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Abstract

The development of general edit metric decoders is a challenging problem, especially with

the inclusion of additional biological restrictions that can occur in DNA error correcting

codes. Side effect machines (SEMs), an extension of finite state machines, can provide

efficient decoding algorithms for such edit metric codes. However, finding a good machine

poses its own set of challenges and is itself considered as an open problem with no general

solution. Previous studies utilizing evolutionary computation techniques, such as genetic

algorithms and evolutionary programming to search for good SEMs have found success in

terms of decoding accuracy. However, they all worked with extremely constricted problem

spaces i.e. a single code or codes of the same length. Therefore a general approach that

works well across codes of different lengths is yet to be formalized.

In this research, several codes of varying lengths are used to study the effectiveness of

evolutionary programming (EP) as a general approach for finding efficient edit metric de-

coders. Two classification methods — direct and fuzzy — are compared while also chang-

ing some of the EP settings to observe how the decoding accuracy is affected. The final

SEMs are verified against an additional dataset to test their general effectiveness. Regard-

less of the code length, the best results are found using the fuzzy classification methods. For

codes of length 10, a maximum accuracy of up to 99.4% is achieved for distance 1 whereas

distance 2 and 3 achieve up to 97.1% and 85.9%, respectively. Unsurprisingly, the accuracy

suffers for longer codes, as the maximum accuracies achieved by codes of length 14 were

92.4%, 85.7% and 69.2% for distance 1, 2, and 3 respectively. Additionally, the machines

are examined for potential bloat by comparing the number of visited states against the num-

ber of total states. The study has found some machines with at least one unvisited state.

The bloat is seen more in larger machines than it is in smaller machines. Furthermore, the

results are analyzed to find potential trends and relationships among the parameters. The

trend that is most consistently noticed is that — when allowed, the longer codes generally

show a propensity for larger machines.
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Chapter 1

Introduction

1.1 Overview

The constant improvement of computational technologies has paved the way for new disci-
plines, such as bioinformatics that has permitted in-depth analyses of massive amounts of
crude biological data that otherwise would have remained untouched. One of those areas
is the study of the genome, in particular, the base pair sequencing of the DNA strands. An
array of tools and methods have been developed for identifying genetic markers - DNA se-
quences that uniquely identify an organism or a trait. However, corruption of these markers
is a common phenomenon that occurs due to a variety of reasons. These errors need to be
detected and corrected in order to identify the original sequence. Unfortunately, the current
set of tools used in biological applications is extremely limited in terms of their ability to
correct such errors.

Decoding is a well-known problem across several scientific disciplines. However, the
inclusion of the biological restrictions makes it a particularly challenging problem in bio-
logical applications. Looking on the bright side, several new methods have been proposed
by researchers in the last few years. One of them, the side effect machine (SEM), used in
conjunction with evolutionary programming (EP), has shown promising results in terms of
decoding accuracy. However, the results are far from perfect as there remain many gaps in
fully understanding the nuances that are involved in developing such a solution.

This study aims to fill some of these gaps and establish a better realization of some of
the key parameters involved, in the process potentially improving the accuracy of the de-
coder. Overall, the goal of this study is to contribute to the ongoing research of developing
decoders for biological applications.

1
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1.2 Problem statement

The most common types of errors observed in a DNA sequence are caused by insertion,
deletion, and substitution of the base pairs. While the Hamming metric is well suited for
detecting substitution errors, it is not useful for decoding errors caused by insertion or
deletion of symbols. These errors are best understood using Levenshtein distance, also
known as edit distance. However, the cost of computing edit distance is much higher than
it is for Hamming distance — O(n2) vs O(n) respectively. This high run time complexity
leads to poor decoding performance and renders it unsuitable for use in real-world biolog-
ical applications. To minimize this heavy cost, a general decoder using SEMs, that allows
linear-time decoding, was proposed in [11]. Having said that, finding an efficient SEM is a
very difficult problem in its own right. Previous studies [14, 34, 31] have seen success by
applying various evolutionary algorithms to heuristically find effective machines. Even so,
due to the large size of the problem space and the probabilistic nature of the process, the
fitness of the machines often saturate at a local maximum and an optimal machine is never
found. Overall, the problem of finding efficient decoders for an edit metric code is still an
open problem with no general solution.

This research aims to contribute by studying a wider range of codes than what was done
by previous studies [11, 14, 34, 31]. The goal is to observe the effectiveness of evolution-
ary programming on these new codes to determine its merit as a generalized edit metric
decoder. Furthermore, this study will also perform in-depth analyses of the structures of
the successful SEMs, especially with respect to the number of states and their connectivity
to accurately identify and measure possible bloat in the SEMs.

1.3 Organization of the thesis

This thesis is organized as follows:
Chapter 2 reviews key concepts related to error correction in DNA sequences. It intro-

duces the reader to the general concepts of errors in data communication and their relevance
in biological contexts. It starts by giving a brief overview of errors in data communication
and discusses the common methods used today for correction. Some of these concepts
include Hamming distance, edit distance, error correcting code, and DNA structure.

Chapter 3 reviews relevant past work in relation to the creation of edit metric codes and
their use in biological applications. It also gives a brief overview of code creation meth-
ods proposed by previous studies, such as comma free code, marker code, and watermark
code. Finally, the chapter reviews the method of using SEMs as edit metric decoders and
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discusses previous approaches for developing and implementing such decoders for DNA
error correction.

Chapter 4 provides detailed descriptions of the SEM and its key characteristics. It ex-
plains the process of decoding using an SEM and discusses its merits and demerits against
other methods of edit metric decoding. It discusses upon the difficulties involved in devel-
oping SEMs to work as a general decoder. Finally, it concludes by explaining the optimiza-
tion techniques and trade-offs associated with using SEMs as general decoders.

Chapter 5 discusses the general concept of evolutionary algorithms (EAs) and their
application for solving hard optimization problems. It also gives a brief overview of the
key features of EAs such as solution representation, initialization, fitness, selection, and
genetic operators. After briefly talking about the different types of EAs, it provides an in-
depth look at EP as this is the technique used to generate SEMs in this thesis. Finally, the
chapter reviews how the different operations of EP are tweaked and tuned for developing
SEMs.

Chapter 6 discusses two methodologies — direct classification and fuzzy classification
— that are used for decoding error patterns. It describes how the two datasets, training
and verification, are generated for this study. Then, it shows the different parameter values,
used in direct classification technique to generate SEMs. Later, the fuzzy classification
with a tolerance value is implemented to improve the decoding capability of the generated
machines.

Chapter 7 shows the results of two different methodologies, direct classification and
fuzzy classification, to find the error correction accuracy over nine different codes with
different parameter settings. It also analyzes the different aspects of different parameters to
find out the relationships between them.

Chapter 8 gives a summary of the methods used with different parameter settings and
suggests future work to improve decoding using side effect machines.



Chapter 2

Background

This chapter discusses the key concepts related to error correction. It reviews the general
concepts of errors in data communication and their relevance in biological contexts.

2.1 Error in Data Communication

Data transmitted over most communication channels are subject to electrical or electro-
magnetic noise and other impairments and, as a result, are prone to corruption. Data is
considered corrupted when it has undergone unwanted modifications during the course of
transmission. In the field of data communication, such modifications are called errors.
Errors not only degrade the quality of communication but, depending on the amount, can
modify the sender’s data to such an extent that no meaningful information can be retrieved
from it by the receiver. Therefore, detection and correction of errors are of paramount
importance in ensuring reliable communication.

2.2 Classification of Errors

Data errors are classified into two types - single bit error and burst error. A single bit error,
as the name suggests, occurs when only one bit of the data unit has changed from 1 to 0 or 0
to 1. Figure 2.1 shows how a single bit error can occur in a noisy communication channel.
On the other hand, when two or more bits in sequence have been modified, it is called a
burst error.

4
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Figure 2.1: Single bit error in data communication

2.3 Error Detection

An error in a discrete signal can be represented as the difference between the original mes-
sage and the received message. The difference can be calculated using a bitwise exclusive
or (XOR) logical operation [41] that outputs true or 1 when the two bits differ and false or
0 otherwise. However, the lengths of the two messages have to be equal to perform this
operation. Table 2.1 shows an example of how the XOR operation is used to detect any
mismatch between two same-length patterns. If 10010011 is sent through a noisy chan-
nel and 10110011 is received by the receiver, the error that occurred during transmission
can be represented as the vector [00100000]. This vector also provides information on the
number of symbols that do not match, and it is called the Hamming distance between the
two words.

Message
Sent pattern 10010011

Received pattern 10110011
XOR 00100000

Table 2.1: Error detection using bitwise XOR operation

The Hamming distance is the number of unmatched symbols between two words of
the same length. It was named after Richard Hamming, an American mathematician, who
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introduced the idea in his paper on error detection and correction in 1950 [29]. The Ham-
ming distance between two strings, 01010101 and 10101010, is 8 as both strings have eight
characters and every character from one string is different from the corresponding character
in the other.

2.3.1 Error Detection Using Redundancy

A non-zero Hamming distance between two words indicates a mismatch which can be used
to detect a transmission error. However, this can only work if the receiver knows the origi-
nal message that was sent. In reality, the original message is unknown. The receiver has no
point of reference against which it can compare the received message in order to calculate
the Hamming distance. This problem is solved by transforming the original message us-
ing an algorithm before sending it through the channel. The process usually increases the
length of the original message without adding new information to its content, which is why
it is considered redundant information. If the message is altered during transmission, it will
no longer conform to the same algorithm and the receiver detects it as an error. Redundancy
is the central concept behind all error detection schemes used in modern communication.

2.4 Error Detection vs Error Correction

Error detection is not to be confused with error correction. In general, error detection
schemes are simpler and are not designed to perform the correction. They are commonly
used in digital data communication where the sender can be requested to repeat the mes-
sage. A few examples of such error detection schemes are parity bits, checksums, and
cyclic redundancy check (CRC). Error correction schemes, on the other hand, need to both
detect and correct the error without intervention from the sender. This is achieved by using
an error correcting code.

2.5 Error Correcting Code (ECC)

An error correcting code (ECC) transforms a sequence of data such that any errors intro-
duced to any of the data in the said sequence can be detected and corrected to a certain
extent. Each of the original strings is referred to as a codeword and the set of all codewords
is called a code.

Mathematically, an error correcting code is denoted as (n,M, d)q where:

• n = the length of the codewords
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• d = the minimum distance by which the codewords are separated

• M = the total number of codewords the code contains

• q = the number of symbols that occur in the codewords, e.g. binary codewords consist
of two symbols, 0 and 1. Hence, q = 2.

It is worth mentioning that M may not always be the optimal value for a code. A code
is optimal for a specific value of length n and minimum distance d if and only if it has the
highest possible number of codewords [22].

Error correcting codes have the ability of finding and correcting errors. When a word is
received, it is assumed that the codeword closest to the received word is the original word.
Therefore, if a received word completely matches with a codeword, there is no error. If
not, the closest codeword replaces the received word to decode the error. This process of
decoding is called maximum-likelihood decoding. However, there is an error correction
bound of a code depending on the radius of the sphere of each codeword. Figure 2.2 shows
the bounds of two codewords A and B of radius r. When a word, E1, is received, it finds its
closest codeword, B. Then, it checks if E1 is inside the sphere of B (the distance between
E1 and B is less than radius r). As it is true here, the error message E1 can be corrected by
replacing it with codeword B. However, error message E2 is outside of the spheres of both
A and B, and so will not be corrected to either A or B.

Figure 2.2: View of the Sphere Correction Bounds of Codewords A and B.
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Mathematically, an error correcting code can correct up to t errors. The value of t

depends on the minimum distance d between each codeword, where t = b(d − 1)/2c
[33, 43]. For example, with minimum distance 5, an error correcting code can decode error
patterns that have up to 2 errors. If an error pattern has more than 2 errors, the code is
unable to correct it as the received word gets closer to another codeword than the original
word. Similarly, there are some error patterns which are of equal distance from two or
more codewords, in which cases the correction becomes ambiguous [12]. Therefore, the
codewords are created well separated from each other. The implementation of such codes
is practical and effective in a lot of applications involving error correction.

2.6 The Biological Context

Often in science two seemingly unrelated disciplines find a common problem of interest.
Coding theory and bioinformatics have found one such common problem in error correc-
tion. This has turned out to be a huge challenge in the field of genomics, in particular with
respect to DNA sequencing.

2.6.1 DNA Structure

DNA, Deoxyribonucleic acid, is built with two strands of nucleotide molecules running in
opposite directions and circling each other forming a double helix. The most important
components of a nucleotide are a phosphate group, a sugar, and a nitrogen base. There are
four types of nitrogen bases as shown in Figure 2.3. These are adenine (A), thymine (T),
guanine (G), and cytosine (C). A and G are examples of purine and C and T are examples of
pyrimidine. Because of the chemical structure, A can form two hydrogen bonds with T and
G, can form three hydrogen bonds with C [35]. These bases create bonds to form the dou-
ble helix formation of DNA and the codes are sequenced along with it. As each base can
only bond with a specific base partner (A pairs with T and G pairs with C), it is called com-
plementary base pairing. The sequence of these bases determines the genetic instructions
encoded in the proteins that determine key characteristics of every living organism.

2.6.2 DNA Sequence

The order in which the nucleotides appear in DNA to create the double helix formation is
commonly referred to as the DNA sequence. The nitrogenous bases are used to characterize
the nucleotides as they are the only components that differ in them.
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Figure 2.3: DNA structure [8]

2.7 Errors in DNA sequences

Over the years there have been several methods of sequencing DNA. The most modern
techniques examine the fluorescent-dye intensity signal generated by automatic sequencing
machines to determine the nitrogen bases [46]. However, this process is prone to errors and
the sequence obtained by it is not entirely trustworthy. The most common sequencing
errors can be classified into the following three basic categories:
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1. Insertion: Occurs when a base is wrongly identified in a place where there is none.
E.g. AATCAAG in place of AATCAG.

2. Deletion: Occurs when a base is not identified in a place where there is one. E.g.
ATCAG in place of AATCAG.

3. Substitution: Occurs when the wrong based type is identified. E.g. ATTCAG in place
of AATCAG.

2.7.1 Error correction in a DNA Sequence

Upon observation, it can be seen that the sequencing errors mentioned earlier are funda-
mentally similar to errors encountered during transmission over a noisy communication
channel. This makes the correction schemes discussed in coding theory applicable in the
field of genomics.

While the Hamming distance is a decent choice for correcting substitution errors, it
is not useful for detecting insertions and deletions. As discussed earlier, the Hamming
distance is a measure of unmatched symbols between two codewords of the same length in
which only substitution errors are expected. It does not work in situations where insertions
and deletions may occur. A different measure called the edit distance must be used in order
to identify such cases.

2.7.2 Edit Distance

The edit distance or Levenshtein distance [37] quantifies dissimilarity between two words
by counting the minimum number of operations to change one word to another, where
the operations are insertions, deletions, and substitutions of symbols. Therefore, the edit
distance varies from the Hamming distance. Algorithm 1 shows the procedure to find the
edit distance between two strings, which is reproduced from [44].

The algorithm takes two stings, x and y of length n and m respectively and returns the
edit distance between them. The problem can also be expressed as finding the minimum
operations required to convert x into y and vice versa. The algorithm uses dynamic pro-
gramming to break up this problem into smaller sub-problems where every sub-problem
deals with finding the minimum number of operations required to make a sub-string of x
equal to a sub-string of y. This is done by creating a matrix of n × m where x and y are
constructed bottom-up, i.e. from a null string to their complete forms and each cell stores
the edit distance between the respective sub-strings up to that point. For a given cell, the
three adjacent cells to its upper left — diagonally, vertically and horizontally — can be
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used to represent substitution, deletion and insertion operations respectively. Hence the
distance at any cell can be expressed as the minimum value of the three neighbouring cells
plus the cost of converting itself. Using this principle, the algorithm populates the matrix
at a run-time cost of O(n2) and eventually the bottom-right cell returns the edit distance
between x and y.

1 Input: Two Strings: x = [x1, x2, ..., xn] and y = [y1, y2, ..., ym]
2 Output: Edit distance between the strings
3 int d[0, ..., n][0, ...,m];
4 for i = 0 to n do
5 d[i][0] = i;
6 end
7 for j = 0 to m do
8 d[0][j] = j;
9 end

10 for i = 1 to n do
11 for j = 1 to m do
12 if x[i] = y[j] then
13 cost = 0;
14 else
15 cost = 1;
16 end
17 d[i][j] = MIN(d[i− 1][j] + 1, d[i][j − 1] + 1, d[i− l][j − 1] + cost);

18 end
19 end
20 return d[n][m]

Algorithm 1: Dynamic programming algorithm for calculating edit distance [44]
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Table 2.2 shows an example of distance measurement between two words. The Ham-
ming distance is 8 as it requires 8 substitutions to convert one word to another. However,
the edit distance is 2 as the former can be transformed into the latter by removing the
0 from the beginning (most significant bit) and inserting a 0 at the end (least significant
bit). Therefore, codes formed with edit distance are better choice than those with Ham-
ming distance for use in bioinformatics applications because they can correct insertions
and deletions along with substitutions, which are all common in sequencing.

Word 1 01010101
Word 2 10101010

Hamming distance 8
Edit distance 2

Table 2.2: Difference between Hamming distance and edit distance of two words

Codes generated using the edit distance as the minimum distance between codewords
are called edit metric codes. These codes are particularly suitable for genomic applications
due to their ability to account for insertions and deletions as well as substitutions.

2.8 DNA Error Correcting Code

Sequence tags[1] are relatively short DNA sequences which provide identifying informa-
tion about an organism. These tags are unique and easily detectable in the genome by the
polymerase chain reaction (PCR). Therefore, they serve as important elements in a genetic
construct. Incidentally, the process of sequencing a genetic construct is prone to error.
Errors, such as misreading a base, skipping a base, reading a base that is not in the se-
quence tags are common in biological applications. However, if the tags are stored well
separated from one another, they can be used as codewords to design an edit metric code
called the DNA error correcting code that can correct such errors. This code with param-
eters (n,M, d)q should have a value of 4 for q, as a DNA sequence is constructed with
4 symbols A, T, C, and G. Construction and decoding of DNA error correcting codes are
further discussed in the following chapter.



