beyond 30 Gbit/s by enabling a

greater number of channels, with a capacity of 105 Gbit/s ultimately

achieved [38]. Chapter 5 addresses the spectral efficiency of optical

communication systems at 2 µm. The experiments in Chapter 5 were designed

to investigate the feasibility of implementing DWDM at 2 µm with reduced

spacing of 50 GHz between channels (as opposed to >100 GHz channel

spacing in previous demonstrations). However, while 50 GHz channel spacing

was readily achievable in terms of the 2 µm transmitter, the results of these

experiments indicated that current filtering techniques do not provide

sufficient channel isolation at 2 µm [39]. Optical injection locking (OIL) is a

technique that has been employed for filtering purposes at 1.55 µm and, as

such, provides a promising candidate for the same purpose at

2 µm [40], [41], [42]. The first study of stable OIL at 2 µm using two slotted

Fabry-Pérot lasers is presented in Chapter 6 [43], [44]. Finally, Chapter 7

presents the conclusions from this thesis.

In order to continue connecting, communicating, and sharing content with

friends and family around the world, we need to stay ahead of increasing

capacity demands. Novel solutions are needed in order to provide alternatives
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for future internet growth. Despite the challenges associated with

experimental implementation of 2 µm DWDM technologies, this thesis

demonstrates the development of optical communication systems at this

waveband. Opening a new transmission window at 2 µm could supplement

the available bandwidth and increase capacity for future optical

communication systems.

Dense wavelength division multiplexing at
2 µm for future optical communications
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Chapter 2

Opening a new transmission
window at 2 µm

The origins of optical communication systems are presented in this chapter.

The historical discovery of key elements such as total internal reflection,

transatlantic communication, and the first optical fibres are highlighted. These

elements combined to enable terrestrial optical communication systems as we

know them today. Optical data is transmitted through such systems using a

certain range of wavelengths, called a transmission window. This transmission

window is primarily determined by the region of minimum optical fibre

attenuation, maximum transmission capability (supported by amplifiers and

available semiconductor materials for transmitters/receivers), and this is no

different for the transmission window at 2 µm.

2.1 History of optical communication

Light and communication have long been intertwined throughout human

history. The ability to send information as far as needed, as fast as possible has

been sought-after since ancient times. One of the earliest and most

well-known examples is smoke signals, which were used by people of many

cultures including the Native American and Aboriginal Australian indigenous

communities. Also, in ancient China (~900 BC), soldiers guarding the Great

Wall would warn others of an incoming attack by signalling from beacon

towers using smoke signals in the daytime or a fire at night. Using this

method, warnings could be transmitted as far as 750 km in a few hours.

9
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Figure 2.1: The Chappe coding system and optical telegraph, or semaphore. An early
example of a complex optical communication system. This work is in the public domain.
Source Rees’s Cyclopædia, Plates Vol. IV, TELEGRAPH, Fig. 4.

Around 150 BC, a Greek historian called Polybius, created a system of smoke

signals based on numeric combinations of two torches which corresponded to

letters of the alphabet [7]. In this way, more intricate messages could be

communicated via smoke signals.

Beyond smoke signals, visual communication systems gradually became more

complex. In the 1790s, during the height of the French revolution, the Chappe

brothers created the semaphore. Illustrated in Figure 2.1, this optical

telegraph system consisted of a series of tower stations that could transmit

messages to one another by means of an operator pivoting the arms or shutters

on the top of the tower. France was soon covered with a network of 556 of

these stations. This system was used for military and national communications

until the 1850s [7]. However, from smoke signals to the semaphore, the

shared disadvantage of these systems was that messages could only be

transmitted via line of sight. Any obstacles that blocked the view, such as

inclement weather, could prevent the communication of information.

2.1.1 Trapping light by total internal reflection

It would be more advantageous, therefore, if communication was not

dependent upon line-of-sight transmission and instead could be ‘trapped’ and

directed to navigate various paths over long distances. In the 1840s, the Swiss

Dense wavelength division multiplexing at
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Figure 2.2: Colladon’s fountain demonstrating light following the curve of water, later
made famous by John Tyndall. This work is in the public domain. Author: Jean-Daniel
Colladon (1802-1893). Source: This illustration appeared first in La Nature magazine in
1884.

physicist Jean-Daniel Colladon showed that light could be directed along

streams of water from a fountain, as shown in Figure 2.2, [45]. This effect was

popularised by another physicist; John Tyndall, who was born in Carlow and

after whom the Tyndall National Institute (in Cork, Ireland) is named. In May

1854, Tyndall presented the “total reflection of light at the common surface of

two media of different refractive indices” - water and air, during a lecture at

the Royal Institution in London [46], [47]. This effect can easily be replicated

today with a laser pointer, water dispenser (such as a bottle with a hole in the

bottom) and basin, as shown in Figure 2.3.

To understand the physics of this light-trapping phenomenon, consider the

laws of reflection and refraction. The law of reflection states that if a ray of

light is incident on a plane mirror (or reflective surface), then the angle of the

reflected light ray will be equal to the angle of incidence. The law of refraction

(or Snell’s law, Equation 2.1) dictates that if a light ray travels from one

medium with refractive index (n1) to another medium with a different

refractive index (n2), then the ratio of these refractive indices will be equal to

the sines of the angles of incidence (θi) and refraction (θr), with all angles

measured from the normal of the boundary. These fundamental laws predict

the path that a light ray will take at various boundaries between different

media.
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(a) (b)

Figure 2.3: (a) The Colladon/Tyndall fountain experiment can be easily replicated
using a laser pointer, water dispenser and container. (b) The total internal reflection of
the laser beam in the water stream can be seen. Source: Photo, N. Kavanagh, 2018.

n1

n2
= sin(θr)
sin(θi)

Snell’s law (2.1)

However, consider Snell’s law (Equation 2.1) in the case where n1 >n2 and the

light ray travels from a denser medium (such as water) to a rarer medium

(such as air). In this case, Snell’s law would require that the sine of the angle

of incidence could extend to be greater than one. Since this is not

mathematically possible, it implies the existence of an upper limit for the angle

of refraction. The angle corresponding to this upper limit is called the critical

angle, given in Equation 2.2. Above this critical angle, light from the denser

medium (with refractive index n1) will be completely reflected at the

boundary. This phenomenon is called total internal reflection and is illustrated

in Figure 2.4.

θc = sin−1(n2

n1
) critical angle (2.2)

In order to obtain a mathematical expression for this critical angle, consider a

propagating light wave which can be represented by a wave vector(k̂) whose

component of propagation (in the ẑ direction) is called the propagation

constant (β). The light wave also has a wave number (k), which corresponds

to the wavelength λ, according to the relation in Equation 2.3.

Dense wavelength division multiplexing at
2 µm for future optical communications

12



2.1 History of optical communication

Figure 2.4: Image on the left shows the refraction of a light ray travelling from a
denser to a rarer medium. Central image depicts the critical angle. Image on the right
demonstrates total internal reflection. In these figures, θ1 is the angle of incidence, and
θ2 is the angle of refraction/reflection. This file is licensed under the Creative Commons
Attribution-Share Alike 3.0 Unported license. Author: Josell7

α

θi𝒌 n1

β ො𝒛

Figure 2.5: A light wave (travelling in medium with refractive index n1) can be rep-
resented by a wave vector k̂ and propagation constant β.

k = 2π
λ

wave number (2.3)

If, instead of measuring the angle of incidence from the normal to the surface

(θi), the alternative angle α is used (as defined in Figure 2.5 and

Equation 2.4), the critical angle can then be redefined in terms of β and k, as

per Equation 2.5.

sin(θi) = cos(90− θi) = cos(α) (2.4)

cos(α) = β

kn1
(2.5)

The propagation constant β is then defined as per Equation 2.6 and an

alternative definition for the critical angle, in terms of α, is given in

Equation 2.7.
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β = kn1cos(α) propagation constant (2.6)

sin(θc) = cos(αc) = n2

n1
critical angle (2.7)

For 0 < α < αc, then

1 > β

kn1
>
n2

n1
(2.8)

Equation 2.8 gives the condition for light guidance in a medium of refractive

index n1, bordering another medium of refractive index n2, in terms of the

wave number and propagation constant [48].

kn1 > β > kn2 guidance condition (2.9)

Equation 2.9 is the guidance condition for a light ray to be trapped by total

internal reflection in a medium (of refractive index n1) when surrounded by

another medium (of lower refractive index n2). If kn1 < β then α is imaginary

and the light will be evanescent, i.e. decaying exponentially into the

surrounding medium. When the guidance condition is satisfied (for kn1 > β),

light will propagate, confined within the central medium via total internal

reflection. The condition will hold for an integer number of wavelengths,

determining a discrete set of light waves that can propagate [48]. It was in

this way that light could be ‘trapped’ inside streams of water for Tyndall’s

famous fountain experiment (however, some light was scattered from the

imperfect streams). Today, this concept of total internal reflection is the

conventional guiding mechanism in standard optical fibres.

2.1.2 Transatlantic communication

In 1854, the same year as Tyndall’s demonstration of total internal reflection,

the installation of the first transatlantic telegraph cable began. The cable

connected Valentia Island in Kerry (Ireland) to Heart’s Content in

Newfoundland (Canada). The installation of this cable finished in 1866 and

represented the first time the continents of Europe and North America were

physically connected. The first communication occurred in August 1858, using

Dense wavelength division multiplexing at
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Figure 2.6: Photo of the author at the commemoration of the first transatlantic cable in
Valentia Island, Ireland. Plaque reads: "This marine bollard, made from native stone,
stands to commemorate the first successful physical connection between Europe and
North America in 200 million years. On July 27, 1866 the Great Eastern completed the
laying of the transatlantic cable between Valentia Island, Ireland and Heart’s Content,
Newfoundland. The cable changed the world by revolutionising global communications
and pioneering the information highway we know today."

radio frequency waves. While the initial Morse code messages in 1858 took

over 17 hours to transmit, by 1866 the connection was 80 times faster and

could transmit eight words a minute. In the 20th century, transmission speeds

extended to 120 words per minute. While this may seem slow by today’s

standards, prior to the transatlantic cable installation, communication between

Europe and America was possible only by ship and could take several weeks.

The transatlantic telegraph cable enabled messages to be sent and received

within the same day. This had significant impact on the economy. For example,

a 2018 study from the American Economic Review found that the transatlantic

telegraph substantially increased trade across the Atlantic and reduced

prices [49]. A new era of global connection had begun. The installation of the

first cable is commemorated today by a pair of matching marine bollards in

Heart’s Content and Valentia Island, as shown in Figure 2.6 [50], [51].
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Today, most transatlantic communication systems are based on optical fibres or

satellite communications. In the case of terrestrial systems, the main enablers

for communications are not only the transmission medium (from the telegraph

copper cable to optical silica fibres, for example), but also the terminals which

convert the desired data into signals that can be transmitted and received

(using radio frequency waves for copper cables and THz frequency waves for

optical fibres). It is the convergence of all these key enablers that heralds the

invention of a new communication system.

2.1.3 The first optical fibres

Along with the first transatlantic connection, the turn of the century saw bent

glass rods being used for the first time. These were used by Viennese doctors

Roth and Reuss to illuminate body cavities in 1888 [52], and by French

engineer Henry Saint-Rene to guide light images in 1895 [53]. In the

1920s, Englishman John Logie Baird and American Clarence W. Hansell

patented the idea of using arrays of transparent rods to transmit images for

television and facsimiles, respectively [53]. A German medical student,

Heinrich Lamm, was the first person to transmit an image through a batch of

optical fibres in 1930 [53]. In the 1950s, nearly 100 years after Tyndall’s

popular demonstration of total internal reflection, Danish scientist Hogler

Moeller proposed cladding glass fibres with a transparent material of lower

refractive index to transport images optically, as shown in Figure 2.7 [53]. By

the late 1950s, glass-clad fibres had attenuation of ~1 dB per metre. As a

result, 90% of light was lost (or attenuated) over only a few metres. This was

suitable for medical imaging, but much too high for communications over

several kilometres [7], [53]. However, in 1960, the invention of the first laser

(emitting red light at 694 nm) renewed researchers’ interest in optical fibres as

a means to transmit this new coherent light over long distances [54], [55].

In the early 1960s, optical fibre attenuation was ~1000 dB/km, in comparison

with 5 dB/km to 10 dB/km in the coaxial cables traditionally used for

communications. In 1964, Charles Kao theoretically demonstrated that the

light loss in existing glass fibres was due to impurities and was not a feature of

the fibre itself. In 1966, Kao and George Hockham predicted that fibre losses

could be reduced to below ~20 dB/km and said that optical fibre "represents a

possible medium for the guided transmission of energy at optical

frequencies" [56]. This prediction inspired a race to reduce losses and produce

Dense wavelength division multiplexing at
2 µm for future optical communications

16



2.1 History of optical communication

Light

ray

TIR (for n1>n2)

Core (n1)
Cladding (n2)

Figure 2.7: Light guidance by total internal reflection (TIR) in an optical fibre.

purer glass fibres. In 2009, Kao won the Nobel prize for groundbreaking

achievements concerning the transmission of light in fibres for optical

communications. The low loss of today’s optical fibres is one of the primary

reasons they have become the backbone of global terrestrial communications.

The dominant loss mechanisms in optical fibres include absorption, Rayleigh

scattering, and bend losses. Absorption is a loss mechanism related to the

material composition and fabrication process of the fibre. It occurs due to the

interaction of transmitted light with silica and impurities within the fibre. All

materials will absorb energy at certain wavelengths. In the wavelength region

~1.3 µm to 1.6 µm, absorption losses are only ~0.03 dB/km. Water

contamination during the fabrication process also contributes loss, resulting in

narrow absorption peaks in the fibre attenuation profile [57], [58], [4], [8].

Rayleigh scattering is the greatest source of loss in optical fibres. It is also the

reason for the blue colour of the sky. Rayleigh scattering in silica fibres arises

from inhomogeneities that are on a smaller scale than the wavelength. These

inhomogeneities form when the fibre is heated during fabrication. During this

process, the silica moves randomly in the molten state and is subsequently

frozen in place when fabrication is finished. This results in local microscopic

density (i.e. refractive index) fluctuations on a scale smaller than the optical

wavelength. While compositional variations may be reduced by improved

fabrication methods, these small scale inhomogeneities are fundamental and

cannot be eradicated. The subsequent scattering produces attenuation that is
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proportional to 1/λ4 [59]. Therefore, Rayleigh scattering reduces as the

operating wavelength increases. This reduction in Rayleigh scattering provides

motivation to shift transmission to longer wavelengths. However, the

longer-wavelength limit for transmission is determined by absorption, which

becomes stronger in silica fibre as the operating wavelength increases. At

1.55 µm, attenuation due to Rayleigh scattering is ~0.12 dB/km to

0.16 dB/km, making it the dominant attenuation contribution in most C-band

glass-based fibres [58], [4].

Bend loss becomes more of a concern when the fibre is implemented into a

system. Bend loss is a result of the fundamental speed of light. When light

travels through an optical fibre, the wavefront must remain perpendicular to

the direction of propagation for optimal guidance. When light travels through

a bent optical fibre, the part of the wavefront on the outside of the bend has a

longer path length than light on the inside. Losses are incurred when the bend

is sufficiently tight that the light in the outer section would need to travel

faster than the fundamental speed of light in that medium. Since this is not

possible, the energy associated with that part of the wavefront is lost. For this

reason, communications fibre is installed in smooth large-radius bends so that

bend losses are negligible [57], [4].

2.2 Transmission windows

"For nearly a century, scientists had dreamed of using light to “talk” over

long distances. They had long recognised that light carries a great deal of

information, but it needed a mechanism or a vehicle to guide it. Many people

investigated techniques by which this could be accomplished. Nevertheless,

by the late 1960s the practical technique had not been found - neither the

transmission medium nor the modulatable light source. At the same time,

the telecommunication service providers were facing the need for

dramatically increased capacity."

From "A Future Full of Light" by D. Keck, 2000. [60]

Figure 2.8 shows an illustration of optical fibre attenuation taking into account

Rayleigh scattering and absorption, including the water absorption peaks at

0.95 µm and 1.39 µm (peak-heights are for illustration purposes

Dense wavelength division multiplexing at
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1st 2nd 3rd Transmission windows

Figure 2.8: Illustration of optical fibre attenuation vs. wavelength taking into ac-
count Rayleigh scattering, absorption and the water peaks. The historical transmission
windows are indicated with arrows [61].

only) [61], [62], [63]. The historical transmission windows are indicated with

arrows and will be discussed in the following sections.

2.2.1 First window at 0.85 µm

"The realisation by Corning Glass, in 1970, of the first low-loss fibres which

had been predicted in 1966 by K.C. Kao and G. Hockham, and the parallel

invention of semiconductor laser diodes and photo-detectors may be seen as

the two parents of a newborn field, optical telecommunications."

From "Science and technology challenges in XXIst century optical

communications" by E. Desurvire et al., 2011. [64]

In 1970, soon after the revelation by Kao and Hockham that fibre losses could

be reduced, Corning produced fibres with attenuation less than 20 dB/km in
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the wavelength region near 630 nm [60]. In the same year, the

first semiconductor laser diodes were developed which could operate

continuously at room temperature, along with photodetectors [5]. These

lasers were based on gallium arsenide (GaAs) and emitted light in the region

of ~0.85 µm. The simultaneous availability of compact, coherent optical

sources and low-loss optical fibres as a transmission medium led to a global

effort to develop optical systems for long-distance communications.

In 1973, optical fibres were developed with an attenuation (4 dB/km at

0.85 µm) lower than copper coaxial cables (~5 dB/km) for the first time

[65], [66], [67]. This led to the first telecommunications transmission window

which was centred at 0.85 µm. The first non-experimental optical fibre link

was installed in 1975 by the Dorset police (in the UK) [7], [45]. In April

1977, the General Telephone and Electronics company transmitted the first

live telephone traffic through optical fibre in Long Beach, California [7], [45].

After these field trials, commercial optical communication systems became

available in 1980 [6].

2.2.2 Second window at 1.33 µm

The bit rate of a system is defined as the number of bits (the smallest unit of

information in a binary system, e.g. on/off, 1/0) that can be transmitted in

one second, written as bit/s. In 1975, the most advanced coaxial cable

communication system operated at a bit rate of 274 Mbit/s (274 million bits

per second) [7]. A key disadvantage of coaxial systems used at this time was

the small repeater spacing (~1 km), which led to excessive signal regeneration

over long distances. While microwave systems generally allowed for longer

repeater spacings, their bit rate was limited to ~100 Mbit/s. Optical fibre loss

in the transmission window of 0.85 µm was ~3 dB/km at the time,

necessitating repeaters every ~10 km [7]. This repeater spacing was ten times

larger than the spacing in existing coaxial systems (~1 km) and provided an

important motivator for system designers due to reduced installation and

maintenance costs [6].

It became clear to system designers that repeater spacing could be increased

even further if optical transmission systems were shifted to a longer

wavelength of 1.33 µm, where fibre loss was lowest at ~1 dB/km. This

realisation led to a worldwide effort for the development of semiconductor

lasers and detectors operating near 1.33 µm. In the early 1980s, this resulted

Dense wavelength division multiplexing at
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in the second transmission window, which was developed for commercial use

with InGaAsP lasers operating at 1.33 µm. In 1987, commercial systems were

operating at bit rates of up to 1.7 Gbit/s (i.e. 1.7 billion bits per second) with a

repeater spacing of ~50 km for signals transmitting in the 1.33 µm

waveband [7], [6].

In 1988, 130 years after the first transatlantic telegraph cable from Valentia

Island to Heart’s Content, the first transatlantic cable based on optical fibres

was completed, called TAT-8 (as it was the 8th transatlantic

telecommunications cable) [68]. TAT-8 was a joint venture of AT&T (in the

US), France Telecom, and British Telecom to connect the communication

systems of their three countries. It was capable of handling 40,000 telephone

calls simultaneously [7]. Interestingly, AT&T encountered an unexpected issue

around the Canary Islands with the connection being severed, due to sharks

biting the cable. This surprising problem resulted in publications in 1989 with

titles such as "Sharkbite on the Submarine Lightwave Cable System: History,

Causes, and Resolution" and sections of the cable being wrapped in a

kevlar-like material in high risk areas to minimise disruption [69].

The race for lower attenuation in optical fibres continued during the 1980s.

Researchers at the time were particularly interested in shifting transmission to

longer wavelengths in order to minimise the effect of Rayleigh scattering

(proportional to 1/λ4). For this purpose, new fibre materials were

investigated, including chalcogenide, germanate, and fluoride (e.g. ZBLAN),

glass fibres [15]. In fact, the first 2 µm transmission experiment (to the best of

our knowledge) took place in 1987, with the first demonstration of 34 Mbit/s

single-channel data transmission over 10 m of ZBLAN fibre [16]. In this

demonstration, the transmitter comprised an externally-modulated,

helium–neon laser operating at a wavelength of 2.4 µm and the receiver was

based on an InGaAs/InP photodiode. However, ZBLAN fibres proved to be

brittle and highly nonlinear, restricting propagation over long

distances [17], [18]. Investigations into mid-IR transmission experiments were

soon abandoned because the same year (1987) saw the invention of the first

erbium doped fibre amplifier (EDFA), which operated from 1.48 µm to

1.61 µm, and would serve to revolutionise capacity capabilities in optical

communication systems [70].
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2.2.3 Third window at 1.55 µm

In the 1990s, the third transmission window was opened. This is the

transmission window in which most global optical communications operate

today. It is called the conventional band (C-band) and has a spectral range of

~30 nm (1.53 µm to 1.56 µm) [6]. The key elements for success of this

transmission window were primarily the availability of semiconductor lasers

and detectors for transmitters and receivers, low-loss fibre (~0.2 dB/km at

1.55 µm [8]) as a transmission medium, and EDFAs to enable transmission

over long distances [9].

Prior to the invention of the EDFA, optical fibre connections over long

distances would require complicated opto-electric (O/E) and electro-optic

(E/O) conversion for signal regeneration. Optical amplifiers amplify light

signals solely in the optical domain, eliminating the need for such conversion

and significantly simplifying the optical communication systems [6]. This was

especially impactful for transoceanic transmission systems, where more than

one hundred EDFAs may be needed to support an optical fibre link.

EDFAs

"It is noteworthy that the two founding technologies of optical

communications, namely the laser and the fibre, could be conjoined into the

EDFA, a laser-pumped, doped-fibre amplifier."

From "Science and technology challenges in 21st century optical

communications" by E. Desurvire et al., 2011. [64]

An optical amplifier operates on the same principles as a laser, with the key

difference being the lack of feedback (i.e. no reflections). Doped fibre

amplifiers are optical amplifiers that use a length of doped optical fibre as a

gain medium to amplify the optical signal. In EDFAs, as the name suggests, the

core of a silica fibre is doped with ions of the element erbium (Er3+ ions).

Erbium is the dopant of choice for optical communications because, if pumped

with enough energy, EDFAs will produce emission over a ~35 nm bandwidth

(from 1.530 µm to 1.565 µm) coinciding with the third transmission window

and the minimum loss region for standard SMF.

The operation of an EDFA is dependent upon the absorption and emission

Dense wavelength division multiplexing at
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Figure 2.9: Erbium energy diagram [71].

spectra of the erbium ions. A schematic energy diagram for erbium is shown in

Figure 2.9. Energy is introduced into the doped fibre via an external laser,

called a pump laser. The energy (and therefore wavelength) of the pump laser

is determined by the difference between the energy bands. In the case of

erbium, pump wavelengths of either 0.98 µm or 1.48 µm are required for

excitation to the 4I11/2 and 4I13/2 energy bands, respectively. The energy and

wavelength of the pump photons are inversely related by the Planck-Einstein

relation in Equation 2.10.

E = hc

λ
Planck-Einstein relation (2.10)

The pump laser at 0.98 µm has greater energy than that of the 1.48 µm pump

and excites ions to the higher energy band 4I11/2. The lifetime of ions in this
4I11/2 band is ~1 µs, after which the ions decay to the 4I13/2 band through a

non-radiative process (releasing phonons i.e. vibrations, rather than photons

i.e. light). The ions can also be stimulated directly to the 4I13/2 band with a

pump laser of wavelength 1.48 µm. The average lifetime of an Er3+ ion in the
4I13/2 band is ~10,000 µs. The transition of an Er3+ ion from the 4I13/2 band

to the 4I15/2 band is a radiative process that results in the emission of a photon

with energy equivalent to |4I13/2 - 4I15/2|. This radiative process is a result of

either stimulated or spontaneous emission.

Stimulated Emission: If optical signals with wavelengths of 1.53 µm to
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1.56 µm enter the doped fibre, they will induce stimulated emission of

additional photons that are coherent (i.e. same directionality and phase) with

the incoming signal, amplifying the signal as it travels through the doped fibre.

Once the rate of stimulated emission becomes greater than the pump rate, the

amount of signal amplification (or gain) will reduce due to saturation.

Spontaneous Emission: Spontaneously emitted photons are incoherent, with

random direction and phase. As with all emitting devices, optical fibre

amplifiers also have spontaneous emission. Ions in the excited states may

decay spontaneously and these transitions result in photons that are

incoherent with the incoming signal. These incoherent photons can also then

become amplified through the length of the doped fibre. This process is called

Amplified Spontaneous Emission (ASE). It results in a broad emission

spectrum from the amplifier, mimicking the emission band of Er3+ ions. ASE

contributes to the overall noise of an optical communication system and must

be taken into account. The quality of an amplifier is hence primarily defined

by its ability to amplify the signal, quantified by the gain, but also by its ability

to minimise the noise in the system, quantified by the noise figure.

Beyond TAT-8

In 1996, the first transatlantic optically amplified systems went into operation.

These were TAT-12 and TAT-13 which operated in a ring network initially

capable of carrying 10 Gbit/s at 1.55 µm (2 x 5 Gbit/s on the fibre

pair) [72], [73]. This was the first TAT cable to use a ring structure (involving

two stretches of cable across the ocean floor). Wavelength-division

multiplexing (WDM) is a technique used to transmit multiple channels at

different wavelengths through the same fibre. The combination of EDFAs and

WDM enhanced the capacity of optical communication systems so dramatically

that data transmission at 1 Tbit/s was also realised in 1996 [7]. In terms of

transoceanic communications beyond TAT-8 (which was capable of 280 Mbit/s

total capacity in 1988), technological evolution resulted in WDM systems on

transoceanic links with total capacity of 128 x 10 Gbit/s per fibre pair by

2009 [74].

Soon commercial systems could operate 100 channels at data rates of

100 Gbit/s and total capacities in the order of 10 Tbit/s in 2010 [10].

However, the rise of augmented reality, artificial intelligence, self-driving cars,

high-definition video streaming, cloud storage and increased connectivity

Dense wavelength division multiplexing at
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through the ‘internet of things’ requires preparation for a future full of big

data, increasingly bandwidth-hungry applications and high-capacity demands.

Current forecasts project global internet traffic to triple from 2017 to 2022,

with monthly global mobile data traffic exceeding 77 exabytes (77 million TB)

by 2022 and annual traffic reaching almost one zettabyte (one billion TB) [3].

The future is more connected, automated and autonomous than ever before.

Within the given EDFA bandwidth and the third transmission window of SMF,

all possible physical parameters are currently being explored by the research

community to increase capacity [75]. But the question persists - will this be

enough to stay ahead of the ever-increasing demands? Now is the time for

innovative solutions. As such, this thesis explores how the 2 µm transmission

window can be effectively utilised to extend the available bandwidth. There

are several promising advantages of enabling transmission at 2 µm and these

will be discussed in the following sections.

2.3 A new transmission window at 2 µm

As per Section 2.2.3, the success of opening the third window required a series

of key enabling technologies, primarily semiconductor lasers, optical

amplifiers and low-loss fibres. Therefore, the first step in investigating if the

2 µm transmission window could prove feasible for future high-capacity

optical communication systems is to search for these same key enablers.

2.3.1 Semiconductor materials

In order to find suitable lasers and detectors at 2 µm, the semiconductor band

gap must be considered. In the case of direct band gap transitions, a

semiconductor will only detect or emit light with photon energy larger than

the band gap (within certain energy bands permitted by the material). In

Equation 2.11, Eg represents the band gap energy, h is Planck’s constant and ν

is the photon frequency. This implies a minimum photon frequency for

transitions to occur (Equation 2.12), which in turn corresponds to a minimum

wavelength (λg, Equation 2.13). In Equation 2.13 and Equation 2.12, c

represents the speed of a photon in vacuum. Thus, given the fact that c and h

are constant, this results in the approximate 1.24 inverse relationship between

the band gap energy and band gap wavelength given in Equation 2.13. In this

approximation, the units are eV for Eg and µm for λg. Photons with this
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Figure 2.10: Oscillation wavelength regions of semiconductor materials. Image re-
produced with permission of CRC PRESS LLC via Copyright Clearance Center [76].

wavelength (or shorter) are able to overcome the band gap. If a particular

wavelength is required, the most suitable semiconductor materials can be

determined via this relation (Equation 2.13).