Chapter 3

Literature Review

This chapter first discusses the general code creation techniques. Then, it discusses some
advanced techniques to decode codes. It also talks about the constraints in codes and
why general techniques struggle in biological problems. Finally, it shows the previous
approaches that use SEMs in edit metric decoding.

3.1 Construction of Codes

Error correcting codes may be generated using Conway’s lexicode algorithm [16]. This is
a greedy algorithm that creates a code C(n, d) by examining each possible codeword of
length n in an ascending lexicographical order and selecting those that have a minimum
distance of d from all existing codewords in C. The algorithm begins by initializing C as
an empty list and continues by populating it with compatible codewords, i.e. codewords
satisfying the aforementioned distance rule. Conway’s lexicode algorithm was originally
defined with Hamming distance, but edit distance can also be used. It is a slow process as
all possible codewords are examined.

In [2] Ashlock made small modifications in the original Conway’s lexicode algorithm
to create edit metric lexicodes. The goal was to construct DNA codes with a maximum
number of codewords. These codes, which may have biological restrictions, were later
used as embeddable markers for cDNA libraries. An evolutionary algorithm named the
Greedy Closure Evolutionary Algorithm was used to change the order in which the words
were selected. Initially, three random seed codewords were placed in an empty set of
codewords to create a parent. The seed codewords maintained the predefined minimum
distance between each other. Later, binary genetic operators made a comparison between
the seeds of two parents for reproduction. The children were created by first selecting
the common seed words from the parents and later randomly distributing the remaining

13
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words in them. Afterwards, the code was created by Conway’s lexicode algorithm using
the seed as a starting point. Fitness was measured for each new child based on the size of
the code. If any child violated the minimum distance rule, it was given a fitness value of
zero and ignored for further selection. This procedure continued for a predefined number
of generations and produced the codes with a maximum number of codewords where each
codeword maintained the minimum distance between one another. It was found that in
terms of the code size, the greedy fitness evolutionary algorithm [2] performed better than
the unmodified lexicode algorithm.

Houghten et al. [32] used a variation of Conway’s algorithm to optimize the process of
generating edit codes. The method creates a new child code by mixing two known parent
codes and appending a new random codeword at the end. Conway’s lexicode algorithm is
then used on the child code to filter out incompatible codewords. Compared to conven-
tional applications of Conway’s lexicode algorithm, this method reduces the computational
complexity of generating edit codes and allows codes with longer codewords to be built
much faster, albeit not without a trade off i.e. the codes generated in this way are usually
smaller.

Ashlock et al. [4] concluded that mutation was a more effective reproduction method
than crossover for finding codes. Crossover is overly aggressive in eliminating weak can-
didates and thus converges to good solutions too quickly. As a result, the population loses
its diversity fairly early in the evolution process and begins to produce children identical
to the parents. Mutation, on the other hand, allows weaker children to be produced from
fitter parents adding more diversity to the population as well as slowing down the rate of
convergence to the final solution.

The problem of creating error correcting codes is a well-studied one. Previous stud-
ies [5, 3] examined a variety of approaches to create codes with as many codewords as
possible. In [5] four different algorithms were attempted for synthesizing error correcting
codes over the DNA alphabet. In the end, although the salmon algorithm enhanced the
performance of the shorter codes capable of correcting single errors and the ES-algorithm
provided improvements to the medium-length codes, the most significant improvements
came due to the continuous advancements of computer hardware, as was forecasted by
Moore’s law. In [3] three different types of evolutionary algorithms were considered to
improve the upper bound of nine DNA error correcting codes using a ring optimizer and
a hybridizing evolutionary algorithm. The hybridizer started with the output of the ring
optimizer, that already increased the size bounds of two codes, and managed to increase it
further for four more codes. Overall the study managed to push the boundaries of the table
of known best code sizes to distance 13 and was able to correct errors with up to 6 edits in
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a DNA marker of length 14 or more. It also anticipated further improvements with more
powerful computers using the same approach.

3.2 Decoding of Codes

Given a corrupted word, decoding is the process of finding the correct codeword from
an ECC. The process of decoding may vary based on ECC properties which are usually
dictated by applications.

A code is called comma-free when no predefined symbol, such as a “comma”, is re-
quired to separate its codewords from one another. It was first introduced by Crick et al.
[17] in 1957. The code consists of non-overlapping codewords with distinct starts and ends
so that they can be distinguished from one another without having to place separators to
mark their boundaries. This allows the decoders to catch errors fast and regain synchro-
nization. However, a major drawback of comma-free codes is that they are unable to correct
insertion and deletion errors.

Sellers proposed marker codes [40] to identify and correct insertion and deletion errors
in the edit metric. The code is, in fact, a concatenation of two codes — an inner code
that detects errors and an outer code that corrects them. It works by appending to each
codeword a unique marker sequence that the outer burst-error-coding code can examine to
look for errors. The sequence acts as a synchronization mechanism and allows the code
to detect insertion and deletion errors between markers. The error correction capability is
proportional to the length of the marker sequence i.e. the longer the sequence, the more
errors it is able to correct. However, it introduces redundancy, which reduces the overall
throughput of the actual data and limits the rate at which information can be sent.

Watermark codes, introduced by Davey el al. [19] and further studied by Ratzer and
MacKay in [39] are similar to marker codes in that they are also concatenated codes that
rely upon an inner code to detect insertion and deletion errors and an outer code that is
used for correcting substitution errors. A known watermark sequence is added to each
codeword. The idea is akin to writing on a sheet of paper that has a watermark on it, where
the integrity of the written data can be determined by inspecting the watermark for mor-
phological changes. First, the codewords are examined by the inner code against a known
watermark to check for insertion and deletion errors. Once the locations of the errors are
identified, and the insertions removed, the codeword is left with nothing but substitution
and deletion errors. However, these deletion errors can be interpreted as substitutions by
null and be treated as substitution errors. This leaves substitution error as the only type of
error remaining in the codewords enabling Hamming distance to be used for their correc-
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tion. At this point, the codewords are sent to the outer code which is designed to correct
these remaining errors.

However, these codes are not suitable in DNA sequencing problems as they maintain
a specific structure [12]. In addition, DNA sequencing requires correct hybridization of
single DNA strands to their target strands which are constructed with several biological
restrictions [9] [42] [45]. Therefore, depending on the problem, DNA error correcting
codes are typically constructed with several constraints, such as GC-content constraint,
reverse-complement constraint, edit distance constraint, and thermodynamic constraint to
name a few. All in all, general edit metric decoding using edit distance is very inefficient
and calls for alternatives. Previous studies considered the use of side effect machines in an
effort to optimize decoding performance.

3.3 Decoding of Codes using side effect machines

Side effect machines (SEMs) are an offshoot of finite automata. They are described fur-
ther in Chapter 4. SEMs were first used to decode an edit metric code, with parameters
(12, 55, 7)4 in [11]. A quaternary edit metric code (q = 4) was chosen due to its suitability
for bioinformatics problems. Two approaches were introduced in this study. The first one
implemented a general error correction decoder named Single Classifier Machine (SCM)
with the help of a genetic algorithm (GA). The SCM converted all codewords of an error
correcting code into classification vectors. An error pattern was decoded by converting
it into a classification vector and comparing that against the classification vectors of the
codewords in order to find the closest match using Euclidean distance. The difference with
conventional edit metric decoding was the use of Euclidean distance instead of the classic
edit distance, which helped reduce the runtime complexity from O(n2) to O(n). How-
ever, this made the decoding process an approximation. Therefore the fuzzy classification
method was introduced as the second approach to improve the decoding accuracy. The
main difference between the SCM and the fuzzy classification was the distance function
where the latter also used edit distance, as described further in Section 6.6. Error patterns
with distance 1 and 2 were created to examine the performance. The result showed that
the best SCM corrected around 80% of the errors where fuzzy classification enhanced the
performance by another 10%. The study used 3 different fixed sizes of 6, 12, and 18 states
for the SCMs where the ones with 6 states performed poorly compared to the other two.

The previous work was expanded in [14] where five different codes of length 12 and
a minimum edit distance of 7 were used. The number of codewords in each code ranged
between 54 and 56. Each code was tested with machines of size 2 to 30. It was found that
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the accuracy of decoding increased rapidly up to machine size 12 and then plateaued from
there on out. This study also decoded the error patterns using a locking side effect machines
(LSEMs) technique where the codes were broken into subclasses. This method used the
idea of multiple SEMs working together in a tree structure to classify the codewords in a
better way.

In [34] a recentering-restarting evolutionary algorithm was used along with the basic
genetic algorithm for generating SEMs. The results were compared with the previous study
by testing with similar datasets. The number of codewords in the three codes used were 55,
60 and 60. The recentering-restarting GA algorithm was executed with a direct and indirect
transposition representation. The results showed that indirect transposition representation
had a strong ability to generalize SEMs when the number of states decreases. Using this
method, SEMs with a small number of states (4 and 6) performed significantly better with
fuzzy classification than it did with direct. However, this trend was not observed when
the SEMs were generated using the direct transposition representation. It achieved results
similar to those obtained with the basic GA where the error correcting ability improved as
the number of states increased. Further investigation was suggested for larger codes and
the number of states.

Brown [13] examined side effect machines to estimate their placement within the Chom-
sky hierarchy. It also provided a mathematical relationship between an error correcting
code and the number of states to correctly map an error pattern to a codeword. If a binary
code, over Σ symbols, has length n and a set of codewords w, then there exists an SEM of
| Σ |n +w states which can decode an input string to a codeword. It explains the fact that
SEMs for longer codes tend to need more states.

The latest study [31] on this topic examined the use of evolutionary programming (EP)
for the creation of such decoders. EP is described in more detail in Section 5.3. The main
advantage of using EP over GA was the easy modification of the number of states. The
same codes from [34] were used in the study. The results were quite similar to earlier
studies especially for error patterns with distance 1. The ability to modify the size of the
SEMs using mutation operations that add states or remove states during evolution added
a new dimension. It did not restrict the machines to a fixed size, rather allowing them to
freely evolve (within a given range) to a size that would produce the best results. The study
used a range of 4 to 18 states within which the machines were allowed to evolve. However,
the machine sizes obtained over 100 experiments were inconsistent. The size varied from
9 to 18 states. Although larger machines performed better than the smaller ones, the fitness
value did not improve significantly after 14 to 16 states. Moreover, although a preference
for larger machines was observed, their association to better fitness could not be confirmed
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due to the potential bloat that might have existed in the machines.
The above studies clearly demonstrate the importance of studying the different aspects

of the side effect machines for edit metric decoding. Furthermore, analyzing the best ma-
chines to determine the exact count of the used states to simplify the resulting machines is
yet to be attempted. Most importantly, all of the previous studies used codes of the same
length (12), as well as similar number of codewords, ranging between 55 to 60. Therefore,
it is a definite requirement to look at codes of other lengths to find out the effect of SEM
in different problem spaces. This thesis will be looking to fill these missing areas while
attempting to improve the decoding accuracy of the SEMs in the process.



Chapter 4

Side Effect Machines

This chapter introduces the side effect machine (SEM) and its key characteristics. It ex-
plains the process of decoding using an SEM and discusses its benefits against the tra-
ditional methods of edit metric decoding. It discusses upon the difficulties involved in
developing SEM to work as a general decoder. Finally, it concludes by explaining the
optimization techniques and trade-offs associated with using SEMs as general decoders.

A side effect machine [6] is an extension of deterministic finite automata. Each node of
the machine represents a state, one of which is preselected to be the start state. A counter
is placed on each state and is initialized to zero. The machine takes a string or a sequence
of symbols as input. The symbols are read in sequence and each symbol triggers a state
transition. As a state is visited, the counter associated with it is incremented. This is what
makes it different from a regular finite state machine (FSM). Once the entire sequence has
been processed by the machine, the counter values are stored in a classification vector [31].

4.1 Classification Vector

A classification vector is a representation of the number of times each state has been visited
in an SEM during processing of a given string. For an SEM with states 0, 1, 2, and 3 a
classification vector c = (c0, c1, c2, c3) can be defined such that every node represents the
number of visits for its respective state. Figure 4.1 shows a simple SEM with four states
0, 1, 2, and 3. State 0 is the start state as denoted by the double circle. The sequence of
ACTGCCGA produces the transition path 1, 1, 2, 3, 2, 2, 3, 0 and yields c = (1, 2, 3, 2),
as state 0 is visited only once, states 1 and 3 twice each and state 2 three times. Similarly,
input CCTAGAAT produces a transition path of 0, 0, 3, 0, 2, 0, 1, 2, which makes the
classification vector, c = (4, 1, 2, 1).

19
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Figure 4.1: A simple side effect machine of four states

4.2 Transition Matrix

A transition matrix [12] is a representation of a state machine in a tabular form. The size
of a transition matrix is S × Σ, where S is the number of states and Σ is the number of
input symbols. In the context of genomics, Σ=4 as there can only be 4 symbols in a DNA
sequence, namely A, C, T, and G.

The state machine shown in Figure 4.1 corresponds to the transition matrix of size 4 ×
4 shown in Table 4.1. It can be used to derive the transitions of a state for a given input.
For example, state 2 transitions to state 1 upon receiving T whereas state 1 transitions to
state 0 when G is received and so on.
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Input Symbol A C G T
State Number

0 1 0 2 3
1 2 1 0 2
2 0 2 3 1
3 0 2 3 1

Table 4.1: Transition Matrix of the SEM in Figure 4.1

4.3 Euclidean Distance

In an Euclidean space or a n-dimensional space, straight line distance between two points
is called Euclidean distance [12]. For example, if a = {a1, ..., an} and b = {b1, ..., bn} are
the vector representation of two points of a n-dimensional space, the Euclidean distance

between them is D(a, b) =
√

(a1 − b1)
2 + . . . + (an − bn)2. However, the actual distance

is not required when comparing between multiple points, but only their relative distance,
i.e. whether point X is closer to point Y or point Z. Therefore, the square root can be
ignored to reduce the computational cost [12]. Therefore, the actual calculation performed
in this work is (a1 − b1)

2 + . . . + (an − bn)2.

4.4 Decoding using Side Effect Machines

An SEM can be used to quantify how different two words are from each other. The words
can be compared by running their symbols through the state machine and finding the Eu-
clidean distance between the classification vectors that are produced. The same word will
always take the same path through the states and thus will produce the same classification
vector. Therefore, for identical words, the Euclidean distance between their classification
vectors will be zero. On the other hand, a larger Euclidean distance generally implies that
there are more differences between them.

This principle can be used to decode edit metric codes using an SEM. The idea is to
compare an error pattern with each codeword in a code to find out which one it resembles
most closely. To do this, the error pattern and the codewords are run through the SEM
and their classification vectors are computed. Next, the Euclidean distance between the
classification vector of the error pattern and that of the codewords are calculated. The
codeword that is associated with the smallest distance is considered to be the original word
as long as the distance is within a given tolerance, which is the error correction capacity of
the code.
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Classification
Vector

C0, C1, C2, C3

Edit distance
with

received
word

Euclidean distance
of classification

vector with
received word

Codeword1 ACTGCCGA 1 2 3 2 1 2
Codeword2 CCTAGAAT 4 1 2 1 5 22
Codeword3 ATCGACGT 2 2 3 1 3 6

received word ACTGCCGT 0 3 3 2 - -

Table 4.2: Comparison of edit distance with the Euclidean distance of the classification
vector for a sample word with three other codewords using the SEM of Figure 4.1.

Table 4.2 shows a simple example of how a SEM can be used to decode a received
word. Suppose a code has three codewords of length 8. If a word is received, the error
correction can be done by finding the smallest edit distance with all the codewords. Here,
it is found that received word, ACTGCCGT, has smallest edit distance with Codeword1,
ACTGCCGA. A SEM (Figure 4.1) can also be used to find the original word. First, the
SEM finds the classification vectors of all codewords and the received word by running
them through the machine. Then, the Euclidean distance between the classification vector
of the word and that of the codewords are calculated. It is also found that Codeword1 has
the smallest Euclidean distance to the received word which leads to a successful decoding.

4.5 Pros and Cons of using SEM in Edit Metric Decoding

The biggest advantage of using an SEM for decoding edit metric codes comes from the
avoidance of having to compute the edit distance which, in terms of performance, is the
costliest operation in the general decoding algorithms. Calculating the edit distance be-
tween two words of length n produces a runtime complexity of O(n2) [44]. In the general
decoding technique, the edit distance from the received word must be calculated for each
codeword which makes the entire process of error correction inefficient. This is why opti-
mizing the performance of the decoder remains an area of great interest among researchers
across disciplines. Although Hamming distance can be calculated in O(n) time, Hamming
distance codes are not appropriate because they are unable to detect insertions and dele-
tions. Therefore, they are insufficient for use in biological applications. The SEM, with
the help of its classification vector, provides a way to compare two words for insertion,
deletion and substitution and it is able to do so in O(n) time since the state machine makes
only as many transitions as the number of symbols in the word. Furthermore, SEMs can
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handle any structure of code with the addition of biological restrictions. This is why an
SEM is better suited to tackle the problem of decoding error correcting codes, particularly
in the field of genomics.

The downside of using an SEM as a decoder is its probabilistic characteristic since the
Euclidean distance is used as a cheap substitution for edit distance. Therefore, some SEMs
perform better than others for a specific code. Furthermore, two different sequence patterns
can obtain the same classification vectors or Euclidean distance from a SEM. This makes
the decoding process ambiguous. For example, two different words, AACG and ATCG,
will produce the same classification vectors when they are passed through the machine
in Figure 4.1. This is happening because there is a transition from state 1 to state 2 on
both input A and T. Therefore, the goal is to create a generalized SEM using evolutionary
techniques that will maximize the error correction capability.



Chapter 5

Evolutionary Computation

This chapter discusses the general concept of evolutionary algorithms (EAs) and their ap-
plication for solving hard optimization problems. It also gives a brief overview of the
key features of EAs such as solution representation, initialization, fitness, selection, and
genetic operators. After briefly talking about the different types of EAs, it provides an
in-depth look at evolutionary programming (EP) as this is the technique used to generate
SEMs. Finally, the chapter reviews how the different operations of EP are tweaked and
tuned for developing SEMs.

5.1 Evolutionary Algorithms

Evolutionary algorithms (EAs) form a class of metaheuristic optimization techniques. They
are a subset of evolutionary computation, a technique that was inspired by Darwin’s Theory
of Evolution. Darwin proposed a process in [18] called natural selection, also known as the
“survival of the fittest”. The fittest individuals are those who are best equipped with the
abilities to survive in their environment. They are the ones that grow to maturity, reproduce
and thus pass on their traits to their offspring. The individuals lacking such fitness either
do not survive long enough to reproduce or do so at a lower rate. This process, repeated
over many a generation, typically results in the “good” qualities to prevail while gradually
improving the average fitness of the entire population. This idea of biological evolution is
applied in evolutionary computation to heuristically find optimal or near-optimal solutions
for a variety of computation problems.

The basic idea behind any EA is to create a solution that gradually improves over time
and converges toward the best solution in a problem space. The process starts with a popu-
lation of candidates and selects the stronger individuals based on their fitness to reproduce
and create the next generation. Reproduction usually takes place in two ways — mutation

24
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and crossover. This process is repeated until an individual gets the (sub-)optimal fitness or
the number of iterations exceeds a predefined threshold. It is worth noting that the fitness
may plateau after a certain number of iterations without ever reaching optimal fitness.

5.1.1 Solution Representation as Chromosomes

Candidate solutions are represented as chromosomes in an organism. Each chromosome is
made up of a sequence of genes that encodes the characteristics in that organism. Candidate
solutions are also made in such a way that all the necessary information is present in one
solution according to the problem requirement. However, the candidate solution is not
required to have a direct mapping to the solution. In general, the representation scheme
defines how the problem is structured in the evolutionary algorithm. The set of all candidate
solutions at any given point during the evolutionary process is called a population.

5.1.2 Initialization

The initial population is generally filled up with random solutions from the entire search
space. This increases the chance of gradually evolving towards the best solution and re-
duces the possibilities of getting confined to a local search space. Seeding is another com-
mon method of initialization, where the initial population is constructed with known good
chromosomes.

5.1.3 Fitness

Fitness is a quantitative heuristic measure of the effectiveness of a solution in solving a
given problem. It can also be conceived as an understanding of how close a solution is to
an optimal solution.

A fitness function is an objective function that evaluates the fitness of a solution and
gives it a score. The score is calculated based upon certain criteria dictated by key parame-
ters in the problem space. Each individual in a population is given a fitness score which is
later used for selecting candidates for reproduction.

5.1.4 Selection

Selection in the evolutionary technique is modeled based on natural selection in biological
evolution. The selection process uses fitness to allow the fittest individuals to survive while
the others are eliminated. However, it should be noted that just as it happens in nature,
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sometimes lesser fit parents can also produce relatively fitter children as a result of a fa-
vorable genetic modification during reproduction. Therefore the selection process is often
devised in ways that allow for a few lower ranked members to be selected along with the
ones with the higher fitness scores.

5.1.5 Genetic Operators

In general, two types of genetic operators are used to create new candidate solutions.
Crossover is a genetic operator, also known as recombination, used to combine two

individuals’ chromosomes and create one or more children which inherit, in a certain way,
the genes of both parents.

The mutation operator is applied to a single individual in the population that promotes
diversity in the population. It changes single or multiple gene values in a chromosome. It
helps to explore the neighborhood of current solutions to find the undiscovered regions of
the search space.

5.2 Types of Evolutionary Algorithms

Based on implementation details, EAs can be categorized into four major types:

1. Genetic algorithm (GA) : The solutions of the problems, chromosomes, are usually
represented with strings or numbers and the data structures are allowed to evolve
using genetic operators, such as mutation and crossover.

2. Genetic programming (GP) : Similar to genetic algorithm, except the solutions them-
selves are computer programs. The programs can be represented as tree structures
where traditionally the nodes contain operators and the leaf nodes contain variables.

3. Evolutionary programming (EP) : Similar to genetic programming with one excep-
tion - only the numerical parameters of the data structures are allowed to evolve, not
the structures themselves. It is described further in Section 5.3.

4. Evolution strategy (ES) : ES is implemented with the goal of solving real-valued
function optimization problems. The mutation rate is self adjusted and used for so-
lutions represented as vectors of real numbers which is similar to EP [7].
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5.3 Evolutionary Programming

Evolutionary programming was first conceived by Lawrence J. Fogel in 1966 [27]. Al-
though similar to GA and GP, it differs from these algorithms in the way it places the
emphasis on evolving the behavior of a population rather than trying to emulate the genetic
operations that take place in nature. EP uses mutation alone as the method of reproduction.

EP is generally used as a method of optimization when an analytical search is inef-
ficient and other heuristics are either impossible or ineffective. It had been effectively
implemented to numerical and combined optimization challenges [23, 25, 24]. It is also
suitable for problems for which there exist many locally optimal solutions[47]. It was first
used for solutions represented as finite state machines and was later enhanced to use other
representations. No restrictions are imposed on the data types used to define the attributes
of a solution. However, the attributes are only allowed to evolve numerically, not struc-
turally, that is to say, no attributes are allowed to be added or removed from the original
data structure of the solution. In this thesis, the solutions are represented as SEMs (Section
5.4.2) and EP provides the ability to easily mutate them by adding or removing states and
modifying transitions. In addition, the solution space contains many local optima, making
it well suited for EP.

Other biological applications of EP include multiple sequence alignment of nucleotide
or protein sequences [15], flexible docking and drug design problem [28], reconstruction of
DNA sequence information from a simulated DNA chip [26], and classification problems
using DNA coding [21]. It has also been used in other disciplines, such as, in mixed
wireless controllers to control the direction of transmission [20], in fast voltage stability
index based reactive power planning [36], electromagnetic optimization problem [30], and
in transparent optical networks for survivable routing and wavelength assignment [10].

5.4 EP using SEMs

5.4.1 General Steps

1. An initial population of a fixed size is created with randomly generated SEMs.

2. Using the fitness function, each member is given a fitness score.

3. Children are created using mutation by changing the start state, modifying a transi-
tion or adding/removing a state.
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4. The children are given fitness scores and merge with the parents doubling the size of
the population.

5. All individuals are given a bout score using a bout system (Section 5.4.4).

6. The population is cut in half and brought back down to its initial size by selecting the
fittest members (based on bout score) to form the next generation.

7. Steps 3 to 6 are repeated until a solution with a desired fitness level is found or the
number of iterations reaches a predefined threshold.

5.4.2 Representation

Representation defines how a candidate solution is organized in a problem space. It works
as a chromosome to hold important information. As discussed in the previous chapter,
SEMs are represented using a transition matrix. The transition matrix stores the state num-
bers or the path it would follow for an input sequence. The size of an SEM is equal to the
state number that is initially generated randomly between the minimum and the maximum
number of states. Each state has four output transitions for four DNA symbols that can go
to another state or itself. When a SEM is given an input sequence, a pointer is placed at
a state, named as an initial state, to indicate which state to start from. In this thesis, state
0 has been selected for the initial state for every machine, which can be replaced with an-
other state through mutation. A machine can also add a new state, delete an existing state
or change the output transition to another state. However, when an input sequence is passed
through a machine, it does not require all its states to be visited. Not visited states, acting
as bloat, can stay in the machine without affecting the final fitness value. Bloat is unwanted
growth of the structure which increases computational cost and uses more memory.

5.4.3 Initialization

The candidate solutions are initialized (Section 5.1.2) randomly. The number of candidate
solutions depends on the population size. Randomization helps to distribute the population
over the problem space. Each candidate in the initial population also has a random number
of states from within an allowed range.

5.4.4 Bout System

The bout system is a selection (Section 5.1.4) process that is similar to tournament selection
[38]. As discussed previously, the best ranked candidates in a population do not always
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converge to the optimal solution. Therefore, the selection is performed using the bout
system to avoid always selecting only the best ranked candidates. Each SEM has a bout
score that is initially set to 0. Based on the bout size, this process selects distinct random
individuals for each SEM and runs a tournament between them to find out the bout score
of that SEM. For example, if the bout size is 5, each SEM in the population selects 5 other
SEMs and compares the fitness (Section 5.1.3) value with others. If the fitness value of the
SEM is better than another SEM, the bout score increments by one. Thus, each SEM in the
population gets an individual score that can later be sorted to select the best SEMs for the
next generation. In this thesis, the value of the bout size is 10.

5.4.5 Mutation

Mutation is a unary operation to modify an SEM from the parent population to the child
population. It plays an important role in evolutionary programming. It changes the struc-
ture of a machine randomly. Four different types of mutation are used in this thesis:

(i) Change a Transition

This operation changes a single transition of one randomly selected state. The program
randomly selects a transition from the transition matrix and change its ending state to an-
other state for this mutation. Figure 5.1 shows an example of it where the left SEM is
before mutation and the right SEM is after mutation. Here, a transition from state 2 to state
1 using input value of 3 has mutated to go from state 2 to state 0.
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Figure 5.1: Example of changing a transition
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(ii) Add a State

This type of mutation adds a new state into the machine at a random position. The state is
added only if the resulting size of the machine stays within the upper bound. It is then con-
nected to the rest of the machine by adding new outgoing transitions to randomly selected
states. Since no incoming transitions are created, the newly added state stays unreachable
from the rest of the machine. For this reason, the addition does not immediately make an
impact on the fitness of the machine, but rather relies on future mutations to possibly alter
the transitions in ways that allow the new state to be reached. It is also worth noting that a
machine with more connecting states does not guarantee a higher fitness value. Figure 5.2
shows adding a new state 3 to the machine.

Figure 5.2: Example of adding a new state
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(iii) Delete a State

This operation deletes a state from the machine at a random position as long as the resulting
size of the machine stays within the lower bound. The input edges from other states to the
removed state are connected to its previous state. Furthermore, if the state that is going to
be deleted is the initial state, then the next state that comes numerically after that will be the
new initial state. Figure 5.3 shows deleting state 1, from the machine. However, deleting
state 1 requires other modifications in this machine. There are two transitions from state
0 with input 0 and 3 and one transition from state 2 with input 3 to state 1 in the parent
machine. After deleting state 1, the output edges from state 0 and state 2 which were going
to state 1, will go to state 0 to maintain connectivity of the whole machine. Afterwards, all
states greater than the removed state are decremented by 1 to fill the void left behind by the
removed state and thus state 2 now becomes state 1.

Figure 5.3: Example of deleting a State
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(iv) Change Initial State

As mentioned before, state 0 is selected as the initial state at the start of the program. This
operation with predefined probability selects a state to make it the new initial state of the
machine. Figure 5.4 shows a mutation of changing the initial state from state 0 to state 2.

Figure 5.4: Example of changing an initial state



Chapter 6

Methodology

This chapter discusses two methodologies, direct classification (Section 6.3) and fuzzy
classification (Section 6.6), to decode an error pattern. Two datasets — training and veri-
fication — with identical characteristics are used for this study. The idea is to use the first
set to find the best possible solution, i.e. an SEM capable of correcting as many errors as
possible, and then verify its accuracy by running it against the second dataset. Each code in
the dataset consists of several codewords, from each of which are constructed a number of
error patterns with edit distances 1 to 3 from the codeword (Section 6.2). Each individual
in the population is an SEM. The fitness of a given SEM is calculated using a predefined
fitness function by running all the error patterns through it. Each member of the population
is then mutated (Section 5.4.5) to create a population of children which are then merged
with the parents. Based on their fitness (Section 6.3.1) only half of the members from the
combined population are selected to form the next generation. This process is repeated
for a predefined number of generations at which point the SEM with the highest fitness is
selected as the final solution. As mentioned above, the SEM is then tested against the sec-
ond dataset to verify its error-correcting capability across the problem space. Later, fuzzy
classification with a tolerance value is implemented to improve the decoding capability on
both datasets.

6.1 Dataset

Nine quaternary codes are used for the purpose of this study. All the codes are presented in
Appendix A. Each code consists of a set of words of a given length. Three different lengths
of codes — 10, 12, and 14 — are used in this experiment, where the three codes of length
12 are taken from [31]. All the codes are sets of strings of DNA sequence tags comprised of
symbols A, C, G, and T. However, the symbols of the DNA sequence comprised of symbols

34
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A, C, G, and T are replaced by numbers 0, 1, 2, and 3 respectively in order to reduce the
computational load and the memory footprint of the program.

3 1 2 1 1 0 0 0 3 3 1 3 2 3 2 1 0 2 0 2 1 1 3 1 0 1 3 1 0 0 2 2 2 2 0 0 0 1 2 2
3 3 3 0 0 0 2 2 1 1 0 2 3 3 3 3 2 2 2 2 0 3 3 2 2 3 3 3 3 0 3 0 1 1 3 2 3 0 0 1
1 1 1 2 0 2 2 3 2 1 3 2 1 1 1 1 1 2 2 0 2 1 0 2 3 3 3 0 1 3 3 0 0 3 0 3 1 2 3 3
0 0 0 0 0 0 0 0 0 0 0 3 0 3 3 1 1 1 1 1 0 1 0 0 1 1 3 3 2 2 0 0 2 1 2 2 2 1 1 3
2 2 2 3 1 2 1 3 3 1

Table 6.1: Code17-1: a (10, 17, 7)4 code

Recall (from Section 2.5) that an edit metric code is denoted as (n,M, d)q where n

is the length of the codeword, M is the total number of codewords in the code and d is
the minimum edit distance of the code. Table 6.1 shows a (10, 17, 7)4 code, labeled as
Code17-1 where the length of each codeword is 10, the total number of codewords is 17
and all codewords have a minimum edit distance of 7 from one another. For example, the
first codeword (3 1 2 1 1 0 0 0 3 3) sits at an edit distance of 8 and 9 from the second (3 3
3 0 0 0 2 2 1 1) and the third (1 1 1 2 0 2 2 3 2 1) codewords respectively, whereas the edit
distance between the second and the third codewords is 7. All of the nine codes used in this
study maintain a minimum edit distance of 7, thereby can correct up to t = (7− 1)/2 = 3

errors.

6.2 Creation of Error Patterns

Three sets of error patterns are created from every codeword. As mentioned earlier, there
are three types of errors commonly observed in a DNA sequence, namely insertions, dele-
tions, and substitutions. Therefore, the error patterns are generated by applying these mod-
ifications to the set of codewords. Each of these operations applied on a given codeword
produces an error pattern that is edit distance 1 away from that codeword. Similarly, in or-
der to create an error pattern with an edit distance of d, d modifications to the codeword are
required. Because the minimum distance of the code is 7, the maximum number number
of errors that can be corrected is 3. As a result, three sets of error patterns of edit distance
1, 2, and 3 are created for every codeword using the above principle. All error patterns are
created to be of the same length as the codewords because these are assumed as potential
“messages” in this application.

The following methods are used for generating the error patterns. Note that no two
operations are made to the same bit positions. In other words, all modifications must be
made in different bit positions.
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• Distance 1 error pattern: one substitution

• Distance 2 error pattern: two substitutions or one insertion and one deletion

• Distance 3 error pattern: three substitutions or one insertion, one deletion, and one
substitution.

For every codeword, n error patterns are created for edit distance 1 through 3, where n

= the length of the codeword. For example, every codeword under Code17-1 has 10 error
patterns with a single error, 10 with two errors, and 10 with three errors. Therefore, 170
(17 ∗ 10) error patterns are generated for each increment of the edit distance from 1 to 3
resulting in a total of 510 (170 ∗ 3) error patterns for the code.

The idea behind creating an error pattern e from a codeword c by 1, 2 or 3 errors is
to check if an SEM is able to correctly decode it. If an SEM correctly decodes all error
patterns, whether for the training set or the verification set, then it obtains a perfect score
which is equal to the total number of errors. Thus for Code17-1, a perfect score is 170 at
each individual distance and 510 overall.

Code
Number

of
Codewords

Length
of each

Codeword

Number of errors
at an individual

distance of 1, 2, and 3

Total number of errors
over

all distances
Code17-1 17 10 170 510
Code17-2 17 10 170 510
Code18 18 10 180 540

Code55 55 12 660 1980
Code60-1 60 12 720 2160
Code60-2 60 12 720 2160

Code201 201 14 2814 8442
Code205-1 205 14 2870 8610
Code205-2 205 14 2870 8610

Table 6.2: Dataset

While previous studies [11, 14, 34, 31] dealt with codes of length 12, this thesis expands
the scope of the investigation by varying key parameters, such as the length of the codes
and the number of codewords to understand the effectiveness of this approach on different
code lengths. Three codes of length 10, 12 and 14 are used, where the codes of length 12
(Code55, Code60-1, and Code60-2) are taken from [31] to compare the results. Table 6.2
lists all codes with their respective number of codewords and the number of errors that are
generated to conduct the experiment.
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6.3 Direct Classification

Decoding an error message against a code requires finding the codeword that has the closest
resemblance to the message, that is to say the codeword with the smallest edit distance
from the message. Yet, calculating the edit distance is an inefficient process that results
in a runtime complexity of O(n2). To avoid this heavy cost, a direct classification method
that employs Euclidean distance is used to bring down the runtime complexity to O(n).
Instead of comparing the error pattern with the codewords by means of edit distance, this
method runs them through an SEM to generate their respective classification vectors and
compare these using Euclidean distance to decode the error. However, it should be noted
that Euclidean distance is used as a cheap substitution of edit distance and therefore must
be considered as an approximation. It is also worth noting that the affinity of Euclidean
distance to edit distance depends heavily on the SEM and some machines react better to
this method than others. This is why evolutionary programming techniques are used to
construct an SEM that provides the maximum accuracy in terms of error correction.

6.3.1 Fitness

The fitness function used here is a simple counter that counts the number of error patterns
accurately decoded by an SEM. An error pattern is considered decoded when it is found to
be closer to its original codeword as compared to the other codewords. First, the Euclidean
distance between the classification vectors of the error pattern and the original codeword
is measured. This distance is then compared against distances measured from the other
codewords. The fitness score is incremented if the distance measured from the original
codeword is found to be the smallest amongst all. The process is repeated for all error
patterns and the higher the score, the better the performance of the SEM.