Eg = hν band gap energy (2.11)

c = νλ (2.12)

λg = hc

Eg
≈ 1.24

Eg
band gap wavelength (2.13)

The band gap wavelength and associated band gap energies are illustrated in

Figure 2.10 for a range of semiconductor materials. Elemental semiconductors

Dense wavelength division multiplexing at
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(such as silicon and germanium) are important in electronics [76]. These

materials are not typically used for photon generation due to their indirect

band gaps, hence they are not listed here [76]. Compound, or binary,

semiconductor alloys can be formed by combining an element in group III of

the periodic table (such as gallium, indium or aluminium) with an element in

group V (such as phosphorus, arsenic or antimony). Ternary and quaternary

alloys can also be formed by mixing two or more of the binary semiconductor

compounds. This results in a range of semiconductor materials that can be

tuned over a wide range of wavelengths for photonic applications. Elements

from group II and group VI of the periodic table can also be used. Unlike their

III-V counterparts, II-VI alloys are widely found in nature, but photon sources

fabricated from these materials commonly suffer from limited lifetimes.

Hence, III-V materials are generally preferred for photonic applications [24].

In the 2 µm wavelength range, there are several options for III-V

semiconductor materials, as shown in Figure 2.10, such as InGaAs, InGaAsSb

and InAsPSb (where P is the symbol for phosphorus and Sb for antimony). It is

desirable to choose compounds that are used in the conventional waveband of

1.55 µm, as these semiconductor processes are mature, cost-effective and

widely available. Therefore, it is preferable to avoid compounds that include

antimony (Sb), since is not used in the C-band. InxGa1−xAs alloys are an

attractive option because they offer a wide range of wavelengths that can be

varied depending on the indium content x and are direct band gap for all

values of x from 0 to 1. At room temperature (300 K), the dependency of the

band gap (in eV) on the indium content x can be calculated using

Equation 2.14 from reference: [77]. In Equation 2.14, Eg is the direct energy

band gap of InxGa1−xAs and x is the indium fraction of the InxGa1−xAs

alloy [78]. As can be seen from Figure 2.11, emission around 2 µm can be

achieved with an InxGa1−xAs alloy and an indium fraction of x ≈ 0.7.

Eg(x) = 1.425 − 1.501 x + 0.436 x2 (2.14)

In order to fabricate compact devices, thin films of the alloy are required.

While it is possible to fabricate thin films of InxGa1−xAs, a supporting

substrate is required. Ideally, the atomic spacing (or lattice constant) of this

substrate and the successive alloy layers should be the same. Failure to

effectively match these lattice constants can result in defects which can

degrade the performance of photonic devices. For this reason, the most
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Figure 2.11: Emission wavelength of InGaAs varying with the fraction of indium in
the alloy [78], [77].

convenient substrate for InxGa1−xAs is indium phosphide (InP) because the

lattice constant is similar and quality InP substrates are available with

diameters as large as 100 mm [79].

However, rather than being lattice-matched to neighbouring layers, sometimes

regions are deliberately chosen to have a different lattice constant.

Introducing strain in this way can have a positive effect on laser performance

by reducing the laser threshold current density, making the device more

efficient [80]. However, the laser may only be strained to a certain point,

beyond which the structure may begin to crack.

With the semiconductor material chosen (as InGaAs/InP), the next step is to

select lasers at 2 µm. Most semiconductor materials have natural cleaving

planes. These are crystal planes along whose atomic bonds are most easily

broken, creating atomically flat mirrors. An emission cavity can be constructed

by cleaving two parallel ends of a semiconductor along the crystal axis,

creating reflective facets with the semiconductor gain medium in-between.

Uncoated, these semiconductor cleaved planes have reflectivity of 30% to

50%. The maximum output power of the device can be optimised by

modifying the reflectivity of the facets with optical coatings. This is typically

achieved by making the back facet with high reflectivity (90%) and the front

Dense wavelength division multiplexing at
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Figure 2.12: A Fabry-Pérot cavity with two mirrors and a gain medium in be-
tween [82].

facet with lower reflectivity (10%). The latter allows light to escape [81].

A Fabry-Pérot cavity with two reflecting surfaces (parallel to one another at a

distance L apart) and a medium of refractive index n is shown in Figure 2.12.

An integer number (N) of wavelengths will be resonant within the Fabry-Pérot

cavity, determined by Equation 2.15 [82]. In this equation, λ0 represents the

wavelength of light in vacuum. Equation 2.15 dictates that when the distance

between the mirrors is an integer multiple of half wavelengths, light will

interfere constructively and undergo resonance within the cavity. Light of

other wavelengths will interfere destructively and be dissipated. For this

reason, a Fabry-Pérot cavity is also called a resonator.

L = Nλ0

2n resonance condition (2.15)

Multi-mode semiconductor lasers

The resonant wavelengths supported within the cavity (called modes) are

analogous to standing wave patterns on a string, see Figure 2.13. If the rope is

provided with energy, many modes can oscillate (i.e. resonate). If one end of

the rope is held slightly open, some of the oscillation energy will escape, this is

representative of the lower reflectivity facet in the Fabry-Pérot cavity. In this
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Figure 2.13: Standing waves on a string. This file is licensed under the Creative Com-
mons Attribution-Share Alike 3.0 Unported license.

analogy, the higher reflectivity facet is represented by the fixed end of the

rope, which reflects almost all energy incident upon it.

In the case where the mirrors do not have 100% reflectivity, the amplitude of

the light will experience losses during a round-trip in the cavity and will

inevitably fall to zero with repeated reflections. These losses may be mitigated

if the cavity is filled with an optical gain medium, enabling the light to be

amplified as it bounces back and forth [82]. This is the case in a

semiconductor laser. Photon emission is generated by exciting the active

medium inside the cavity, by applying a voltage across the device, triggering

stimulated emission. The energy within the resonator is then amplified by

reflections between the parallel mirrors. In this way, wavelengths fulfilling the

resonance condition will be amplified, while other wavelengths are strongly

attenuated. This results in an integer number of wavelengths (called modes),

given by Equation 2.15, which can be emitted through either mirror (if made

partially reflective). Since wavelength and frequency are related (by c = νλ),

the frequency separation between the resonant modes within the Fabry-Pérot

cavity is given by Equation 2.16.

∆ν = c

2Ln frequency separation (2.16)

The number of modes that are observed is limited by the existence of optical

gain over a finite frequency range, or gain bandwidth of the semiconductor

laser. This is indicated by the dashed-line envelope in Figure 2.14.

Conventional Fabry-Pérot lasers are multi-mode devices. Since the

wavelengths of light are typically small compared to the cavity length, often a

complete round trip of the cavity will be equivalent to many hundreds of

wavelengths being amplified. This is exemplified by Figure 2.15 which shows

Dense wavelength division multiplexing at
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Figure 2.14: Emission spectrum of a Fabry-Pérot laser with resonant frequencies indi-
cated by the vertical lines and gain profile represented by the red dashed line [82].

the optical spectrum for a Fabry-Pérot laser with a cavity length of 400 µm.

Single mode semiconductor lasers

For optical communication purposes, it is desirable to have a single mode laser

upon which to encode information. One method to induce single mode

operation in Fabry-Pérot lasers is to introduce slots into the cavity. These slots

act as a series of smaller Fabry-Pérot cavities within the overall cavity,

gradually selecting one individual mode or wavelength, which is then

transmitted through the lower reflectivity facet. A typical single mode

spectrum of a slotted Fabry-Pérot laser is shown in Figure 2.16, for a cavity

length of 400 µm. The effect of adding slots can be seen by comparing

Figure 2.16 and Figure 2.15.

In the design of a slotted Fabry-Pérot laser, it is the slot width and spacing that

have the most influence on reflectivity of light within the cavity. Narrower

slots are desirable in order to keep the cavity length as small as possible (with

typical slot width ≥ 1 µm). A greater number of slots increases reflectivity, but

reduces transmission. This is because the scattering loss increases with the

number of slots and reduces the optical power. Considering the slot depth;

shallow slots reduce reflectivity (thus less feedback and gain), requiring more

slots to compensate optical power, leading to a longer cavity and increased

lasing threshold. Conversely, deeper slots increase scattering losses and the

number of slots must be increased to maintain output power, which also
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Figure 2.15: Optical spectrum of a multi-mode Fabry-Pérot laser. Data courtesy of
Brian Kelly, Eblana Photonics.
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Figure 2.16: Optical spectrum of a single mode Fabry-Pérot laser. Data courtesy of
Brian Kelly, Eblana Photonics.
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Figure 2.17: SEM micrograph of a 19 cell hollow core fibre cross section. This image
is courtesy of Prof. David Richardson, ORC, University of Southampton [83].

results in a longer cavity, as before. Desirable features in a laser include low

threshold current and high slope efficiency (which indicates a laser’s ability to

convert electrical current into optical power). A longer cavity length results in

a lower slope efficiency and higher threshold current. Therefore, in the case of

slotted Fabry-Pérot lasers, it is a compromise between maintaining sufficient

reflectivity and minimising the cavity length to maximise single mode

operation [25].

2.3.2 Fibres

In terms of optical fibres suitable for transmission at wavelengths longer than

1.55 µm, there are several mid-IR glass-based fibres such as chalcogenide,

germanate and fluoride (e.g. ZBLAN), glass fibres. However, another type of

fibre, namely hollow-core photonic band gap fibre (HC-PBGF), offers more

promising improvements that warrant investigation. A cross section of

HC-PBGF is shown in Figure 2.17. The reduced interaction of light with the

silica material of the fibre results in several encouraging advantages (over

standard SMFs), such as the potential to reach losses as low as 0.1 dB/km

around 2 µm [20]. The low-loss region is shifted (in comparison with standard

SMF) due to the reduction of Rayleigh scattering in HC-PBGFs.

Silica glass fibre has a refractive index of ~1.5 causing light to propagate 31%
slower than it would in vacuum. In comparison, light in the core of HC-PBGFs

can travel at speeds up to 99.7% of the speed of light in vacuum (since the

refractive index of air is close to 1) [84]. This offers a way to reduce the

propagation delay over long distances (which gained interest in HC-PBGFs
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Figure 2.18: Approximate illustration of the predicted HC-PBGF attenuation vs. wave-
length for HC-PBGF (in red) and attenuation vs. wavelength for standard SMF (in
blue). The transmission windows are indicated with arrows [61].

from the financial sector in 2013 [85]). This delay is known as latency [21].

Perhaps most importantly, guidance in air results in ultra-low nonlinearity

(~1000 times less than silica [22]). In standard SMF, most nonlinear effects

are the result of the inherently disordered nature of silica in the fibre [86].

The reduced interaction of the light signal with silica material lowers the

amount of these effects, allowing for much higher power-handling capabilities

and higher capacities [23].

Figure 2.18 shows an illustrative schematic of optical fibre attenuation taking

into account losses due to scattering and absorption. In comparison with

Figure 2.8, current SMF (blue curve) has greatly reduced water absorption and

a record low loss of ~0.149 dB/km [87]. HC-PBGF (red curve) has a predicted

minimum loss of ~0.13 dB/km at 1.9 µm [20]. The historical transmission

windows are indicated with arrows, along with the proposed new window at

2 µm [62], [63].
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Figure 2.19: Simplified cross section of a HC-PBGF in (a) the x-y plane and (b) three
dimensions exhibiting band gap guidance. Green lines represent light rays, with thick-
ness corresponding to intensity. Light grey regions are silica; white regions are air. Axis
coordinates are inset. Image reproduced with permission of the author [48].

While light propagation in solid-core fibres obeys the principle of total internal

reflection (as per Section 2.1.1), the same guidance mechanism cannot be

employed for HC-PBGFs. Since total internal reflection occurs when light

travels from a denser (higher refractive index) medium to a rarer (lower

refractive index) medium, this is not possible in the case of an air core because

the refractive index of the cladding will always be greater than the core.

Instead, guidance in HC-PBGF relies upon periodicity that permits light

propagation through the low-index defect that forms the hollow

core [19], [88], [89], [90].

The cladding of HC-PBGFs consists of a series of longitudinal capillaries in the

+z direction (in fact, hollow core fibres earned an entry in the Guinness World

Book of Records for the World’s Longest Hole in 1999 [91]). These capillaries

result in a lattice-like periodic microstructure in the x-y plane of the fibre

cladding, as per Figure 2.19. In the centre of this structure is a defect which

constitutes the hollow core. When light from the core is incident upon the

periodic structure of the cladding, it will be reflected and transmitted at each

air/silica interface. The interaction of these reflections contribute to

constructive and destructive interference along the +z direction. The result of

this interference is that certain wavelengths can propagate along the fibre

while other wavelengths are not supported for propagation within the

HC-PBGF structure.

One way these wavelengths can be determined is using a modified form of
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Figure 2.20: Illustration of Bragg’s law.

Bragg’s law, called the Bragg-Snell law, which takes into account refraction of

light in the composite structure and the incident angle of the incoming

light [92], [48], [93]. The Bragg-Snell law can be derived from an application

of Snell’s law (Equation 2.1) and Bragg’s law of diffraction, Equation 2.17.

Bragg’s law is illustrated in Figure 2.20.

Nλ = 2ΛSin(θi) Bragg’s law (2.17)

In Equation 2.17, N represents the integer order of diffraction, λ is the

wavelength of light, Λ is the period of the microstructure and θi is the angle of

incidence of light with respect to the normal. Beginning from Bragg’s law

(Equation 2.17) and using Snell’s law (Equation 2.1), the Bragg-Snell law,

Equation 2.18 can be obtained.

λmax = 2Λ
N

√
n2
eff − sin2(θi) Bragg-Snell law (2.18)

In Equation 2.18, neff is the effective refractive index of the system. neff can

be determined by various approaches and one of these is the effective medium

approach, as per Equation 2.19. In Equation 2.19, ni and fi are the refractive

index and volume fraction of each portion of the photonic structure, i.e. air

and silica in the case of HC-PBGFs [92].
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Figure 2.21: Photograph of a Morpho butterfly whose blue colour is a result of the
photonic band gap effect. This file is licensed under the Creative Commons Attribution-
Share Alike 3.0 Unported license.

n2
eff = Σn2

i fi = n2
airfair + n2

silicafsilica (2.19)

Wavelengths that do not satisfy the Bragg-Snell law (Equation 2.18) can

tunnel through the cladding and be dissipated, while wavelengths that satisfy

this condition will be consistently reflected. Consequently, light incident on the

periodic structure in the cladding is either reflected, or tunnels through to the

other side; it cannot exist freely in the periodic medium itself, leading to a

‘photonic band gap’ for light of certain wavelengths or frequencies

[92], [48], [93].

Photonic band gaps can also be seen in nature, for example in gemstones such

as opal or in the scales of butterfly wings, as shown in Figure 2.21. In the case

of the Morpho butterfly, the brilliant colours are a result of a naturally

occurring periodic microstructure in its wings. This periodic microstructure

results in a photonic band gap which prevents propagation of certain

wavelength bands. In this case, blue light (~450 nm to 490 nm) is strongly

reflected, resulting in the vibrant colours of the butterfly’s wings in

Figure 2.21, [93], [94], [95].

In the case of HC-PBGFs, the photonic band gap prevents propagation

transversely and light is confined to travel within the central core, along the

+z direction. The core can essentially be considered a cavity surrounded by

reflecting walls. This is the basis of the HC-PBGF guidance mechanism.
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Considering the 19-cell HC-PBGF used in the experiments of this thesis, the

period (Λ) was 5.5 µm, and the volume fractions of silica and air were

fsilica = 0.04 and fair = 0.96, with refractive indices of nsilica = 1.542,

nair = 1.000, respectively [96]. Equation 2.18 can be maximised for N = 1 and

θi = 90 °, which results in a λmax value of 2.5 µm. Thus indicating that light

around 2.5 µm will be confined within the hollow core of the fibre due to the

photonic band gap.

While Rayleigh scattering (which is proportional to 1/λ4) and infrared

absorption are the dominant loss mechanisms in conventional solid core fibres,

the dominant loss mechanisms in HC-PBGFs are scattering from the glass/air

interfaces (which is proportional to 1/λ3) and infrared absorption. In the case

of HC-PBGFs, the absorption curve is shifted due to the reduced interaction of

the optical field with the silica material (<0.2%) [61], [97], [20] [98], [99].

These combine to define the minimum-loss transmission window at 2 µm,

predicted to be as low 0.1 dB/km (less than the best conventional fibres) [20].

Additional losses may also arise in HC-PBGFs due to atmospheric

contamination during fabrication, resulting in small amounts of carbon

dioxide and water vapour in the fibre. These contaminants can be reduced

significantly or even eliminated by purging the fibre with dry gas [100].

HC-PBGFs offer exciting possibilities such as low nonlinearity, ultra-wide

bandwidth, reduced latency, high damage threshold and ultra-low losses.

These fibres have applications in gas sensing, nonlinear optics, high peak

intensity pulse delivery, mid-IR radiation delivery and data transmission.

Particularly for data transmission, HC-PBGFs have the potential to increase

capacity through increased bandwidth, higher power-handling capability and

reduced OSNR [101], [102].

2.3.3 Optical fibre amplifiers at 2 µm (TDFAs)

Amplifiers can be found at 2 µm in the form of thulium doped fibre amplifiers

(TDFAs). Thulium and erbium have been closely linked since their discovery

together in 1787, when a strange black rock was found in Ytterby, Sweden. It

took over 100 years to analyse the rock completely, during which nine new

elements (including erbium and thulium) were revealed [103]. Thulium offers

a large energy level transition that can produce coherent photons extending

from 1.7 µm to 2.1 µm. This potential broad amplification range of ~30 THz

makes TDFAs especially attractive, compared to the current ~15 THz (1.48 µm

Dense wavelength division multiplexing at
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Figure 2.22: Thulium energy diagram [104].

to 1.61 µm) offered by EDFAs [27].

A schematic energy diagram of thulium is shown in Figure 2.22. Thulium ions

can be pumped from the 3H6 band to the 3F4 with a 1.55 µm pump to produce

emission around the 2 µm waveband. Other pumps can also be used, but

1.55 µm pumps are typically preferred because C-band optical sources are

cheaper and more powerful (in general), making this an attractive pump

option [18]. TDFAs have been developed with high gain (>35 dB) and low

noise figures (<5 dB), similar to EDFAs [26], [27].

Also, if holmium is used in conjunction with thulium, optical amplification

from 1.7 µm to 2.2 µm could be achieved. This corresponds to ~40 THz

bandwidth, three times more than the current C+L-band

capabilities [105], [28], [106], [107].

Chapter summary

In this chapter, the historical context of the work in this thesis is presented,

from past optical communication systems (such as smoke signals and the

semaphore) to the first transatlantic cable and the first optical fibres. The first

telecommunications transmission window was opened in the 1970s using

early Corning fibres and GaAs semiconductor lasers operating around

0.85 µm. The second window followed in the 1980s, which was developed for

commercial use with InGaAs lasers operating at 1.33 µm. In the 1990s, the

third window was opened using low-loss standard SMF operating at 1.55 µm.

The popularisation of the 1.55 µm wavelength region for optical
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communications over the last three decades was made possible primarily due

to three key enabling technologies; the availability of semiconductor lasers

and detectors, low-loss (~0.2 dB/km) standard SMF as a transmission

medium, and EDFAs to enable transmission over long distances with high-gain,

low-noise and minimal O/E-E/O conversion. However, moving away from

standard SMF and the 1.55 µm window was considered as far back as the

1980s (before the EDFA’s revolution) due to fundamental losses such as

Rayleigh scattering (which is reduced at longer wavelengths). Moving to other

fibres operable at longer wavelengths could allow for lower losses and

fundamentally higher capacities. Therefore, it is proposed in this thesis to

re-investigate this possibility with today’s technologies and open the 2 µm

transmission window in order to extend the available bandwidth.

Novel solutions are needed and there are several applicable technologies with

promising advantages at 2 µm. Lasers for transmitters can be fabricated by

straining the layers of InP-based materials to shift the band gap and these

same semiconductor processes can enable the fabrication of photodetectors.

Mid-infrared fibres are also available, such as chalcogenide, germanate and

fluoride (e.g. ZBLAN) glass fibres and HC-PBGFs. HC-PBGFs, in particular,

could offer promising potential because of their unique ‘cladding’ region which

consists of a honeycomb-like microstructure that confines light in the hollow

core. The transmission of light through air could have significant advantages

over SMFs such as theoretical losses lower than 0.1 dB/km, near-vacuum

latency and a 1000-fold reduction in the nonlinear coefficient, resulting in

higher achievable capacities. Finally, amplification at 2 µm can be found in the

form of TDFAs, which have been shown to operate over a broad bandwidth

(typically from 1.7 µm to 2.1 µm), double that of EDFAs. It is the convergence

of all these key enabling technologies that heralds the opening of a new

transmission window. Therefore, with the key elements identified, the next

step is to investigate how to combine these elements into a fully-functioning

optical communication system at 2 µm.
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Chapter 3

Optical communication systems

In this chapter, the core elements of optical communication systems are

discussed, with particular focus on the elements relevant to 2 µm transmission

experiments. A communication system can be defined as the combination of a

transmitter (which sends information) and a receiver (which receives the

information), connected via a transmission medium or communication

channel. A communication system can be as simple as two tin-cans connected

by a string, as per Figure 3.1, or a complex network which contains multiple

transmitters, receivers, switching technologies, as is the case in current optical

communication systems.

Transmitter

Receiver
Transmission medium

Figure 3.1: A tin can telephone consists of three key components to deliver infor-
mation from one place to another; a transmitter, receiver and a transmission medium
connecting the two. Image courtesy of ccPixs.com under creative commons licensing (CC
BY 2.0).
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Figure 3.2: Schematic of a simple communication system [108].

Point-to-point links constitute the simplest kind of optical communication

system for consideration. Their role is to convert the digital bit stream into

optical data and to transport that information from one point to another, as

accurately as possible. Figure 3.2 shows a schematic version of information

flow in a simple point-to-point system. In the case of optical communication

systems, there is additional E/O conversion (via a modulator) and O/E

conversion (via a detector) needed in order to apply the baseband signal

(actual data) to the optical carrier (laser light) and vice-versa.

These are also the key elements that are needed to establish an optical

communication system at 2 µm, as briefly explored in Chapter 2. This chapter

presents a review of the main characteristics and building blocks required to

implement optical communication systems at 2 µm. In terms of the

transmitter, core concepts such as modulation are discussed. The factors for

evaluating system performance at the receiver are presented, including the bit

error rate, eye diagram and signal-to-noise ratio. The design of a WDM system

at 2 µm is discussed, concluding with the state-of-the-art for 2 µm WDM

systems in 2014, prior to the beginning of this thesis work.

3.1 Generating optical signals

The purpose of an optical transmitter is to generate an optical carrier, which

will carry the baseband information and launch the resulting optical signal

into the transmission medium. In modern optical communication systems, the

carrier frequency is chosen according to a grid of frequencies that is

internationally standardised (this will be covered in more detail in Chapter 5).

As discussed in Chapter 2, semiconductor lasers are a suitable contender for

Dense wavelength division multiplexing at
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these carrier frequencies because of their compact size, efficiency and emission

wavelengths that correspond to the low-loss regions of silica optical fibres.

Therefore, semiconductor lasers emitting at 2 µm are required. In order to

apply the baseband signal (actual data) to these 2 µm carriers, data

modulation is also required (either through direct modulation or via an

external optical modulator).

3.1.1 Direct modulation

Direct modulation in its simplest form is a technique which modulates the

intensity of laser light to represent information. For example, turning a laser

on or off to represent 1s and 0s, respectively (similar concept to Morse code).

This binary format is the most common representation of digital signals. For

direct modulation, 1-bits and 0-bits correspond to whether an optical carrier is

considered to be on or off, respectively. While the word bit originated as a

contracted form of the words ‘binary digit’, today it has taken on a broader

definition to mean the smallest unit of information in a system. The amount of

time that each bit takes is called the bit period and the bit rate is defined as the

inverse of the bit period. This bit rate corresponds to the number of bits

transferred per unit time (i.e. per second). It is written as bit/s and is often

associated with an SI prefix such as mega (Mbit/s), giga (Gbit/s) and even

tera (Tbit/s) denoting factors of a million (106), billion (109) and trillion (1012)

bits per second, respectively. Most optical communication systems employ

digital signals due to their reliability, flexibility and sensitivity.

If the laser is to be turned on and off, the laser threshold must first be

considered. The laser threshold is the lowest excitation level at which a laser’s

output is dominated by stimulated emission rather than by spontaneous

emission, i.e. the point at which a device ‘lases’. An example of a typical

light-current (LI) curve for a slotted Fabry-Pérot laser operating at the 2 µm

waveband is shown in Figure 3.3, with threshold current indicated by a dotted

yellow line. As can be seen in Figure 3.3, below the threshold current

(<18 mA), the output power rises slowly with increasing current as

spontaneous emission dominates. Above the threshold current (>18 mA), the

laser is said to be lasing, as stimulated emission becomes the dominant

mechanism, causing the slope of the LI curve to rapidly increase. This is

because, as the current is increased, more carriers are injected into the

conduction and valence bands of the semiconductor material, subsequently

43 Niamh Kavanagh



3. OPTICAL COMMUNICATION SYSTEMS

0 20 40 60 80 100
Current (mA)

0

1

2

3
P

ow
er

 (
m

W
)

Figure 3.3: LI curve of a slotted Fabry-Pérot laser (module S/N YE1918 at 25°C).
Dotted yellow line indicates the threshold current.

recombining and releasing more photons. Operating below this threshold

corresponds to turning the laser ‘off’ and operating above the threshold turns

the laser ‘on’. Ideally, a low threshold current and a high slope efficiency are

desirable features in a transmitter for optical communication applications, as

this indicates a more efficient system that will need less power to operate

while converting as much current to light as possible.

Another way to visualise the laser threshold is via the optical spectrum, which

is a measure of the optical power density as a function of wavelength, as

shown in Figure 3.4. This is recorded via an optical spectrum analyser (OSA)

which measures the optical power per unit bandwidth (defined by the

resolution). Below the laser threshold, spontaneous emission produces

incoherent light in random directions, shown below in red in Figure 3.4. This

broad emission spectrum has a periodic spectral structure which indicates the

permitted modes or wavelengths within the Fabry-Pérot cavity but with no

peak dominating below the threshold point. Above the laser threshold,

stimulated emission produces coherent light at a certain wavelength that

experiences gain (against the other potential resonant wavelengths or modes

within the cavity) as shown in blue in Figure 3.4. The wavelength value of this

Dense wavelength division multiplexing at
2 µm for future optical communications

44



3.1 Generating optical signals

1960 1980 2000 2020
Wavelength (nm)

-80

-60

-40

-20

0
P

ow
er

 (
dB

m
)

25mA
10mA

Figure 3.4: Optical spectrum of a slotted Fabry-Pérot laser (module S/N YE1922 at
25°C) below threshold (at 10 mA, red, below) and above threshold (at 25 mA, blue,
above) (0.05 nm resolution, 3334 sampling points, 70 nm span).

peak determines the emission wavelength, the defining feature of a laser. This

emission wavelength can be slightly tuned via the temperature (and to a lesser

extent, current) of the laser. In terms of the slotted Fabry-Pérot lasers used in

the experiments in this thesis, for example, the emission wavelength was

found to tune linearly with temperature at a rate of ~0.1 nm/°C (and

~0.01 nm/mA with current).

Other characteristics of the laser that can be identified via the optical spectrum

include the side mode suppression ratio (SMSR) and the optical signal-to-noise

ratio (OSNR), as per Figure 3.5. The SMSR is a measure of the power

difference between the laser emission peak and the next highest side mode,

thus giving an indication of the degree of single mode operation of the laser

device. The OSNR is a measure of the power difference between the laser

emission peak and the noise level of the laser. These are important parameters

in direct modulation schemes where well-defined single mode devices are

desired for optimal spectral efficiency [109].
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Figure 3.5: Optical spectrum of a slotted Fabry-Pérot laser indicating the SMSR (in
blue) and OSNR (in red) (0.05 nm resolution, 3334 sampling points, 70 nm span).

3.1.2 Modulation formats

The optical data signal is created by modulating the optical carrier wave, i.e.

encoding the carrier with information. The optical carrier before modulation is

in the form of a continuous wave (CW) and its electric field can be written as

Equation 3.1. In this equation, E(t) is the electric field vector, ê is a unit vector

representing the state of the polarization of the optical field, EA0 is the

amplitude, φ is the phase, ω0 is the angular frequency which is related to the

carrier frequency through ω0 = 2πν0. Equation 3.1 indicates the possible

physical parameters that can be modulated, with ê representing each

polarisation [109], [110].

E(t) = ê EA0(t) exp (−i ( ω0(t) t+ φ0(t) ) ) (3.1)

Consequently, in order to modulate the carrier wave, the characteristics of the

light wave that one may vary are the amplitude EA0, frequency ν0, or phase φ0.

Therefore, for digital signals, the three modulation formats are called

amplitude-shift keying (ASK), frequency-shift keying (FSK), and phase-shift

keying (PSK), depending on whether the amplitude, frequency, or phase of the

Dense wavelength division multiplexing at
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carrier wave is shifted between the two levels of a binary digital signal. The

most common modulation scheme in optical communications is ASK, in which

only the amplitude of the carrier wave is modified in modulation. The simplest

version of ASK is called on-off keying (OOK). This two-level scheme essentially

operates as a switch. The amplitude takes one of two fixed values during each

bit period, depending on whether a 1-bit or 0-bit is transmitted. Most often,

the amplitude is set to zero during transmission of 0-bits so that the presence

of a carrier wave indicates a binary one and its absence indicates a binary

zero, hence the name on-off keying (OOK).

Most optical communication systems employ OOK [109], [110]. Figure 3.6

shows several voltage vs. time plots. The digital bit stream using two voltage

levels representing 1s and 0s is depicted in Figure 3.6(a). Figure 3.6(b)

illustrates the continuous carrier wave before modulation. In Figure 3.6(c),

OOK modulation has been applied to the waveform. For cyclical processes,

such as rotation, oscillations, or waves, the frequency is defined as a number

of cycles per unit time, measured in Hertz (Hz), i.e. t = 1/ν, where ν is the

carrier frequency in this case. Therefore, while the carrier frequency for lasers

is in the THz range, the modulation frequency (or bit slot, as indicated by

white/grey shading in Figure 3.6) is in the GHz range for modulation schemes

such as OOK.

The modulated carrier wave can take one of two different states in OOK

modulation to represent either a 1-bit or 0-bit. These different carrier states

are known as symbols. If there are more than two possible carrier states (i.e.

more than two symbols available), then it is possible for each symbol to

represent more than one bit. Figure 3.7 shows ASK with four possible

amplitude levels, or four symbols, called 4ASK. With four symbols available,

each symbol can be uniquely represented with a two-bit binary number. This is

because there are four possible two-bit binary numbers: 11, 10, 01 and 00.

The relationship between the number of available symbols (N) and the

number of bits that can be represented by a symbol x is N = 2x. Therefore, if

there were eight symbols, each could represent three data bits, and so on. The

bit rate measures the number of bits that are transmitted per unit time.

However, a symbol rate, known as the baud rate, is used in the case of

modulation formats like 4ASK to measure the number of symbols that are

transmitted per unit of time [111].

In the case of the OOK, there are two main choices with regards to optical bit
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Figure 3.6: (a) bit stream of 1-bits and 0-bits, (b) unmodulated continuous carrier
wave, (c) on-off keying (OOK) modulated signal [111].

stream formats, these are known as the return-to-zero (RZ) and

non-return-to-zero (NRZ), shown in Figure 3.8. In the RZ format, each optical

pulse representing a 1-bit is shorter than the bit period, and its amplitude

returns to the zero level before the end of the bit period. All the pulses are

identical in a RZ optical bit stream, but the spacing between them will depend

upon the digital bit pattern. In the NRZ format the optical pulse for a 1-bit

remains on (i.e. at the one level) for the full duration of the bit period and its

amplitude does not drop to zero between two or more successive 1-bits,

resulting in a pattern of optical pulses that vary in length depending on the

digital bit pattern, as shown in Figure 3.8. For the NRZ format, the optical

receiver must be able to extract an electrical clock from the bit stream in order

to correctly sample and analyse the signal.

The main advantage of the NRZ format is that the bandwidth associated with

this format is smaller than that of the RZ format by about a factor of two. The

reduced bandwidth of an NRZ signal can be understood qualitatively from
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Figure 3.7: ASK with four amplitude levels (4ASK) [111].

Figure 3.8 by noting that on-off transitions occur much less often for an NRZ

signal. This is the reason why the NRZ format is used extensively in the case of

microwave and coaxial-cable systems for which the bandwidth should be

economized as much as possible. However, the use of NRZ format for optical

communication systems is not always the right choice because of the

dispersive and nonlinear effects that can distort optical pulses during

transmission and spread them outside their assigned bit slot. Since the pulse

occupies the entire bit slot, the NRZ format cannot tolerate even a relatively

small amount of pulse broadening and is quite vulnerable to intersymbol

crosstalk. Moreover, a long sequence of 1 or 0 bits contains no information

about the bit duration and makes it difficult to extract the clock electronically

with a high accuracy. In spite of these difficulties, the NRZ format is still often

used for optical communication systems, especially at low bit rates. The use of
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Figure 3.8: (a) NRZ bit stream, (b) RZ bit stream.

NRZ format becomes questionable at bit rates higher than 10 Gbit/s [110].

Optical modulation can be applied either directly or externally to the optical

source, as shown in Figure 3.9. Direct modulation takes place before the

optical carrier has been generated by applying an electrical signal

(representing the information) directly to the drive current of the laser,

resulting in a modulated light output from the optical source. The laser can be

biased at a lower current to represent each 0-bit. For the 1-bits, the drive

current of the laser can then be set to higher value, resulting in the emission of

an optical pulse whose duration is similar to that of the electrical pulse. The

advantage of direct modulation (over external) is that it simplifies the

transmitter design and is generally more cost-effective because no other

components are required for modulation other than the optical source.

However, such an approach requires that the laser can be turned on and off as

fast as the bit rate of the signal to be transmitted [110]. For higher bit rates,

indirect (or external) modulation is often needed. External modulation takes

place after the light has been generated by employing a component called an

optical modulator which is used to encode information onto a CW optical

carrier.

Dense wavelength division multiplexing at
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Figure 3.9: (a) Direct modulation (DM), (b) External modulation.

3.1.3 External modulation

A commonly used external modulator is based on electro-optic waveguides in

a Mach–Zehnder configuration. The basic configuration of a Mach Zehnder

modulator (MZM) is a splitter and a combiner connected by a pair of matched

waveguide arms (as shown in the inset of Figure 3.10). These waveguides are

made of a material, such as lithium niobate (LiNbO3), whose optical properties

can be varied by applying an electric field (called the electro-optic effect). An

electric field is obtained by applying a voltage across the waveguide between

two electrodes. In the case of LiNbO3, an applied electric field will increase the

refractive index (n). Increasing the refractive index (n) will decrease the speed

of light in the medium v since they are inversely related through the equation

v = c/n (where c is constant). Naturally, this will increase the amount of time

it takes for the light to travel through the medium (since speed is equal to

distance over time v = L/∆t). For a modulator of fixed length (L) if there is a

difference in the electric field applied to either arm of the modulator, then this

will mean that the light will take longer to travel through one arm, compared

to the other, due to Equation 3.2. This relative delay corresponds to a phase

difference between the two signals in the arms of the MZM.

∆t = Ln

c
(3.2)

When the two light signals are recombined, the phase difference is then
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Figure 3.10: Transfer function of a MZM indicating how E/O conversion occurs. Vπ
and the quadrature point (X) are shown in red. The inset (in grey) shows a typical
MZM configuration, with a voltage applied to one arm of the modulator.

converted into amplitude variations, due to interference. As shown in

Figure 3.11, if two waves are in phase, constructive interference will occur

when they are combined. Conversely, if two waves are out of phase,

destructive interference will occur when they combine and the resulting wave

will have smaller amplitude (or no amplitude if the waves are completely out

of phase). In this way, phase difference is converted to amplitude variations

through interference. The phase shift (and, therefore, output intensity) is

controlled by changing the delay through one or both of the optical paths by

means of the electro-optic effect. This forms the basis of the MZM mechanism;

the incoming signal is split and transmitted through the two different arms of

the MZM. After a few centimetres, the two signals are recombined, causing the

optical waves to interfere with each other, resulting in amplitude modulation.

The performance of external modulators is generally characterised by the

on-off ratio, the modulation bandwidth and the modulation voltage required

for a π phase change (Vπ). The on-off ratio is the difference between the

optical power at maximum and minimum transmission. A higher on-off ratio

allows for greater definition between the on and off states of the modulator.

Dense wavelength division multiplexing at
2 µm for future optical communications
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combining waves in phase

= constructive interference

combining waves out of phase

= destructive interference

Figure 3.11: Interference occurs when two waves are combined, this can be construc-
tive (as shown on the left) or destructive (as shown on the right) depending on the
relative phase of the two waves when they combine.

For OOK, this would mean greater definition between the 1-bit and 0-bit.

LiNbO3 modulators generally provide an on-off ratio >20 dB. In terms of

modulation bandwidth, many LiNbO3 C-band modulators are operable up to

~40 GHz, whereas 2 µm modulators are currently operable up to ~10 GHz

[112]). Finally, a smaller Vπ is preferable as this indicates a stronger

electro-optic response and a more efficient modulator, with Vπ of ~5 V being

typical for LiNbO3 modulators (this has been achieved at 2 µm [113]). An

additional consideration for systems implementation would be the insertion

loss of the device, since all external modulators will add some loss to the

system (typically 3 dB to 7 dB) [114].

Figure 3.10 shows a typical example of a MZM transfer function. The transfer

function is a measure of the output power from the MZM with respect to the

applied bias voltage and provides an indication as to how the bias voltage is

transferred to optical power. Vπ can be measured via this transfer function as

the bias voltage that corresponds to a π phase change (i.e. from minimum to

maximum amplitude). In Figure 3.10 Vπ, for example, would be about 1.5 V.

The red X in Figure 3.10 marks the quadrature point. If the bias of the MZM is

set at this value, the E/O conversion will be approximately linear since it is

within the linear regime of the transfer function.

After the signal has been generated, the purpose of the transmission medium is

to transport the signal from the transmitter to the receiver, preferably with as

little signal power loss and distortion as possible. In the case of a
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point-to-point optical communication system, the transmission medium takes

the form of an optical fibre link. Ideally the optical fibre would not modify the

signal in any way as the signal is transmitted. In reality, the signal will lose

power as it is transmitted through the fibre due to the losses as discussed in

Section 2.1.3. Current standard SMF has loss up to 0.2 dB/km in the 1.55 µm

wavelength region. Even at this low loss level, the optical power of a signal

will be reduced to only 1% of its original value after travelling through 100 km

of this fibre, and would hence require repeaters or amplification to achieve

longer lengths, which in turn introduces additional impairments (and cost).

Loss is not the only impairment through which the light can be distorted -

dispersion and nonlinearities can also cause distortions in the field as it

propagates through the fibre [110],[109],[7]. However, little of these effects

were observed during the experimental work of this thesis.

3.2 System performance parameters

The primary purpose of an optical receiver is to detect an incoming optical

signal from the transmission medium and decode the data within that signal

(by converting the optical signal to an electrical signal). The information can

be distributed to its final destination or, in the case of this thesis, further

processed to determine the performance of the system. Firstly, O/E conversion

is needed in order to extract the baseband signal data from the optical carrier,

and this is done using a photodetector and demodulator.

The function of the photodetector is to detect the optical signal, i.e. absorb

light of a certain wavelength and convert this optical input to electrical output.

Semiconductor detectors are the most common photodetectors because of

their reliability, flexibility and sensitivity at absorption wavelengths that

correspond to the low-loss regions of silica optical fibres. Assuming a linear

response, the slope efficiency (or responsivity) of the photodetector can be

calculated. This responsivity will be different depending on the wavelength of

the input light. Once the signal has been extracted by the photodetector and

converted into electronic pulses, the signals are processed at the electrical

level, helping to generate a suitable square wave that can then be

administered at the logic level. Therefore, one of the key considerations in the

performance of the optical receiver (and, hence, the overall system) is the

photodetector itself, because the response time of the detector determines the

speed of the data that can be recovered.

Dense wavelength division multiplexing at
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The original encoded information is recovered through a process called

demodulation. The design of the demodulator depends on the modulation

format used in the transmitter. Most optical communication systems employ a

digital binary scheme called intensity modulation with direct detection

(IM/DD) [4]. Demodulation in this case is performed by a decision circuit that

identifies bits as a 1-bit or a 0-bit, depending on the intensity of the electric

field. It is almost impossible to recover the original bit stream with 100%

accuracy. For this reason, the performance of an optical communication system

is characterised in terms of the bit-error rate (BER).

3.2.1 Bit error rate

In a digital transmission system, the BER is defined as the ratio between the

number of bit errors received in a certain time interval and the total number of

bits transferred during the same time. The BER can also be defined as the

average probability of identifying a bit incorrectly. If p1 is the probability of

incorrectly identifying a 1-bit and p0 is the probability of incorrectly identifying

a 0-bit (i.e. mistaking a 1-bit for a 0-bit and vice versa), and if the two bits are

equally likely to be transmitted, then the BER in this case is given by

Equation 3.3.

BER = 1
2(p1 + p2) (3.3)

BER is usually expressed as 10 to a negative power. A BER of 1× 10−6

corresponds to an average of one error per million bits transmitted. Optical

communication systems are generally designed to operate in such a way that

the error probability in the digital receivers is smaller than a specified value. A

common acceptance level for NRZ systems operating at 40 Gbit/s or below is a

BER less than 1× 10−9 [109], [110]. In an OOK system, 1-bits and 0-bits are

represented by the presence and absence of an optical pulse, respectively. The

receiver electronics then include a comparator to the data expected, and the

BER is calculated [6].

3.2.2 Signal-to-noise ratio

The accuracy of identifying a 1-bit or a 0-bit depends on the signal-to-noise

ratio (SNR) of the electrical signal generated by the photodetector. A higher

SNR will correspond to a larger difference between the 1-bit level and the 0-bit
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level, leading to higher accuracy in distinguishing if a bit is 1 or 0. Even in the

case of an ideal optical receiver, some inherent noise is introduced by the

process of photodetection itself. Due to these fundamental noise fluctuations,

there is always a finite probability that a bit will be incorrectly identified at the

decision circuit [6].

Two fundamental noise mechanisms that contribute to current fluctuations in

all optical receivers (even in the presence of an incident optical signal with

constant power) are shot noise and thermal noise. Shot noise is a result of the

random generation of charge carriers under interaction with an external field.

Therefore, even if the current to a photodetector is constant when photons are

absorbed, electron-hole pairs may be generated at random time intervals.

Thermal noise is a result of the thermal motion of charge carriers, which, at a

finite temperature, will move randomly within any conductor. In a resistor, this

spontaneous motion will result in a fluctuating current, regardless of the

voltage applied. Resistors within the circuitry of the photodetector add such

fluctuations to the current emitted.

Both thermal and shot noise affect the SNR for the decision circuitry. However,

noise is defined as any distortion that is added to a signal, thereby making it

more difficult to accurately determine the bit value at the receiver. As such, in

an optical communication system, additional noise sources such as that from

amplifiers must also be considered, as per Chapter 2. Amplified spontaneous

emission, or ASE, is the primary source of noise prior to detection, and hence

the optical signal-to-noise ratio (OSNR) is often the parameter measured to

determine the quality of the signal arriving at an optical receiver. The

influence of ASE noise is essentially characterised by the OSNR. A degraded

OSNR will also correspond to a degradation in SNR. In the experimental work

of this thesis, a measurement of the BER vs. OSNR is presented in order to

analyse the performance of the optical communication system.

3.2.3 Eye diagram

Another performance indicator used in this thesis is the eye diagram, which is

formed when consecutive combinations of two or more bits are overlapped on

an oscilloscope, resulting in a pattern which resembles an open eye (in the

ideal case). Visualisation of the eye diagram is of interest as it gives a

qualitative analysis of the signal reaching the detector and hence informs

expectations about the performance of the transmission link. This is commonly

Dense wavelength division multiplexing at
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Figure 3.12: Illustration of an eye diagram.

used in optical communications as a qualitative monitoring scheme enabled by

a fast photodetector and a sampling oscilloscope.

An illustration of an eye diagram for a NRZ-OOK bit stream is represented by

the blue lines in Figure 3.12. The decision threshold and optimal sampling

time can be visualised via the eye diagram. The decision threshold

(Figure 3.12, red dashed line) is the power level which corresponds to the

centre of the eye opening and the optimal sampling time (Figure 3.12, green

dash-dotted line) corresponds to the maximum opening of the eye. As such,

any reduction in eye opening indicates an increase in the BER and the eye

diagram provides a visual way of monitoring the performance of the optical

communication system [109], [110], [4].

An overview of optical signal generation has been discussed and some of the

key performance indicators that are used in this thesis have been presented

(namely, BER, OSNR and the eye diagram). With these fundamental

conventions established, the next section will expand beyond the single

channel example to discuss the concept of multiplexing many channels over a

point-to-point link.

3.3 Wavelength division multiplexing

Channel multiplexing is a technique used to send many signals through a

transmission medium at the same time. Multiplexing enables greater use of

the transmission medium bandwidth and increases the overall data-carrying

57 Niamh Kavanagh



3. OPTICAL COMMUNICATION SYSTEMS

M
U

X

D
E

-M
U

X

λ1

λ7

λ6

λ5

λ4

λ3

λ2

λ1

λ7

λ6

λ5

λ4

λ3

λ2

Optical

Fibre

Figure 3.13: Illustration of a WDM point-to-point link where λ1, λ2 etc. refer to the
different wavelengths.

capacity of the communication system. An everyday example of multiplexing

is television channels. In Ireland, SaorView is the digital terrestrial television

service which broadcasts channels over frequencies from 470 MHz to 780 MHz

(FM radio channels are below 470 MHz and above 780 MHz is reserved for 4G

broadband) [115]. Using these frequencies, different channels are

simultaneously transmitted to your television and, by selecting each individual

channel (i.e. tuning your receiver to the desired frequency), you can receive

different signals on your screen and view different content.

One of the most common multiplexing techniques is frequency division

multiplexing (FDM). First developed in the early 20th century for radiowave

broadcast, FDM was then adapted to microwaves for the television industry

and today it is used for lightwaves in optical communications. As the name

suggests, the different channels propagate with different frequencies. Each

channel consists of a carrier wave, oscillating at a certain frequency, that is

used to transmit one signal. These channels are combined using a device,

known as a multiplexer, and sent through the transmission medium together,

after which the channels are then separated (or demultiplexed). Similar to

microwave transmission, multiple frequencies (or wavelengths) can be used

for multiplexing in optical communication systems. However, in the case of

optical communications it is more commonly referred to as Wavelength

Division Multiplexing (WDM). The concept of WDM was first published in the

1970s, with WDM systems being realised in the lab soon after

[116], [117], [118], [119].

Dense wavelength division multiplexing at
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3.3.1 WDM systems

Wavelength division multiplexing (WDM) is a technique used to increase the

transmission capacity of an optical fibre. In a WDM system, multiple optical

channels, each operating at a different wavelength (λ), are combined in a

single fibre by an optical multiplexer (mux) and then transmitted over the

same optical fibre. At the receiver, the WDM signals are demultiplexed by an

optical demultiplexer (demux) into separate optical channels, as shown in

Figure 3.13. In current optical communication systems, many wavelength

channels are used (sometimes summing up to a hundred channels within the

C-band) in order to meet capacity demands.

Multiplexers (and demultiplexers) are essentially wavelength-dependent

filters. Hence, filters are essential components in WDM systems. A simple filter

selects one wavelength and rejects all others. The fundamental mechanism of

most optical filters is based on the property of interference (as discussed in

Section 3.1.3). Figure 3.14 shows a representation of a filter profile (in dotted

lines) overlaid with a WDM optical spectrum. The filter profile for the two

channels on the right (purple and blue) shows ideal channel isolation with a

narrow passband and sharp ‘passband skirts’ enabling only data from the

selected channel to be transmitted.

In comparison, the filter profile on the left in Figure 3.14 (yellow) has poor

channel isolation in comparison, as it allows for adjacent channel leakage,

resulting in crosstalk between the WDM channels. Optical crosstalk is an

important issue in the design of WDM systems. The system performance

degrades whenever crosstalk leads to transfer of power from one channel to

another. Optical crosstalk can occur in a perfectly linear channel due to the

imperfect nature of various WDM components, such as optical filters or

demultiplexers, which often allow a fraction of the power from adjacent

channels to leak into one another. Crosstalk is exacerbated when channels are

more tightly spaced and acts as a noise source to the signal being detected in

WDM transmission systems [6].

Some key parameters to consider in a WDM system are the number of

channels (N), the bit rate of each channel (B) and the spacing between two

neighbouring channels (in wavelength ∆λ or frequency ∆ν). These

parameters determine the overall communications capabilities of the WDM

system, such as the capacity (N ×B), bandwidth (N ×∆ν) and spectral

efficiency (B/∆ν). As can be seen from these relations, the capacity of a WDM
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Figure 3.14: Representation of a filter profile (in dotted lines) overlaid with a WDM
optical spectrum.

system depends on how closely optical channels can be packed in the

wavelength domain. Ideally, the channel spacing should be minimised and the

spectral efficiency should be maximised. However, this is limited by crosstalk

and is related to many factors including the channel bit rate, the modulation

format, the filter pass-band, and central wavelength variations (due to laser

manufacturing and temperature variations).

There are two main types of WDM technologies used in optical communication

systems today: Coarse Wavelength Division Multiplexing (CWDM) and Dense

Wavelength Division Multiplexing (DWDM). CWDM systems are used

primarily for metro and access network applications (typically 40 km to 80 km

from the service switching centre) [4]. CWDM systems are cost-effective over

shorter distances; they have wider channel spacing (1000 GHz) and do not

require precise wavelength control for transmitter lasers [120]. In comparison,

a conventional DWDM system typically uses 40 channels at 100 GHz spacing

or 80 channels with 50 GHz frequency spacing and is used primarily in

high-capacity, long-haul networks [110].

3.3.2 Importance of WDM

If one optical channel can transmit ~0.5 million telephone conversations over

a single optical fibre, by employing WDM to transmit 100 channels at different

Dense wavelength division multiplexing at
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wavelengths, then that same fibre can transport more than 50 million

telephone conversations at once [7]. Hence, the latter part of the 1990s saw

dramatic increases in the capacity-carrying capabilities of optical

communication systems brought about through the use of WDM and enabled

by EDFAs [10]. This technological revolution ignited massive investment in

system development and the capacity of optical communication systems

increased from less than 100 Mbit/s, when they debuted in the 1970s, to

roughly 1 Tbit/s by 2000 [121]. This represents an increase by a factor of

more than 10,000 in 30 years. The introduction of WDM contributed to a

factor of 1,000 increase in only 10 years [10]. By 2001, a WDM experiment

with 273 channels operating at 40 Gbit/s was demonstrated, reaching a total

capacity of 11 Tbit/s [122]. During these decades, the rapid growth in system

capacity exceeded the requirements of network traffic.

However, this was before the days of YouTube (2005), Netflix (2007) and

other high-capacity streaming services which dominate capacity demands

today. Therefore, while commercial WDM systems were capable of operating

100 channels at data rates of 100 Gbit/s and total capacities in the order of

10 Tbit/s in 2010, progress soon slowed as the readily available bandwidth in

the C-band became increasingly occupied and capacity demands required

much more efficient utilisation of optical bandwidth [10]. Currently, the

growth in network traffic, coupled with observed trends in commercial

practice, will result in a requirement for WDM systems which can support

channels operating at data rates of 1 Tbit/s and, therefore, total capacities in

the order of 100 Tbit/s by 2020 [10]. Terabit single-channel bit-rates are

difficult to achieve and complex within current technological capabilities [10].

Therefore, opening the transmission window at 2 µm and enabling WDM

systems in this new waveband could extend the available bandwidth and

provide alternatives for future high-capacity optical communication systems.

3.3.3 WDM at 2 µm

As per Section 2.2.2, the first 2 µm transmission experiments took place in

1987 and were motivated by the reduction of Rayleigh scattering at longer

wavelengths which could allow for fundamentally higher capacity. However, as

described above, the invention of the EDFA and implementation of WDM soon

followed. This enabled much greater capacities and ultimately lead to the halt

of 2 µm investigations. Then, in the 2010s, interest in the 2 µm wavelength
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region was reinvigorated due to the ever-increasing traffic on the world’s

optical networks and global demands for more capacity, leading to the first

data transmission experiments at this waveband in nearly 30 years.

Establishing data transmission in the 2 µm region involved the development of

a vast array of optical components and the collaboration of many research

groups internationally. This was made possible through a collaborative R&D

project called MODEGAP (2010-2014), which was supported under the

European Union 7th Framework programme. The goal of MODEGAP was to

develop disruptive technology to enhance optical communication

infrastructure and reduce energy consumption. The establishment of a new

wavelength window is primarily governed by the availability of semiconductor

materials for lasers in the transmitter (and detectors in the receiver), low-loss

optical fibre for a transmission medium and amplifiers to enable transmission

over long distances. The MODEGAP experiments combined advances in

semiconductor laser technologies (Section 2.3.1), along with novel HC-PBGF

(Section 2.3.2), and custom-built high-gain, low-noise TDFAs (Section 2.3.3)

to establish an optical communication system in this new waveband.

The first demonstration of 2 µm data transmission over HC-PBGF was reported

in 2012 [123]. This experiment comprised a single CW laser emitting at

2.08 µm which was externally modulated using a MZM at a bit rate of 8 Gbit/s

NRZ-OOK. The signal was amplified using a custom-built TDFA, before

transmission over 290 m of HC-PBGF. The first WDM data transmission at

2 µm was simultaneously reported, resulting in two post-deadline papers at

ECOC 2012 [123], [124]. In this WDM experiment, a total capacity of

16 Gbit/s was achieved using three channels directly modulated at 2.5 Gbit/s

and one channel that was externally modulated at 8.5 Gbit/s (all NRZ-OOK),

over 290 m of HC-PBGF [124]. This experiment demonstrated that both direct

and external modulation can be implemented in the 2 µm wavelength region.

The bit rate of the directly modulated channels in this demonstration was

fundamentally limited by the 3 dB RF bandwidth of the lasers (which was

~3 GHz at 50 mA) and the bit rate of the externally modulated channel was

limited by the 3 dB bandwidth of the 2 µm photodetector (which was

<9 GHz). The capacity of the 2 µm optical communication system was then

pushed further by implementing advanced modulation formats resulting in a

total capacity in excess of 20 Gbit/s by 2013 [124] and 30 Gbit/s in

2014 [125].

Dense wavelength division multiplexing at
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By 2014, an operational testbed was in place at Tyndall National Institute.

However, many of the components involved in this system represented the first

steps into this new wavelength region. Device options were limited and those

that were available were first generation and/or non-optimal (compared to

more mature technologies at 1.55 µm). These 2 µm devices presented

challenges such as limited operation speeds (as described above), thermal

fluctuations and high insertion losses, which compounded when combined in a

system with other non-optimal components. Due to these limitations,

increasing the capacity beyond 30 Gbit/s was a non-trivial challenge. This

thesis project (which began in 2014) aims to build upon these discoveries and

address the issues therein, such as increasing capacity, improving spectral

efficiency and enabling transmission over longer distances. Chapter 4 will

discuss some of the early experiments of this thesis project which focused on

these three key challenges.

Chapter summary

This chapter provides an introduction to optical communication systems in

terms of the building blocks, parameters and key considerations that are

needed in order to establish a DWDM system in the new transmission window

of 2 µm. While the concept of shifting transmission to 2 µm was previously

considered in the 1980s, it resurfaced 30 years later during the 2010s when

global demands for capacity rapidly increased. The ability to branch out into

this new wavelength region was made possible through the EU project

MODEGAP, which developed key enabling technologies such as optical

components and fibre. The first 2 µm WDM system was demonstrated with

four optical sources, and a record capacity of 30 Gbit/s was achieved, but with

enormous challenges in terms of non-optimal devices, limited device options

and restricted transmission distances. This thesis will explore these challenges

further and propose novel solutions.
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Chapter 4

Increasing system capacity

As discussed in Section 3.3.2, the adoption of WDM (along with the invention

of the EDFA) revolutionised the capacity-carrying capabilities of optical

communication systems during the 1990s and resulted in the system capacity

increasing by a factor of 1,000 in 10 years [10]. It is clear from these trends

that, in order to establish the 2 µm transmission window for optical

communications, it is necessary to increase the system capacity well beyond

the previous record of 30 Gbit/s. This chapter focuses on experimental efforts

to push beyond that record, with the ultimate aim of increasing system

capacity by an order of magnitude.

In demonstrations prior to this thesis, a maximum of four WDM channels were

implemented in 2 µm transmission experiments, with a maximum data rate

per channel of 8.5 Gbit/s [96], [124]. In order to increase system capacity, a

2 µm WDM system was designed with a greater number of channels that could

be modulated at higher bit rates, resulting in a total system capacity of

100 Gbit/s ultimately achieved. The design, implementation and analysis of

this system forms the basis of this chapter.

4.1 WDM system design

Figure 4.1 illustrates the schematic of a WDM system (as per Section 3.3).

From this figure, it is clear that one way to increase the capacity of a WDM

system would be to increase the number of WDM channels. Another way

would be to improve the bit rate of these WDM channels. This section focuses

on the design of a 2 µm system to increase the capacity in these two ways.
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Figure 4.1: Wavelength division multiplexing system.

Table 4.1: First generation of 2 µm lasers (at 25°C and 80 mA).

Module S/N Centre λ
- (nm)

YE1699 1997.40
YE1698 2003.70
YE1696 2004.00
YE1697 2005.60
YE1694 2006.00

More channels

Considering the WDM channels first, the lasers used to generate optical

carriers were highly-strained, InGaAs, InP-based, slotted Fabry-Pérot lasers

designed for single mode operation at 2 µm (as per Section 2.3.1) [25]. As

described in Section 3.3.3, device options were limited, with only five lasers

initially available. These five lasers are listed in Table 4.1, with the module

serial number (S/N) and emission wavelength (λ) at 25°C and 80 mA. For the

purpose of this thesis, the set of lasers listed in Table 4.1 is referred to as the

‘first generation’ of slotted Fabry-Pérot lasers at 2 µm, as they were the lasers

used in the first 2 µm WDM experiments (pre-2014 [96], [124]).