6.4 Parameter Values for Initial Sets of Experiments

Four sets of parameter values are used on all datasets. These values are presented in Table
6.3. The population size, generation number, and bout size are chosen from a past study
[31] for consistency. Although initial tests are done with different values for these parame-
ters with Code55, Code60-1, and Code60-2, no significant improvements are observed.

Parameter settings E1 and E2 were first used in [31]. Additionally, two new settings,
E3 and E4 are added. The new settings reduce the probabilities of “add state” and “remove
state” mutation operations. The motivation is to observe the effect of different mutation



CHAPTER 6. METHODOLOGY 38

Experiment E1 E2 E3 E4
Population Size 300 300 300 300
Number of Generations 1250 1250 1250 1250
Bout Size 10 10 10 10
Probability of Changing a Transition 0.6 0.75 0.8 0.85
Probability of Changing the Initial State 0.1 0.05 0.1 0.05
Probability of Adding a State 0.15 0.1 0.05 0.05
Probability of Removing a State 0.15 0.1 0.05 0.05

Table 6.3: Parameter values for four sets of experiments

settings on the resulting machines and the overall decoding accuracy.

6.4.1 Range of States

In earlier studies [11, 14, 34], the effectiveness of an SEM was observed to be related to its
size. Therefore with EP, the machines are allowed to shrink or grow within a certain range.
The range used in the previous study [31] was 4 to 18. Even though the experiment showed
higher accuracy for machines with larger size in general, the behavior was not consistent.
The best machines are prevalent in certain sub-ranges of sizes rather than being inclined to
just one size. In fact, the positions and the widths of these sub-ranges are also observed
to vary from code to code. As a result, a new approach is required to investigate possible
relationships among all these variables. In this study, the range of 4 to 18 is divided into
eight smaller sub-ranges, as shown in Table 6.4. The idea is to investigate whether certain
codes react better to certain sub-ranges and understand how the machines evolve within
those sub-ranges to reach their final sizes.

Rnage of States Minimum Number of States Maximum Number States
4to6 4 6
4to8 4 8

6to12 6 12
6to18 6 18
8to14 8 14
8to18 8 18

10to16 10 16
14to18 14 18

Table 6.4: Different range of states
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6.4.2 Count of Exact Machine Size

At the beginning, the size of an SEM and its transitions are initialized randomly within the
bounds of the selected range. Due to the random nature of the transitions, not every state
is guaranteed to be visited when a pattern is passed through the machine. Additionally, at
the time of reproduction, the location of the mutation is also selected randomly and can
alter the transition matrix in such a way that a state which was visited at least once in the
parent machine may get removed from the transition path, and hence is never visited in the
child machine. A depth-first search is performed to determine which states are reachable
or unreachable. The unreachable states can be purged to simplify a machine without al-
tering its behavior and thus help to determine the true machine size required for optimal
performance.

6.5 Pseudocode Algorithm to Generate SEM using EP

First, a population of SEMs with random sizes, bound by the selected range, are created.
This step is known as the initialization of the population. The initial population is now
considered as the first generation of candidates and act as parents for the next. Each parent
is then mutated in one of four ways — altering a transition, altering the start state, adding
a new state, removing a state — to produce a child. The type of mutation that is applied
is determined by its overall probability of being used as shown in the Table 6.3. The
reproduction of the parents doubles the population size. All of these candidates are then
given fitness scores and ranked using the bout system and only the top half is selected to
form the next generation and act as parents for the following generation. This process is
repeated for a predefined number of generations — another parameter of the experiment
— and the SEM with the highest fitness from the last generation is selected as the final
solution. The pseudocode for this process is shown in Algorithm 2.
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1 Initialize parent population with randomly generated SEMs
2 Get fitness of each SEM in Parent population
3 Get best SEM in parent population
4 for i = 1 to generation number do
5 Make copy of parent population to child population
6 for j = 1 to number of child population do
7 Mutate
8 end
9 Get fitness of each SEM in child population

10 Get the best SEM in child population
11 if child population best > parent population best then
12 new best = child population best
13 else
14 new best = parent population best
15 end
16 Add all child population with Parent Population
17 Sort all population based on bout system
18 Select half population for Next Generation

19 end
Algorithm 2: Algorithm for Evolving Side Effect Machine using Evolutionary Program-
ming

6.6 Fuzzy Classification

As discussed earlier, the direct classification method compares the received error pattern
with every codeword in a code to find the closest match. The words are compared using
the Euclidean distance between their respective classification vectors. The error pattern is
considered decoded when it is able to find the original codeword from which it was gen-
erated. Using the byproducts of direct classification, fuzzy classification tries to optimize
the decoding process by checking the most probable error codes first. This is achieved by
first creating a sorted list of all codewords in ascending order of the Euclidean distance
of their classification vectors to the error patterns classification vector. The codewords are
then compared with the received error pattern using edit distance until a match is found
within the correction capacity of the code. Therefore, a tolerance is often used to nar-
row the search by filtering out codewords whose said Euclidean distances are above the
given tolerance. This essentially optimizes the search by shrinking the problem space into
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a smaller hypersphere with a radius that is equal to the tolerance and the search for valid
codewords takes place only within the perimeter of the sphere. The algorithm stops when
either the correct codeword is found or the list of all codewords within the given radius is
exhausted. In addition to improving runtime, the fuzzy classification method can be used
to identify when decoding fails, that is no codewords within the given tolerance have an
edit distance less than or equal to (d− 1)/2 from the error pattern.



Chapter 7

Results and Analysis

This chapter shows the results of two different methodologies — direct classification and
fuzzy classification — to find the error correction accuracy over nine different codes with
different parameter settings. It also analyzes the different aspects of the parameters in an
attempt to look for potential trends and establish meaningful relationships among them.

The summary statistics of maximum fitness accuracy for each code, along with their
respective range and experiment number, are presented in Tables 7.1 and 7.2. Tables 7.1
and 7.2 show the results of direct classification and fuzzy classification, respectively, for
both training and verification datasets. It was found that smaller lengths of codes have
better maximum accuracy than larger lengths of codes in both direct classification and
fuzzy classification. The only exception was code18 in the verification dataset for direct
classification, which has lower accuracy than code55.

The full tables for these results are presented in Appendix B. It has been seen that
there is no particular range or experiment setting which outperforms the others. Therefore,
further analyses have been made to find relationships in the following sections.

42
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Direct-training Direct-verification
Code Max Accuracy % Range Exp. Max Accuracy % Range Exp.

code17-1 83.5 6 to 18 E3 76.7 14 to 18 E1
code17-2 84.9 14 to 18 E3 74.3 8 to 14 E4
code18 81.3 14 to 18 E2 72.6 14 to 18 E2

code55 75.2 14 to 18 E3 73.7 8 to 14 E2
code60-1 75.2 14 to 18 E4 72.1 10 to 16 E3
code60-2 73.6 8 to 18 E3 71.3 6 to 18 E4

code201 65 14 to 18 E3 64.3 14 to 18 E3
code205-1 65.6 14 to 18 E2 63.5 6 to 18 E3
code205-2 66.4 8 to 18 E2 64.1 14 to 18 E3

Table 7.1: Direct classification maximum accuracy result for each code. It also shows the
range and experiment number from where the maximum accuracy has been obtained.

Fuzzy-training Fuzzy-verification
Code Max Accuracy % Range Exp. Max Accuracy % Range Exp.

code17-1 93.1 8 to 18 E4 89.2 6 to 18 E2
code17-2 91.6 6 to 12 E3 88.2 4 to 6 E1
code18 88.3 4 to 6 E4 84.4 4 to 6 E4

code55 88.2 8 to 18 E1 88.1 6 to 18 E2
code60-1 88.2 8 to 14 E2 86.9 8 to 14 E2
code60-2 87.5 6 to 18 E4 87 6 to 18 E4

code201 81.2 8 to 18 E2 80.9 8 to 18 E2
code205-1 80.6 6 to 18 E3 80 6 to 18 E3
code205-2 82.4 8 to 18 E3 82.2 8 to 18 E3

Table 7.2: Fuzzy classification maximum accuracy result for each code. It also shows the
range and experiment number from where the maximum accuracy has been obtained.

7.1 Number of States

Previous studies [31, 14] found an inclination towards larger machines with respect to de-
coding accuracy, a trend that is analyzed further in this study. The extent of this impact
appears to vary based on a number of other factors such as the length of the code, the clas-
sification method and the dataset used i.e. direct vs fuzzy and training vs verification. To
understand this relationship, the median accuracy rate was plotted against the machine size
(number of visited states) of all the best machines found across mutation types and ranges.
Four such graphs are shown in Figures 7.1 – 7.4 for the different datasets used, direct train-
ing, direct verification, fuzzy training, and fuzzy verification respectively. As shown in Fig-
ure 7.1, using direct classification with the training dataset, larger machines show a higher
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and steady rate of improvement for longer codes. This is evident in the steady incline that
the codes of length 14 (code201, code205-1, and code205-2) experience as the machine
size grew from 8 to 18. On the other hand, the decoding accuracy for the smaller length
codes starts plateauing or even declining beyond a certain machine size, namely 13 and
15 respectively for codewords of length 10 (code17-1, code17-2, code18) and 12 (code55,
code60-1, code60-2). In contrast to the gradual improvement noticed across codes, a slight
dip was noticed for code18 and code201, just as they were approaching the maximum size,
which could be an indication of a possible plateau once the machine grows past a certain
size. However, the evidence is not consistent enough for making such a conclusion without
further experimentation.

As a side note, it should be noted that the fitness did not plunge from machine size 6 to
7, even though it appears that way. The graphs in Figures 7.1 – 7.4 include machines across
all ranges. For some of the larger codes, no best machines with 5 or 7 states were created,
which formed the peaks at the left of the graphs. A possible explanation is that the larger
codes tend to produce larger machines. Therefore, for some of the larger codes, range 4
to 6 only produced machines with 6 states whereas ranges 4 to 8 and 6 to 12 produced
machines with 8 states or more.

With the verification dataset as shown in Figure 7.2, the plateau is noticed much sooner
for smaller codes while SEMs for codes with length 14 keep improving with a larger num-
ber of states till the end, albeit at a lower rate. In general, the results from two datasets with
direct classification show a preference for a higher number of states, which is prominent
for codes of length 14.

Using the fuzzy classification method (Figures 7.3 and 7.4 ) for lengths 10 and 12, the
improvement in accuracy is negligible once the machine size grows beyond 8. In fact, for
codes of length 10, it even seems to decline once it goes past 10 – 12 states. The decoding
accuracy for codes of length 14, however, showed a slight but steady improvement as the
machine size grows all the way to the maximum allowed size. The above results support the
fact found in [31] that machine sizes have little impact on fitness using fuzzy classification
once the machines go past a certain number of states. It also finds that the difference in
accuracy between the training and verification datasets is much more evident with the direct
approach than the fuzzy approach, especially with the machines created for codewords of
length 10.
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Figure 7.1: Role of machine size (visited number of states) on accuracy over all ranges and
all experiments(E1, E2, E3, and E4) for all codes in training dataset with direct classifica-
tion
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Figure 7.2: Role of machine size (visited number of states) on accuracy over all ranges
and all experiments(E1, E2, E3, and E4) for all codes in verification dataset with direct
classification
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Figure 7.3: Role of machine size (visited number of states) on accuracy over all ranges and
all experiments(E1, E2, E3, and E4) for all codes in training dataset with fuzzy classifica-
tion
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Figure 7.4: Role of machine size (visited number of states) on accuracy over all ranges
and all experiments(E1, E2, E3, and E4) for all codes in verification dataset with fuzzy
classification



CHAPTER 7. RESULTS AND ANALYSIS 49

7.2 Different Length of Codes

Figure 7.1 also offers an insight into how machines for codes of different lengths react to EP.
For any machine size, the machines for codes with the same lengths achieve very similar re-
sults in terms of decoding accuracy. This is noticed for codes of all lengths studied, namely
14 (code201, code205-2, code205-2), 12 (code55, code60-1, code60-2) and 10 (code17-1,
code17-2), where the respective curves appear grouped together, often overlapping one an-
other. The only exception to this trend is code18 which, despite having a codeword length
of 10, did not achieve the same degree of accuracy as code17-1 and code17-2. This could
possibly be due to the fact that the higher number of codewords (18 vs 17) that code18 has
makes them packed in tighter i.e. it is harder to distinguish them from one another due to
their relatively close proximity. The same effect is noticed, although on a smaller scale,
with code55 vs code60-1 and code60-2.

This behavior can be further analyzed by examining Figure 7.5, which is a heatmap
representation of the overall accuracy achieved by each range for each code grouped by
mutation techniques during direct training. Each block represents the median fitness across
30 experiments, expressed as a percentage of the maximum fitness that equates to 100%
decoding success rate. Similar graphs were generated for direct verification, fuzzy training,
and fuzzy verification which are displayed in Figures 7.6, 7.7, and 7.8 respectively. As
evident by the colors of their respective blocks, machines for codes of length 10 (code17-1,
code17-2, code18) and length 14 (code201, code205-1, and code205-2) produce the highest
and lowest accuracy scores respectively, whereas length 12 (code55-1, code55-2, code60)
fares in the middle of the spectrum. This behavior is consistent with the aforementioned
grouping seen in Figure 7.1 and it reinforces the notion that codes of the same length react
in a similar manner to SEMs constructed using EP. It is also worth noting that the inverse
proportional relationship between the code length and the success rate that is seen in Figure
7.5 is only observed for direct training, as codes of length 12 perform better than those of
length 10 in Figures 7.6, 7.7, and 7.8.
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Figure 7.5: Representation of the overall accuracy achieved by each range for each code
grouped by mutation techniques during direct training. Each block represents the median
fitness across 30 experiments.
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Figure 7.6: Representation of the overall accuracy achieved by each range for each code
grouped by mutation techniques during direct verification. Each block represents the me-
dian fitness across 30 experiments.
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Figure 7.7: Representation of the overall accuracy achieved by each range for each code
grouped by mutation techniques during fuzzy training. Each block represents the median
fitness across 30 experiments.
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Figure 7.8: Representation of the overall accuracy achieved by each range for each code
grouped by mutation techniques during fuzzy verification. Each block represents the me-
dian fitness across 30 experiments.



CHAPTER 7. RESULTS AND ANALYSIS 54

7.3 Mutation

As evident from Figure 7.1, the overall fitness improves with the growth of the machine size
before potentially plateauing or dipping. The success rate of an SEM, therefore, depends on
the mutation strategy that influences the machine size to grow up to the point that produces
peak performance. To understand how the different mutation strategies influence the final
machine size, the total number of machines generated for each machine size was plotted
for each mutation type. As was expected, Figure 7.9 shows that the mutations that promote
machine size growth, marked by the higher weights for addition, produced larger machines
more often than their counterparts. In the graph, the four mutation types, denoted as E1, E2,
E3, and E4 and as shown in Table 6.3, where E1 (15%) > E2 (10%) > E3, E4 (5%) in terms
of how often they add a new state, are represented by different colors. When compared in
wider ranges (ones that can accommodate a reasonable growth to take place), it can be seen
that E1 consistently produced more machines with larger sizes than the others. In fact, the
same trend was noticed when comparing E2 with E3 and E4.