In order to enable a greater number of WDM channels, additional lasers were

required. Thus, a second set of 2 µm lasers was developed in conjunction with

Dense wavelength division multiplexing at
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Table 4.2: Second generation of 2 µm lasers (at 25°C and 80 mA).

Module S/N Centre λ
- (nm)

YE1919 1876.20
YE1916 1886.40
YE1918 1905.75
YE1917 1913.43
YE1984 1953.20
YE1920 1956.79
YE1985 1963.85
YE1921 1968.28
YE1922 1992.83
YE1928 2002.35
YE1923 2019.92
YE1924 2045.10

MODEGAP partners, Eblana Photonics. In order to maximise the use of

available bandwidth, the emission wavelengths of these lasers were designed

to fill the broad spectrum of the TDFA, which operates over a wide bandwidth

extending from ~1.7 µm to 2.1 µm [26]. This set of 12 lasers is listed in

Table 4.2 and is referred to in this thesis as the ‘second generation’ of slotted

Fabry-Pérot lasers at 2 µm. By combining the first and second generation of

lasers, a greater number of channels could be incorporated into the 2 µm

WDM system. With the WDM channels identified, the next step was to apply

the baseband data to these optical carriers, either directly or externally (via a

MZM, for example), which will be discussed in the following section.

Higher data rates

The second step in achieving greater system capacity was to enable the WDM

channels to be modulated at higher data (or bit) rates. This presented

challenges due to restricted device options (in terms of the number of

modulators available) and device limitations (with regards to non-optimal

performance).

Consider, first of all, the bandwidth of modulation components. For directly

modulated channels, it is the 3 dB bandwidth of the lasers that is of primary

concern when determining the maximum data rate. For this reason, the

second generation lasers were developed with a higher bandwidth. The first

generation of lasers were reported to have 3 dB bandwidths of ~3 GHz

[96], [124], whereas the second generation of lasers were measured to have

67 Niamh Kavanagh



4. INCREASING SYSTEM CAPACITY

3 dB bandwidths of >5 GHz [126]. This improved 3 dB bandwidth (of

>5 GHz compared to ~3 GHz) enabled higher achievable bit rates for directly

modulated channels in the 2 µm WDM transmitter. However, these capabilities

are still limited in comparison to the bandwidth of other slotted Fabry-Pérot

lasers available at 1.55 µm, for example, in which 10 GHz is standard

(extendable up to ~20 GHz today) [127].

For other channels, an external modulator was applied in order to enable

higher data rates (as per Section 3.1.3). In this case, a commercial LiNbO3

MZM, suitable for operation from 1.9 µm to 2.2 µm, was used (Photline

MX2000-LN-10). This MZM had a Vπ of 9.5 V, insertion loss of ~8 dB and a

bandwidth of ~12 GHz. In previous WDM demonstrations, a commercial

InGaAs photodetector was used which was measured to have a bandwidth less

than ~9 GHz [96], [124]. In order to at least match the capabilities of the

MZM, a new InGaAs photodetector with a 3 dB bandwidth of ~12.5 GHz (EOT

ET-5000) was implemented in the 2 µm WDM receiver. Incorporating these

improved components enabled a 2 µm system that could operate at higher

data rates.

4.1.1 WDM transmitter

Taking device limitations into account, an improved WDM system was

designed by combining a greater number of channels at higher data rates, in

order to push the capacity of 2 µm optical communication systems further

than previous records. Accordingly, a 2 µm transmitter was designed which

increased the number of WDM channels to eight (double the previous

maximum of four channels), as shown in Figure 4.2. In this WDM transmitter,

four directly modulated lasers were combined with four externally modulated

lasers.

Fast-OFDM is a variant orthogonal frequency division multiplexing (OFDM). It

was originally labelled as “fast” because the subcarrier spacing is more

compact than in conventional OFDM [128], [129]. For the directly modulated

channels, four lasers (with emission wavelengths at 1967.6 nm, 1977.8 nm,

1986.9 nm and 1992.5 nm) were modulated using two independent 4ASK

fast-OFDM signals, together with their delayed versions. Each 4ASK

fast-OFDM used 128 discrete cosine transform point size, among which 106

subcarriers were used for data modulation. Double side-band 4ASK fast-OFDM

signal provides a spectral efficiency of 2 bit/s/Hz, so the total data rate per

Dense wavelength division multiplexing at
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Figure 4.2: 2 µm WDM transmitter schematic with eight channels (four directly mod-
ulated and four externally modulated).

channel was 8.3 Gbit/s (or 7.7 Gbit/s taking into account overheads for

forward error correction (FEC) at 7%). Each fast-OFDM frame consisted of

one start-of-frame symbol for synchronization and 100 payload

symbols [130], [131]. These signals were generated using a 5 GS/s arbitrary

waveform generator (AWG) and performance was monitored, via direct

detection, with a real-time oscilloscope. 4ASK and OFDM were described in

Section 3.1.2. Fast-OFDM is an attractive version of OFDM for this application,

in particular, because it can directly generate a real-valued signal suitable for

intensity modulation with direct detection (whereas OFDM generates

imaginary components which would be unsuitable in this case) [132], [133],

[134], [135], [136].

For the externally modulated channels, four lasers (with emission wavelengths

at 1995.7 nm, 1998.4 nm, 2001.9 nm, and 2003.9 nm) were NRZ-OOK
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modulated using the commercial MZM, driven with a pseudo-random bit

sequence (PRBS) of length 231 − 1 from a pulse pattern generator (PPG), at a

bit rate of 12.5 Gbit/s. This represented a higher bit rate per channel than

previous experiments (which demonstrated 8.5 Gbit/s maximum per channel).

Polarization controllers (PC) were added after the lasers to align polarization

with the MZM.

In a WDM transmitter, the channels must be multiplexed before being

launched into the optical fibre. While 1x4 and 1x8 couplers were purchased

specifically for multiplexing channels at 2 µm, the excess loss was significantly

larger than using standard 2:1 couplers (designed for 1.55 µm). Therefore,

optical fibre couplers were used to multiplex the channels, with an average

loss of 4 dB per channel. However, scaling to further channels using such

couplers was non-viable due to the additional loss per channel. For example,

to multiplex two channels, a standard 2:1 coupler would introduce a minimum

of 3 dB loss per channel. To multiplex four channels another 2:1 coupler

would be needed, this would then add up to 6 dB loss and so on. Therefore,

the number of channels was reasonably restricted. In terms of the directly

modulated channels, the AWG had two outputs. In order to directly modulate

the maximum number of channels, two independent signals were generated,

together with their delayed versions in order to decorrelate the data between

the different channels, giving a maximum of four directly modulated channels.

As a result of these restrictions, eight was the maximum number of WDM

channels that could be supported in the 2 µm transmitter at the time. Thus,

using four 12.5 Gbit/s NRZ-OOK externally modulated channels and four

7.7 Gbit/s 4ASK fast-OFDM directly modulated channels, a total capacity of

81 Gbit/s was transmitted.

4.1.2 HC-PBGF transmission

Prior to the channels being launched into the fibre, a TDFA was implemented

to compensate for transmitter losses (such as those from couplers, for

example) and to pre-compensate for transmission losses. Figure 4.3 shows the

spectrum of all eight channels after this TDFA, with channel output powers up

to -1 dBm. The non-uniformity in channel power levels can be attributed to

the unbalanced losses of passive components in the transmitter for different

wavelengths. The SMSR was measured to be >40 dB for most channels.

However, the SMSR of some lasers (e.g. 1977.8 nm and 1986.9 nm) was

Dense wavelength division multiplexing at
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Figure 4.3: Optical spectrum of eight WDM transmitted signals (amplified by a TDFA),
before the HC-PBGF (blue) and after transmission over 1.15 km of HC-PBGF (red).

poorer and this is likely due to the slots in the laser not sufficiently selecting a

single mode in the Fabry-Pérot cavity (as per Section 2.3.1). The gain of the

TDFA reduces at longer wavelengths and this roll-off can be seen by the

downward slant of the spectrum floor in Figure 4.3 [130].

The eight WDM channels were then transmitted over 1.15 km of HC-PBGF,

nearly four times further than the previous maximum transmission distance of

290 m reported in references: [123], [83], [125], [96]. The spectrum after

transmission can also be seen in Figure 4.3. The details of the HC-PBGF used

are given in Table 4.3 [130], [126]. The difference in the attenuation loss

versus the insertion loss values in this table can be attributed to mode

mismatch between the HC-PBGF and the spliced SMF/buffer fibre for

standardised connection with other components [137], [126].

Another source of loss in the HC-PBGF transmission medium is due to

atmospheric contamination within the fibre. Small amounts of carbon dioxide

(CO2) and water vapour (H2O) can contaminate the hollow core of the fibre,

especially in a lab environment which is not sealed and solely controlled with

air conditioning (as was the case for the experiments in this thesis). This

contamination can either be removed (by purging the fibre with dry gas) or
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Table 4.3: HC-PBGF details, as per reference: [100].

Description Details
Type HC-PBGF

Design 19-cell core
Length 1.15 km

3 dB bandwidth 85 nm
Min. attenuation 2.8 dB/km (at 1990 nm)

Total insertion loss 11.5 dB (at 1987 nm)

avoided (by tuning the wavelengths of the WDM channels not to overlap with

the discrete loss peaks, in this case no more than 0.4 nm tuning was required).

The red line in Figure 4.3 shows the spectrum of the eight channels after

transmission, in comparison to before transmission (which is shown in blue).

The power difference between these spectra illustrates the excess loss due to

transmission in this case. The absorption features of CO2 and H2O are

characterised by the narrow dips that can be seen in the spectrum after

transmission [126], [138], [139].

4.1.3 WDM receiver

The implementation of WDM systems for optical communications requires

demultiplexing to split the received signal into individual channels (each

operating at its own carrier frequency or wavelength). After demultiplexing,

these channels are then sent to different receivers for further distribution or

analysis, as per Figure 4.1. In the case of the 2 µm WDM receiver, it was not

possible to incorporate multiple receivers for the different WDM channels (due

to device limitations). Instead, a receiver was designed that could be tuned to

demultiplex each incoming WDM signal in turn. The full schematic of the

2 µm WDM system, including the receiver, is shown in Figure 4.4.

The system included an optically pre-amplified receiver (for the first time at

2 µm) by employing a TDFA after the fibre. The purpose of an optical

pre-amplifier is to increase the signal level prior to photodetection in order to

improve the receiver sensitivity. Therefore, optical pre-amplification is

commonly used in optical receivers to amplify low-power signals

[109], [110], [4]. Ideally, a pre-amplifier should have a low noise figure and a

high gain for optimal receiver performance.

Prior to the pre-amplifying TDFA, a variable attenuator was used to control the

input power and hence vary the OSNR to the receiver. The OSNR was

Dense wavelength division multiplexing at
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Figure 4.4: 2 µm WDM system schematic with eight channels (four directly modulated
and four externally modulated), transmitted over 1.15 km of HC-PBGF.

monitored using a 10% tap which was connected to an OSA. In order to

demultiplex the WDM channels at the receiver, a commercial (Agiltron)

tunable bandpass filter was used (whereas a Bragg grating filter had been used

in previous demonstrations [96], [124]). A bandpass filter transmits (or

passes) wavelengths within a certain range (or band) and attenuates other

wavelengths outside this range (as per Section 3.3.1). The 3 dB bandwidth

and 20 dB bandwidth of such a filter indicates the shape of the filter profile

and the width of the wavelength range that it will transmit. These filters are

often made to be tunable, such that the central wavelength can be chosen by

the user (within a certain range). If several filters are used in series, the

passband will get narrower [140]. The 2 µm commercial (Agiltron) tunable

bandpass filter used in the experiments in this thesis had 3 dB bandwidth of

1.6 nm and a 20 dB bandwidth of 4.5 nm, as shown by the filter profile in

Figure 4.5. In comparison, other 1.55 µm Agiltron tunable bandpass filters

have a 3 dB bandwidth of 0.25 nm and a 20 dB bandwidth of 0.75 nm [141],

indicating the limitations of technologies in the 2 µm region.

A third TDFA was incorporated to compensate for the reduced gain of the

channels between 1900 nm and 2000 nm (due to TDFA gain roll-off). The gain

of the two TDFAs in the receiver was measured to be ~26 dB (for the

pre-amplifying TDFA) and ~22 dB, respectively. The gain of the final TDFA

was adjusted to ensure that the total optical power to the PD was constant for

all WDM channels and OSNR values. It is important that the power into the

receiver PD should be consistent for all conditions in order to ensure that it is
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Figure 4.5: Tunable bandpass filter profile (characterised with ASE), with a 3 dB
bandwidth of 1.6 nm (blue dotted lines) and a 20 dB bandwidth of 4.5 nm (red dash
dotted lines).

the performance of the WDM system that is being characterised, independent

of the detector performance. This fixed power level to the PD was monitored

using a 10% tap which was connected to a low-speed (DC to 15 MHz) InGaAs

PD (Thorlabs PDA10DT) and a 60 MHz oscilloscope (1 GS/s Tektronix TDS

1002). The oscilloscope recorded the input power in voltage, which could then

be converted to dBm. In this way, the attenuator and power meter

configuration enabled power monitoring and control to ensure that the power

to the PD was fixed for different conditions of systems testing. In this

experiment, the power level was fixed at -2 dBm for optimal performance

considering the constraints of the system. Finally, the PD electrical signal was

amplified and analysed with a 16 GHz, 100 GS/s digital phosphor oscilloscope

(DPO), or an error detector (ED) depending on the channel measured [130].

The sampled data was then processed off-line and recovered using

Matlab-based digital signal-processing (DSP) techniques [136].
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(a) 4 x 8.3 Gbit/s 4ASK fast-OFDM directly modulated.
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(b) 4 x 12.5 Gbit/s NRZ-OOK externally modulated.

Figure 4.6: BER vs. OSNR for 81 Gbit/s 2 µm WDM system at back-to-back (open sym-
bols, dashed lines) and after transmission over 1.15 km of HC-PBGF (closed symbols,
solid lines). Yellow dotted line BER = 1× 10−3.
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4.2 81 Gbit/s WDM at 2 µm

As per Section 3.2, the performance of an optical communication system is

typically tested by analysing the BER with respect to the received optical

power, via the OSNR, as well as the OSNR penalties after fibre transmission.

The performance of the 2 µm system was analysed both at back-to-back (B2B,

i.e. direct from transmitter to receiver with no fibre) and after transmission

(over 1.15 km of HC-PBGF). OSNR values were measured using an OSA, with

a 0.1 nm bandwidth. Transmission penalties were calculated at a BER of

1× 10−3 (FEC limit) for directly modulated channels, and at BER of 1× 10−9

for externally modulated channels.

Figure 4.6a shows the BER vs. OSNR performance for the four directly

modulated channels (at wavelengths 1967.6 nm, 1977.8 nm, 1986.9 nm and

1992.5 nm). These lasers were directly modulated using 4ASK fast-OFDM, at a

data rate of 8.3 Gbit/s. The open symbols indicate the back-to-back data (with

dashed lines as a guide) and closed symbols indicate the data recorded after

transmission (with solid lines as a guide). To achieve a BER of 1× 10−3, an

average OSNR of 29.6 dB was measured after transmission, with a spread in

OSNR requirement of 2.3 dB measured between all channels. As an indicator

of transmission penalties, this is then compared to the back-to-back scenario.

Before transmission, an average OSNR of 28.1 dB was required, with a spread

of 2 dB between channels. The OSNR transmission penalty was 1.5 dB in this

case. The OSNR spread is likely due to the different frequency responses (S21)

for each of the lasers used with direct modulation, with better BER values

recorded for those with larger bandwidths.

Figure 4.6b shows the performance of the four externally modulated channels.

These lasers were modulated using a MZM at a data rate of 12.5 Gbit/s. In this

case, an average OSNR of 22.7 dB was recorded to achieve a BER of 1× 10−9,

with a spread in OSNR requirement of 1.3 dB measured between channels.

The OSNR spread is likely due to the TDFA gain roll-off, as per Section 4.1.2.

For all four externally modulated channels, the transmission power penalty

was found to be negligible (<0.3 dB) over the HC-PBGF. In terms of

comparison, one of the key differences between NRZ-OOK and 4ASK

fast-OFDM is that 4ASK offers higher (double) spectral efficiency of OOK, thus

doubling the data rate if baud rates are the same. 4ASK is a high-level

modulation format and transmits 2 bits/symbol. In contrast, OOK has only

1 bit/symbol. Therefore, to deliver the same symbol rate, 4ASK requires more

Dense wavelength division multiplexing at
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Figure 4.7: Eye diagram for a 12.5 Gbit/s NRZ-OOK externally modulated channel (at
1998.4 nm, OSNR 24 dB).

than double the power of OOK. In turn, to achieve the same BER, 4ASK

requires more than double the SNR (>3 dB) of OOK or, for a given OSNR,

4ASK will have worse BER in comparison.

In order to visualise the transmission penalty in another way, consider the eye

and constellation diagrams. Figure 4.7 shows the eye diagram for a NRZ-OOK

externally modulated channel (1998.4 nm) both at back-to-back (Figure 4.7a)

and after transmission (Figure 4.7b). As can be seen by comparing the two,

the eye diagram for the externally modulated channel was quite open and

remained so after transmission. Figure 4.8 shows the constellation diagram for

a 4ASK fast-OFDM directly modulated channel (at 1986.9 nm). Despite a

transmission power penalty of 1.3 dB recorded for this channel, the

constellation diagram was still clear after transmission over 1.15 km of

HC-PBGF, showing little distortion after transmission.

In summary, in this section a 2 µm WDM system with total capacity of

81 Gbit/s was presented, which is almost three times greater than previous

system capacity records [125]. This total capacity was achieved using four

12.5 Gbit/s NRZ-OOK externally modulated channels and four 7.7 Gbit/s

4ASK fast-OFDM directly modulated channels. These eight WDM channels

were transmitted over 1.15 km of HC-PBGF, nearly four times further than

previously reported [130].
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Figure 4.8: Constellation diagram for a 4ASK fast-OFDM directly modulated channel
(at 1986.9 nm).

4.3 100 Gbit/s WDM at 2 µm

In order to push the system capacity even further, the 2 µm WDM system was

optimised, with the goal to achieve 100 Gbit/s. This section will focus on that

optimisation process.

4.3.1 Optimisation

The same system design was used with four NRZ-OOK externally modulated

channels (at wavelengths 1995.7 nm, 1998.4 nm, 2001.9 nm and 2003.9 nm)

and four 4ASK fast-OFDM directly modulated channels (at wavelengths

1967.6 nm, 1977.8 nm, 1986.9 nm and 1992.5 nm). By optimising the laser

settings (such as the current and temperature), channel output powers of up

to 2 dBm were recorded (in comparison to -1 dBm previously).

For the systems tests, the drive current of the directly modulated channels was

optimised in order to guarantee best performance. In order to modulate the

lasers with fast-OFDM coding, the modulation depth needs to be maximised,

while maintaining the laser response in a linear regime. The current needs to

be high enough to allow high power and high modulation depth, but low

enough to allow switching. As such, the lasers were characterised in terms of

drive current and BER. This was performed at back-to-back (laser + PD), with

the bias current varied and the BER recorded for a 1 V 4ASK fast-OFDM signal

applied. The result of this characterisation showed better BER performance for

bias current below 33 mA at 2.5 Gbaud/s, hence this drive current was chosen

for system tests.
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Figure 4.9: 3 dB bandwidth vs. bias current for a directly modulated channel (at
1992.5 nm).
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Figure 4.10: Frequency response of a directly modulated channel (at 1992.5 nm) at a
bias current of 32.5 mA, with a 2 µm PD. Yellow dotted line = - 3 dB, which corresponds
to 3.7 GHz (red dashed line).

Figure 4.9 shows the frequency response measurement for the 1992.5 nm

laser. Higher drive currents (up to ~80 mA in this device) corresponded to a
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Figure 4.11: Frequency response of a laser (at 1998.4 nm) externally modulated with
a MZM at a bias voltage of -5.3 V and measured with a 2 µm PD. Yellow dotted line =
- 3 dB, which corresponds to 9.6 GHz (red dashed line).

greater 3 dB bandwidth, with results of >5 GHz recorded. However,

Figure 4.10 shows the frequency response for the same laser (1992.5 nm), this

time at a fixed bias point current of 32.5 mA, with guidelines indicating that

the -3 dB point corresponds to 3.7 GHz. The 3 dB bandwidth of the other

directly modulated lasers was similar at this current. In terms of the externally

modulated channels, the data rate was ultimately limited by the combined

3 dB bandwidth of the MZM and PD, which was measured to be ~10 GHz, as

shown in Figure 4.11.

4.3.2 SCF transmission

The system design was the same as shown in Figure 4.4. Two types of

transmission media were tested in this experiment: 1.15 km of HC-PBGF and

1 km of solid-core fibre (SCF) designed (by OFS Denmark) to have low

bend-loss at 2 µm. The details of the SCF fibre (ClearLite1700 20) are given in

Table 4.4. The additional loss of SCF in the 2 µm wavelength range (in

comparison to HC-PBGF) can be seen in Figure 4.12, which shows the same

spectrum as Figure 4.3 but with the SCF transmitted channels overlaid for

Dense wavelength division multiplexing at
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Table 4.4: SCF details.

Description Details
Fibre type SCF (OFC ClearLite 1700 20)
Design SMF step index
Length 1 km
Attenuation 18 dB/km (at 1985 nm)
Operating Wavelength 1700 nm – 2100 nm
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Figure 4.12: Optical spectrum of the eight WDM transmitted signals (amplified by a
TDFA) before transmission (blue), after transmission over 1.15 km of HC-PBGF (red),
or after transmission over 1 km of SCF (green).

comparison in this case. It is notable that the absorption dips do not appear in

the SCF spectrum, further confirming that these can be attributed to

contamination in the HC-PBGF.

4.3.3 System analysis

The performance of the WDM system was analysed as before, in terms of BER

vs. OSNR and transmission penalties (calculated at a BER of 1× 10−3 for direct

modulation and 1× 10−9 for external modulation).

Figure 4.13 shows the performance of the four directly modulated channels at

back-to-back and after transmission over either HC-PBGF (Figure 4.13a) or
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Figure 4.13: BER vs. OSNR for 4 x 9.3 Gbit/s 4ASK fast-OFDM directly modulated
channels at B2B (open symbols, dashed lines) and after transmission (closed symbols,
solid lines). Yellow dotted line BER = 1× 10−3.
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SCF (Figure 4.13b). These lasers were directly modulated using 4ASK

fast-OFDM, at a data rate of 10 Gbit/s (or 9.3 Gbit/s taking into account 7%

FEC overheads) and analysed at a BER of 1× 10−3. Before transmission, the

average OSNR required to achieve a BER of 1× 10−3 was 29.3 dB, with a

spread in OSNR requirement of 0.7 dB measured between channels. This

OSNR requirement is similar to the back-to-back demonstration in the

previous section (Section 4.2 in which 28.1 dB average was recorded for the

same BER) but the OSNR spread is smaller in this case (0.7 dB, compared to

2.0 dB) perhaps due to optimising the laser settings. For transmission over

1.15 km of HC-PBGF, the average OSNR required to achieve a BER of 1× 10−3

was measured to be 31.1 dB, with a spread of 1.4 dB. The transmission power

penalties varied from 2.2 dB, in this case, to 1.5 dB minimum (average

1.7 dB). These results are similar to the previous demonstration of HC-PBGF

transmission (1.5 dB OSNR penalty). For transmission over 1 km of SCF, an

average OSNR of 29.6 dB was measured, with a spread of 0.6 dB. It was

observed that, while the transmission penalties varied from 1.5 dB to 2.2 dB

for HC-PBGF, the maximum transmission power penalty for SCF was measured

to be 0.3 dB. As the HC-PBGF is not strictly single-mode, it is possible that the

additional penalty may be caused by the asynchronicity between fast-OFDM

symbols, which arises from the modal dispersion and mode coupling to

higher-order modes in the HC-PBGF [126].

Figure 4.14 shows the performance of the four externally modulated channels,

again at back-to-back and after transmission over either HC-PBGF

(Figure 4.14a) or SCF (Figure 4.14b). These lasers were modulated using a

MZM at a bit rate of 15.7 Gbit/s. Before transmission, the average OSNR

required to achieve a BER of 1× 10−9 was 24.0 dB, again with a spread in

OSNR requirement of only 0.7 dB between channels for back-to-back (same as

previous HC-PBGF measurement). For transmission over 1.15 km of HC-PBGF,

the average OSNR was 24.4 dB, with a spread of 0.8 dB. The maximum

transmission power penalty was 0.5 dB, similar to the previous transmission of

externally modulated channels over HC-PBGF (in Figure 4.6b). For

transmission over 1 km of SCF, the average OSNR requirement was 24.1 dB,

with a spread of 0.6 dB. The transmission power penalty was negligible

(<0.2 dB). While the BER vs. OSNR performance was slightly better for the

SCF compared to HC-PBGF in both cases (direct modulation and external), it

is the high loss of SCF at this wavelength region (~18 dB/km) that is the main

inhibiting factor.
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(a) 1.15 km HC-PBGF.
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Figure 4.14: BER vs. OSNR for 4 x 15.7 Gbit/s NRZ-OOK externally modulated chan-
nels at B2B (open symbols, dashed lines) and after transmission (closed symbols, solid
lines). Yellow dotted line BER = 1× 10−3
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Chapter summary

The goal of the experiments in this chapter was to increase the capacity of

2 µm WDM systems beyond the previous demonstrated record of

30 Gbit/s [124], [125] in order to further the 2 µm wavelength region for

optical communications applications. A total capacity of 100 Gbit/s was

achieved using four 9.3 Gbit/s 4ASK fast-OFDM directly modulated channels

and four 15.7 Gbit/s NRZ-OOK externally modulated channels. These 2 µm

WDM channels (spanning an extended waveband of 36.3 nm) were

transmitted over 1.15 km of HC-PBGF (nearly four times further than previous

records) and also 1 km of SCF, with error-free performance in both cases. This

factor-of-three capacity increase was enabled by improving the system design

(for example, doubling the number of WDM channels and implementing a

pre-amplified receiver), incorporating improved components (such as lasers

and a PD with better frequency response) and optimising the devices

throughout the setup to operate at highest-possible data rates. This chapter

illustrates the growth in maturity of technologies at 2 µm for optical

communications applications. However, within a given bandwidth, the

capacity of a WDM system depends on how closely optical channels can be

packed in the wavelength domain. Therefore, the next chapter focuses on

minimising the channel spacing to implement dense WDM (DWDM) at 2 µm

and maximising the spectral efficiency of optical communication systems in

this new transmission window.
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Chapter 5

Improving spectral efficiency

In the 1990s, early WDM systems combined four to eight channels at data

rates of 2.5 Gbit/s, resulting in total capacities of ~20 Gbit/s. When

multiplexed, these channels were spaced ~200 GHz apart, corresponding to

spectral efficiency of ~0.0125 (bit/s)/Hz [10]. Over the following decade,

WDM systems rapidly advanced to encompass 100 channels at data rates of

10 Gbit/s and total capacities of nearly 1 Tbit/s by the year 2000. These

systems had reduced channel spacing to 50 GHz, resulting in spectral

efficiency of ~0.2 (bit/s)/Hz. As the optical bandwidth within the 1.55 µm

transmission window (primarily dictated by minimum SMF loss and maximum

EDFA gain) became increasingly occupied, globally-growing capacity demands

required much more efficient utilisation of available bandwidth [10]. By 2010,

commercial systems could operate the same number of channels (100), at data

rates of 100 Gbit/s and channel spacing of 50 GHz, resulting in spectral

efficiency of ~2 (bit/s)/Hz and total capacities in the order of 10 Tbit/s [10].

This global commercialisation of WDM systems in the C-band was made

possible due to international workgroups, and agreements between various

component and sub-system manufacturers, to set international standards. The

ITU Telecommunication Standardization Sector (ITU-T) (one of the three

sectors of the International Telecommunication Union (ITU)) develops

international technical standards to ensure that these networks and

technologies can seamlessly interconnect [6]. In terms of dense WDM

(DWDM) applications, recommendation number G.694.1 from the ITU-T

defines the frequency grid for DWDM channels. This grid is anchored at

193.1 THz and primarily covers the C to L wavebands (1.53 µm to 1.63 µm).
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Currently, DWDM channel spacings are specified in multiples of 12.5 GHz, up

to a maximum of 100 GHz. The second edition of this ITU-T recommendation

also allows for a flexible DWDM grid [6]. While some DWDM technologies in

the C-band are capable of 12.5 GHz spacing, most conventional DWDM

systems typically use 40 channels at 100 GHz spacing or 80 channels with

50 GHz frequency spacing [110].

∆λ
∆ν = λ2

c
(5.1)

Conversion between frequency and wavelength separation can be calculated

via Equation 5.1, where ∆λ = wavelength spacing, ∆ν = frequency spacing, c

= speed of light in vacuum and λ is the wavelength of choice. While 100 GHz

corresponds to ~0.80 nm at λ = 1.55 µm, the same wavelength spacing

(0.80 nm) at 2 µm corresponds to ~60 GHz in the frequency domain. It was

one of the goals of this thesis work to replicate current DWDM channel spacing

standards, with the ultimate aim of increasing system capacity at 2 µm and

improving spectral efficiency. Therefore, this chapter focuses on the design,

implementation and analysis of a 2 µm DWDM system with channel spacing

determined by the ITU-T standards, i.e. 100 GHz and, subsequently, 50 GHz

DWDM.

5.1 DWDM system design

This section addresses the design of a 100 GHz DWDM system at 2 µm in

terms of challenges, improved methods to multiplex (mux) and demultiplex

(demux) the DWDM channels, and an in-depth power budget.

5.1.1 Challenges

As discussed previously, high-quality, commercial-grade lasers are not widely

available at 2 µm. Therefore, in conjunction with MODEGAP partners, Eblana

Photonics, new lasers were developed specifically for the purpose of this

DWDM demonstration. Following the convention adopted in Chapter 4, the set

of lasers listed in Table 5.1 is referred to as the ‘third generation’ of slotted

Fabry-Pérot lasers at 2 µm. These lasers were designed with the goal of denser

~0.5 nm spacing between adjacent laser wavelengths, in comparison to

previous generations. However, as can be seen from Table 5.1, the emission

Dense wavelength division multiplexing at
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Table 5.1: Third generation of 2 µm lasers (at 25°C and 60 mA).

Module S/N Centre λ
- (nm)

YE2263 1990.00
YE2258 1990.68
YE2261 1992.00
YE2259 1992.16
YE2262 1992.28
YE2260 1992.48
YE2272 1993.08
YE2274 1993.48
YE2271 1994.64
YE2269 1994.76
YE2273 1995.00
YE2270 1995.08
YE2264 1996.92
YE2268 1997.00
YE2266 1998.36
YE2265 1998.44
YE2267 1998.80

wavelengths of these lasers were not regularly spaced. Therefore, the lasers

were fully characterised in order to select the devices that were best suited for

a 100 GHz demonstration in terms of optimal emission wavelength

(determined by the 100 GHz grid), peak power, and OSNR.

The emission wavelength of a laser can be tuned primarily via the temperature

and fine-tuned via the drive current. Typical values for temperature tuning

coefficients are ~0.4 nm/°C for 1.55 µm devices [142]. The tunability of the

2 µm slotted Fabry-Pérot lasers was ~0.1 nm/°C, with a typical tuning range

of 2 nm, as per reference: [25]. However, when the temperature of the lasers

was changed, the output power of the device was also affected, as increasing

temperature resulted in decreasing the output power of the laser. On the other

hand, the power could be increased by raising the current, but this also affects

the emission wavelength and the maximum current was capped at 100 mA for

this set of devices (as per manufacturer recommendation). Therefore,

achieving the desired emission wavelengths (with 100 GHz spacing between

channels) while also optimising the OSNR and maintaining uniform

power-per-channel proved a challenging balance. Taking into account the

available lasers and respective tuning ranges, an approximate 100 GHz

channel grid was designed at 2 µm. This grid is listed in Table 5.2.
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Table 5.2: 2 µm DWDM ~100 GHz grid.

Module S/N λ ∆λ ∆ν
- nm nm GHz

YE2263 1989.35 - -
YE2259 1990.60 1.25 93.75
YE2272 1992.00 1.40 105.00
YE2271 1993.32 1.32 99.00
YE2270 1994.65 1.33 99.75
YE2268 1996.00 1.35 101.25
YE2267 1997.33 1.33 99.75

5.1.2 Mux and demux methods

In a DWDM transmitter, the channels must be multiplexed before being

launched into the optical fibre. In previous 2 µm system demonstrations,

optical fibre couplers were used to multiplex the channels, with an average

loss of 4 dB per channel. Scaling to further channels using such couplers was

non-viable due to the additional loss per channel. For example, to multiplex

two channels, a standard 2:1 coupler would introduce a minimum of 3 dB loss

per channel. To multiplex four channels another 2:1 coupler would be needed,

this would then add up to 6 dB loss and so on. Previously, this restricted the

number of channels that could be implemented in the 2 µm transmitter. As an

alternative to using fibre couplers, a multi-channel Arrayed Waveguide Grating

(AWGr) can be used to multiplex the DWDM channels. This experiment

marked the first time an AWGr was implemented in a 2 µm optical

communication system.

An arrayed waveguide grating is commonly used as an optical

multiplexer/demultiplexer in WDM systems. It consists of two multi-port

couplers connected by a large number (or array) of waveguides. The key

elements of an AWGr are indicated in Figure 5.1: (1) an optical fibre input

channel, (2) an input coupler, (3) an array of waveguides (or grating), (4) an

output coupler and (5) a set of output channels. The grating consists of an

array of waveguides with different lengths. The length of these waveguides is

chosen such that the optical path-length difference between adjacent

waveguides is equal to an integer multiple of the transmission wavelength, as

this results in constructive interference (as per Section 3.1.3). By manipulating

this interference pattern, light of different wavelengths can be focused onto

the different output channels. In this way, an AWGr can be used in the receiver

as a demultiplexer to separate individual channels with different wavelengths

Dense wavelength division multiplexing at
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Figure 5.1: An AWGr consists of two multi-port couplers ((2) and (4)) which are
connected by a waveguide array (3). It can be used as a demultiplexer (path (1) to
(5)) or a multiplexer (path (5) to (1)). This file is licensed under the Creative Commons
Attribution-Share Alike 3.0 Unported license.

(in which case the light follows the path from (1) to (5) in Figure 5.1), or vice

versa, the AWGr can be used in the transmitter to multiplex channels of

several wavelengths onto a single optical fibre (light path from (5) to (1) in

Figure 5.1) [143], [109], [110].

An InGaAsP/InP-based AWGr was developed in collaboration with the device

integration and packaging teams at Tyndall National Institute [100], [38]. A

20-channel cyclical AWGr was designed, with the precise 100 GHz wavelength

spacing required for a DWDM demonstration at 2 µm. The AWGr chip was

packaged in a housing with a single-channel lensed fibre input and a

10-channel fibre output array (with speciality ClearLite 1700 20 fibre from

OFS used). The fibre-packaged sub-assembly was then enclosed in a metal

casing, which included an integrated Peltier device for temperature control. As

the specifics of the AWGr design, fabrication and packaging was not the focus

of this thesis, more details can be found in references: [100], [38].

The most important performance parameters for an AWGr in an optical

communication system are the insertion loss, crosstalk and temperature

dependence. In terms of the loss, the dominant loss contribution in the 2 µm

AWGr originated from coupling losses at the input and output (due to the

mode mismatch between the optical fibre and the InP-based AWGr) which

resulted in a high insertion loss of ~18 dB per channel on average (compared

to <5 dB typical for AWGrs at 1.55 µm). This coupling loss could be reduced

by using optical mode converters on the AWGr chip, which would improve the

total loss of the fibre coupled device. Also, during the design process, the bend

loss was overestimated, leading to a larger device and greater waveguide
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Figure 5.2: AWGr characterisation setup.

losses [100]. Another important parameter to consider when designing WDM

systems is crosstalk. As discussed in Section 3.3.1, the term ‘crosstalk’ is used

to describe the transfer of power from one channel to another, usually within a

specified bandwidth (for example, 100 GHz). Counter-intuitively, crosstalk is

defined in such a way that higher values of crosstalk are preferable

(corresponding to higher channel isolation), with ‘good’ devices demonstrating

crosstalk >35 dB [143], [109], [110]. In the case of the 2 µm AWGr, limited

crosstalk of ~18 dB was measured between channels. These limited

performance parameters indicate some of the challenges associated with

implementing first-generation devices in to DWDM systems at 2 µm.

The main effect of temperature dependence in an AWGr is a shift in the

emission wavelength. Typically, InP-based AWGrs have a temperature

dependence in the order of 0.12 nm/°C (so they can be tuned over a

wavelength range of a few nanometres with a temperature change of 30°C to

40°C) [143]. In order to optimise the multiplexing, the 2 µm AWGr was

thermally tuned to best match the 100 GHz frequency grid. A

thermo-electric cooler (TEC) was used to adjust the wavelengths of the AWGr

channels. In order to characterise the spectral response of the AWGr, the ASE

of a TDFA was used as a broadband source. ASE was launched into the AWGr

and the output spectrum was measured with an OSA, as per Figure 5.2.

Figure 5.3 shows the spectrum of the DWDM channels (black trace) with the

resulting spectra of the AWGr overlaid. The traces of different colours in this

figure correspond to the different AWGr channels (channels 3 to 8). Note that

the symbol markers along the curves in this figure do not represent data points

measured, they are only included as an additional distinguishing factor

between the different colour traces. Through this characterisation process, a

thermal dependence of 0.108 nm/°C was recorded and it was determined that

Dense wavelength division multiplexing at
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Figure 5.3: Thermal characterisation of the transmitter AWGr, with channels 3 to 8
fixed at 25.6°C. Black trace shows the DWDM transmitter spectrum. (0.05 nm resolu-
tion, 3334 sampling points, 10 nm span).

a temperature of 25.6°C gave the best alignment with the DWDM channels. In

this case, best alignment was determined by matching the AWGr channel peak

(from ASE) with the DWDM channel peak (from the lasers). In this way, the

thermal characterisation of the AWGr was fine-tuned and temperature

dependence was strictly maintained to best match with all the DWDM

channels.

Of course, multiplexing channels that are more closely spaced in the

transmitter requires improved demultiplexing techniques at the receiver to

sufficiently filter each DWDM channel for testing and this is not trivial at 2 µm.

Previously, to demonstrate WDM at 2 µm, channel selection was performed via

a tunable bandpass filter which had a 3 dB bandwidth of ~1.6 nm (discussed

in Section 4.1.3). However, since 100 GHz corresponds to ~1.33 nm at λ =

2 µm, this filter was not sufficient for this DWDM demonstration (Section 5.3.3

will cover this in more detail). To improve channel isolation in the 2 µm

100 GHz receiver, the tunable bandpass filter was used in conjunction with

another AWGr (from the same batch as the transmitter AWGr). While the

AWGr had adjacent-channel crosstalk of ~18 dB, cascading both devices

enabled improved channel isolation and increased OSNR at the receiver PD (in

comparison to using the bandpass filter only). With this cascading
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Figure 5.4: Thermal characterisation of the receiver AWGr (overlaid with the trans-
mitted WDM spectrum, in black) with each channel tuned from from 16.0°C to 17.5°C
to maximise demultiplexing (0.05 nm resolution, 3334 sampling points, 10 nm span).

configuration, channel isolation was measured to be ~26 dB, closer to typical

DWDM demultiplexing standards at 1.55 µm (~35 dB) [143], [109], [110].

The receiver AWGr was thermally tuned to ensure optimal demultiplexing for

each of the DWDM channels. The setup for the thermal characterisation was

the same as that for the transmitter AWGr (Figure 5.2). In Figure 5.4, the

black line depicts the DWDM wavelengths, separated by 100 GHz. Each

coloured line represents adjacent channels of the AWGr output array, set at

different temperatures (ranging from 16.0°C for channel 3 to 17.5°C for

channel 8). Note that the symbol markers along the curves in this figure do

not represent data points measured, they are only included as an additional

distinguishing factor between the different colour traces. By adjusting the

temperature for each channel, the AWGr was accurately aligned with the

desired DWDM channel to optimise demultiplexing at the receiver. This AWGr

was first implemented in reference: [100], with the receiver comprising the

bandpass filter, followed by the AWGr. This receiver configuration was later

modified to optimise the OSNR at the receiver PD. It was found that placing

the AWGr before the bandpass filter resulted in OSNR values that were

improved by ~3 dB (compared to the reverse configuration). In this way, the

AWGr was used to demultiplex the 100 GHz DWDM channels and the tunable

Dense wavelength division multiplexing at
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Figure 5.5: Optical spectrum for a single channel (at the end of the receiver) com-
paring (i) the AWGr only (blue) to (ii) cascading both the AWGr and tunable bandpass
filter (red) (0.05 nm resolution, 10000 sampling points, 200 nm span).

bandpass filter was used to remove the out-of-band ASE, as can be seen in

Figure 5.5. Note that the symbol markers along the blue curve in this figure do

not represent data points measured, they are only included as an additional

distinguishing factor between the different colour traces.

5.1.3 Power budget

In order to implement high-capacity 100 GHz DWDM at 2 µm, an improved

system needed to be designed, chiefly from a power budget perspective. The

purpose of an optical power budget is to ensure that adequate signal strength

will reach the receiver to achieve reliable performance over time. In an ideal

system (assuming no margin and no additional gain) the power required from

the transmitter can be calculated as the power required at the detector minus

the loss of the transmission medium. The total loss of the 1.15 km of HC-PBGF

in this case (including the ~3.2 dB fibre attenuation and all splice losses) was

measured to be ~9.2 dB at 2 µm [100]. However, most DWDM systems are

non-ideal and will consist of various optical sources and amplifiers, as well as

several loss-producing mechanisms beyond the fibre, such as bend losses,

splice losses, and connector losses. Therefore, with the aim of ensuring
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Figure 5.6: Power budget schematic for the DWDM transmitter.

sufficient optical power at the receiver, it is necessary to evaluate all sources of

loss and gain when considering the power budget of an optical communication

system. Calculating the power budget is the focus of this section.

Transmitter

The transmitter had many configurations (as listed in reference: [38]), but

ultimately the transmitter comprised (i) the DWDM channels, (ii) an AWGr

multiplexer, (iii) a MZM, and (iv) an amplifier. Considering the DWDM

channels first, the output power of the available lasers was low at ~2 dBm

(~1.6 mW) on average, whereas lasers with ~20 dBm (~100 mW) power are

available at 1.55 µm [144]. The challenge of low-power lasers was then

compounded by subsequent high-loss components in the system. As discussed

in the previous Section 5.1.2, the channels were multiplexed using an AWGr

which introduced a high insertion loss of ~18 dB per channel. The DWDM

channels were then externally modulated using a commercial MZM (Photline

MX2000LN-10 MZM). In this case, the MZM was measured to have a loss of

~10 dB. To compensate, a TDFA (with maximum gain ~15 dB and noise

figure ~8 dB) was introduced to compensate for the transmitter losses and

pre-compensate for the fibre losses. The dynamics of the amplifier differ

depending on the input power and it was found that adding the amplifier

(TDFA) before the modulator (MZM) resulted in an OSNR improvement of

~3 dB (in comparison to the reverse configuration), this comparison between

the two configurations for a single channel can be seen in Figure 5.7. Note

Dense wavelength division multiplexing at
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Figure 5.7: Optical spectrum for a single channel with (i) the modulator followed by
the amplifier (blue dotted line), compared to (ii) the reverse configuration (amplifier
then modulator, red line) (0.05 nm resolution, 1001 sampling points, 10 nm span).

that the symbol markers along the blue curve in this figure do not represent

data points measured, they are only included as an additional distinguishing

factor between the different colour traces. The final configuration of the

transmitter consisted of (i) the DWDM channels (+2 dBm), (ii) an AWGr

multiplexer (-18 dB), (iii) a TDFA (+15 dB) and (iv) a MZM (-10 dB), as

shown in Figure 5.6, resulting in an optical power of ~−11 dBm output from

the transmitter.

As per Section 3.2, the performance of a DWDM system is typically tested by

analysing the BER vs. OSNR measurements. In this process, the power into the

receiver PD should be consistent for all conditions. Fixing the power level in

this way is necessary to ensure that it is the performance of the system being

characterised, independent of the detector performance. In practice, after all

other components are accounted for, the fixed power to the PD will be

determined by the ‘worst-performing’ laser in the transmitter, i.e. the

maximum power achievable for the lowest desired OSNR value of that

channel. The ‘weakest’ channel, in the case of this 100 GHz grid, was the

channel with the longest wavelength (module S/N YE2265) at λ =

1998.63 nm (32.6°C and 80 mA). The peak power of this device was recorded

to be -0.38 dBm when measured at the OSA (from the output of the fibre
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Figure 5.8: Optical spectrum of the 100 GHz DWDM transmitted signals, originally
eight channels (blue), with seven channels ultimately used (dotted red), measured
after TDFA and before MZM (0.05 nm resolution, 1001 sampling points, 12 nm span).

coupled to the laser device). In comparison, its neighbour channel had a peak

power of 3.35 dBm (λ = 1997.33 nm, module S/N YE2267 at 14.0°C and

95 mA). When the 1998.63 nm channel was added to the transmitter system,

this power issue was then compounded due to the TDFA gain roll-off at longer

wavelengths, which meant that this channel was amplified less in comparison

to other channels, as can be seen from the transmitter spectrum in Figure 5.8.

For this reason, it was decided to cap the DWDM channels at this upper

wavelength ~1998 nm limit for the purposes of this 100 GHz DWDM

demonstration.

Receiver

As in Section 4.1.3, a pre-amplified receiver was implemented by using a

variable attenuator (with 3 dB insertion loss) to control the input power to the

TDFA, enabling adjustment of the OSNR (which was measured at the OSA).

This attenuator was followed by an amplifier, which should have a low noise

figure, in order to ensure it has minimal impact on performance measurement.

The TDFA used in this case had ~22 dB maximum gain and ~6 dB noise figure

(best noise figure of the TDFAs measured). As per Section 5.1.2, two filters

were required to ensure high channel isolation, the insertion loss of the

Dense wavelength division multiplexing at
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Figure 5.9: Power budget schematic for the DWDM receiver.

tunable bandpass filter was ~4 dB per channel and the average insertion loss

of the AWGr per channel was ~18 dB. A TDFA was employed between both

filters to compensate for this loss. Moreover, the design of the full receiver was

optimised such that it minimised losses, and maximised the OSNR at the PD.

Therefore, the highest-gain TDFA (~26 dB maximum gain, with a noise figure

of 8 dB) was chosen for this position in order to boost the signal as much as

possible prior to the PD. A high-speed (12.5 GHz) InGaAs 2 µm commercial PD

was used (EOT ET-5000). The power to the PD was monitored by a 10% tap

connected to a low-speed (DC to 15 MHz) InGaAs PD (Thorlabs PDA10DT)

and a 60 MHz oscilloscope (1 GS/s Tektronix TDS 1002). The oscilloscope

recorded the incoming power in voltage, which could then be converted to

dBm. The total power going into the PD was controlled using a variable

attenuator. The attenuator had a 3 dB insertion loss and the 10% tap

introduced a 1 dB loss. This attenuator and power meter configuration

enabled power monitoring and control to ensure that the power to the PD was

kept constant for different conditions of system testing.

Noise load receiver

In order to deliver sufficient power to the PD, amplification is required due to

the compound losses of all devices and optical fibre attenuation in an optical

communication system. This is particularly evident in the case of the

first/second generation 2 µm systems, which have much higher losses in

general, leading to additional amplifiers being required throughout the

system. When all the approximate losses in the proposed system (as per

Figure 5.6 and Figure 5.9) were summed, they totalled negative ~67 dBm.

Taking into account the power from the lasers (~2 dBm) and the gain of all
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Figure 5.10: BER vs. OSNR measurement for five different power levels (given in
dBm in the legend) to the PD.

TDFAs (A=~15 dB, B=~22 dB, and C=~26 dB), this resulted in negative

~2 dBm power to the PD. However, even this relatively low power level was

difficult to achieve, especially at lower OSNR values. As such, the 2 µm PD

was characterised to determine the penalty on BER for power values

<−2 dBm. The BER vs. OSNR measurement was repeated for the same

channel at five different power levels to the PD. The plot resulting from this

characterisation is shown in Figure 5.10. Based on this measurement, it was

decided that a power level of −7 dBm, for example, was too low and would

impact the BER measurements. However, it was decided that operating in the

range of − 3 dBm to 0 dBm (optical power to the PD) was suitable and would

have minimal impact on the BER measurements.

The challenge remained that even the − 3 dBm to 0 dBm power range was

difficult to achieve, especially at lower OSNR values, and this restricted the

range of OSNR values available for system testing. For example an OSNR of

~20 dB corresponded to below −7 dBm at the PD for λ = 1997.7 nm (the

longest-wavelength channel). Initially, the OSNR was varied by changing the

signal power via the variable attenuator located at the beginning of the

receiver. As a solution that could provide more power (and a greater range of

Dense wavelength division multiplexing at
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Figure 5.11: Full 2 µm 100 GHz DWDM schematic.

Table 5.3: Gain and noise figure (NF) of TDFAs used in 100 GHz DWDM experiment.

TDFA Gain NF
label dB dB

A 15 8
B 22 6
C 26 8
D 21 10

possible OSNR values for testing), a noise load configuration was incorporated

into the receiver (see the greyed-out ASE amplifier D in Figure 5.9). By

adjusting an ASE pump to the TDFA, the noise level was changed thereby

enabling the OSNR to be varied. With this method, the noise floor could be

increased by ~10 dB maximum, in comparison to the noise-off state. While it

did result in a slight OSNR reduction in general (of ~3 dB), the reduced OSNR

values recorded more total optical power at the PD. For example, using this

method, an OSNR of ~20 dB corresponded to ~−2.2 dBm at the PD for λ =

1997.7 nm (in comparison to < −7 dBm before). For this reason, −2.2 dBm

was chosen as the fixed power level for all channels throughout system testing.

By incorporating the noise load receiver in this way, a greater range of OSNR

values were able to be recorded for system testing.

5.2 100 GHz DWDM at 2 µm

This section provides details of the experiment to demonstrate 100 GHz

channel spacing in a 2 µm DWDM system. The goal of this experiment was to

demonstrate improved spectral efficiency of 2 µm systems, in comparison to

previous records, in order to further establish the potential of this new

transmission window for optical communications.
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Table 5.4: DWDM laser and AWGr (demux) settings used for 100 GHz demo at 2 µm.

λ Module S/N Temp. Current AWGr ch. AWGr Temp.
nm - °C mA - °C

1989.30 YE2263 15.0 94.55 2 15.7
1990.60 YE2259 13.4 94.78 3 16.0
1991.97 YE2272 11.4 94.82 4 16.3
1993.30 YE2271 13.4 94.78 5 16.6
1994.60 YE2270 22.0 94.77 6 16.9
1996.00 YE2268 15.2 94.78 7 17.2
1997.27 YE2267 9.0 95.03 8 17.5

5.2.1 Experiment

The full schematic of the 100 GHz system is shown in Figure 5.11, with the

details of the TDFAs used listed in Table 5.3. This experiment represented the

first time such DWDM channels were multiplexed via a 2 µm AWGr. The

specific wavelengths, laser modules, temperature/current settings and AWGr

settings for this setup are given in Table 5.4. All lasers were operated near

maximum current (100 mA) to achieve maximum power in each case.

NRZ-OOK modulation was applied to six DWDM channels using a LiNbO3

MZM, which was driven with a PRBS of length 231 − 1 at a data rate of

12.5 Gbit/s, using a PPG and RF amplifier.

5.2.2 System analysis

The performance of the 100 GHz DWDM system was analysed in terms of BER

vs. OSNR performance and transmission penalty over 1.15 km of HC-PBGF.

Figure 5.12a shows the BER results for measurement back-to-back (no fibre).

For a BER of 1× 10−6, an average OSNR of 23.3 dB was recorded, with a

spread of 1.6 dB. Figure 5.12b shows the same results repeated after

transmission over 1.15 km of HC-PBGF. The average OSNR for BER of 1× 10−6

was 24.9 dB, with a spread of 3.4 dB. The observed average OSNR penalty was

recorded to be 1.7 dB. This figure is consistent with the additional presence of

water or CO2 in the fibre [100] which can be reduced through a purging

process [138].

5.2.3 105 Gbit/s system capacity

With the testbed established, the capacity of the 100 GHz DWDM system at

2 µm was then pushed further by increasing the number of DWDM channels to

Dense wavelength division multiplexing at
2 µm for future optical communications
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(b) After transmission over 1.15 km of HC-PBGF.

Figure 5.12: BER vs. OSNR performance to analyse transmission penalty for 100 GHz
DWDM. 6 × 12.5 Gbit/s NRZ-OOK externally modulated channels. Yellow dotted line
BER = 1x10−3.

103 Niamh Kavanagh



5. IMPROVING SPECTRAL EFFICIENCY

14 18 22 26 30

OSNR (dB)

2

4

6

8

10

-L
O

G
(B

E
R

)

1989.3
1990.6
1991.2
1993.3
1994.6
1996.0
1997.3

Figure 5.13: BER vs. OSNR performance for 7 x 15 Gbit/s NRZ-OOK externally mod-
ulated channels with 100 GHz spacing, multiplexed by an AWGr and transmitted over
1.15 km of HC-PBGF, totalling 105 Gbit/s capacity. Yellow dotted line BER = 1× 10−3.

seven and operating at higher data rates. In this case, NRZ-OOK modulation

was applied to seven DWDM channels using a LiNbO3 MZM, which was driven

with a PRBS of length 231 − 1 at a data rate of 15 Gbit/s. Thus, a total capacity

of 105 Gbit/s was achieved. Figure 5.13 shows the BER performance against

OSNR for all seven DWDM channels after transmission over 1.15 km of

HC-PBGF. There is also no evidence of an error floor, which would be

indicated by the slope of the curve significantly decreasing (or flattening off)

for lower -LOG(BER) values, corresponding to a performance limit. In this

analysis, the OSNR was measured as the ratio between the signal and the

noise (under the signal) for a 0.05 nm bandwidth resolution. For a BER of

1× 10−6, the average OSNR required was 22.5 dB, with a spread of 2.1 dB.

Therefore, with 7 x 15 Gbit/s channel transmission, a total capacity of

105 Gbit/s was achieved. All BER results recorded were below the FEC limit of

1× 10−3. Thus, this experiment established that DWDM with 100 GHz channel

spacing is possible at 2 µm.

Dense wavelength division multiplexing at
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50 GHz

Figure 5.14: Proposed interleaved channels to create 50 GHz channel spacing in the
DWDM transmitter (0.05 nm resolution, 1001 sampling points, 12 nm span).

5.3 50 GHz DWDM at 2 µm

Moving to narrower channel spacing is critical to improve spectral efficiency at

2 µm. Therefore, the feasibility of reducing 2 µm DWDM channel spacing from

100 GHz to 50 GHz was investigated and forms the basis of the following

section. The aim of the following experiments was to optimise the available

bandwidth, increase system capacity at 2 µm, and move closer to replicating

current ITU-T DWDM standards.

5.3.1 System design

In order to achieve 50 GHz channel spacing, the 100 GHz system shown in

Figure 5.11 was maintained, with the addition of a new set of lasers which

was based on a 100 GHz grid that was 50 GHz-shifted from the original. These

new laser channels were then interleaved (or tuned to emit in-between) with

the original channels using a standard 2:1 coupler, as illustrated in

Figure 5.14. The updated channel grid is listed in Table 5.5, with the

interleaved channels shaded in grey.

Originally, it was planned that the six new channels would be externally

modulated (prior to interleaving) using an InP-based MZM that was developed
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Figure 5.15: Second (green) and third (blue) generation of laser devices designed
for the 2 µm waveband, with module S/N on the left and corresponding peak centre
wavelength on the right (at 25oC and 50 mA). YE1922 highlighted with a red X.

in parallel by a partner research team at Tyndall National

Institute [38],[113],[145]. However, this modulator was not available at the

time of system testing, but this did not preclude the 50 GHz DWDM

investigation. Given that no other 2 µm modulator was available, the six

additional lasers could not be implemented as initially intended (due to their

butterfly-packaging which required external modulation). Instead, lasers from

the first/second generation (Table 4.1/Table 4.2) had to be selected, with the

requirements that they were suitable for direct modulation (determined by

packaging) and their emission wavelength could be tuned within the region of

the proposed channel grid. These restrictions presented challenges to the

systems implementation.

In order to select suitable DWDM lasers, the second generation of laser devices

(Table 4.2) were more favourable because the frequency response of these

devices was higher, at ~5 GHz (and over 7 GHz recorded in some

cases) [126], in comparison to the first generation of lasers which had a

limited frequency response of ~3 GHz on average [96], [124]. However, upon

Dense wavelength division multiplexing at
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Figure 5.16: Temperature vs. wavelength characterisation for two lasers, illus-
trating the region of wavelength overlap (between yellow dotted lines). Mark-
ers represent wavelength value at 60 mA with the horizontal errors bars indi-
cating the wavelength variation ± 20 mA at each temperature.

characterisation, only one of the lasers from the second generation was within

the desired wavelength range, as can be seen from Figure 5.15. The module

S/N of this device was YE1922, indicated by a red X. This laser could be tuned

to match three of the desired emission wavelengths in the channel grid

(1992.68 nm, 1994.02 nm and 1995.35 nm). The thermal characterisation of

this device is shown (in blue triangles) in Figure 5.16. In this figure, the data

points represent the wavelength value recorded for the laser at 60 mA and the

horizontal errors bars indicate the wavelength variation that corresponds to ±
20 mA at each temperature point. Based on this characterisation, the

temperature and current settings required for each desired wavelength can be

determined.