However, the impact of such growth on the overall fitness was not conclusive. Figures
7.10 – 7.21 can be examined in order to understand the role that these mutation settings
play on the overall evolution process and in turn the accuracy. Each subplot, further divided
by ranges, shows the distribution of the final machine fitness for each mutation type over
30 experiments. Focusing on any particular range in any particular code, no significant
difference was noticed among the four mutation types in terms of accuracy. The differences
between the respective medians, if any, were slight and did not conform to any noticeable
trend. A Kruskal-Wallis H-test was performed to verify this observation. The test compares
the accuracy of the best machines generated by the four mutation settings, E1, E2, E3, and
E4. Tables 7.3 – 7.6 show the p-values of the Kruskal-Wallis H-test. Those values less than
0.05, indicate a statistically significant difference between the groups compared. With the
exception of a few that are highlighted in bold, no significant difference was noticed. In
other words, the test proves that the differences in the mutation settings made no significant
impact on the overall accuracy of the resulting machines.
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Figure 7.9: Effects of different mutation types across ranges. E1 (Edge 60%, Start 10%,
Add 15%, Remove 15%), E2 (Edge 75%, Start 5%, Add 10%, Remove 10%), E3 (Edge
80%, Start 10%, Add 5%, Remove 5%), and E4 (Edge 85%, Start 5%, Add 5%, Remove
5%) represent four different experiments
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Figure 7.10: Decoding accuracy of SEMs on codes of length 10 with direct classification
on training dataset across four experiments, E1(Edge 60%, Start 10%, Add 15%, Remove
15%), E2 (Edge 75%, Start 5%, Add 10%, Remove 10%), E3 (Edge 80%, Start 10%, Add
5%, Remove 5%), and E4 (Edge 85%, Start 5%, Add 5%, Remove 5%)
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Figure 7.11: Decoding accuracy of SEMs on codes of length 12 with direct classification
on training dataset across four experiments, E1(Edge 60%, Start 10%, Add 15%, Remove
15%), E2 (Edge 75%, Start 5%, Add 10%, Remove 10%), E3 (Edge 80%, Start 10%, Add
5%, Remove 5%), and E4 (Edge 85%, Start 5%, Add 5%, Remove 5%)
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Figure 7.12: Decoding accuracy of SEMs on codes of length 14 with direct classification
on training dataset across four experiments, E1(Edge 60%, Start 10%, Add 15%, Remove
15%), E2 (Edge 75%, Start 5%, Add 10%, Remove 10%), E3 (Edge 80%, Start 10%, Add
5%, Remove 5%), and E4 (Edge 85%, Start 5%, Add 5%, Remove 5%)
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Figure 7.13: Decoding accuracy of SEMs on codes of length 10 with direct classification on
verification dataset across four experiments, E1(Edge 60%, Start 10%, Add 15%, Remove
15%), E2 (Edge 75%, Start 5%, Add 10%, Remove 10%), E3 (Edge 80%, Start 10%, Add
5%, Remove 5%), and E4 (Edge 85%, Start 5%, Add 5%, Remove 5%)
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Figure 7.14: Decoding accuracy of SEMs on codes of length 12 with direct classification on
verification dataset across four experiments, E1(Edge 60%, Start 10%, Add 15%, Remove
15%), E2 (Edge 75%, Start 5%, Add 10%, Remove 10%), E3 (Edge 80%, Start 10%, Add
5%, Remove 5%), and E4 (Edge 85%, Start 5%, Add 5%, Remove 5%)
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Figure 7.15: Decoding accuracy of SEMs on codes of length 14 with direct classification on
verification dataset across four experiments, E1(Edge 60%, Start 10%, Add 15%, Remove
15%), E2 (Edge 75%, Start 5%, Add 10%, Remove 10%), E3 (Edge 80%, Start 10%, Add
5%, Remove 5%), and E4 (Edge 85%, Start 5%, Add 5%, Remove 5%)
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Figure 7.16: Decoding accuracy of SEMs on codes of length 10 with fuzzy classification
on training dataset across four experiments, E1(Edge 60%, Start 10%, Add 15%, Remove
15%), E2 (Edge 75%, Start 5%, Add 10%, Remove 10%), E3 (Edge 80%, Start 10%, Add
5%, Remove 5%), and E4 (Edge 85%, Start 5%, Add 5%, Remove 5%)
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Figure 7.17: Decoding accuracy of SEMs on codes of length 12 with fuzzy classification
on training dataset across four experiments, E1(Edge 60%, Start 10%, Add 15%, Remove
15%), E2 (Edge 75%, Start 5%, Add 10%, Remove 10%), E3 (Edge 80%, Start 10%, Add
5%, Remove 5%), and E4 (Edge 85%, Start 5%, Add 5%, Remove 5%)
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Figure 7.18: Decoding accuracy of SEMs on codes of length 14 with fuzzy classification
on training dataset across four experiments, E1(Edge 60%, Start 10%, Add 15%, Remove
15%), E2 (Edge 75%, Start 5%, Add 10%, Remove 10%), E3 (Edge 80%, Start 10%, Add
5%, Remove 5%), and E4 (Edge 85%, Start 5%, Add 5%, Remove 5%)
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Figure 7.19: Decoding accuracy of SEMs on codes of length 10 with fuzzy classification on
verification dataset across four experiments, E1(Edge 60%, Start 10%, Add 15%, Remove
15%), E2 (Edge 75%, Start 5%, Add 10%, Remove 10%), E3 (Edge 80%, Start 10%, Add
5%, Remove 5%), and E4 (Edge 85%, Start 5%, Add 5%, Remove 5%)
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Figure 7.20: Decoding accuracy of SEMs on codes of length 12 with fuzzy classification on
verification dataset across four experiments, E1(Edge 60%, Start 10%, Add 15%, Remove
15%), E2 (Edge 75%, Start 5%, Add 10%, Remove 10%), E3 (Edge 80%, Start 10%, Add
5%, Remove 5%), and E4 (Edge 85%, Start 5%, Add 5%, Remove 5%)
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Figure 7.21: Decoding accuracy of SEMs on codes of length 14 with fuzzy classification on
verification dataset across four experiments, E1(Edge 60%, Start 10%, Add 15%, Remove
15%), E2 (Edge 75%, Start 5%, Add 10%, Remove 10%), E3 (Edge 80%, Start 10%, Add
5%, Remove 5%), and E4 (Edge 85%, Start 5%, Add 5%, Remove 5%)
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4to6 4to8 6to12 6to18 8to14 8to18 10to16 14to18
code17-1 0.063 0.77 0.017 0.625 0.381 0.826 0.948 0.002
code17-2 0.803 0.946 0.11 0.772 0.625 0.714 0.707 0.038
code18 0.906 0.722 0.908 0.071 0.553 0.773 0.372 0.228
code55 0.2 0.881 0.076 0.794 0.078 0.755 0.498 0.728

code60-1 0.192 0.492 0.326 0.685 0.034 0.043 0.98 0.993
code60-2 0.056 0.104 0.134 0.183 0.248 0.818 0.276 0.866
code201 0.681 0.44 0.147 0.901 0.302 0.381 0.286 0.2

code205-1 0.641 0.337 0.025 0.299 0.643 0.504 0.299 0.529
code205-2 0.063 0.001 0.033 0.002 0.343 0.567 0.034 0.436

Table 7.3: P-values of Kruskal-Wallis H-test to observe the impact of mutation settings on
accuracy with direct classification (training dataset)

4to6 4to8 6to12 6to18 8to14 8to18 10to16 14to18
code17-1 0.451 0.606 0.6 0.421 0.028 0.82 0.523 0.013
code17-2 0.305 0.899 0.239 0.386 0.301 0.828 0.744 0.389
code18 0.5 0.336 0.351 0.333 0.847 0.673 0.957 0.621
code55 0.235 0.459 0.111 0.225 0.3 0.895 0.37 0.855

code60-1 0.746 0.746 0.283 0.66 0.11 0.021 0.984 0.601
code60-2 0.912 0.142 0.185 0.452 0.691 0.703 0.109 0.522
code201 0.448 0.227 0.697 0.828 0.359 0.702 0.235 0.227

code205-1 0.919 0.034 0.025 0.697 0.776 0.495 0.496 0.637
code205-2 0.009 0.229 0.111 0.002 0.286 0.414 0.034 0.825

Table 7.4: P-values of Kruskal-Wallis H-test to observe the impact of mutation settings on
accuracy with direct classification (verification dataset)

4to6 4to8 6to12 6to18 8to14 8to18 10to16 14to18
code17-1 0.951 0.988 0.536 0.209 0.304 0.857 0.4 0.833
code17-2 0.701 0.334 0.411 0.026 0.082 0.641 0.948 0.208
code18 0.792 0.501 0.283 0.101 0.389 0.721 0.026 0.366
code55 0.886 0.699 0.862 0.459 0.375 0.48 0.548 0.756

code60-1 0.128 0.817 0.3 0.817 0.596 0.519 0.43 0.399
code60-2 0.094 0.668 0.302 0.229 0.756 0.65 0.072 0.79
code201 0.942 0.028 0.842 0.982 0.879 0.807 0.264 0.036

code205-1 0.666 0.267 0.203 0.199 0.849 0.458 0.377 0.951
code205-2 0.196 0.275 0.365 0.625 0.38 0.745 0.764 0.122

Table 7.5: P-values of Kruskal-Wallis H-test to observe the impact of mutation settings on
accuracy with fuzzy classification (training dataset)
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4to6 4to8 6to12 6to18 8to14 8to18 10to16 14to18
code17-1 0.834 0.903 0.729 0.275 0.086 0.598 0.394 0.954
code17-2 0.35 0.215 0.853 0.053 0.101 0.726 0.881 0.439
code18 0.682 0.895 0.262 0.432 0.15 0.474 0.072 0.463
code55 0.987 0.48 0.788 0.388 0.385 0.285 0.348 0.577

code60-1 0.054 0.759 0.434 0.919 0.828 0.24 0.268 0.145
code60-2 0.117 0.722 0.164 0.041 0.581 0.71 0.058 0.467
code201 0.976 0.046 0.484 0.92 0.824 0.865 0.549 0.035

code205-1 0.78 0.241 0.178 0.179 0.92 0.683 0.502 0.982
code205-2 0.082 0.271 0.532 0.748 0.387 0.685 0.83 0.065

Table 7.6: P-values of Kruskal-Wallis H-test to observe the impact of mutation settings on
accuracy with fuzzy classification (verification dataset)

7.4 Total States vs Visited States

Previous studies have discussed the bloat that manifests itself in the best machines due
to the presence of unused states. In its conclusion, [31] suggested that the best machines
should be investigated further to find the visited state count, an important analysis not
witnessed in previous work. This information can help simplify the machines by excluding
the not visited states. This analysis also bears significance in studying whether the mutation
algorithms contribute to further inflating the bloat. The bubble chart shown in Figure 7.22
plots the final SEMs machine size (total states) against the number of states that were
visited. Samples across runs for all codes and mutation types were combined and grouped
by range. Machines with one or more unused states appear below the x = y line, while the
ones which had all of their states visited appear on it. The size of the bubbles reflects the
size of the data points, i.e. the number of machines that appear at a given coordinate. No
machines ever appear above the line as the number of visited states cannot be larger than
the numbers of total states. This graph provides a key insight into the effectiveness of the
mutation strategies used — whether they are influencing the machines to evolve towards a
truly good solution or simply bloating the machines without improving their fitness.

As can be seen from the graphs, a fair number of the SEMs featured one or more unused
states. This bloat was most noticeable in larger machines and was rare in smaller machines.
This is evident by the higher occurrences of such machines in ranges with the upper bound
of 18 (6 to 18, 8 to 18, and 14 to 18) than others. On the other hand, all states were visited
in machines generated with ranges 4 to 6 and 4 to 8. This can be explained by the lack
of opportunity a machine has to be able to grow and improve while being constricted by a
smaller bound.

This plot also exposes a potential flaw in the mutation algorithm, where growth in
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number of states does not always lead to improved fitness, but instead adds unnecessary
bulk. This is due to the fact that, while adding a new state the mutation algorithm only
creates outgoing transitions from it. Therefore, a newly added state can be visited only if
the machine survives elimination and is selected for further mutation that creates one or
more incoming transitions to it. Even then it might remain not visited unless the transition
condition is met. In addition, because of the random nature of which state or transition
gets mutated, there is a high possibility that this machine either never gets mutated in a
favorable way to include the new state or it gets eliminated due to poor fitness.

Plots for the final SEMs machine size (total states) against the number of visited states
across all experiments for each codes are presented in Appendix B.2. Figure 7.23 – 7.25
show the distribution of machine sizes over eight different ranges for each length of code,
10, 12, and 14. It is observed that as the length of code increases, the SEMs are generating
machines with bigger size. It supports the fact that SEMs for longer codes tend to need
more states which was shown in [13].

Figure 7.26 shows the difference of four experiments (mutation parameter) on machine
size. It shows that the mutations that promote machine size growth, marked by the higher
weights for addition, produced bloats more often than their counterparts. Experiment 1
(E1), which has 15% chance of adding a state in mutation, creates the most bloat and E3
and E4, with 5%, create the least.
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Figure 7.22: The final SEMs machine size (total states) against the number of visited states
across all experiments and codes
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Figure 7.23: The final SEMs machine size (total states) against the number of visited states
across all experiments for codewords length 10
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Figure 7.24: The final SEMs machine size (total states) against the number of visited states
across all experiments for codewords length 12
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Figure 7.25: The final SEMs machine size (total states) against the number of visited states
across all experiments for codewords length 14
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Figure 7.26: The final SEMs machine size (total states) against the number of visited states
for four experiments, E1, E2, E3, and E4.
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7.5 Ranges of Machine Size

The modification of the machine size within the range of 4 to 18 states was allowed in
[31] and observed an inconsistency in the distribution of final machine sizes. This study
further examined this range by splitting it into smaller chunks (sometimes overlapping)
to see if any of them allowed faster convergence towards the best machines. The sizes
of the machines generated over 100 runs in the previous study were somewhat uniformly
dispersed from 9 to 18 states with the median varying from code to code between 11 and
13.5 states. Therefore further investigation was proposed to determine if a smaller range
would minimize the deviation and to see if doing so would encourage the machines to move
towards a particular size. Overall the idea was to understand how different codes reacted to
different ranges and to look for potential trends or anomalies.

Figure 7.5 can be analyzed to realize the effectiveness of the different ranges on dif-
ferent codes. When compared to their larger counterparts, the two smallest ranges (4 to 6
and 4 to 8) proved to be much less effective across the board. The general trend that was
noticed was ranges with higher maximums tended to produce SEMs with better decoding
ability. However, the improvements were not too significant and there were a few incon-
sistencies noticed between adjacent or overlapping ranges e.g. range 10 to 16 producing
slightly better accuracy than 6 to 18 for code60-2 and code205-2 in subplot E3. For direct
training, range 14 to 18 can be identified as the overall best as it produced good accuracy
across codes. Also notice in Figures 7.10 – 7.15 that for larger codes range 14 to 18 had
the smallest deviation in terms of accuracy, making it the most consistent range during
training and verification with direct classification. However, range 6 to 18 performed well
across classification methods (direct, fuzzy) and datasets (training, verification). This pos-
sibly suggests that a wider range with a high upper bound may be better suited to be used
across different code lengths and classification methods. However, this is not conclusive
for specific code so requires further study.

7.6 Error Correction Capability on Different Distances

The error correcting ability depend on the edit distance of the codeword and the error
pattern. Table 7.7 – 7.8 show the maximum accuracy on three different distances with direct
and fuzzy classification respectively. The results for each code with different experiments
are provided in Appendix B.1. As was expected, the accuracy of the machines decreases
as the distance increases. This is also shown in previous studies [31, 14, 34, 11]. Three
different codes of three different lengths are provided here as examples to showcase the
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differences among distance 1, 2, and 3. These codes are code17-1 of code length 10,
code55 of code length 12, and code201 for code length 14.

Figures 7.27 – 7.29 demonstrate how the accuracy of the decoders are affected by the
distance between the error pattern and the codeword. The violin plots are color coded based
on the classification method (direct vs fuzzy) and the dataset (training vs verification) used.
In general, the accuracy obtained with training dataset is slightly higher than verification
dataset for both direct and fuzzy classifications. This could possibly be due to the fact that
the training dataset is used to find the best possible solution and the verification dataset is
used to verify its accuracy.

Max Accuracy % (Direct-training) Max Accuracy % (Direct-verification)
Code Distance 1 Distance 2 Distance 3 Distance 1 Distance 2 Distance 3

code17-1 98.2 91.2 67.6 94.7 83.5 56.5
code17-2 97.6 91.8 72.4 95.3 82.9 55.9
code18 96.1 87.2 67.8 95.0 78.3 52.8

code55 92.4 81.4 57.7 91.7 78.8 55.2
code60-1 91.5 79.6 58.9 90.0 75.8 52.6
code60-2 91.0 78.9 55.7 90.3 75.1 52.2

code201 86.5 68.6 42.6 85.5 67.5 41.0
code205-1 86.9 69.7 42.3 85.6 66.8 40.2
code205-2 87.7 70.5 43.0 86.3 68.7 40.4

Table 7.7: Maximum accuracy with direct classification for each distance

Max Accuracy % (Fuzzy-training) Max Accuracy % (Fuzzy-verification)
Code Distance 1 Distance 2 Distance 3 Distance 1 Distance 2 Distance 3

code17-1 98.8 96.5 85.9 98.2 94.1 78.8
code17-2 99.4 97.1 82.4 98.2 94.1 75.3
code18 97.2 91.1 78.9 97.8 90.6 70.6

code55 95.5 90.9 80.8 95.5 91.1 79.5
code60-1 94.6 90.3 80.0 94.6 88.8 78.6
code60-2 95.6 90.4 78.2 95.8 89.2 77.9

code201 91.9 83.4 69.2 91.4 84.1 67.8
code205-1 91.9 83.6 66.9 91.8 83.2 67.1
code205-2 92.4 85.7 69.0 92.7 84.5 69.5

Table 7.8: Maximum accuracy with fuzzy classification for each distance
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Figure 7.27: Code17-1, violin plots representing the distribution of correctly decoded error
patterns for different ranges of states for the 30 runs for experiment 1. The maximum
possible fitness score for each distance is 170
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Figure 7.28: Code55, violin plots representing the distribution of correctly decoded error
patterns for different ranges of states for the 30 runs for experiment 1. The maximum
possible fitness score for each distance is 660
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Figure 7.29: Code201, violin plots representing the distribution of correctly decoded error
patterns for different ranges of states for the 30 runs for experiment 1. The maximum
possible fitness score for each distance is 2814



Chapter 8

Conclusion and Future Work

This study is a continuation of previous studies, in particular [31], that examined SEMs as
edit metric decoders. Besides validating previous work, this thesis also extended the scope
of the study by investigating the effectiveness of SEMs for decoding codewords of different
lengths. In addition to length 12 that was studied by [11, 14, 34, 31], lengths 10 and 14
were used in this study. Also, more ranges were considered as compared to all related
previous studies.

Previous studies [14, 31] observed a preference for a higher number of states, a trend
that is also witnessed in this study. In fact, the propensity for larger machines is found to be
stronger for larger codes i.e. more often than not, the smaller codes find smaller machines
and the larger codes find larger machines as best machines. However, the fitness saturates
once a certain number of states is reached and this saturation point also appears to depend
on the length of the codeword. For example, fitness for codes of length 14 (code201,
code205-1, code205-2) do not ever saturate in this study, which begs the question of how
far they would improve if allowed to grow more. Future work can include finding a new
upper bound for the number of states to be used with larger codes.

Compared to the direct classification method, the fuzzy method greatly improves the
accuracy of the decoders, especially for error patterns with larger edit distance. It also
produces better decoding accuracy than the direct approach for errors with higher distances
as well as for the verification dataset. These improvements are not surprising since the use
of edit distance in fuzzy classification greatly enhances the precision of the decoders in
predicting the correct codeword. These findings are also consistent with observations made
in previous studies. Possible future work can include a study of appropriate tolerance for
fuzzy to examine how far away the actual codewords are, on average.

The study also observes a weakness in the algorithms used for evolution where, as the
number of generations progresses, the population loses its diversity and gets overpopulated

81
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with more of the same SEMs, hindering the evolution towards a consistent well-balanced
machine. This trend is stronger in codes of smaller length where duplicate machines start
appearing sooner than they do in codes of higher length. This is expected due to the smaller
overall search space. There are various ways to increase diversity in the population, which
would help make sure that the search for the best machine is performed on the entire solu-
tion space rather than getting stuck within a local space. One approach that could be tried in
future work is the recentering-restarting algorithm which appeared to have achieved good
results in [34].