Finally, with only one suitable device identified for the interleaved channels

from the second generation of lasers, the first generation were considered in

order to further fill the 50 GHz channel grid. The list of available devices can

be seen in Table 4.1 of Chapter 4. One suitable device was identified within

the desired wavelength range from the first generation. The module S/N of

this device was YE1699. Similar to the YE1922 device, this laser could be

tuned to three of the desired wavelengths in the channel grid (1994.02 nm,
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Table 5.5: 50 GHz DWDM grid, with interleaved channels shown in grey and check-
marks indicating the channels available to be interleaved.

No. λ ∆λ ∆ν
- nm nm GHz

× 0 1990.02 0.67 50.00
1 1990.60 0.58 43.75

× 2 1991.35 0.75 56.25
3 1992.00 0.65 48.75
4 1992.68 0.68 51.25
5 1993.32 0.64 47.75
6 1994.02 0.70 52.25
7 1994.65 0.63 47.50
8 1995.35 0.70 52.50
9 1996.00 0.65 48.75
10 1996.68 0.68 51.25
11 1997.33 0.65 48.50

1995.35 nm and 1996.68 nm). The thermal characterisation of this device is

also shown (in red circles) in Figure 5.16. The region of wavelength overlap

between the two lasers can be seen by comparing the two characterisations

and is indicated by the dotted yellow lines in Figure 5.16.

In Table 5.5, the ’×’ mark on the left indicates the wavelengths that could not

be implemented with available 2 µm lasers and the ’ ’ mark indicates the

wavelengths that were possible to emulate (with lasers YE1922 and YE1699 as

described). Both devices could be tuned to overlap at two wavelengths

(1994.02 nm and 1995.35 nm) and these are indicated by two ’ ’ marks

beside the table. For convenience from this point forward, the initial 100 GHz

channels will be referred to as the odd channels and the new interleaved

channels (i.e. those shaded in grey in Table 5.5) will be referred to as the even

channels. By using the two devices specified (YE1922 and YE1699), these

lasers could be tuned to emit at either side of each odd channel, hence

representing the required even channels in turn and emulating 50 GHz

channel spacing in the transmitter for each channel under test (CUT).

• Original (externally modulated) channels = odd channels

• Interleaved (directly modulated) channels = even channels

Dense wavelength division multiplexing at
2 µm for future optical communications
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5.3 50 GHz DWDM at 2 µm

5.3.2 Experiment

The experimental setup to investigate 50 GHz DWDM at 2 µm is depicted in

Figure 5.17. The components used were the same as previously described in

Section 5.2.1, Figure 5.11, with the addition of the two directly modulated

even channels. Note that, for the purpose of this 50 GHz investigation, the

previous channel at 1989.35 nm was omitted for this demonstration because

there were no suitable lasers to emulate 50 GHz adjacent channel spacing (as

per Table 5.5), resulting in six odd channels and two even channels (eight in

total). NRZ-OOK modulation was applied to the odd channels using the

LiNbO3 MZM discussed previously, which was driven with a PRBS of length

231 − 1 at a data rate of 12.5 Gbit/s, using an independent pulse pattern

generator (PPG) and RF amplifier. To our knowledge, this was the first time

such a high baud rate (as per Section 3.1.2) was demonstrated for

closely-spaced OOK channels at 2 µm, although higher aggregated bit rates

have been achieved with advanced modulation formats and digital signal

processing [100].

The even channels were directly modulated using a second independent PPG

with a PRBS of 231 − 1. NRZ-OOK modulation was applied at a data rate of

8 Gbit/s. The reduced bit-rate was due to the limited frequency response of

the lasers, as per reference: [124]. The two even channels were then amplified

using a commercial TDFA (AdValue Photonics 2 µm fibre amplifier) and

multiplexed with the six odd channels using a standard 2:1 fibre coupler. The

lasers were optimised for modulation in order to ensured that the data from

the odd CUT was de-correlated from the two even adjacent channels. As

discussed in the previous section, the odd channels (2 x 8 Gbit/s NRZ-OOK)

were thermally tuned to emit at wavelengths either side of the even channels

(6 x 12.5 Gbit/s NRZ-OOK) in the transmission spectrum, creating 50 GHz

channel spacing around each CUT in turn.

5.3.3 System analysis

The aim of this experiment was to investigate the feasibility of implementing

50 GHz DWDM at 2 µm. In order to understand the challenges associated with

this implementation, the impact of reduced channel spacing was investigated

by measuring the OSNR vs. BER performance of one channel under four

different scenarios which will be discussed in the following sections:
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Figure 5.17: Experiment setup to investigate the impact of reduced (50 GHz) DWDM
channel spacing using 6 x 12.5 Gbit/s (externally modulated) and 2 x 8 Gbit/s NRZ-
OOK (directly modulated) signals.

(a) single channel

(b) 100 GHz spacing (6 channels)

(c) 50 GHz spacing (3 channels)

(d) 50 GHz spacing (all 8 channels)

Channel #7 (1994.65 nm) was selected to be the CUT for this investigation.

As per Table 5.5 of Section 5.3.1, the two directly modulated even channels

could be tuned to 1994.02 nm (channel #6) and 1995.35 nm (channel #8) to

create dense 50 GHz spacing around channel #7 centre wavelength in the

2 µm transmitter, as shown in Figure 5.18. For this configuration, the

performance of channel #7 was measured for scenarios (a) - (d).

(a) Single channel

First, the performance of the system was recorded for the single channel case

(channel #7 only), in order to obtain a baseline performance for comparison.

The BER vs. OSNR measurement was repeated five times. The results of these

five measurements are shown by the blue curves in Figure 5.19, with the

calculated average overlaid (circles with red lines) and the standard deviation

indicated by the vertical error bars. As can be seen by these error bars, the

system was highly unstable, especially at low power and low OSNR values.

Dense wavelength division multiplexing at
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Figure 5.18: Transmitter spectrum for the 50 GHz experiment (without data) with
six odd channels and two interleaved even channels (#6 and #8). These two even
channels were tuned to emit at either side of the CUT (#7) to emulate 50 GHz channel
spacing (0.05 nm resolution, 3334 sampling points, 10 nm span).

This was largely due to the commercial TDFA (AdValue Photonics 2 µm fibre

amplifier) used in the system which was observed to have poor temporal

stability, especially when the power level and OSNR were reduced. The

average OSNR required to achieve a BER of 1× 10−6 was 25.1 dB, with a

spread of 2.6 dB (indicating a conservative error margin of ± 1.5 dB). This

OSNR requirement is somewhat higher than conventional 1.55 µm OOK

systems, due to the non-ideal components used.

(b) 100 GHz spacing (6 channels)

Secondly, the performance of channel #7 was measured with the six odd

channels at 100 GHz channel spacing. Again this was repeated five times and

the results are shown in Figure 5.20 for all four scenarios. The data points in

this figure indicate the average BER value (for a certain OSNR) and the

vertical error bars indicate the standard deviation. For case (b) (red

downward triangles), the average OSNR required for channel #7 to achieve a

BER of 1× 10−6 was found to be 27.9 ± 1.5 dB, a higher (~2.8 dB) OSNR than

the single channel case. This is a repeat of the experiment in Section 5.2.2,

Figure 5.12a. In this case, a higher OSNR was required for channel #7
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Figure 5.19: Five BER vs. OSNR measurements for CUT(#7) single channel (at
12.5 Gbit/s NRZ-OOK) shown with blue squares and dotted lines. The calculated av-
erage is overlaid (red circles with solid lines) and the standard deviation indicated by
the vertical error bars. Yellow dotted line BER = 1× 10−3.

(1994.65 nm), likely due to the introduction of an extra coupler in the

transmitter to multiplex the two odd 50 GHz channels for this experiment.

(c) 50 GHz spacing (3 channels)

Next, the scenario with three DWDM channels at 50 GHz channel spacing was

considered. The CUT (channel #7) was recorded, together with the even

channels (channel #6 and channel #8). The purpose of this measurement was

to investigate the impact of 50 GHz channel spacing, in comparison to the

single channel case. The resulting data for case (c) is shown by the green

left-pointing triangles in Figure 5.20. One would expect a higher OSNR

requirement in this case as the CUT is surrounded by two adjacent channels

with de-correlated data acting as noise to the signal under test. For example, if

there was a ~50% increase in crosstalk, one would expect the OSNR

requirement to be ~3 dB higher. However, the average OSNR required for

channel #7 to achieve a BER of 1× 10−6 was found to be 26.4 ± 1.5 dB, only

slightly higher on average. This measurement will be discussed in more detail

in the following sections.

Dense wavelength division multiplexing at
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Figure 5.20: Average BER vs. OSNR measurements for CUT(#7) at 12.5 Gbit/s NRZ-
OOK. This channel was measured under four different scenarios: (a) single channel
only (black 4), (b) six 100 GHz channels on (red 5), (c) three 50 GHz channels on
(green /) on and (d) all eight channels on (blue .). Yellow dotted line BER = 1× 10−3.

(d) 50 GHz spacing (all 8 channels)

Finally, all available DWDM channels were switched on, as per Figure 5.18.

The data for case (d) is shown by the blue right-pointing triangles in

Figure 5.20. The purpose of this measurement was to investigate the impact of

50 GHz channel spacing, in comparison to the 100 GHz case (b). One would

expect that this case would be the ‘worst case scenario’ due to the increased

number of channels and reduced channel spacing with de-correlated

neighbouring channels. The average OSNR required for channel #7 to achieve

a BER of 1× 10−6 was found to be 27.5 ± 1.5 dB, which is slightly lower on

average than the 100 GHz six-channel case. Therefore, within the margin of

error, very little penalty was recorded for increased channel number, increased

crosstalk and reduced channel spacing, which is unusual. The discussions that

follow will focus on understanding these results.

OSNR

Figure 5.21 shows the optical spectra used for OSNR measurements (indicated

in Figure 5.17) for the four scenarios (a) - (d). In order to compare the BER
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#7
(CUT)

OSNR

(a) Single channel only.

OSNR

#7
(CUT)

(b) Six 100 GHz channels on.

OSNR

#7
(CUT)

(c) Three 50 GHz channels on.

OSNR

#7
(CUT)

(d) All eight channels on.

Figure 5.21: Optical spectra recorded during OSNR measurement of the CUT (#7)
(0.05 nm resolution, 3334 sampling points, 10 nm span.)

vs. OSNR performance of the CUT for the different scenarios, it was necessary

to decide a standardised way to measure OSNR that was common to each

case. To do this, the power level of the signal peak was measured against the

out-of-band noise floor to calculate the OSNR. As can be seen from

Figure 5.21, this was sufficient in the single channel and 100 GHz case

(Figure 5.21a and Figure 5.21b). However, in the cases where channel spacing

was reduced to 50 GHz (Figure 5.21c and Figure 5.21d), the noise level

around the base of the peak (highlighted by the red dotted circle) does not

match the out-of-band noise floor.

Therefore, in the scenarios with 50 GHz channel spacing, measuring the OSNR

based on the out-of-band noise floor was an overestimation. For example, in

Figure 5.21c, an OSNR of ~35 dB was recorded using the out-of-band noise

floor as the reference noise level. But, looking at the level of crosstalk with the

50 GHz channels in this case, the OSNR is likely a lower value of ~30 dB. One

would expect that the OSNR overestimation should result in a better

performance given the BER measured. For example, if an OSNR of ~25 dB was

recorded (using the out-of-band noise floor) to achieve a BER of 1× 10−6, an

OSNR overestimation would imply that the actual OSNR required to achieve

Dense wavelength division multiplexing at
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#7
(CUT)

(a) Single channel only.

26dB

#7
(CUT)

(b) Six 100 GHz channels on.

10dB

#7
(CUT)

(c) Three 50 GHz channels on.

10dB

#7
(CUT)

(d) All eight channels on.

Figure 5.22: Optical spectra of CUT (#7) at the end of the receiver (before the PD)
for the four scenarios of the 50 GHz experiment (0.05 nm resolution, 3334 sampling
points, 10 nm span).

the same BER would be lower, perhaps around 20 dB. Following on from this,

if the OSNR was overestimated that would mean that if the BER vs. OSNR

curves were to be corrected, they would be shifted to the left, indicating even

better system performance for the scenarios with 50 GHz channel spacing. As

per case (c), this result further contradicts the expectation of a higher OSNR

requirement in the case of reduced channel spacing. However, this measured

improvement in performance is likely due to the 100 GHz neighbouring

channels falling within the filter bandwidth and constructively interfering with

the CUT. As such, the next analysis will discuss the filter profile.

Filtering

In order to investigate the effect of filtering towards BER performance, the

optical spectrum just before the detector was recorded (i.e. the OSA was

connected instead of the PD in Figure 5.17). Figure 5.22 shows the resulting

optical spectra of channel #7, prior to the detector, for the four scenarios (a) -

(d). Using these spectra, the channel isolation can be measured for each case

by calculating the difference between the peak of the CUT and the next highest
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channel peak. For the 100 GHz case (in Figure 5.22b), a channel isolation of

~26 dB was recorded for the CUT. While this value represented an

improvement upon previous demonstrations [100] (likely due to fine-tuning of

the AWGr), many systems exhibit channel isolation >35 dB at this point to

ensure sufficient suppression of neighbouring channels. However, for the cases

with 50 GHz channel spacing (Figure 5.22c and Figure 5.22d), the isolation of

the CUT deteriorated even further and was reduced to only ~10 dB in both

cases.

Figure 5.23 shows both filter profiles overlaid with the CUT. This is an image

constructed from three sets of data seen previously. The black trace shows all

eight DWDM channels before filtering (from Figure 5.21d). The red trace

(with squares) shows the Agiltron commercial tunable bandpass filter profile

(as per Figure 4.5). The blue trace (with circles) shows the profile of the

receiver AWGr (as per Figure 5.4). Both filter profiles were adjusted in terms

of power offset and centre wavelength shift (with no re-scaling) in order to

illustrate optimal overlap with the CUT in this case. As per Section 4.1.3, the

Agiltron tunable bandpass filter has a 3 dB bandwidth of 1.6 nm and a 20 dB

bandwidth of 4.5 nm. These values correspond to ~120 GHz and 340 GHz at

2 µm, respectively. Clearly, this filter is too wide to isolate the CUT in the

100 GHz and 50 GHz scenarios. A second filter is required to improve channel

isolation. However, while the AWGr curve shows a narrower profile for the

CUT, it would only improve isolation by ~7 dB for the 50 GHz case, which is

still poor. Therefore, despite the use of two cascading filters (which increased

channel isolation to 10 dB), this configuration was not sufficient to isolate the

DWDM CUT.

The results here show that 50 GHz DWDM is possible at 2 µm from the

transmitter perspective, as potential lasers to operate at this tight frequency

spacing were identified. However, there were challenges associated with the

receiver, in particular related to the channel isolation between adjacent

50 GHz channels. Narrow-band tunable bandpass filters at 2 µm are not

currently available, although some researchers have utilised micro-ring

resonators for this application [146], [147], [148]. Potential solutions to

circumvent this problem (if optical filters are not available), is through the use

of balanced detectors or coherent detection. But, given that balanced detectors

are also not available (or are prohibitively expensive via Discovery

Semiconductors Inc., for example), testing such systems is not currently

feasible. In previous 2 µm demonstrations, fibre Bragg gratings were employed

Dense wavelength division multiplexing at
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#7
(CUT)

Figure 5.23: Received DWDM spectrum, before filtering, for the 50 GHz experiment
with all channels on (black line). Filter profiles of the Agiltron filter (red line, square
markers) and AWGr (blue line, round markers) are overlaid for comparative purposes.
Both profiles are adjusted in terms of power and wavelength (with no re-scaling).

at the receiver. This presents another solution, but its implementation would

require purchasing an expensive system for tunability (e.g. TeraXion) or,

alternatively, the construction of a tool which could stretch, twist, heat the

gratings in order to enable tuning over sufficiently large bandwidths. Finally,

injection locking also may provide a path forward. It is a technique that has

been employed for filtering purposes at 1.55 µm [40], [41], [42] and would

be compatible with photonic integration. This was the avenue chosen and will

be discussed in Chapter 6.

Chapter summary

The capacity of an optical communication system can be maximised by

enabling a greater number of wavelength channels with narrower channel

spacing. The spacing between these channels is commonly determined by

ITU-T standards which dictates 100 GHz or 50 GHz spacing for DWDM

systems. Accordingly, one of the aims of this thesis was to demonstrate DWDM

transmission at 2 µm, while replicating these ITU-T channel-spacing standards

in order to increase the achievable capacity of 2 µm optical communication
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systems. Key challenges were addressed such as lack of commercial-grade

devices at this waveband, limited tunability and high insertion losses.

Nonetheless, a 2 µm DWDM system was designed with 100 GHz channel

spacing. This was achieved by implementing, for the first time, a 2 µm AWGr

to multiplex the 7 x 15 Gbit/s channels, with 105 Gbit/s total capacity reached.

The feasibility of decreasing the channel spacing from 100 GHz to 50 GHz

DWDM using current 2 µm technologies was then investigated. It was found

that 50 GHz channel spacing can be readily achieved in the DWDM

transmitter. However, there are several challenges in terms of the receiver, the

most critical of which are available filtering techniques to sufficiently isolate

the DWDM channels and accurately analyse the performance of the CUT.

Further filtering developments are required in order to support such dense

channel spacing in 2 µm optical communication systems.
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Chapter 6

Injection Locking

For optical communication systems in the 2 µm transmission window, enabling

DWDM systems with 50 GHz channel spacing has been identified as the next

step towards improving spectral efficiency and increasing system

capacity [39]. However, as discussed in the previous chapter, while this can be

achieved in terms of the transmitter, current demultiplexing techniques do not

provide sufficient filtering to isolate these 50 GHz channels at the DWDM

receiver. Optical injection locking (OIL) is a technique that has been employed

for these purposes, in addition to other DWDM applications at 1.55 µm. These

applications will be discussed in the following section.

The use of OIL as a channel selection mechanism was proposed by Kikuchi and

Zah in 1988 [150] and was experimentally demonstrated by using OIL to

select particular comb lines from a broadband comb spectrum which included

over 100 significant lines (emulating a WDM system) [151]. In 2001, a

DWDM system was demonstrated in which tunable lasers were used as

narrow-bandwidth, high-tuning-speed, injection-locked filters [152]. Most of

these early demonstrations were based on distributed feedback lasers but OIL

has been demonstrated with Fabry-Pérot lasers also. In 2000, OIL was

employed to induce single mode operation (SMO) in Fabry-Pérot lasers, which

were then applied as low-cost WDM sources [153]. OIL with Fabry-Pérot lasers

has also been demonstrated to enable DWDM systems with 50 GHz channel

spacing [154]. Finally, in terms of slotted Fabry-Pérot lasers (those used in the

experiments of Chapter 4 and Chapter 5), OIL has been demonstrated for

WDM source applications [155] and, most relevant in this case, OIL with

slotted Fabry-Pérot lasers has been used for channel selection and
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demultiplexing purposes in the 1.55 µm region [40], [41], [42]. Therefore,

OIL with slotted Fabry-Pérot lasers is investigated at 2 µm, with a view to

potential applications for demultiplexing in the DWDM receiver.

In this chapter, the discovery, history and key concepts of OIL are presented in

Section 6.1. The availability of lasers at 2 µm is limited and the lasers used

presented challenges (primarily limited tuning capabilities) which are

described in Section 6.2.1, together with their characteristics. In order to

perform OIL at 2 µm, an experiment was designed which included monitoring

apparatus to ensure OIL was occurring. The setup used for this demonstration

is typical for OIL schemes, with one laser (called the primary) being injected

into the another laser (called the secondary) via a circulator, this is presented

in Section 6.2.2. The dynamics therein were observed using two different

methods: optically, with the aid of an Optical Spectrum Analyser (OSA), and

electrically, via direct detection and with the aid of an Electrical Spectrum

Analyser (ESA), this is discussed in Section 6.2.3. The observed OIL dynamics

are discussed in Section 6.3.1 and Section 6.3.2. Finally, in Section 6.3.3,

further OIL analysis is presented, with the relationship between injection ratio

and OIL bandwidth explored, and the time stability of OIL is investigated.

Therefore, in this chapter OIL at 2 µm is discussed and stable OIL is

demonstrated between two semiconductor slotted Fabry-Pérot lasers at 2 µm.

6.1 Origins and key concepts

In this section, the origins of injection locking as a physical phenomenon

observed throughout nature are presented. Then, the history of optical

injection locking (OIL) and the key concepts relevant to this thesis are

introduced.

6.1.1 From clocks to crickets

"In February 1665 the great Dutch physicist Christiaan Huygens, inventor of

the pendulum clock, was confined to his room by a minor illness. One day,

with nothing better to do, he stared aimlessly at two clocks he had recently

built, which were hanging side by side. Suddenly he noticed something odd:

the two pendulums were swinging in perfect synchrony. He watched them for

hours, yet they never broke step. Then he tried disturbing them - within half

an hour they regained synchrony. Huygens suspected that the clocks must

Dense wavelength division multiplexing at
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somehow be influencing each other, perhaps through tiny air movements or

imperceptible vibrations in their common support. Sure enough, when he

moved them to opposite sides of the room, the clocks gradually fell out of

step, one losing five seconds a day relative to the other."

From "Coupled Oscillators and Biological Synchronization" by S. Strogatz

and I. Stewart, 1993. [156]

The above quotation tells the story of the first recorded observation of

injection locking, described in a letter from Huygens to his father. Based on

this observation, Huygens theorised that mechanical vibrations (which were

transmitted between the two oscillating clocks via a common beam) induced

the locking. A simple demonstration of this phenomenon can be performed

with metronomes, a wooden board, and two tin cans, as shown in Figure 6.1.

Imagine, at first, the metronomes are placed on the board and set ticking at

random rhythms. If the two tin cans are laid on their sides and the board (with

the ticking metronomes) is balanced on top, then the metronomes will begin

to lock oscillations and will ultimately all tick in unison. When the

metronomes are ticking in unison, they are oscillating with the same frequency

and phase, i.e. they are injection locked [157].

Beyond ticking clocks, injection locking is a physical phenomenon that is

observed in oscillators throughout nature. Injection locking can be seen in the

synchronised flashing of tropical fireflies along the tidal rivers of South East

Asia [158] (these fireflies can be also locked to an external LED [159]), to

snowy-tree crickets chirping in unison [160], and even in our own bodies

where pacemaker cells periodically stimulate our hearts to regulate its

rhythm [161]. Injection locking is a fundamental feature found in many

biological oscillators. Before many of these biological examples were

discovered, the fundamental dynamics of injection locking in electrical

oscillator circuits were identified and modelled by Adler in 1946 [162].

6.1.2 Brief history

Soon after the invention of the laser in 1960, Steier and Stover demonstrated

the locking of laser oscillators by external light injection using HeNe

lasers [163]. Their experiment focused on the phase-locking of one laser to

another by direct injection of the first laser beam into the cavity of the second
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Random relative phase Fixed relative phase

Injection

locking

Figure 6.1: Injection locking of metronomes on a rolling board. Image reproduced with
permission of original author [157].

laser. The resulting paper marked the first reported demonstration of OIL. This

was followed, in the 1970s, by a demonstration of OIL using CO2 lasers by

Buczek [164]. The first detailed theoretical and experimental study of OIL

with semiconductor (AlGaAs) lasers was performed by Kobayashi and Kimura

in the 1980s [165], [166]. It was in this same decade that Lang published the

OIL rate equations for semiconductor lasers [167], which were experimentally

confirmed with lasers at 0.85 µm and 1.3 µm by Mogensen [168], and with

InGaAsP lasers at 1.55 µm by Henry [169]. Demonstrations of OIL have

closely followed historical laser developments. This is because OIL has been

shown to improve laser performance for a variety of applications

[170], [164], [171], [172], [173]. At 2 µm, the only previous demonstration

of OIL was used in the transmitter to improve the single mode operation

(SMO) of a directly modulated laser and enable advanced modulation

formats [125]. Thus, OIL is a key enabling technology for laser applications in

optical communication systems and could provide promising improvements for

this new transmission window at 2 µm.

6.1.3 Key concepts

OIL occurs when light from one laser p (called the primary laser, with main

lasing mode centred at the wavelength λp or carrier frequency fp) is injected

into the cavity of another laser s (called the secondary, with main lasing mode

at λs or fs). When the light from the primary laser is injected into the

secondary cavity, the secondary laser’s internal field will be forced to change

from its free-running value. This only occurs when the fields are sufficiently

close. As such, for a certain range of frequencies, the primary laser can force

the secondary laser to oscillate at the same frequency as (and at a fixed phase

relative to) the primary. The range of values for which the secondary laser’s
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frequency is the same as the primary’s is called the locking range and the

width of this range is often referred to as the OIL bandwidth.

The OIL bandwidth is one of the key figures of merit used to evaluate

performance in OIL schemes. In optical communications, the term bandwidth

is used in a variety of contexts. Optical bandwidth can be specified in terms of

frequency (∆ν) or wavelength (∆λ), due to the inverse relationship between

the two. It is more commonly stated in frequency units. Generally, bandwidth

refers to the maximum width of an optical frequency range in which an optical

component, system of components or phenomenon operates. For example, the

width of the optical frequency range that can be transmitted by some element

(e.g. an optical fibre), the width of the gain region of an optical amplifier (e.g.

a TDFA), the width of the frequency range of some other optical phenomenon

(e.g. OIL).

In OIL schemes, certain characteristic features are used to identify the OIL

bandwidth, or locking range. For instance, near the locking range, fs is shifted

or ‘pushed’ towards fp. This frequency influencing is a common feature

observed around the boundary of the locking range in most OIL cases. Then,

within the locking range, fs has been pulled enough that it matches fp and the

frequencies become locked, with a fixed relative phase maintained between

the primary and the secondary lasers [170]. Inside the locking range, it is

commonly said that the primary has ‘captured’ the secondary and, in this case,

if fp is changed, fs will follow. This single frequency emission (i.e. fp = fs)

characterises stable OIL. When the detuning (the absolute difference between

the main lasing mode of the primary laser and main lasing mode of the

secondary laser, (i.e. |fp − fs|) exceeds a certain value, the lasers will unlock

and at this point the secondary no longer follows the primary. This pattern of

(i) frequency influencing, (ii) followed by a region of single frequency

emission and then (iii) a return to unlocked behaviour, is used to identify

regions of OIL in this chapter.

In the case of the experiments in this thesis, different dynamics were observed

depending on which laser was tuned (i.e. primary vs. secondary) and also

depending on the direction of tuning (i.e. decreasing vs. increasing) towards

the region of OIL. Hence, Section 6.3.1 and Section 6.3.2 are divided into four

sections:

• Section 6.3.1 OIL by increasing the primary laser λp
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• Section 6.3.1 OIL by decreasing the primary laser λp

• Section 6.3.2 OIL by increasing the secondary laser λs

• Section 6.3.2 OIL by decreasing the secondary laser λs

6.2 OIL experiment

In order to demonstrate OIL at 2 µm, an experiment was designed to ensure:

(i) one laser could be injected into another laser,

(ii) the emission wavelengths of the lasers could be tuned close enough to

investigate OIL dynamics between the two,

(iii) the coupled output of both lasers could be monitored in order to identify

and measure regions of OIL.

6.2.1 Selecting 2 µm lasers

Selecting lasers for OIL is not straightforward at 2 µm, as the availability of

lasers is limited in this wavelength region. Table 4.1 and Table 4.2 in Chapter

4, and Table 5.1 in Chapter 5, list the full set (first, second and third

generation, respectively) of slotted Fabry-Pérot lasers readily available for the

2 µm OIL demonstration [25]. Most of these lasers were unsuitable to operate

as a secondary laser. This was because the second and third generation of

lasers were developed with dual isolators, which blocked most light input to

the laser cavity (as well as preventing any back reflections from the output of

the laser back into the laser cavity). These dual isolators made lasers from the

second and third generation unsuitable for external injection. In comparison,

the first generation of lasers were not developed with an isolator. Therefore,

the secondary laser needed to be chosen from the first generation of devices

(to fulfil requirement (i) above), further limiting the availability of suitable

lasers for the OIL scheme.

Selection of the primary laser did not have the same restrictions (as the

primary’s role was only to output light, not have light incident upon it).

However, it was required for the OIL demonstration that the emission

wavelengths of both lasers could be tuned close to one another (to fulfil

requirement (ii) above). Based on these requirements, a laser from the first

generation was selected to be the secondary (module S/N YE1699) and a laser
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Table 6.1: Free-running settings for the OIL lasers.

Module S/N λp Tp Ip
- (nm) (°C) (mA)

YE1922 1995.50 41.1 35.0

Module S/N λs Ts Is
- (nm) (°C) (mA)

YE1699 1995.05 10.0 14.3

from the second generation was selected to be the primary (module S/N

YE1922). These two lasers were the same as those used for the 50 GHz

DWDM investigation in Section 5.3 of Chapter 5. It had been previously

established (for example, Figure 5.16 in Chapter 5) that the emission

wavelengths of these two lasers could be tuned to overlap with one another

with reliable performance (in terms of tunability and stability). In this way,

two slotted Fabry-Pérot lasers were chosen as the primary and secondary lasers

for the OIL demonstration.