Incidentally, for larger codewords, the solution space also grows enormously. This
larger search space hinders the ability of mutation to find a compact SEM. For these larger
codes, as long as the improvement continues, it could be interesting to continue the process
for more generations to see if accuracy improves. Future work can also include experi-
menting with other EP settings, such as bout size and number of generations, as well as
examination of codes with different minimum distances.

The study also considers a variety of rates for the different types of mutation and ob-
serves how they influence the number of states in the final machines. The results in Figure
7.9 confirm that a higher rate of “add state” operation allowed more machines to grow to
max size and vice versa. Further examination of the mutation types, especially other com-
binations with respect to the rates may prove valuable. Another interesting question that
can be asked is whether allowing even faster growth rates will encourage the machines to
achieve better accuracy, in particular for larger codes.

This study closely examines the connectivity of the best machines by finding the num-
ber of total and visited states. This knowledge can help simplify the machines by excluding
the unvisited states. It also conclusively demonstrates the manifestation of the bloat that
was observed in [31] and was suggested to be examined further. Therefore, it should be
recognized that this study is the first to conduct this investigation and accurately report the
actual machine size used for decoding.

A potential flaw in the “add state” mutation operation is also identified where the newly
added state is left unreachable by design, which is believed to adding to the bloat. As future
work, the algorithm for the said operation can be tweaked to create incoming transitions as
soon as a new state is added and the machines should be investigated to see if this helps
reduce the bulk.
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Appendix A

Edit Metric Error Correcting Codes

A.1 Code17-1

3 1 2 1 1 0 0 0 3 3 1 3 2 3 2 1 0 2 0 2 1 1 3 1 0 1 3 1 0 0 2 2 2 2 0 0 0 1 2 2
3 3 3 0 0 0 2 2 1 1 0 2 3 3 3 3 2 2 2 2 0 3 3 2 2 3 3 3 3 0 3 0 1 1 3 2 3 0 0 1
1 1 1 2 0 2 2 3 2 1 3 2 1 1 1 1 1 2 2 0 2 1 0 2 3 3 3 0 1 3 3 0 0 3 0 3 1 2 3 3
0 0 0 0 0 0 0 0 0 0 0 3 0 3 3 1 1 1 1 1 0 1 0 0 1 1 3 3 2 2 0 0 2 1 2 2 2 1 1 3
2 2 2 3 1 2 1 3 3 1

Table A.1: (10, 17, 7)4 Code - Code17-1

A.2 Code17-2

0 1 1 1 0 1 2 1 1 1
1 2 2 2 0 0 1 1 0 2
1 0 0 3 0 2 1 2 1 3
1 3 3 1 3 0 0 2 2 0
3 2 1 1 1 3 0 0 0 1

3 1 2 2 0 2 3 2 2 1
0 0 0 1 1 1 3 3 2 2
1 1 0 2 1 0 0 3 3 3
2 3 3 0 0 3 3 2 3 3

3 0 3 3 3 1 3 1 1 0
0 2 2 2 3 3 3 3 1 3
2 3 2 3 1 1 2 2 1 2
0 2 1 3 2 2 2 0 2 3

3 3 2 1 2 1 1 1 3 3
0 0 0 0 0 0 0 0 0 0
2 2 0 2 2 1 2 3 0 0
1 0 1 2 3 3 2 0 3 0

Table A.2: (10, 17, 7)4 Code - Code17-2

A.3 Code18

88
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2 2 3 1 3 3 1 3 0 1
0 3 0 1 1 1 3 3 2 0
0 0 0 2 3 3 3 1 1 3
2 0 2 1 1 1 2 0 0 2
3 2 2 2 2 1 1 1 1 1

2 2 2 2 0 0 2 2 2 0
1 0 3 3 0 1 0 2 1 2
2 1 1 0 0 0 3 1 1 1
3 3 1 3 0 0 2 3 3 3
3 3 2 3 3 3 3 2 2 2

0 0 0 0 0 0 0 0 0 0
0 1 3 3 2 0 3 2 3 0
1 2 2 0 1 0 1 0 3 3
2 3 0 0 3 2 0 1 3 2

3 3 3 3 1 2 1 1 0 0
3 1 0 1 1 2 2 2 1 1
1 1 1 2 1 3 0 2 2 3
1 1 2 3 2 2 0 0 0 1

Table A.3: (10, 18, 7)4 Code - Code18

A.4 Code55

0 1 3 3 3 3 3 1 3 1 1 1 1 1 1 3 2 2 2 1 1 2 0 2 1 1 1 2 0 0 3 1 3 3 0 3 3 0 1 2 1 2 1 2 3 0 2 0
2 0 3 3 2 2 2 0 0 0 3 0 0 0 0 0 0 1 3 1 1 1 3 3 3 3 3 2 2 2 2 1 0 1 2 1 3 3 2 1 1 1 1 0 3 1 3 0
1 2 2 2 0 1 3 2 3 1 1 1 3 3 1 3 3 0 0 0 2 1 0 0 0 0 3 2 2 1 3 2 0 3 3 1 1 0 3 0 3 1 2 3 3 3 3 0
1 2 1 0 0 2 1 0 3 2 2 2 1 1 0 0 3 3 0 0 1 2 3 3 2 0 0 1 1 1 0 2 3 3 0 1 2 2 1 1 0 0 0 3 0 1 0 2
2 0 1 0 2 2 0 2 2 3 2 3 2 3 2 3 3 2 2 3 3 1 3 1 0 0 1 0 0 3 0 0 0 0 1 1 3 2 3 1 0 2 1 0 1 0 0 0
3 2 3 1 2 1 3 2 2 2 2 2 0 1 1 3 1 0 3 3 2 1 3 2 1 3 0 0 0 0 0 2 0 0 2 2 3 1 2 2 2 2 3 3 3 3 3 2
0 0 2 1 2 3 1 1 2 1 2 2 1 3 3 3 1 0 0 0 1 3 3 2 3 1 1 0 3 0 1 1 1 3 1 0 0 1 1 1 3 1 3 0 0 3 0 0
3 2 2 3 3 3 1 1 2 3 3 3 0 0 0 2 2 0 0 0 1 2 2 0 2 2 0 0 1 2 1 2 0 1 3 2 2 0 0 0 0 3 3 3 3 2 0 2
1 1 2 0 3 1 1 2 2 2 0 1 0 2 1 3 3 2 0 1 3 3 2 0 2 1 1 1 2 3 2 1 2 3 3 1 3 3 3 0 1 1 0 0 2 2 1 1
3 3 3 0 3 3 3 2 3 0 0 0 3 1 1 2 3 3 0 3 1 0 2 2 1 3 1 2 1 1 0 2 1 1 2 3 0 3 3 1 1 1 1 2 2 0 0 3
3 3 0 0 2 0 3 1 2 0 3 1 1 2 3 1 1 1 1 3 0 3 2 1 1 2 2 3 2 2 0 2 2 2 1 0 2 0 2 2 3 1 0 0 1 3 1 3
0 3 0 1 3 2 3 2 0 2 1 3 0 1 2 0 0 3 2 2 1 1 0 0 1 0 0 2 1 3 3 0 2 0 0 3 3 2 2 2 0 0 0 0 0 3 3 1
1 0 0 3 3 3 2 2 2 2 2 2 2 0 3 3 0 1 0 3 1 1 2 1 0 2 2 2 3 0 3 2 0 0 0 2 2 1 0 2 1 1 1 1 1 1 1 1
2 1 2 3 0 2 3 0 2 0 1 1 2 2 3 3 3 3 3 3 0 2 2 3 2 2 2 2 1 1 3 1 2 2 3 0

Table A.4: (12, 55, 7)4 Code - Code55

A.5 Code60-1

1 3 3 1 1 1 0 1 1 2 1 0
1 1 0 2 1 1 2 0 1 3 2 2
2 0 0 3 2 2 2 2 2 2 1 1
3 2 2 1 0 3 3 1 1 1 1 0
2 2 3 0 2 3 1 3 3 1 2 2
2 3 2 0 0 0 1 2 1 1 1 2
3 1 3 3 3 0 0 3 3 0 1 3
2 3 1 2 2 2 0 3 3 3 2 3
3 2 1 2 1 2 1 1 0 0 1 1
1 1 1 1 3 1 2 2 3 0 3 2
3 0 0 0 0 1 0 0 0 2 1 1
0 0 3 3 1 0 2 1 3 0 0 1
1 2 0 0 0 0 3 0 3 2 2 2
2 0 2 2 1 2 1 0 2 1 2 0
0 0 3 3 3 1 3 1 1 1 1 2

3 3 1 2 2 0 3 0 1 1 0 2
3 3 1 0 1 3 1 0 0 2 2 2
1 3 3 3 2 1 0 0 2 3 3 2
2 2 2 3 1 3 0 0 1 1 0 1
0 0 0 2 0 2 1 1 1 3 2 1
0 0 2 0 0 3 3 0 0 1 3 3
0 3 0 3 0 2 2 0 0 3 1 3
1 2 2 2 2 3 2 1 1 2 3 1
2 3 3 1 3 3 0 2 0 1 2 3
2 2 1 1 1 2 3 3 2 2 1 2
1 0 1 1 2 0 3 2 3 3 0 1
0 0 0 3 2 3 0 2 0 0 2 2
3 2 0 1 1 1 0 3 3 1 3 3
2 1 1 0 0 0 0 0 2 0 3 3
1 0 0 3 0 0 2 2 0 1 0 0

1 2 3 2 2 2 2 2 0 0 0 2
1 1 0 0 2 3 2 0 3 1 1 1
0 1 1 1 0 0 0 1 0 1 2 1
3 1 3 0 1 2 3 2 1 0 1 2
3 0 1 2 3 3 3 2 2 1 1 1
2 2 1 1 0 1 2 1 0 3 3 0
0 2 0 3 1 1 1 2 1 2 3 2
3 1 1 2 3 1 1 3 1 3 3 1
3 3 0 0 0 0 1 1 3 3 3 0
1 1 3 3 2 3 3 3 2 2 0 3
2 1 0 1 1 2 2 1 1 1 1 3
3 3 3 1 0 2 2 2 1 2 2 1
3 3 0 3 2 1 3 3 0 3 2 1
0 2 1 0 2 2 3 3 1 0 0 0
1 1 2 3 2 0 0 1 0 0 3 0

3 0 0 1 3 2 2 1 2 0 3 0
1 0 0 1 3 1 1 3 2 2 1 3
2 2 0 0 1 1 3 1 0 2 0 3
3 2 1 0 0 2 0 2 2 3 0 2
2 1 1 3 3 0 1 1 2 2 2 2
3 3 2 2 1 2 3 1 2 3 0 3
1 3 2 1 1 3 3 0 3 0 0 0
0 2 2 2 2 0 0 0 3 3 1 2
0 0 2 2 0 0 0 1 2 2 0 0
0 3 3 0 1 0 0 3 2 0 2 0
2 0 1 0 3 1 1 0 0 0 0 0
2 3 2 3 3 3 2 1 3 1 3 0
0 1 1 2 2 1 3 0 2 2 2 1
1 2 1 3 3 0 0 2 0 2 1 1
0 0 0 2 1 3 3 3 2 3 3 2

Table A.5: (12, 60, 7)4 Code - Code60-1
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A.6 Code60-2

2 2 2 0 1 2 2 1 1 0 2 2
0 3 2 0 0 0 0 2 3 2 0 2
1 1 3 3 2 2 1 0 0 0 2 0
3 3 3 1 1 0 3 1 3 3 3 2
3 3 3 3 3 0 1 0 2 2 2 3
1 2 0 2 2 2 1 2 1 3 3 3
0 0 0 0 1 1 0 0 0 1 1 1
2 0 1 3 1 0 3 2 1 2 0 2
2 3 0 2 3 3 1 3 0 0 1 2
3 1 1 0 2 0 3 2 3 1 1 2
3 2 1 1 1 0 0 0 0 0 2 2
0 1 1 2 1 0 2 3 0 3 3 3
1 1 3 0 3 3 3 0 2 2 0 2
2 0 2 0 0 3 3 2 1 1 1 1
2 2 0 0 2 1 0 2 0 2 3 0

0 1 0 1 1 3 3 0 0 0 0 0
2 1 2 3 2 0 0 2 2 3 3 2
2 1 1 1 1 1 2 0 1 1 1 2
3 3 0 0 0 2 2 2 3 3 3 0
1 3 2 1 3 2 2 2 2 2 2 2
1 0 1 0 0 1 1 1 1 1 2 0
2 3 2 1 2 2 1 0 3 3 0 0
1 3 2 2 3 2 3 3 3 1 3 0
1 2 2 3 3 3 1 0 0 3 3 2
1 1 1 1 1 1 1 3 2 2 2 3
3 1 2 2 1 2 1 1 2 3 0 2
0 0 3 3 3 3 3 3 3 0 3 1
2 0 0 1 1 1 3 3 3 1 3 3
2 3 2 2 0 0 0 0 0 1 3 1
0 2 1 3 2 3 0 1 1 0 2 0

3 0 1 3 0 1 3 0 1 3 3 1
1 3 3 0 3 3 1 1 3 1 1 3
2 2 0 3 3 2 2 3 0 3 2 1
0 1 1 0 0 2 2 2 0 1 0 1
1 1 1 3 3 0 0 1 3 2 1 1
1 1 2 1 1 3 1 1 1 0 3 1
3 3 1 3 3 2 3 2 3 0 0 3
1 1 0 0 0 0 0 3 0 3 1 0
0 0 0 3 2 0 2 1 2 2 1 3
1 0 0 3 1 2 0 3 0 0 0 3
2 2 1 3 0 0 1 2 0 3 1 3
0 0 3 0 2 0 1 3 1 2 3 2
3 0 3 2 2 2 0 2 2 0 0 1
3 0 0 0 3 3 1 1 2 0 0 0
0 2 2 1 1 3 3 3 3 2 1 2

3 2 0 2 0 1 1 2 2 2 2 1
0 3 3 0 3 2 0 0 0 3 3 3
0 3 3 3 1 2 1 2 1 3 0 1
2 2 2 2 2 3 2 3 2 2 0 3
3 3 3 2 0 1 1 1 1 0 0 3
3 0 0 2 2 3 2 0 0 3 2 2
3 1 0 3 1 0 3 1 0 1 2 1
1 0 1 2 3 1 2 2 0 1 3 2
1 0 2 2 1 0 0 2 2 1 2 3
3 3 1 2 2 2 1 0 1 1 1 1
2 3 3 3 0 0 2 3 1 0 1 0
1 0 1 1 2 2 3 3 1 2 1 0
1 2 2 2 0 1 3 0 3 0 0 1
1 2 3 1 1 1 2 2 2 1 0 0
0 1 2 3 3 1 2 3 3 2 2 0

Table A.6: (12, 60, 7)4 Code - Code60-2

A.7 Code201
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0 3 0 1 0 2 2 1 1 1 0 2 1 0
0 2 0 0 3 0 2 3 1 1 0 1 2 2
0 1 3 2 1 1 1 2 3 0 3 2 3 1
2 0 3 3 1 3 2 1 2 2 2 2 2 0
0 2 0 1 2 3 3 3 0 0 0 3 2 2
1 1 3 1 0 3 3 1 0 0 0 3 3 3
3 3 3 2 2 2 0 3 3 2 1 0 2 3
0 3 2 3 1 1 1 0 0 1 1 3 1 3
0 3 0 3 1 3 2 1 1 2 3 1 1 1
2 1 2 0 3 3 3 1 3 1 1 1 3 0
1 0 0 2 3 2 3 0 1 2 1 3 1 3
1 1 0 2 1 0 0 2 3 2 2 0 3 3
1 3 1 3 3 3 0 0 0 0 2 0 1 2
3 3 1 1 2 2 0 1 1 2 0 3 2 0
0 2 2 2 1 2 0 0 2 0 0 3 1 3
2 2 1 1 3 2 1 2 0 1 1 1 2 3
2 0 3 1 0 1 2 3 0 2 3 3 2 1
0 3 2 0 2 3 3 3 2 1 3 0 0 1
3 0 0 1 2 2 2 1 0 2 0 1 0 1
2 3 0 3 3 3 3 3 2 2 1 3 1 1
1 3 3 1 1 3 1 2 1 0 0 2 1 3
2 0 3 2 1 3 0 2 0 0 2 1 0 1
3 2 1 3 0 3 2 2 0 3 0 3 1 3
3 2 0 2 0 3 1 1 0 2 1 0 3 0
3 3 2 2 0 0 0 0 0 2 2 3 2 0
1 1 1 1 3 1 2 3 3 3 1 3 1 1
0 2 1 3 2 2 2 2 1 2 2 3 2 1
0 2 3 3 3 2 0 1 0 1 0 1 0 0
1 1 1 2 2 0 2 0 0 0 1 0 2 1
0 0 1 1 0 2 0 3 2 2 2 3 3 2
0 0 3 1 0 0 1 3 3 1 2 1 1 0
0 2 1 2 3 3 1 0 3 2 1 0 2 3
0 1 1 0 3 1 1 2 0 1 2 0 3 0
2 1 0 1 1 1 1 1 0 0 1 1 3 0
2 3 0 2 2 0 1 0 3 3 1 2 1 3
3 1 3 3 2 3 0 1 1 2 3 1 2 2
3 3 2 0 1 2 0 3 2 1 1 3 3 1
0 2 1 2 1 0 0 2 0 1 2 0 0 2
1 2 1 3 1 2 0 1 1 1 1 0 1 2
0 3 3 1 3 1 2 0 2 0 0 1 2 2
1 2 3 2 0 1 0 1 0 1 2 2 3 3
0 0 2 3 1 2 3 0 2 1 1 2 2 1
0 3 3 3 0 3 1 1 2 2 0 0 3 3
2 2 3 0 1 3 2 1 2 3 0 3 0 1
2 2 0 0 0 1 3 3 3 0 3 1 1 1
1 2 1 3 3 2 1 2 2 0 1 2 0 1
3 1 0 3 1 1 2 2 2 3 3 3 3 2
1 1 0 0 3 3 1 1 2 3 1 0 0 1
1 3 3 0 0 3 2 3 0 3 0 1 1 2
0 0 2 2 0 2 2 3 0 1 0 3 0 2
3 1 2 2 3 1 3 0 1 0 3 3 2 3