Figure 6.2 shows the free-running optical spectra of the two slotted

Fabry-Pérot lasers chosen as the primary and secondary for the OIL

demonstration. The settings for these lasers (as they are shown in Figure 6.2)

are listed in Table 6.1 in terms of the wavelength (λ), temperature (T ) and

current (I) values for the primary (p) and secondary (s) lasers. As shown in

Figure 6.2, the primary laser was measured to have a free-running SMSRp =

~35 dB, and an SMSRs = ~30 dB was recorded for the secondary.

Non-lasing side modes of the secondary laser were measured at 1994.03 nm

and 1996.05 nm in Figure 6.2. OIL to the side modes is investigated later in

the chapter. In this case, the free-running optical spectra serve as a

comparative reference for the coupled dynamics.

It was desired that the emission wavelengths of the two lasers could be tuned

close enough to investigate OIL dynamics between the primary and secondary

(requirement (ii), Section 6.2). In many OIL schemes, a highly tunable laser

(e.g. with 100 nm tunability) is used as the primary laser [155]. However,

such tunable lasers are not widely available at 2 µm, hence it was necessary to

tune the operating wavelength of the lasers by adjusting the temperature. To

minimise instabilities when tuning with temperature, a laser controller (ILX

LDC 3900) was used, with a stability of <±0.01°C. This LDC enabled control of

up to four lasers simultaneously, but independently. The lasers were fully

characterised in terms of thermal tunability (and power variation) over the
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SMSRs

λs

λp

SMSRp

Figure 6.2: Free-running optical spectra of both lasers used for OIL, depicting the
primary in blue (thicker line) and the secondary laser in red.

range of temperatures used in this demonstration; 22.0°C to 42.0°C for the

primary laser, and 3.5°C to 16.5°C for the secondary laser, (in steps of 2.0°C in

each case). These temperature ranges were chosen to ensure that the main

mode of each laser could be tuned to overlap with the other around the

wavelength of 1995 nm (as shown in Chapter 5, Figure 5.16).

The results of this thermal characterisation are shown in Figure 6.3. In both

figures, the green data (diamond points) corresponds to the left y-axis

(wavelength in nm) and the blue data (square points) corresponds to the right

y-axis (power in mW), with temperature in °C on the x-axis. The scatter points

show the data recorded and the dashed lines represent a linear fit to this data.

The threshold current for both lasers was ~15 mA at 20°C (this value was

reduced at lower temperatures), with 100 mA maximum operational current

for both devices. Both lasers were fixed at 60 mA for the thermal

characterisation. For the variation of the laser wavelength (λ) with

temperature (T), the linear fit to this data shows ∆λ/∆Tp =0.10 nm/°C for the

primary and ∆λ/∆Ts =0.11 nm/°C for the secondary, matching the

expectations of ∆λ/∆T =0.1 nm/°C, as per [25]. These figures are important

because they form the basis of the wavelength sweeps used in the later

sections of this chapter. The narrow window of main-mode overlap in the

region of 1994.50 nm to 1995.50 nm can be seen here by comparing the green

Dense wavelength division multiplexing at
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(a)

(b)

Figure 6.3: Wavelength and power characterisation of the OIL lasers, with respect to
temperature (both at 60 mA constant current).

line in both plots.

As first and second generation 2 µm devices, the power of these lasers was low

at ~1 mW (in comparison to ~5 mW to 20 mW standard at 1.55µm). The

variation of the laser power (P) with temperature is shown by the blue data,

corresponding to right y-axis in Figure 6.3a and Figure 6.3b. The blue dashed

line represents a linear fit to this data, with ∆P/∆Tp = −0.03 mW/°C for the

primary and ∆P/∆Ts = −0.01 mW/°C for the secondary, indicating that both

lasers lose power with increasing temperature. This power penalty, in

conjunction with the narrow (~1 nm) window of wavelength overlap and

limited 0.1 nm/°C tunability indicates the challenges of using these lasers in

an OIL system.
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Figure 6.4: Optical injection locking setup.

6.2.2 Experiment design

Once the primary and secondary lasers had been selected, the next step was to

design an experiment to enable light injection from the primary into the

secondary, monitoring of the coupled output from the lasers, and

measurement of any OIL dynamics observed therein. The resulting experiment

schematic is shown in Figure 6.4 (and is typical for many OIL schemes [155]).

The fibre-coupled outputs of both lasers were spliced with polarisation

controllers (PC). The polarisation of both lasers was aligned to ensure optimal

OIL was achieved and then not adjusted for the duration of the experiment.

The bias current of both lasers was also fixed throughout the demonstration

(both lasers were operated above threshold current to ensure lasing), with the

primary at 35 mA and the secondary laser biased at 14.3 mA.

An optical circulator (FCIR-2000 N-L-1) was used to couple the light from the

primary laser into the secondary cavity. An optical circulator comprises three

ports (P1, P2 and P3) with isolating mechanisms in-between. The circulator

allows light to travel in the direction from P1 to P2 and from P2 to P3, but not

the other way around. In this way the primary laser is isolated from light

injection from the secondary. This circulator had an insertion loss of 1.8 dB for

P1→ P2, 3.8 dB for P2→ P3, and 16 dB of isolation for P3→ P2 and P2→ P1

(all measured at 1993 nm). The increased insertion loss from P2→ P3 was

due to the splicing losses between the fibre from the circulator and the fibre

connection to the PC. The output from P3 of the circulator was amplified using

a TDFA, to increase the output power of the system, prior to detection. Thus,

the circulator enabled light injection from the primary laser into the secondary,

with the coupled light output at P3. OIL can be monitored via optical spectral

analysis. This is achieved by observing the wavelength peaks using an optical
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spectrum analyser [155]. Another way to measure OIL is by monitoring the

beating frequency between the primary and the secondary lasers, which can be

done using a square law detector and ESA [151]. In order to monitor OIL the

coupled output of the primary and secondary lasers (from P3 of the circulator)

was measured simultaneously on the OSA (Yokogawa AQ6375) and the ESA

(Agilient 8565EC). Prior to the ESA, a commercially-available 2 µm InGaAs

photodetector (EOT ET-5000F) with a 3 dB bandwidth of 12.5 GHz was used.

An electrical amplifier (SHF 804 EA) was added to boost the signal to the ESA.

In this way, the coupled light output from the primary and secondary lasers

was monitored and recorded in both the optical domain (on the OSA) and the

electrical domain (with the PD and ESA).

6.2.3 Observing OIL

In the optical domain, OIL is identified by the indicators discussed in

Section 6.1.3: frequency influencing around the locking range and single

wavelength emission within that range. The optical spectra of the coupled

output at P3 of the circulator are shown in Figure 6.5, with λp denoted by a

blue-coloured p for the primary and λs by a red s for the secondary. Note that,

in Figure 6.5 (and the following Figure 6.6) the secondary laser settings were

the same as those in free-running Figure 6.2 (i.e. Ts = 10°C and current

14.3 mA). Figure 6.5a shows the spectrum of the coupled output for Tp =

30°C, in which the individual primary and secondary laser peaks are distinct

and identifiable. In Figure 6.5b, Tp = 27.2°C, the primary laser sits at the edge

of the locking region (and the secondary continues to lase at 1995.05 nm).

Then in Figure 6.5c, with an adjustment of 0.1° to Tp=27.1°C, OIL occurs and

lasing is at λp only. Suppression of the other cavity modes (from the unlocked

to locked states) can be seen by comparing Figure 6.5a and Figure 6.5c.

In the electrical domain, the RF power spectrum requires the use of a

square-law detector, which enables a beating frequency peak to be measured

at the corresponding absolute value of the detuning (|fp – fs|). As the

detuning is reduced, the frequency of this beating tone will decrease up to the

point at which the laser fields are sufficiently close so that OIL occurs (fs = fp),

and this single frequency emission corresponds to a “quiet” region in the RF

spectrum, characterising stable OIL. The electrical spectra (or RF power

spectra) of the coupled output are shown in Figure 6.6. In this figure, the

optical spectra are shown on the left and the corresponding electrical spectra
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(a) Unlocked.

(b) Edge of locking range.

(c) Locked.

Figure 6.5: Optical spectrum of coupled primary and secondary lasers, showing OIL
to the side mode in (c).

are shown to the right in each case, for Tp increasing from 35.0°C to 38.0°C.

In Figure 6.6a and Figure 6.6c, the optical spectra are shown for Tp = 35.0°C

and 36.0°C, respectively, as λp is red-shifted towards λs. In the corresponding

electrical spectra, Figure 6.6b and Figure 6.6d, beating frequency peaks at

8.9 GHz and 4.6 GHz, respectively, as Tp increases and the detuning reduces.

Figure 6.6e shows injection locking at Tp = 37.5°C, single wavelength

emission is observed (λp = λs) and in Figure 6.6f, no beating peak is recorded

inside the locking region. In Figure 6.6g, Tp = 38.0°C and the primary laser
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Figure 6.6: Spectra of coupled primary and secondary lasers, showing OIL to the main
mode in (e) and (f). Optical spectra are on the left with the corresponding electrical
spectra to the right, for increasing Tp from 35.0°C to 38.0°C.

has moved out of the locking region. The lasers have unlocked and, in

Figure 6.6h, a beating peak reappears at 11.4 GHz. This 11.4 GHz peak is
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relatively weak due to the limited operating range of the PD.

6.3 Stable OIL at 2 µm

This section looks at the OIL dynamics in more detail over larger tuning

ranges. As mentioned in the chapter introduction, experimental OIL

investigations with the lasers (discussed in Section 6.2.1) revealed different

dynamics depending on which laser was tuned (i.e. primary vs. secondary)

and also depending on the direction of tuning towards the region of OIL (i.e.

decreasing vs. increasing). Hence, in this section, the findings are split

between these four different scenarios.

6.3.1 Tuning the primary laser

Increasing λp

The primary laser wavelength (λp) was tuned by increasing temperature (Tp)

from 22.0°C to 42.0°C in steps of 0.1°C, while the secondary temperature (Ts)

was kept constant at 10.0°C, as per Figure 6.2, with accuracy as discussed in

Section 6.2.1.

An optical spectrum of the coupled output from P3 of the circulator was

recorded for each 0.1°C increment. Figure 6.7a shows a false colourplot of all

these optical spectra combined. Essentially, this figure shows a combination of

each optical spectrum (such as those in Figure 6.5 and Figure 6.6), stacked

like sheets of paper and colour-coded so the optical power at each point is

visible, making the relative peaks clearer. This relative optical power (P) of the

peaks is denoted by the colourbar on the right, with red indicating more

intense optical power and blue representing less intensity.

These false colourplots enable visualisation of the coupled laser dynamics.

Looking from left to right in Figure 6.7a, for example, it can be seen that

increasing primary temperature on the x-axis corresponds linearly to

increasing primary wavelength on the y-axis, as expected as per Section 6.2.1.

The secondary wavelength was fixed at λs = 1995.05 nm throughout. OIL of

the secondary laser to the primary can be seen when the main lasing mode of

the primary overlaps with the side mode of the secondary laser at 1994.05 nm.

Within this range, the secondary’s main mode is suppressed and lasing occurs

at λp only. This region of SMO can be observed from Tp = 25.2°C to 27.2°C.

Dense wavelength division multiplexing at
2 µm for future optical communications

136



6.3 Stable OIL at 2 µm

primary

secondary

(a) Optical domain. Colourbar = optical power (P) in dBm.

(b) Electrical domain. Colourbar = relative intensity (RI) in arbitrary units.

Figure 6.7: The wavelength of the primary laser was swept across the fixed secondary
by increasing Tp from 22.0°C to 42.0°C. Figure 6.7 shows false colour-plot combinations
of each 0.1°C measurement overlaid.

The secondary laser is locked to the primary laser and when λp is changed, λs
will follow. The combined injected peak at λs = λp is of greater intensity than

the secondary or primary peaks previously. It can also be seen that the side

modes of the secondary laser are suppressed and following the primary laser,

demonstrating that OIL affects the laser cavity as a whole. Outside the locking
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region, at Tp = 27.2°C, the secondary laser unlocks, with lasing returning to

the secondary’s main mode at λs = 1995.05 nm and the secondary no longer

following the primary. It is in this way that the false colourplots enable

identification of the OIL region around the side mode.

Now examining the region around the main mode, as the primary laser λp
moves towards the main mode of the secondary laser λs in Figure 6.7a, the

effects of OIL can be observed around 35.9°C to 37.8°C. Again, the

characteristic identifiers of an OIL region can be seen: suppression and

pushing of the side modes, the secondary laser follows the primary and the

injected peak is of greater intensity. At 37.8°C the unlocking boundary is very

clear in the optical domain. Note, around the locking boundary, the separate

secondary and primary laser peaks may not be distinguishable due to the

resolution of the OSA which was 0.05 nm (or ~3.75 GHz at 2 µm), making

determination of the locking/unlocking regions around the main mode

difficult on the OSA. Hence, it was decided that a more accurate measurement

to verify OIL at the main mode would be to utilise the ESA. Thus, while the

optical spectrum of the coupled output from P3 was recorded for each ∆Tp =

0.1°C increment from 22.0°C to 42.0°C, the power spectrum was

simultaneously acquired via the square law detector.

With the aim of identifying the beating peaks, the ESA trace was set to the

‘max hold’ mode, which maintains the highest amplitude value in each

measurement interval (30 seconds in this case) and displays this value in the

trace point. Noise is detected in the same manner using max hold since noise

is just another signal. Due to the random nature of noise, one sweep may not

be sufficient to capture the noise dynamics. Therefore, by enabling the ESA in

max hold mode, an array of random noise events are captured. This raises the

apparent overall noise floor of the captured data. But, upon analysis of the

data, it was found that the recorded noise floor was higher at lower

frequencies and this tilted shape made it difficult to determine the beating

peak, especially when the detuning reduced towards zero. In order to

distinguish the beating peak at lower frequencies, the noise data was isolated

by repeating the experiment with the lasers turned off. This noise data was

then subtracted from the data with the lasers turned on. This subtraction

resulted in an RF power spectrum with a relatively flat ‘noise floor’ (now

adjusted), from which the beating peak could be clearly distinguished and its

value recorded. Figure 6.7b shows a false colourplot combination of all these

power spectra, with the adjusted beating frequency on the y-axis and the

Dense wavelength division multiplexing at
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temperature of the primary laser on the x-axis, where again the secondary

laser was fixed at 10.0°C.

While these false colourplots of the ESA enabled visualisation of the coupled

laser dynamics around the main mode, the dynamics at the side mode could

not be visualised due to the limited bandwidth of the PD. Also, the power of

the side mode was much less than the main lasing mode, making any beating

between the two difficult to detect. Looking at from left to right in Figure 6.7b,

moving towards the side mode of the secondary laser, no beating peaks were

detected around the locking region at Tp = 25.2°C to 27.2°C. This is due to the

limited 3 dB bandwidth of 12.5 GHz PD used with the ESA. 12.5 GHz

corresponds to 0.17 nm at the 2 µm. Since the detuning between the

secondary and laser peaks was >0.17 nm around this locking range, beating

frequency peaks were not recorded in this region. So, while there would be

beating between the primary laser and the suppressed main mode of the

secondary laser in this regime, since the mode separation is around ~1 nm,

this would correspond to a beating signal of approximately 75 GHz, which is

significantly outside current limits of detection.

As the primary was tuned towards the main mode of the secondary laser, the

detuning was reduced to within the bandwidth of the detector and a beating

peak was detected in Figure 6.7b. Initially, the frequency of this beating peak

reduced linearly towards zero with increasing primary temperature, as per

∆λ/∆T =0.1 nm/°C. However, near the locking region, the relationship no

longer followed the linear pattern and the effect of the primary laser

influencing the frequency the secondary and pushing the secondary to match

its frequency could be seen. When the laser fields were sufficiently close,

single frequency emission was observed (fs = fp) and no beating peak was

recorded on the ESA between Tp = 36.9°C to 37.8°C. Thus, stable OIL was

observed, with no other frequencies recorded in this region. When the primary

laser was tuned beyond the locking region, the beating peak returned and the

frequency increased linearly with increasing temperature. In the case of the

ESA signal, we have a clearly defined beating peak curve corresponding to the

locking region around the main mode. The beating peak curve serves to show

a well-defined transition from beating between the primary and secondary, to

stable OIL and unlocking/return to beating. These transition points allow for

an accurate measurement of the stable OIL bandwidth for injection around the

main mode.
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However, such an accurate measurement is not as easily obtained at the side

mode region. The difference in powers between the primary laser main mode

and the non-lasing side mode (such as the case of injection into the non-lasing

side mode from Tp = 25.2°C to 27.2°C in Figure 6.7) makes the transition

points harder to detect. While the presence of SMO and improved SMSR in the

optical spectrum potentially indicate OIL, since the beating signal in the RF

power spectrum is beyond the detector bandwidth, it is difficult to accurately

determine the OIL bandwidth in the same way. Therefore, in the case of side

mode injection (where beating signals could not be recorded), a region of

SMO can only be estimated, rather than a classic stable OIL region, or OIL

bandwidth. Fortunately, in the intended application of the OIL system

investigated here (namely its implementation as a demultiplexer in a DWDM

system), it is the width of the SMO region, rather than the OIL bandwidth,

which is of primary concern.

The region of SMO at the side mode and OIL bandwidth at the main mode was

calculated by converting the width in temperature (for example Tp = 25.2°C to

27.2°C is 2°C width) to wavelength (in nm) using the ∆λ\∆T characterisation

and then converting this to frequency using Equation 6.1, where ∆λ =

wavelength range, ∆ν = frequency range, c = speed of light in vacuum and λ

= 2 µm. The error value was taken as the temperature step (0.1°C) and this

was converted in the same way.

∆λ
∆ν = λ2

c
(6.1)

Decreasing λp

The same experiment was then repeated for decreasing the wavelength of the

primary laser (via its temperature). The false colourplot images for this section

can be found in Figure A.1 of Appendix A. Similar results were observed in

Figure A.1 with the notable difference being that, for decreasing Tp, the region

of SMO at the secondary laser’s side mode was (12.0 ± 0.7) GHz, compared to

(15.0 ± 0.7) GHz for increasing Tp. Similarly, the stable OIL bandwidth at the

main mode was (3.7 ± 0.7) GHz for decreasing Tp, compared to (6.7 ±
0.7) GHz for increasing Tp. This hysteresis is typical in OIL schemes with

semiconductor lasers. In semiconductor lasers, the gain spectrum is often

asymmetric (with respect to the gain spectrum peak), giving rise to

asymmetric tuning characteristics [174], [167], [175], [168], [169].
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6.3.2 Tuning the secondary laser

In order to implement OIL as a demultiplexing mechanism in a DWDM optical

communication system, it would be necessary to tune the secondary laser

rather than the primary laser. In such a scenario, the receiver would

incorporate a secondary laser that would tune to the incoming DWDM primary

signal. Thus, a reversal of the above experiment was performed, this time

adjusting the secondary laser, while keeping the primary laser constant, in

order to investigate if the performance would be similar.

Increasing λs

Initially, the secondary laser wavelength was tuned by increasing temperature

from 3.5°C to 16.5°C in steps of 0.1°C, while the primary temperature was kept

constant, as per Figure 6.2, at 41.1°C (λp = 1995.50 nm), with accuracy as

discussed Section 6.2.1. The resulting OSA spectrum can be seen in

Figure 6.8a. In practical terms, this section: increasing the secondary

wavelength (from 1994.30 nm) while holding the primary constant (at

1995.50 nm) in Figure 6.8, can be compared to Section 6.3.1: decreasing the

primary (from 1995.60 nm) while keeping the secondary constant (at

1995.05 nm) in Figure A.1, as both methods change the detuning in the same

fashion.

However, when comparing the figures for decreasing the primary temperature

in Figure A.1 to those for increasing the secondary temperature in Figure 6.8,

some differences can be seen. In Figure 6.8, for example, the effects of OIL of

the secondary laser to the primary can be observed from Ts = 4.9°C to 5.3°C,

when the side mode of the secondary overlaps with the main mode of the

primary laser. This region of SMO is significantly reduced to (3.0 ± 0.7) GHz

in comparison to the same region which measured (12.0 ± 0.7) GHz in

Figure A.1. This decrease (in the case of increasing secondary temperature,

compared to decreasing primary temperature in Section 6.3.1) may be due to

a reduction in the injection ratio. The primary laser has a higher power

penalty for temperature tuning (∆P/∆Tp = - 0.03 mW/°C), in comparison to

the secondary laser (∆P/∆Ts = - 0.01 mW/°C), as per Section 6.2.1.

Therefore, the injection ratio for the range in this section: Ts = 3.5°C to 16.5°C

with Tp = 41.1°C would likely be lower compared to the range in

Section 6.3.1: Tp = 22.0°C to 42.0°C with Ts = 10.0°C. The relation between

injection ratio and OIL is investigated in further detail in Section 6.3.3.
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primary

secondary

(a) Optical domain. Colourbar = optical power (P) in dBm.

(b) Electrical domain. Colourbar = relative intensity (RI) in arbitrary units.

Figure 6.8: The primary was then fixed and the wavelength of the secondary laser
swept by increasing Ts from 3.5°C to 16.5°C. Figure 6.8 shows false colour-plot combi-
nations of each 0.1°C measurement overlaid.

Other differences include high intensity features observed in Figure 6.8b in the

power spectrum of the laser around 4°C, which may correspond to nonlinear

dynamical behaviour close to the OIL boundary of the lower wavelength side

mode. The analysis of such features was not in the scope of this thesis and can

be found in references: [176], [177], [178]. Another notable difference
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between Figure A.1b and Figure 6.8b is the shape of the ESA beating peak

curve. However, this beating peak curve for increasing secondary temperature

can be mapped almost exactly onto the beating peak curve for decreasing

primary temperature if flipped by 180 degrees. In the case of tuning the

secondary while fixing the primary (vs. tuning the primary while fixing the

secondary), it is proposed that the beating dynamics are similar but the

regions of linearity and frequency ‘pushing’ are reversed.

Decreasing λs

Finally, the secondary wavelength was decreased (from 1995.90 nm) while

holding the primary constant (at 1995.50 nm). The false colourplot images for

this section can be found in Figure A.4 of Appendix A. This scenario for

decreasing the secondary while keeping the primary fixed (Figure A.4) can be

compared to increasing the primary while keeping the secondary fixed

(Figure 6.7). In previous experiments in this chapter, decreasing the primary

wavelength to reduce detuning resulted in a reduction in the OIL bandwidth

(in comparison to increasing primary wavelength). Less of a reduction in the

OIL bandwidth was seen for decreasing the wavelength in this case, with the

region of SMO at the side mode measured to be the same in each case, (3.0 ±
0.7) GHz for both increasing and decreasing Ts. Slight broadening in the OIL

bandwidth was recorded at the main mode with (4.5 ± 0.7) GHz for

decreasing Ts and (3.0 ± 0.7) GHz for increasing Ts. This further

demonstrates that when tuning the secondary rather than the primary, the

injection dynamics are similar but reversed.

Ideally, for demultiplexing purposes, there would be an improvement in

channel isolation in the identified regions of SMO. To investigate the impact of

OIL on the channel isolation, the SMSR and OSNR of the primary signal are

used as figures of comparison in this section. The OSNR was calculated by

analysing the OSA spectrum and the power ratio between the primary signal

peak at centre wavelength and the median noise level (~−53 dBm, across a

5 nm span). The SMSR was taken as the power ratio between the primary

signal and the highest power side mode, for consistency between the regions

with/without SMO. The results of these calculations can be seen in Table 6.2.

The Ts values chosen were those which maximised SMSR and OSNR values in

each region. As can be seen from Table 6.2, the SMSR improved from ~20 dB

in the region without SMO (at Ts = 7.5°C) to ~32 dB in the region with SMO
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Table 6.2: SMSR and OSNR results corresponding to Ts values inside and outside the
two recorded regions of SMO from Figure A.4a

Ts(°C) SMO SMSR (dB) OSNR (dB)
7.5 ± 0.1 No 20 ± 1 26 ± 1

12.3 ± 0.1 No 22 ± 1 28 ± 1

5 ± 0.1 Yes 32 ± 1 37 ± 1
12.5 ± 0.1 Yes 34 ± 1 36 ± 1

(at Ts = 5°C). Likewise, in this case, the OSNR improved from ~26 dB to

~37 dB, respectively, resulting in an improvement of 12 dB in SMSR and

11 dB in OSNR. Similar figures were recorded around the second region of

SMO at 12.5°C, with an OSNR improvement of 8 dB in this case. These SMSR

and OSNR improvements indicate that implementing OIL techniques into

2 µm DWDM systems could improve laser performance and also increase

channel isolation in the receiver.

6.3.3 Further OIL analysis

Table 6.3 summarises the results from the four OIL scenarios depending on

increasing/decreasing temperature for the primary or secondary lasers (Tp/Ts).

The width of the SMO at the side mode (SM) and OIL bandwidth at the main

mode (MM) is given in GHz for each case. Locking bandwidths of ~10 GHz

are standard for semiconductor lasers [179]. This summary again shows that,

due to the low flexibility of operating conditions of the two lasers, the OIL

bandwidth is compromised when the secondary is tuned to the primary rather

than vice versa. Nevertheless, stable OIL was observed in all cases.

Injection Ratio

In Section 6.3.2, it was discussed that the observed decrease in OIL bandwidth

(when tuning the secondary laser vs. tuning the primary in Section 6.3.1) may

be due to a reduction in the injection ratio. For this reason, the relation

between injection ratio and OIL bandwidth is investigated in further detail in

this section. Typically, the OIL bandwidth will increase if the ratio of injected

primary power to secondary power (called the injection ratio) is increased

[180], [181].

In the experiments performed here, the primary laser was tuned to higher

temperatures (around 40°C) in the region of overlap compared to the
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Table 6.3: Summary of the results from the four OIL scenarios depending on increas-
ing/decreasing temperature of the primary/secondary laser (Tp/Ts). The width of the
SMO region at the side mode (SM) and OIL bandwidth main mode (MM) is given in
GHz for each case.

Tp Ts SMO SM (GHz) OIL MM (GHz)
Increased Fixed 15.0 ± 0.7 6.7 ± 0.7
Decreased Fixed 12.0 ± 0.7 3.7 ± 0.7

Fixed Increased 3.0 ± 0.7 3.0 ± 0.7
Fixed Decreased 3.0 ± 0.7 4.5 ± 0.7

secondary laser (around 10°C) within this window, which meant that the

secondary laser presented higher power (since both lasers suffered power

penalty with increasing temperature, as per Figure 6.2). For this reason, it was

difficult to obtain an injection ratio >0 dB, where the primary laser was more

powerful than the secondary. Therefore, as a proof of principle, decreasing

injection ratios were investigated. In this way, one would expect that as the

injection ratio is decreased, the OIL bandwidth should also decrease.

The injection ratio is typically defined as the ratio between the injected power

from the primary laser and the optical power of the free-running secondary

laser. However, as an initial investigation in this case, the injection ratio was

taken as the ratio of the primary laser peak power to the secondary laser peak

power at 1 nm distance apart on the coupled optical spectrum, with the

secondary wavelength then increased and swept across the region of the

primary laser’s (fixed) main mode as before.

Using this method, three distinct injection ratio measurements were made

with values of approximately -3 dB, -10 dB and -17 dB. As can be seen by

comparing Figure 6.9a, Figure 6.9b and Figure 6.9c, reducing the ratio of the

primary power to the secondary power did result in a reduction in the stable

locking range, as is indicated by the narrowing quiet region in the ESA data.

The minimum injection ratio measured was -17 dB because below that value

the margin of error became too large.

A smaller temperature increment would be needed for a more accurate

measurement beyond this point. Nonetheless, a trend was established and the

summarised findings are shown in Table 6.4. The injection ratio of the primary

to secondary power determines the effective OIL bandwidth for an OIL system.
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(a) Injection ratio of - 3 dB.

(b) Injection ratio of - 10 dB.

(c) Injection ratio of - 17 dB.

Figure 6.9: The secondary wavelength was swept across the fixed primary (by increas-
ing Ts) for a set of decreasing injection ratios from (a) to (c).
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Table 6.4: Summary of results showing the relation between injection ratio and OIL
bandwidth (BW).

Ratio (dB) OIL BW (GHz)
-3 2.2 ± 0.7

-10 1.5 ± 0.7
-17 0.7 ± 0.7

Stability over time

Finally, if this OIL technique were to be implemented in a DWDM transmission

system, the lasers must remain locked, and not display thermal drift, over long

periods of time to ensure error-free performance. This section presents a

preliminary investigation into possible temperature drifts that could affect OIL

as part of a DWDM transmission system, where low BERs are sensitive to small

drifts in wavelength.

To test suitability for this, OIL was achieved (by decreasing Ts to 12.8°C while

Tp was fixed at 41.1°C) and an automatic peak search of the ESA data was

performed every 30 seconds for over 24 hours. The peak search was

performed after the noise floor was subtracted from the active data. The

minimum peak threshold was set to 4 GHz, as this was the approximate

minimum beating peak recorded in previous measurements.

Figure 6.10 shows several snapshots of this data acquisition in 6-hour

intervals. No beating peaks were detected over 24 hours, thus the lasers

remained locked. By comparing the optical spectra at the start and end of this

24-hour measurement, it was also found that the lasing peak of injection

locked lasers did not display any thermal drift over the time period, further

indicating the suitability of these lasers for potential implementation in an

optical communication system.