1 0 3 0 0 0 3 1 2 1 1 1 3 1
1 1 3 3 3 3 2 1 1 3 0 0 3 2
2 3 1 2 0 2 2 1 0 0 0 3 1 1
3 0 3 0 2 2 3 3 0 3 2 2 3 1
1 1 1 0 1 0 1 1 0 0 2 1 1 1
0 1 3 3 0 1 0 0 2 3 2 3 1 3
2 2 1 3 2 1 0 0 3 2 3 2 2 1
3 1 0 0 3 2 1 1 0 0 0 0 2 2
2 2 2 3 3 3 0 2 1 3 3 2 0 2
1 2 0 2 1 1 2 1 3 3 1 1 0 1
1 3 2 2 3 0 2 1 0 1 3 0 0 0
1 2 3 1 1 1 1 1 3 2 0 3 1 1
2 3 0 0 0 3 1 0 2 0 2 1 2 3
1 0 3 0 3 2 2 2 3 2 0 0 3 1
0 0 1 2 1 1 2 2 3 3 1 3 2 0
0 0 3 0 1 1 1 3 2 0 0 0 0 1
3 0 3 2 2 1 2 2 2 1 0 1 2 0
0 3 1 3 3 3 3 3 3 1 1 1 0 3
1 1 2 2 1 1 0 0 0 2 3 3 0 1
2 1 0 3 2 2 0 1 1 0 0 3 3 2
1 3 1 0 2 3 0 3 1 3 2 3 3 0
3 0 2 0 3 1 1 1 3 3 2 1 2 2
0 3 2 1 3 2 3 1 0 0 0 0 3 0
0 0 0 2 3 1 0 3 0 3 3 3 3 1
2 3 0 2 3 2 0 3 2 0 3 2 2 2
1 0 2 0 2 1 0 0 0 3 1 3 2 3
2 2 1 1 0 3 1 3 1 0 3 2 2 0
0 0 2 0 1 0 2 1 2 1 2 0 0 3
0 0 0 0 3 2 2 0 0 3 3 0 1 2
3 2 1 1 3 3 3 3 3 2 0 0 0 1
2 2 3 0 2 3 2 0 0 0 1 1 3 3
2 0 3 3 2 1 2 3 1 3 1 1 1 2
3 1 0 3 0 0 0 3 3 0 0 3 2 0
1 1 0 2 0 1 1 1 1 1 3 3 3 2
2 2 2 2 0 1 1 0 2 3 3 3 3 3
3 3 2 3 3 1 0 0 1 3 0 0 2 2
0 0 0 3 3 1 0 0 1 0 2 3 2 0
0 1 2 3 3 0 1 3 1 3 2 2 2 0
3 2 1 1 1 1 2 1 2 2 0 1 3 2
1 1 0 3 2 2 0 2 3 1 1 2 1 0
1 2 0 2 0 0 2 2 0 0 2 3 2 2
1 1 1 0 1 3 3 2 2 3 0 1 0 2
3 1 1 1 0 0 0 0 3 3 1 1 3 1
2 0 1 0 0 0 0 2 1 2 2 2 2 3
0 2 1 0 0 3 2 0 1 3 1 2 3 1
3 3 1 3 1 1 3 3 2 2 2 2 3 1
0 1 1 3 0 2 2 1 3 3 1 1 1 2
3 3 0 1 3 1 0 1 3 3 1 3 3 0
1 0 2 3 3 0 0 1 3 3 3 3 3 2
3 1 2 1 1 1 2 2 3 0 0 0 0 2

2 2 2 0 3 2 3 3 1 1 0 0 1 1
2 2 3 2 3 1 3 2 3 0 0 2 2 3
3 3 3 3 2 0 2 3 3 3 3 3 1 1
2 2 2 0 0 2 3 1 3 2 2 2 3 3
2 2 0 3 2 2 1 3 3 3 3 2 3 0
3 1 1 0 0 2 1 0 3 0 3 3 0 0
2 0 0 1 2 1 2 1 1 0 2 2 2 2
0 3 1 1 2 0 0 0 3 2 3 0 1 0
3 0 0 0 1 2 3 3 0 1 3 0 0 0
2 2 1 3 0 0 0 0 0 1 3 0 3 0
3 3 2 0 0 2 3 2 2 2 2 0 0 2
1 1 1 2 2 3 3 3 3 2 0 1 1 0
0 2 0 3 0 2 0 2 2 3 2 0 2 0
2 2 0 2 0 0 0 2 2 1 3 3 1 1
2 2 0 1 3 3 3 0 3 3 2 3 3 3
2 3 3 3 3 1 0 2 3 2 2 1 0 0
1 3 1 0 0 0 0 1 1 1 1 2 0 0
1 2 0 0 2 2 3 2 2 3 3 3 0 0
0 3 0 0 1 1 3 2 1 3 2 2 0 2
0 3 2 2 0 3 2 2 2 1 3 2 3 3
1 3 1 3 2 2 1 2 1 0 3 0 3 3
3 2 3 0 1 0 0 2 2 3 1 0 1 1
0 1 0 2 2 2 2 0 3 3 2 0 0 0
0 2 3 2 3 3 2 2 3 2 3 3 1 2
3 2 3 0 3 1 3 3 1 0 1 1 3 2
0 0 3 2 0 2 3 2 2 0 2 2 1 3
0 1 0 0 2 0 0 3 0 2 1 1 2 0
2 2 3 1 3 1 1 0 1 1 2 0 0 0
3 3 0 1 0 0 0 3 1 3 1 2 2 2
2 1 0 3 1 0 3 0 1 2 3 1 3 3
3 2 2 1 2 1 3 1 1 3 3 3 3 2
2 1 3 1 0 2 3 3 3 0 2 1 2 2
2 3 3 3 1 1 0 1 0 3 3 0 1 1
1 1 2 2 2 0 1 3 2 3 0 1 3 1
1 1 1 1 2 0 3 0 2 0 2 1 3 3
0 1 3 1 1 0 3 1 3 0 1 0 1 3
1 0 0 0 1 1 0 1 2 2 1 2 2 2
3 1 1 1 2 2 3 2 0 2 2 2 2 2
3 1 2 2 1 3 3 3 3 1 3 0 1 2
3 3 1 0 1 3 2 2 3 1 2 3 0 3
1 1 0 3 0 2 3 3 1 3 3 0 1 3
3 0 3 3 3 0 2 2 0 1 0 0 0 3
3 3 3 3 3 3 3 2 0 3 3 3 0 0
1 1 2 3 3 3 0 2 2 2 2 1 3 1
0 0 2 2 2 0 1 1 0 0 1 1 0 0
1 1 2 3 2 3 2 3 0 3 3 3 0 2
0 0 3 1 3 1 1 2 1 3 2 3 3 3
2 2 1 2 2 2 3 3 2 0 0 0 2 0
3 1 2 0 0 3 3 0 0 1 1 2 2 2
1 1 1 3 2 1 1 1 3 1 2 3 0 0

2 2 2 2 2 2 0 1 0 1 1 2 2 0
0 0 1 1 2 1 3 1 1 1 1 1 1 3
2 1 1 0 3 0 1 1 2 2 3 2 1 2
3 1 1 2 0 3 2 3 1 0 2 1 1 2
1 0 1 0 2 1 2 2 1 3 0 2 2 1
2 2 1 1 1 1 3 3 2 3 1 3 0 0
0 2 2 2 1 2 1 3 3 3 2 2 0 3
2 0 0 1 0 0 2 2 1 1 2 3 3 0
1 0 3 2 3 1 0 3 3 1 1 3 2 2
0 1 0 3 2 3 3 1 2 2 0 3 0 0
3 3 3 0 3 1 2 1 1 1 2 2 3 0
3 3 2 3 2 1 1 2 3 3 2 0 1 0
0 1 0 0 0 1 1 1 3 3 2 2 1 1
2 0 1 0 0 3 1 0 0 1 0 1 0 1
3 1 0 1 0 0 3 0 1 2 2 0 1 1
2 2 1 2 0 0 1 1 1 1 2 1 3 1
3 0 0 2 1 2 1 2 3 0 3 1 1 3
3 0 1 2 1 0 2 1 0 0 1 2 3 3
2 3 3 1 2 2 1 0 2 1 3 3 3 2
3 0 1 1 1 0 0 2 1 2 1 3 0 1
1 0 2 2 3 1 1 3 2 2 2 0 0 2
1 2 1 2 0 1 1 2 0 2 0 0 0 3
1 2 2 3 1 2 0 0 3 2 2 1 1 0
3 0 2 1 1 3 0 1 3 0 0 1 3 1
0 3 2 1 0 1 3 0 0 3 0 2 2 3
0 2 3 2 2 2 2 2 3 1 1 1 0 3
2 1 1 2 3 0 0 1 1 0 3 1 0 3
0 1 2 3 3 3 2 3 0 0 0 2 1 1
1 1 3 0 0 3 0 3 3 2 3 2 2 3
1 3 0 3 0 0 1 0 2 2 2 2 0 1
2 3 0 1 3 0 3 3 3 1 0 0 2 3
0 0 2 2 2 0 1 0 3 2 3 3 2 2
2 1 2 2 2 0 3 3 3 1 2 2 2 1
0 0 1 1 3 1 2 1 1 3 3 0 0 0
3 3 1 2 2 0 0 3 1 1 0 0 0 1
2 0 2 0 2 0 0 1 1 3 0 0 0 2
3 0 2 0 3 0 0 1 1 0 2 3 1 1
0 0 1 3 1 3 3 3 0 2 3 3 1 0
3 3 3 0 3 0 3 2 3 2 1 2 0 1
2 2 2 3 0 1 1 2 2 1 1 0 2 2
1 1 2 0 0 1 3 3 1 0 0 2 0 0
1 0 0 1 0 2 0 2 0 3 3 1 0 3
3 2 2 1 0 3 3 1 1 1 1 0 0 3
1 1 2 1 0 2 2 2 1 1 1 3 2 3
2 0 0 2 3 3 2 1 1 1 0 2 0 1
3 3 3 0 0 1 0 2 0 0 1 1 1 0
3 3 2 1 3 3 1 2 2 1 1 3 1 0
2 3 1 2 1 2 1 2 2 2 2 1 1 1
3 3 3 3 2 0 1 1 1 1 2 1 1 3
0 1 1 1 1 0 2 0 0 3 0 3 2 2

Table A.7: (14, 201, 7)4 Code - Code201
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A.8 Code205-1
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1 2 2 3 1 0 3 0 3 1 2 0 1 1
3 0 1 3 1 2 2 2 2 2 2 1 0 0
1 1 0 1 1 1 1 2 3 2 0 3 1 3
2 2 3 3 3 3 0 0 0 2 2 3 2 0
3 1 2 1 2 2 3 3 3 3 3 0 1 3
1 1 1 0 0 2 2 2 1 0 2 2 3 2
3 1 0 1 0 0 2 3 2 3 3 0 3 0
3 2 0 3 2 1 0 0 2 1 1 1 0 0
1 1 1 3 3 2 0 0 2 2 1 1 2 1
2 0 3 2 2 2 3 2 1 1 1 1 3 2
2 2 2 2 1 0 1 1 3 0 2 1 0 0
0 3 3 2 3 3 2 1 3 3 3 1 3 3
0 3 2 1 1 3 2 2 3 1 3 3 2 1
1 2 1 3 1 3 2 2 2 3 3 1 3 2
2 1 0 0 1 2 0 3 0 2 0 1 1 1
0 1 0 2 2 1 1 2 1 1 2 2 1 2
1 1 3 0 3 1 3 1 2 2 2 1 2 2
3 3 1 0 1 1 3 2 0 3 3 1 1 3
1 2 1 1 0 3 2 1 3 0 2 3 1 0
0 1 1 2 0 3 3 1 3 0 3 3 2 3
2 0 0 0 2 0 1 3 0 3 2 2 0 2
3 0 2 0 3 2 2 2 2 3 1 0 2 3
0 2 2 0 2 2 0 2 0 1 0 1 3 0
3 1 1 1 2 2 0 0 0 1 2 0 2 1
2 3 2 2 1 1 3 3 1 0 3 3 3 3
0 1 2 3 2 0 0 1 1 2 1 1 3 3
1 2 0 1 1 2 2 1 3 3 3 2 2 1
0 0 1 3 1 3 1 3 2 0 3 0 1 0
2 1 1 1 1 2 2 1 0 1 3 0 0 0
1 3 0 0 0 2 3 1 1 0 0 3 0 2
0 0 0 2 2 0 1 3 1 0 0 0 1 1
2 1 2 2 2 2 1 0 3 2 2 1 2 2
0 2 2 3 1 0 3 2 2 1 0 3 0 0
0 3 0 3 1 1 3 0 1 2 0 1 2 3
0 2 2 3 1 3 1 1 0 2 1 3 1 1
2 3 0 3 2 2 2 1 3 3 0 0 1 2
2 0 0 1 1 1 3 0 2 1 2 3 3 3
3 0 3 3 1 3 3 0 2 2 1 3 0 2
3 0 1 1 1 3 1 1 3 3 0 0 3 3
3 3 0 0 2 2 0 2 0 2 1 0 2 2
1 3 3 3 3 2 1 2 1 2 2 2 3 0
1 2 0 0 3 3 1 1 0 2 2 2 2 3
2 1 1 2 1 3 3 2 2 0 2 1 0 3
3 3 3 2 1 3 2 1 0 2 3 0 1 0
1 0 0 0 1 1 3 0 3 0 1 2 1 0
0 3 0 1 1 2 3 3 3 2 1 3 1 2
0 1 2 0 1 1 2 3 0 0 3 1 2 0
0 3 2 2 3 0 1 2 0 3 3 0 0 3
1 1 2 2 2 3 0 0 1 1 3 1 0 1
2 2 1 2 1 1 1 2 3 3 3 3 2 3
1 3 2 0 3 3 3 3 3 0 1 1 0 0
0 2 1 3 2 0 2 0 2 2 2 2 2 3

2 2 2 0 0 0 0 0 1 1 3 3 0 2
0 1 3 3 2 3 1 0 1 3 3 0 2 0
0 0 2 3 3 3 0 2 1 3 2 0 1 3
3 1 3 0 0 1 1 1 1 0 3 1 3 0
3 2 2 0 3 3 3 1 0 0 3 2 1 1
0 0 3 3 3 2 3 0 3 1 1 2 3 0
0 3 1 3 0 3 1 2 0 1 1 1 2 1
1 0 0 0 0 0 3 3 0 0 1 1 2 2
2 2 3 0 1 3 0 3 1 1 1 1 3 0
1 3 1 0 3 0 3 0 3 3 2 2 3 3
0 2 2 3 0 0 1 1 1 0 0 2 3 2
1 0 2 2 3 0 2 2 3 1 3 3 1 2
0 2 3 3 1 1 3 3 0 3 3 2 0 0
1 3 2 3 1 1 2 1 0 1 0 3 0 3
2 0 0 1 0 1 1 2 0 3 3 0 2 2
1 2 1 2 2 0 1 1 1 0 3 3 1 2
0 1 1 1 3 0 1 2 2 2 0 1 0 1
2 2 0 2 0 1 0 0 2 3 2 3 2 1
1 0 1 2 3 3 3 1 1 2 2 3 0 3
1 2 2 0 2 1 1 3 3 2 0 0 3 0
3 3 0 3 0 0 0 3 0 0 2 2 0 1
1 0 3 3 0 2 0 1 1 0 3 1 1 3
0 3 1 0 0 1 1 3 3 2 2 1 0 0
0 0 2 1 0 3 3 1 3 1 2 2 3 1
2 2 1 3 3 0 2 3 1 3 1 2 3 3
2 0 3 0 2 1 1 2 2 2 2 1 1 1
0 2 0 1 3 1 0 1 0 0 2 2 0 0
1 0 1 1 1 1 0 0 0 2 3 0 3 0
1 2 3 0 1 0 0 1 3 0 0 0 3 1
2 2 2 2 0 3 3 0 2 0 2 0 1 2
3 1 2 1 0 3 1 2 2 0 0 0 1 3
3 1 1 2 1 2 1 2 0 1 2 3 3 0
3 2 1 1 3 3 3 1 2 3 0 1 0 2
2 1 1 0 3 2 1 1 1 1 0 0 2 3
2 0 2 3 2 1 0 0 3 3 0 1 3 2
0 1 1 0 3 1 3 3 3 3 3 0 0 1
3 0 0 1 3 2 2 3 2 0 1 2 1 2
0 0 2 2 2 2 1 2 2 2 3 3 2 0
0 1 2 2 1 1 1 1 1 0 3 0 0 1
0 2 0 0 1 3 3 2 2 2 1 1 3 3
2 2 3 3 1 2 1 2 1 1 3 2 1 2
1 3 2 3 3 2 2 2 0 0 0 1 2 2
3 3 3 1 0 0 2 0 3 0 1 3 3 2
1 0 1 2 1 0 2 2 0 3 0 0 0 1
3 0 0 2 2 0 3 3 0 1 3 3 0 0
3 0 2 1 1 0 0 1 1 1 3 1 2 1
3 1 0 0 0 1 0 0 2 0 3 0 2 3
0 2 1 1 1 0 2 1 1 2 0 1 1 0
2 0 1 3 1 1 1 2 2 1 1 2 3 1
2 3 2 2 3 1 1 0 1 0 0 1 1 0
3 3 3 1 3 3 1 1 3 1 1 2 1 0