Chapter summary

Optical injection locking (OIL) is a technique that has been employed for

demultiplexing in the 1.55 µm transmission window [40], [41], [42]. In the

2 µm transmission window, insufficient demultiplexing techniques in the

receiver has been identified as a barrier to reducing channel spacing and

optimising optical bandwidth in 2 µm DWDM systems. In this chapter, it was

shown that OIL can effectively lock a local oscillator (secondary laser) to the
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Figure 6.10: Results of stability test showing snapshots of the relative intensity vs.
frequency from the ESA data, in 6 hour intervals.

incoming signal (primary laser), which may have potential applications for

demultiplexing at 2 µm.

Thus, a study of stable OIL in the 2 µm wavelength region has been presented

utilising InGaAs/InP slotted Fabry-Pérot lasers. Common characteristics of OIL

were observed in both the optical domain and RF power spectrum, such as

injection ’pushing’, side mode suppression and the distinctive quiet region in

the electrical domain - denoting single frequency emission and stable locking.

Two locking regions were observed in each case; a region of SMO around the

side mode and stable OIL at the main mode.

A maximum stable OIL bandwidth of 6.7 GHz was measured at the main mode

for increasing primary temperature, with a region of SMO of 15 GHz measured
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6.3 Stable OIL at 2 µm

around the side mode in this case. These figures were reduced to 3.7 GHz and

12 GHz, respectively, for decreasing primary temperature, displaying OIL

hysteresis. SMSR and OSNR improvements of 12 dB were recorded, indicating

suitability for improving DWDM channel isolation at this waveband. In

addition, as expected in OIL systems, it was found that decreasing the injection

ratio (from –3 dB to –17 dB, for example) corresponded to a reduction in the

locking bandwidth (from 2.2 GHz to 0.7 GHz, respectively). Finally, the lasers

were shown to remain injection locked, with no thermal drift, for over 24

hours.
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Chapter 7

Conclusion

In this chapter, a summary of the research work presented in this thesis is

discussed and the main conclusions are highlighted.

7.1 Summary

Chapter 1 introduced the context, motivation and a brief overview of the work

in this thesis. The purpose of this work was to investigate the feasibility of

implementing DWDM systems at 2 µm. This purpose was pursued by

designing experiments to demonstrate DWDM at 2 µm and, consequently,

identify any barriers involved.

Chapter 2 began with the history of optical communication, how it has

developed into what we know today, and what the key enabling technologies

were along the way. In the historical context, shifting transmission to longer

wavelengths is not a new concept. Optical communication transmission

windows have shifted from 0.85 µm in the 1970s, to 1.33 µm in the 1980s and

then, finally, to 1.55 µm in the 1990s, where the focus of optical

communication research and development has remained since [7]. The

popularisation of the 1.55 µm wavelength window for optical communications

was primarily due to three key enabling technologies; semiconductor materials

for lasers and detectors, low-loss (~0.2 dB/km) standard SMF as a

transmission medium, and EDFAs to enable transmission over long distances

with high-gain, low-noise and minimal O-E/E-O conversion. It is the

convergence of these technologies that heralds the opening of a new

transmission window.
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Today, these key enablers can also be found in the 2 µm wavelength region.

Lasers for transmitters can be fabricated from strained InP materials (similarly,

detectors for receivers can be produced) [25]. Mid-IR fibres are available, such

as chalcogenide, fluoride (e.g. ZBLAN), and HC-PBGFs. HC-PBGFs are

especially interesting as they have a unique ‘cladding’ region that consists of a

honeycomb-like microstructure which confines light in the hollow core [19].

The transmission of light through air offers exciting advantages (compared to

transmission through solid silica), such as the potential to reach losses as low

as 0.1 dB/km [20], near-vacuum latency [21] and a reduction in the nonlinear

co-efficient by up to three orders of magnitude [22]. This could lead to much

higher power-handling capabilities and, consequently, higher achievable

capacities (up to four times the current limits) [23]. Finally, doped fibre

amplifiers based on thulium (rather than erbium) offer a bandwidth of 30 THz

in the wavelength region of 2 µm (double that of EDFAs at 1.55 µm) [26].

With key enabling technologies identified in Chapter 2, Chapter 3 provides an

introduction to implementing these technologies in an optical communication

system at 2 µm. As such, the essential components (in the transmitter and

receiver), parameters (such as BER and OSNR) and considerations (for

example, choice of modulation format) were discussed. A brief overview of the

evolution of 2 µm systems was presented, from single channel (with limited

8 Gbit/s) [123], to increasing the number of channels (employing WDM),

implementing advanced modulation formats and pushing the data rate

further [124]. In 2014, prior to this thesis, the record capacity for a 2 µm

system was 30 Gbit/s [125].

The challenge of increasing capacity at 2 µm was addressed in Chapter 4, with

100 Gbit/s system capacity achieved [126]. This factor-of-three capacity

increase was enabled by an improved systems design (doubling the number of

WDM channels), incorporating components with better frequency response

(such as new lasers, MZM and PD), and optimising the devices throughout the

setup to operate at higher data rates. 2 µm transmission was demonstrated

over 1.15 km of HC-PBGF (nearly four times further than previous records)

and also 1 km of SCF, with error-free performance recorded in both

cases [126]. However, within a given bandwidth, the capacity of a WDM

system depends on how closely optical channels can be packed in the

wavelength domain.

The challenge of improving spectral efficiency was addressed in Chapter 5.

Dense wavelength division multiplexing at
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7.2 Future Work

The goal for the experiments in this chapter was to emulate ITU-T standards

by reducing channel spacing to 100 GHz, and then 50 GHz. For the first time

at 2 µm, 100 GHz DWDM was presented [38]. Reduced 50 GHz channel

spacing was also demonstrated in terms of the 2 µm transmitter (with the

implementation of a 2 µm AWGr multiplexer for the first time). However,

spectral analysis in the receiver revealed that the channel isolation was

reduced to only ~10 dB at the detector for 50 GHz channel spacing [39].

Therefore, despite cascading both a tunable bandpass filter and an AWGr,

current filtering techniques were insufficient to demultiplex DWDM channels

in the case of 50 GHz spacing at 2 µm [39].

OIL has been used for filtering purposes and channel selection at 1.55 µm,

along with other applications in DWDM systems [40], [41], [42]. As such, OIL

was the focus of Chapter 6. If OIL were to be implemented as a filtering

mechanism in a 2 µm DWDM system, the receiver would need to incorporate

the secondary laser, which would then tune to the incoming DWDM primary

signal. Therefore, in Chapter 6, stable OIL was demonstrated with two slotted

Fabry-Pérot lasers at 2 µm, thus demonstrating that the wavelength of a

secondary laser can be locked to an incoming primary laser at 2 µm [44].

However, a full system analysis would be required in order to deduce the true

efficiency and feasibility of OIL as a filtering mechanism at 2 µm.

7.2 Future Work

The natural next step to this work would be to test if OIL can be used to

overcome the DWDM filtering limitations at 2 µm. As described previously, if

OIL were to be implemented as a filtering mechanism in the DWDM system,

the receiver would incorporate the secondary laser. This secondary receiver

laser could then be tuned to lock to the incoming DWDM channel under test

(which would take the place of the primary laser). Hence, one immediate

suggestion would be to repeat the OIL experiment (as detailed in

Section 6.3.2), with data imposed on the primary laser (using the MZM, for

example), in order to test if stable OIL is still observed and to measure if the

OIL bandwidth is affected. Once this is completed (and assuming a stable OIL

bandwidth was still maintained), further work would be required to

incorporate the OIL technique into the full DWDM system with 100 GHz

channel spacing (as per Section 5.2). The realisation of such a system would

require significant work from an experimental viewpoint, along with further
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analysis of the phase-locking aspect of OIL. If the OIL technique were to

successfully operate as a filter in this case, the final step in this comparative

process would be to reduce the channel spacing to 50 GHz in order to measure

if the channel isolation is improved in comparison to the measurements in

Section 5.3 (with improved OSNR measurement methods also needed).

7.3 Main contributions

Some of the main contributions of the work in this thesis, to the field of optical

communication systems, are highlighted below:

• 2 µm system capacity increased, with >100 Gbit/s achieved [38], [126].

• DWDM at 2 µm demonstrated, with 100 GHz spacing between

channels [38].

• Spectral efficiency improved, with the first demonstration of a DWDM

transmitter at 2 µm using 50 GHz channel spacing [39].

• First study of stable OIL with slotted Fabry-Pérot lasers at

2 µm [43], [44].

7.4 Discussion on 2 µm applications

While the main results presented in this thesis focus on DWDM at 2 µm, it is

worthwhile to note that the development of technologies within this waveband

may also be relevant to other areas of optical communications. In particular,

silicon photonics has been an area of interest for 2 µm applications. Silicon

photonics offers potentially lower costs and high compatibility with the CMOS

(complementary metal-oxide-semiconductor) industry and presents an

attractive option to integrate optical and electronic components onto a single

chip. For these purposes, it is desirable to find a material that has low

two-photon absorption and a high Kerr coefficient as this presents the best

combination between low losses and nonlinear processes. At 2 µm, silicon is

transparent, has low two photon absorption, and a high Kerr

coefficient [182], [183], [184]. These qualities make the development of

silicon photonic devices at 2 µm very promising [185]. Currently, some silicon

photonic devices at 2 µm have been demonstrated including arrayed

waveguide gratings [186], modulators [187], couplers [188], detectors [189],

Dense wavelength division multiplexing at
2 µm for future optical communications

154



7.4 Discussion on 2 µm applications

filters [190] and more.

Technology at 2 µm (especially OIL [180], for example) also has wide-ranging

applications in fields beyond optical communication systems because gases

such as water vapour (H2O), carbon dioxide (CO2) and hydrochloric acid

(HCl) have absorption peaks within the 1700 nm to 2025 nm window [18].

From an environmental viewpoint, water vapour is the most abundant

naturally-occurring greenhouse gas in the atmosphere. Greenhouse gases

absorb long-wave radiation and radiate it back to the surface, thus

contributing to global warming. When it comes to human influences, carbon

dioxide is the most dominant anthropomorphic contribution. Therefore, the

detection and monitoring of H2O and CO2 is very important [191].

Greenhouse gases can be detected via a light detection and ranging

(LIDAR) [192], [193], [194]. LIDAR is one of the most useful active remote

sensing systems in the detection of atmospheric aerosols, clouds, and

molecular species distributions [195]. An advantage of operating LIDAR at

2 µm, in particular, is that it is eye-safe. Eye-safety enables increased

transmitter energy, longer operating ranges and higher sensitivities, while

simultaneously avoiding interference with aircraft. As a consequence,

sophisticated LIDAR methodology, such as differential absorption lidar (DIAL),

can be applied at 2 µm [33], [34].

These remote sensing applications also extend to fields such as astronomy,

including for example, determining the concentration of water on the surface

of Mars. The atmospheric DIAL technique could be utilised to measure the

distribution of water on the Martian surface, which in turn could lead to sites

where signs of life may be found [196]. Thus, extensive research efforts are

focused on developing new technologies at 2 µm. For example, under NASA

programs, components including tunable pulsed lasers and optical detectors

have been developed at 2 µm [33]. In other areas of astronomy, such as at the

Laser Interferometer Gravitational-Wave Observatory (LIGO), 2 µm sources

are being considered due to the material properties of silicon at this

wavelength which would allow for higher powers, improving signal-to-noise

ratio for highly sensitive sensing techniques [197], [28].

In medicine, 2 µm applications include the non-invasive measurement of

glucose in the blood stream [29], [30], breath analysis using the exhaled CO2

level to monitor patients during anaesthesia [31], [32], and laser

surgery [198]. Finally, the detection of water content in air is an important
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parameter in many other applications such as agriculture, ecology and

material storage [35], [36].

7.5 Conclusion

The rise of augmented reality, artificial intelligence, self-driving cars,

high-definition video streaming, cloud storage and increased connectivity

through the ‘internet of things’ requires us to prepare for a future full of big

data, increasingly bandwidth-hungry applications and high-capacity demands.

Current forecasts project global internet traffic to triple from 2017 to 2022,

along with the number of internet-connected devices becoming three times

larger than the world’s population.

Historically, the frequency at which we transmit information has always

shifted if increased bandwidth/capacity was on offer and the technology

allowed. Shifting transmission to the 2 µm region offers exciting benefits due

to the availability of foundry-compatible components, mid-IR silica-based

fibres (that could offer lower losses, lower latency and higher power-handling

capabilities) and TDFAs (that could offer double the bandwidth of EDFAs).

Also, with only-optical conversion required, 2 µm transmission may be

especially attractive for high-capacity links, for example between data centres

where equipment turnover takes place every 3-5 years.

The wide range of applications for 2 µm technologies serves as both an

additional motivator for development in this waveband, and as an advantage -

in that some components are already available in this wavelength region,

ready to be adapted for optical communications. However, while some

commercial products are available, many 2 µm devices are first-generation,

non-optimal and expensive (in comparison to their standard off-the-shelf

1.55 µm counterparts). The challenges of these 2 µm components are then

further compounded when combined in an optical communication system.

Despite these challenges, the work in this thesis has established a DWDM

system at 2 µm with channel spacing of 100 GHz. System capacity has been

pushed beyond 100 Gbit/s by enabling a greater number of channels,

incorporating improved components and optimising the system to operate at

higher data rates. The next step to increase system capacity at 2 µm is to

improve the spectral efficiency by reducing the spacing between the DWDM

channels further. However, while this is achievable with current technologies
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in terms of the transmitter, insufficient filtering techniques have been a barrier

in the receiver. The demonstration of OIL within this thesis shows promise as a

potential future filtering solution at 2 µm.

Beyond improved filtering techniques, it is clear that much work is needed if

the 2 µm window is to prove competitive to the established 1.55 µm

standards. For example, improved integrated-photonic, high-performance

devices such as transmitters and receivers will be required to lower insertion

losses, improve thermal stability and enable higher data rates. Simultaneously,

commercial TDFAs with better stability are needed to compensate for losses,

increase optical power and truly test the nonlinear limits of HC-PBGF in this

wavelength region. Finally, further optical fibre research and development is

needed to enable transmission beyond tens of kilometres.

In a world of ever-increasing capacity demands, novel solutions are needed.

The future is more connected, automated and autonomous than ever before.

Opening a new transmission window at 2µm could supplement the available

bandwidth for future internet growth. This thesis demonstrates the

development in optical communication systems at this waveband.
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Appendix A

OIL images

In Chapter 6, experimental OIL investigations revealed different dynamics

depending on which laser was tuned (i.e. primary vs. secondary) and also

depending on the direction of tuning towards OIL (i.e. decreasing vs.

increasing). Hence, the findings were split between these four different

scenarios. This appendix provides some supplemental images for each case.

Figure 6.7 (increasing the primary laser) and Figure 6.8 (increasing the

secondary laser) from Chapter 6 are then repeated here (as Figure A.3 and

Figure A.2, respectively) for ease of comparison between the different

scenarios.
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primary

secondary

(a) Optical domain. Colourbar = optical power (P) in dBm.

(b) Electrical domain. Colourbar = relative intensity (RI) in arbitrary units.

Figure A.1: The wavelength of the primary laser was swept across the fixed sec-
ondary by decreasing Tp from 42.0°C to 22.0°C. Figure A.1 shows false colour-
plot combinations of each 0.1°C measurement overlaid. In comparison to Fig-
ure A.2, the region of SMO around the side mode in the optical domain is
reduced in this case. The width of the quiet region corresponding to stable OIL
at the main mode is also decreased.
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primary

secondary

(a) Optical domain. Colourbar = optical power (P) in dBm.

(b) Electrical domain. Colourbar = relative intensity (RI) in arbitrary units.

Figure A.2: The primary was then fixed and the wavelength of the secondary
laser swept by increasing Ts from 3.5°C to 16.5°C. Figure A.2 shows false colour-
plot combinations of each 0.1°C measurement overlaid. This figure can be com-
pared to Figure A.1, as the detuning is varied similarly in each case (i.e. in-
creasing the secondary ≈ decreasing the primary). Key differences include the
decreased region of SMO at the side mode in this case and the different shape
of the beating peak curve.
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primary

secondary

(a) Optical domain. Colourbar = optical power (P) in dBm.

(b) Electrical domain. Colourbar = relative intensity (RI) in arbitrary units.

Figure A.3: The wavelength of the primary laser was swept across the fixed sec-
ondary by increasing Tp from 22.0°C to 42.0°C. Figure A.3 shows false colour-
plot combinations of each 0.1°C measurement overlaid. SMO around the side
mode (from ~25.0°C to 27.0°C) can clearly be seen in the optical domain above
and stable OIL to the main mode is signified by the characteristic quiet region
in the beating peak curve in the electrical below.
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primary

secondary

(a) Optical domain. Colourbar = optical power (P) in dBm.

(b) Electrical domain. Colourbar = relative intensity (RI) in arbitrary units.

Figure A.4: The wavelength of the secondary laser was swept across the fixed
primary by decreasing Ts from 16.5°C to 3.5°C. Figure A.4 shows false colour-
plot combinations of each 0.1°C measurement overlaid. Previously, decreasing
the primary wavelength to achieve OIL in Figure A.1 resulted in a reduction in
the locking bandwidth. However, in this case, decreasing the secondary caused
an increase in the locking bandwidth at the main mode, perhaps indicating
that when tuning the secondary rather than the primary, the OIL dynamics are
similar but reversed.
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3. M. U. Sadiq, H. Zhang, J. O’Callaghan, B. Roycroft, N. Kavanagh, K.

Thomas, A. Gocalinska, Y. Chen, T. Bradley, J. R. Hayes, Z. Li, S. U. Alam,

F. Poletti, M. N. Petrovich, D. J. Richardson, E. Pelucchi, P. O’Brien, F. H.

Peters, F. Gunning, and B. Corbett, “40 Gb/s WDM Transmission over

1.15 km HC-PBGF Using an InP-Based Mach-Zehnder Modulator at

2 µm,” Journal of Lightwave Technology, vol. 34, no. 8, pp.

1706–1711, 2016.

doi:10.1109/JLT.2015.2508941

4. H. Zhang, N. Kavanagh, Z. Li, J. Zhao, N. Ye, Y. Chen, N. V. Wheeler, J.
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B. PUBLICATIONS

P. Wooler, J. R. Hayes, S. R. Sandoghchi, F. Poletti, M. N. Petrovich, S. U.

Alam, R. Phelan, J. O’Carroll, B. Kelly, L. Grüner-Nielsen, D. J.

Richardson, B. Corbett, and F. C. Garcia Gunning, “100 Gbit/s WDM

transmission at 2 µm: transmission studies in both low-loss hollow

core photonic bandgap fiber and solid core fiber,” Optics Express,

vol. 23, no. 4, pp. 4946–4951, 2015.

doi:10.1364/OE.23.004946

5. H. Zhang, M. Gleeson, N. Ye, N. Pavarelli, X. Ouyang, J. Zhao,

N. Kavanagh, C. Robert, H. Yang, P. E. Morrissey, K. Thomas, A.

Gocalinska, Y. Chen, T. Bradley, J. P. Wooler, J. R. Hayes, E. Numkam

Fokoua, Z. Li, S. U. Alam, F. Poletti, M. N. Petrovich, D. J. Richardson, B.

Kelly, J. O’Carroll, R. Phelan, E. Pelucchi, P. O’Brien, F. Peters, B. Corbett,

F. Gunning, “Dense WDM transmission at 2 µm enabled by an

arrayed waveguide grating,” Optics Letters, vol. 40, no. 14, pp.

3308–3311, 2015.

doi:10.1364/OL.40.003308

International conferences

1. N. Kavanagh, B. Murray, D. Goulding, P. E. Morrissey, R. Sheehan, B.

Corbett, and F. C. Gunning, “Enabling photonic technologies at 2 µm,”

in 19th International Conference on Transparent Optical Networks

(ICTON), pp. 1–4, 2017.

doi:10.1109/ICTON.2017.8024868

2. N. Kavanagh, K. Shortiss, H. Zhang, M. Sadiq, K. Thomas, A. Gocalinska,

J. Zhao, E. Pelucchi, P. O’Brien, F. Peters, B. Corbett, and F. Gunning,

“Impact of DWDM at 50GHz spacing in the 2 µm waveband,” in 2016

Conference on Lasers and Electro-Optics (CLEO), CLEO 2016, (San

Jose, California), p. SF1F.5, Optical Society of America, 2016.

doi:10.1364/cleo_si.2016.sf1f.5

3. N. Kavanagh, M. Sadiq, K. Shortiss, H. Zhang, K. Thomas, A. Gocalinska,

J. Zhao, E. Pelucchi, P. O. Brien, F. H. Peters, B. Corbett, and F. C. G.
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Gunning, “Exploring a new transmission window for

telecommunications in the 2 µm waveband,” in 18th International

Conference on Transparent Optical Networks (ICTON), pp. 1–4,

2016. Awarded Best Student Paper.
doi:10.1109/ICTON.2016.7550279

4. E. Russell, N. Kavanagh, K. Shortiss, and F. C. G. Gunning,

“Development of thulium-doped fibre amplifiers for the 2 µm

waveband,” in SPIE Photonics Europe, vol. 10683, p. 8, SPIE, 2018.

doi:10.1117/12.2306462

5. F. C. Garcia Gunning, N. Kavanagh, K. Shortiss, H. Zhang, M. Sadiq, K.

Thomas, A. Gocalinska, J. Zhao, E. Pelucchi, P. O’Brien, F. H. Peters, and

B. Corbett, “Enabling technologies for a new wavelength window at

2microns,” in IEEE Photonics Conference, IPC 2016, pp. 546–547,

2016.

doi:10.1109/IPCon.2016.7831223

6. M. U. Sadiq, H. Zhang, M. Gleeson, N. Ye, B. Roycroft, N. Kavanagh, C.

Robert, H. Yang, K. Thomas, A. Gocalinska, Z. Li, Y. Chen, N. V. Wheeler,

J. R. Hayes, S. U. Alam, F. Poletti, M. N. Petrovich, D. J. Richardson, B.

Kelly, J. O’Carroll, R. Phelan, E. Pelucchi, P. O’Brien, F. Peters, F.

Gunning, and B. Corbett, “40 Gbps WDM transmission over 1.15 km

HC-PBGF using the first InP-based Mach Zehnder modulator at

2 µm,” in European Conference on Optical Communication (ECOC),

vol. 2015-November, pp. 1–3, 2015.

doi:10.1109/ECOC.2015.7341853

7. H. Zhang, Z. Li, N. Kavanagh, J. Zhao, N. Ye, Y. Chen, N. V. Wheeler, J.

P. Wooler, J. R. Hayes, S. R. Sandoghchi, F. Poletti, M. N. Petrovich, S. U.

Alam, R. Phelan, J. O’Carroll, B. Kelly, D. J. Richardson, B. Corbett, and

F. C. Gunning, “81 Gb/s WDM transmission at 2 µm over 1.15 km of

low-loss hollow core photonic bandgap fiber,” in European

Conference on Optical Communication (ECOC), pp. 1–3, 2014.

doi:10.1109/ECOC.2014.6964083
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B. PUBLICATIONS

National conferences

1. N. Kavanagh, D. Goulding, and F. C. Garcia Gunning, "Injection

Locking at 2 µm", in Photonics Ireland, Cork, Ireland, 2018,

Presentation.

2. N. Kavanagh, B. Murray, D. Goulding, P.E. Morrissey, R. Sheehan, B.

Corbett, and F. C. Garcia Gunning, "Injection Locking at 2 µm", in

Photonics Ireland, Galway, Ireland, 2017, Poster.

3. N. Kavanagh, K. Shortiss, H. Zhang, M. Sadiq, E. Pelucchi, P. O’Brien, F.

H. Peters, B. Corbett, and F. C. Garcia Gunning, "Opening a New

Transmission Window for Telecommunications", in Institute of

Physics Spring Meeting, Belfast, Ireland, 2016, Poster. Awarded IOP
Rosse Medal.

4. N. Kavanagh, H. Zhang, J. Zhao, N. Ye, B. Corbett, and F. C. Garcia

Gunning, "Dense Wavelength Division Multiplexing at 2 µm", in

Photonics Ireland, Cork, Ireland, 2015, Poster.

Other technical publications

1. N. Kavanagh, and F. C. Garcia Gunning, "Opening a new transmission

window for optical communications", at the 69th Nobel Laureate

Meeting, Lindau, Germany, 2019, Poster.

2. N. Kavanagh, "Opening a new window for communications", at the

Conference on Lasers and Electro-Optics (CLEO), 2019, (San Jose,

California), "Pride in Photonics: LGBTQI+ and Allies Workshop",

Presentation.

3. N. Kavanagh, and F.C. Garcia Gunning, "Opening a new transmission

window at 2 µm for future optical communications", at the 4th LGBT
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STEMinar, Institute of Physics, London, UK, 2019, Presentation.

4. N. Kavanagh, "Future of the internet? Hollow-core optical fibres

could carry more information, even faster!" at the International

Week of Scientific Young Talents, Universcience, Paris, France, 2017,

Presentation.

5. N. Kavanagh, "The internet is not limitless", in the UCC Boolean

Journal, vol. 2015, pp. 81–86, 2015, Article.

Media publications

1. "5 young scientists to represent Ireland at major Nobel prize

meeting", by Colm Gorey, siliconrepublic.com, 2nd May 2019.

Siliconrepublic.com: >350,000 unique visitors generate >500,000

pageviews per month. Ireland’s leading science and technology news

service, with seven Irish Web Awards.

2. "Five scientists to represent Ireland at Lindau Nobel Laureate

Meeting", by Kevin O’Sullivan, irishtimes.com, 2nd May 2019.

Irishtimes.com: 10.8 million users per month and 58 million pageviews

per month.

3. "As people use the internet more and more we need to keep a step

ahead", by Claire O’Connell, irishtimes.com, 22nd December 2016.

4. N. Kavanagh, "Making light work of the Internet", in Science

Apprentice Book Series, Series 1, Book 4: Computers and Data,

pg.18-19, November 2016.

Total distribution/circulation for the Science Apprentice Book series was
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B. PUBLICATIONS

75,000 with a readership of >350,000. (The Science Apprentice project

was funded by the Science Foundation Ireland (SFI) Discover

Programme, also supported by the Environmental Protection Agency

along with partners Irish Independent and SuperValu.)

5. "20 incredible women leading the way to scientific advancement",

siliconrepublic.com, 14th November 2016.

6. "The future of networks: lighting up the digital world", by John

Kennedy, siliconrepublic.com, 3rd October 2016.

7. "Watch out for these 6 rising stars of Irish research",

siliconrepublic.com, 17th June 2016.

8. "Shot Of Scientist | Niamh Kavanagh Famelab Winner", by Nat

Newman, headstuff.org, 3rd June 2016.

Headstuff.org: 60,000 to 80,000 visitors per month. Arts and Culture

Blog of the Year 2016.

9. "Thesis in 3 finalists shine a spotlight on science", by Claire O’Connell,

siliconrepublic.com, 17th November 2015.
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Appendix C

Awards

Technical

1. May 2019 - 69th Nobel Laureate Meeting in Lindau: 580 young

scientists were selected from 88 countries to meet with 40 Nobel

Laureates in Physics. Applications were assessed by the Irish Research

Council (IRC) and selected by the Lindau Nobel Laureate Foundation,

following a rigorous and independent evaluation process.

2. July 2016 - Awarded Best Student Paper at an international technical

conference (ICTON 2016): selected by conference committee, based on

originality, technical excellence, scientific rigor, organization and clarity.

3. February 2016 - Institute of Physics Rosse Medal Award winner: for

graduate research communication to a broad audience via poster and

oral presentation at the national IOP spring meeting (38 entrants, 1

winner).

Non-technical

1. January 2017 - Irish Representative at International Week of

Scientific Young Talents in Paris, France: 42 young scientists were

selected from 26 countries. Success rate of 5% in Ireland (60
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C. AWARDS

applications, 3 selected).

2. November 2016 - Institute of Physics Early Career Physics

Communicator Award winner: recognising people who have

encouraged excellent communication of physics, submission by written

essay and oral presentation.

3. April 2016 - 1st place Famelab National Final: Famelab is the world’s

leading science communication competition to explain a scientific

concept to a panel of judges and a public audience in three minutes,

evaluated on content, clarity and charisma ( 100 entrants, 1 winner).

4. November 2015 - 2nd Place Thesis in 3 National Final: science

communication competition to explain a scientific topic to a public

audience in three minutes, judged on content, clarity and charisma ( 21

entrants, 3 winners).

Funding granted

1. January 2019 - Corning Women in Optical Fiber Communications

Travel Grant: to cover travel costs to the Optical Fiber Communication

Conference and Exposition (OFC), selected by The Optical Society

(OSA).

2. July 2017 - IOP Walton Fund: Successful application for C3000

(maximum amount) from Institute of Physics Ireland for outreach

equipment to be used in third level physics departments.

3. October 2014 - Granted Irish Research Council Postgraduate

Scholarship: individual research excellence award for four years PhD

funding (value C96,000) based on an objective selection process using

international, independent expert peer review, with a success rate of

20% (1051 applications, 218 awardees).
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