1 3 0 1 2 0 0 3 2 1 1 3 0 1
3 0 0 3 3 1 2 1 1 1 0 2 2 1
2 2 2 0 2 2 2 1 2 0 0 3 2 2
2 3 1 1 2 2 2 2 3 2 0 2 2 3
1 0 0 1 0 2 3 2 3 0 2 1 3 3
3 3 2 3 2 1 1 1 2 1 3 1 2 2
1 3 2 1 0 2 2 1 1 1 1 1 1 1
2 3 2 0 0 2 0 0 2 2 0 3 3 3
2 0 0 0 3 3 1 3 3 1 3 1 1 2
0 2 0 1 3 0 3 0 3 3 0 1 1 3
3 0 1 0 0 0 2 1 0 3 2 1 1 2
1 1 3 2 0 1 2 3 3 2 3 3 1 0
0 3 2 1 1 0 0 3 1 0 2 0 0 3
2 2 3 0 0 2 3 2 1 0 2 0 2 1
0 3 2 2 0 2 0 0 3 3 2 1 1 1
0 1 2 3 1 0 1 0 0 1 3 2 2 2
2 2 2 0 1 2 2 0 0 2 1 1 2 3
0 0 1 1 0 2 0 2 3 1 1 2 2 2
0 2 2 1 0 3 0 0 0 0 0 3 2 2
0 0 3 3 0 1 2 3 1 2 2 3 3 3
3 2 1 2 2 2 1 3 0 0 1 0 0 3
2 3 3 1 1 0 1 2 1 2 1 0 1 3
0 0 0 2 1 0 0 1 0 0 1 3 3 3
0 1 3 0 0 0 0 0 3 1 2 3 1 3
1 1 2 0 3 0 0 0 2 3 0 2 1 1
3 3 3 0 1 2 1 1 3 2 0 2 0 2
1 2 2 1 2 3 1 3 0 1 1 1 2 2
3 3 3 3 0 0 2 2 1 0 0 1 1 1
2 1 0 0 2 2 3 2 1 2 1 3 1 0
1 3 1 0 0 0 0 1 1 1 1 2 0 0
1 1 1 0 0 3 0 0 3 3 3 1 1 0
3 3 1 1 1 2 0 0 2 2 3 3 2 2
1 2 2 1 1 2 0 0 0 0 2 1 3 1
2 0 2 2 1 3 3 3 2 3 1 1 1 0
1 1 2 3 3 1 2 2 1 1 1 1 0 0
0 0 0 1 1 2 2 1 3 1 1 1 0 3
3 0 0 0 0 2 2 1 1 3 1 3 3 1
2 0 0 3 3 0 3 1 0 1 2 0 0 1
2 1 1 1 2 3 1 2 3 3 1 1 1 1
3 3 1 0 2 1 3 1 3 0 1 2 2 1
1 1 1 3 3 0 3 3 1 1 0 0 1 2
0 2 0 0 0 0 3 3 3 3 3 3 2 0
2 0 1 1 3 2 0 2 2 3 0 3 1 1
1 2 3 2 2 2 0 3 0 2 3 3 3 1
0 0 2 0 2 1 3 1 1 3 2 3 2 3
3 1 2 3 0 2 2 3 3 1 1 0 3 2
0 2 2 3 3 3 3 3 3 3 2 1 2 2
3 0 3 3 3 1 3 2 3 3 0 3 2 2
1 2 3 1 2 3 1 2 0 0 3 2 3 0
0 1 0 0 3 2 2 0 2 2 0 2 0 0
0 1 3 2 0 3 0 3 2 3 1 0 2 2

1 2 2 2 2 2 1 1 2 2 0 1 1 3
3 1 0 3 2 3 1 3 1 3 1 3 1 3
1 1 2 1 0 1 3 2 3 2 1 0 2 0
0 0 3 1 2 0 0 2 3 0 3 2 0 3
0 0 3 1 2 2 2 2 1 0 0 3 1 2
3 1 3 3 3 2 2 0 0 3 2 2 1 0
1 0 2 2 2 3 3 2 0 0 1 2 0 2
2 0 2 3 3 0 1 0 2 3 1 1 0 3
3 2 2 2 1 0 2 3 3 3 0 0 2 2
1 1 1 1 2 0 3 1 0 1 0 2 3 3
1 1 3 1 1 1 1 3 0 2 1 1 0 1
0 2 1 2 2 1 2 2 1 1 1 3 3 3
3 1 3 3 2 2 1 2 3 1 0 0 0 1
2 3 2 3 2 3 3 2 2 0 1 3 1 1
2 3 3 3 2 0 2 2 0 2 1 2 0 0
2 2 0 0 0 1 2 3 3 3 1 1 0 1
3 3 0 3 0 3 1 2 0 2 0 0 3 0
2 1 3 3 1 0 1 0 3 0 0 2 1 3
2 1 3 0 3 2 0 1 2 3 3 3 0 3
2 1 3 2 1 1 3 0 3 3 0 3 0 1
3 3 2 2 0 0 1 3 3 1 2 3 2 0
3 2 2 2 2 2 3 0 1 3 2 2 3 3
2 3 0 1 1 3 1 1 1 3 2 2 2 0
2 2 1 1 0 0 3 3 0 1 1 1 1 1
2 2 1 0 0 0 1 2 0 2 2 1 3 3
1 0 0 3 2 2 1 0 0 0 0 3 2 1
1 0 0 0 0 0 2 2 2 2 2 0 3 1
1 1 1 1 1 3 1 3 1 1 3 3 0 2
2 0 3 0 2 3 2 3 2 2 0 0 0 3
1 2 2 2 0 0 2 0 1 2 2 2 0 0
3 2 3 3 0 3 3 3 3 2 3 0 3 1
1 1 1 1 1 2 0 2 3 2 2 2 0 1
3 0 0 1 0 2 2 0 1 2 2 0 0 3
2 1 1 3 0 0 0 3 3 3 2 0 2 3
3 0 0 3 1 1 1 3 3 3 1 0 0 2
3 3 1 2 2 1 1 2 2 2 3 2 3 3
1 1 0 3 3 3 3 1 2 1 1 3 3 1
0 3 3 2 1 2 3 3 0 0 1 0 3 0
3 1 1 1 0 1 1 1 0 0 0 2 2 2
1 1 1 0 0 0 1 2 3 2 3 0 0 2
3 3 2 0 0 3 0 3 2 1 3 0 1 0
0 3 1 2 3 1 2 2 1 2 2 0 0 2
3 1 0 0 3 3 0 1 1 2 0 1 3 2
0 3 1 0 1 3 0 0 0 2 1 2 3 2
1 0 0 2 3 3 1 0 3 0 0 0 0 3
3 0 3 0 2 2 3 3 2 3 2 2 2 1
3 3 1 2 3 3 3 0 3 0 0 3 3 1
2 3 1 2 0 2 0 3 2 0 3 0 0 2
0 2 0 2 1 1 0 1 2 3 0 0 0 2
1 3 0 2 3 2 0 0 1 0 3 2 2 2
2 0 3 0 2 3 0 0 3 1 3 3 3 1

Table A.8: (14, 205, 7)4 Code - Code205-1
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A.9 Code205-2
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0 0 3 0 1 0 2 3 1 2 0 2 2 2
2 1 2 2 1 3 2 0 3 3 1 3 2 2
0 0 1 2 0 2 1 1 2 1 1 1 3 3
1 0 0 0 0 0 0 1 3 1 0 2 1 3
0 0 0 3 1 0 3 3 3 3 1 1 1 0
0 3 2 3 1 0 3 2 3 2 0 0 0 2
1 3 0 0 3 1 2 0 2 0 2 3 3 2
3 0 0 2 3 2 3 3 2 0 3 1 3 1
0 2 3 3 1 1 2 1 3 1 3 0 1 1
1 2 2 3 2 3 3 3 0 0 2 3 3 2
0 3 2 3 3 2 1 1 0 3 2 0 1 0
1 1 3 3 3 3 3 1 1 2 1 3 0 0
2 0 1 2 1 1 3 0 2 2 1 1 2 1
2 1 3 1 3 2 3 1 1 2 0 1 2 1
2 1 1 1 3 0 2 0 3 2 0 0 3 0
1 2 0 2 2 0 0 2 2 3 1 2 3 3
0 2 1 1 2 3 3 3 1 2 3 0 0 0
2 1 2 2 0 2 1 3 1 3 3 2 1 1
1 1 2 3 1 1 1 0 0 3 1 3 3 3
2 3 2 1 0 2 3 3 3 0 1 1 0 0
0 3 0 1 2 2 0 3 0 3 1 0 3 0
3 3 1 1 3 0 2 2 1 0 3 2 3 3
1 3 2 2 2 3 1 1 1 3 3 2 0 2
1 1 3 1 3 1 2 2 1 3 3 1 0 1
1 0 3 1 2 3 0 0 1 3 0 3 1 1
2 1 2 0 0 1 2 2 1 3 2 3 3 0
2 2 1 0 0 3 2 1 2 3 3 1 2 3
0 0 1 1 3 0 1 0 2 1 2 3 0 0
0 0 1 1 3 2 3 2 3 3 3 0 1 2
3 1 0 0 0 0 1 3 1 3 2 3 0 1
2 2 1 1 1 1 3 1 2 0 2 2 3 3
0 3 3 3 1 2 0 1 1 2 0 0 3 0
3 1 1 2 1 3 3 3 0 0 1 2 3 1
3 1 0 1 1 2 2 2 0 0 2 2 0 2
1 1 0 1 2 2 1 2 1 2 0 2 1 1
0 0 2 2 0 1 3 2 3 0 0 1 1 1
1 1 2 0 3 2 2 0 1 0 3 3 0 3
1 0 3 0 3 0 1 0 0 3 0 0 3 3
0 1 0 0 3 3 1 3 3 0 0 0 2 1
3 1 1 3 2 2 3 3 1 3 3 1 1 3
3 0 2 1 0 0 0 3 1 1 3 3 2 2
3 1 3 1 0 0 3 3 2 0 3 1 2 0
2 2 3 3 2 0 2 3 3 0 2 1 3 3
0 1 1 1 1 1 2 3 3 0 0 3 1 1
3 2 1 0 3 2 2 0 0 1 2 0 0 0
1 1 0 2 1 3 1 0 0 2 2 2 0 0
0 1 1 0 0 2 0 0 0 1 3 3 3 3
1 0 3 2 0 0 0 3 0 0 2 0 2 2
0 0 2 0 1 1 1 2 0 2 0 2 3 0
1 2 3 2 3 2 3 2 2 2 2 0 1 3
3 0 1 0 0 3 1 0 1 2 2 1 1 0
2 2 0 3 3 0 0 0 0 3 3 1 2 2

2 2 1 3 1 1 0 0 3 1 0 1 0 0
3 0 1 3 1 2 1 0 3 2 1 0 2 3
3 3 3 2 0 3 2 0 0 3 0 1 2 1
3 2 2 3 1 0 2 1 1 3 1 0 3 2
0 3 3 1 1 0 0 2 2 2 1 3 1 0
3 3 1 0 1 0 1 2 3 1 0 0 1 3
1 2 3 2 0 0 1 1 0 1 1 3 3 2
0 1 2 2 2 2 2 2 1 1 3 0 3 1
1 3 3 3 2 1 2 3 0 1 0 0 2 2
0 2 1 2 3 2 2 2 1 0 2 1 3 2
2 0 0 2 3 1 0 3 1 1 2 2 2 3
3 0 3 2 0 2 2 2 1 3 0 0 0 0
0 2 0 3 0 2 3 2 0 0 3 0 0 1
3 2 3 3 3 0 1 2 0 2 0 3 0 3
0 3 0 0 0 1 2 1 1 3 1 2 1 2
3 3 2 0 1 1 1 1 0 3 1 2 2 1
1 1 0 0 0 3 2 2 2 3 1 0 2 2
1 1 0 0 1 3 1 1 3 3 3 3 1 2
2 3 0 0 1 0 2 2 3 1 2 2 3 1
2 0 3 3 3 3 1 0 3 1 1 0 3 1
1 2 2 1 2 0 3 1 0 0 0 1 0 1
2 3 2 3 1 3 1 1 3 2 1 1 1 3
3 0 2 0 3 3 0 2 1 0 0 2 3 2
1 0 1 3 2 3 2 2 1 3 1 3 2 3
2 2 0 2 2 2 2 0 1 3 2 2 1 2
2 2 0 0 0 0 0 3 2 3 0 0 3 1
3 3 2 0 1 0 3 3 3 0 2 3 2 3
0 1 3 3 0 0 0 3 1 1 1 1 0 1
1 3 2 2 0 0 0 2 2 3 0 3 0 0
2 3 3 3 3 1 3 2 1 3 3 3 3 3
1 0 2 2 1 0 1 3 3 1 1 2 2 0
2 2 0 3 3 3 1 1 3 0 2 2 1 0
3 0 2 2 1 3 3 0 1 3 3 3 3 1
1 3 1 2 1 2 3 0 3 1 1 3 1 3
1 0 1 3 0 0 2 3 3 0 1 0 0 0
2 1 2 2 0 0 1 0 0 0 0 1 1 2
2 2 1 2 2 1 1 1 2 1 1 0 0 1
1 2 0 1 0 1 0 1 1 1 1 0 0 0
2 2 2 2 3 2 0 0 0 2 1 0 0 2
2 2 0 0 0 3 0 0 2 1 1 2 1 0
3 3 0 0 1 1 0 0 0 1 3 3 1 0
3 2 2 2 2 2 1 0 3 1 2 3 3 1
3 1 3 0 1 2 2 1 0 1 1 3 2 2
2 2 0 1 0 3 2 2 2 2 0 3 0 3
2 0 0 3 0 1 3 0 0 1 2 1 3 1
1 1 1 2 3 2 0 0 0 3 2 3 2 0
1 1 1 2 0 0 2 0 3 3 3 1 3 1
3 1 1 2 1 1 2 2 2 2 1 0 3 0
0 0 2 2 2 0 0 3 2 2 0 3 3 2
2 1 1 3 2 2 1 2 2 2 3 2 2 0
0 0 3 3 0 3 1 0 1 0 1 2 2 0

3 2 3 2 2 0 2 0 0 2 2 2 2 3
1 0 1 2 3 3 2 1 0 1 1 1 0 0
2 3 2 2 2 2 1 0 2 0 3 0 0 3
3 0 2 0 0 2 2 1 2 2 2 0 1 2
0 2 2 2 3 3 1 0 2 2 2 0 2 1
3 2 3 0 0 3 3 1 2 1 0 1 1 1
0 0 1 3 2 2 3 0 0 2 0 1 1 0
1 0 0 0 1 2 3 1 2 2 0 0 0 0
0 1 2 0 1 3 2 0 0 3 2 2 1 3
3 1 0 0 2 0 2 2 3 3 1 2 1 0
2 0 0 0 0 3 3 3 1 1 0 0 1 2
0 2 3 3 3 2 0 2 3 3 3 3 2 0
1 1 0 1 3 3 2 0 2 0 0 0 1 3
3 3 3 2 2 2 3 3 2 2 2 3 0 0
3 3 3 3 3 3 0 2 1 1 2 2 2 0
3 3 3 0 0 1 1 3 2 3 2 0 3 2
1 1 1 0 1 3 0 0 2 0 2 1 2 1
3 2 2 0 3 2 1 1 2 2 1 3 3 0
0 2 0 2 0 0 1 0 3 2 1 3 1 3
2 2 3 2 3 0 3 2 2 1 1 3 0 0
0 0 0 3 3 2 2 3 1 2 3 0 3 3
2 3 1 1 2 3 2 0 2 2 0 2 2 2
2 0 0 3 2 0 1 1 0 3 3 3 1 0
1 2 1 1 0 2 1 3 2 3 0 3 3 2
1 1 0 3 3 0 2 3 0 1 3 2 2 3
0 1 0 0 2 1 2 2 2 2 2 3 2 1
3 1 2 2 2 2 2 3 1 2 1 2 2 2
2 2 1 1 0 3 3 3 1 3 1 3 1 1
1 0 1 0 2 3 0 3 3 1 2 0 3 2
2 3 1 1 3 3 0 0 1 0 2 0 0 1
3 1 0 2 2 1 1 0 3 0 3 2 1 3
1 2 1 2 3 3 3 0 3 3 0 1 1 2
0 0 3 0 2 2 2 3 3 1 1 1 1 1
1 1 1 1 1 0 2 1 1 1 2 2 2 0
1 3 2 1 3 2 0 1 1 1 2 2 3 1
1 2 3 0 1 0 1 2 0 3 3 2 2 0
2 2 1 1 2 2 3 2 0 0 1 1 2 3
0 1 2 0 3 3 3 2 3 2 1 0 1 0
3 0 0 1 1 3 1 2 2 2 3 1 1 3
2 2 2 0 3 0 0 1 3 1 1 1 3 3
3 0 1 1 0 2 1 1 3 3 3 2 0 0
1 3 3 0 2 3 1 3 1 3 0 1 3 0
3 1 1 0 2 0 0 1 1 2 1 2 0 3
0 2 2 1 2 1 1 3 3 3 3 3 0 2
2 3 0 3 2 1 3 1 3 1 0 2 0 2
0 1 1 1 3 0 3 1 3 0 1 1 0 2
0 0 0 2 2 2 1 1 1 3 0 1 2 0
0 0 3 2 1 2 1 3 3 2 2 0 0 1
0 2 2 3 3 0 0 0 1 3 2 2 0 0
0 1 3 3 0 2 2 3 2 3 0 2 2 1
0 2 0 0 3 3 3 2 0 3 2 2 2 2

3 0 3 0 2 2 2 2 2 3 3 3 3 3
3 3 1 3 1 0 0 0 2 3 2 2 2 2
3 3 0 2 2 0 0 2 1 0 1 0 0 2
2 3 1 3 3 0 2 2 2 2 1 3 3 2
1 0 3 1 1 1 1 1 2 2 3 2 2 1
1 2 2 0 1 1 0 0 1 2 2 0 2 2
1 2 1 3 1 0 2 2 0 0 2 3 1 0
2 0 3 0 0 0 0 2 1 0 1 3 3 3
2 1 1 1 2 1 1 0 1 3 2 1 2 2
0 2 3 1 0 3 3 1 0 0 2 1 3 0
3 1 2 1 1 3 1 1 3 2 2 2 2 2
1 0 1 3 3 3 1 3 3 2 2 3 1 3
1 1 2 2 2 1 3 0 2 0 0 1 3 0
0 1 1 2 3 1 0 1 1 1 1 3 2 1
0 2 2 1 0 3 0 0 0 3 0 3 2 3
2 0 0 0 1 2 0 0 1 0 3 2 0 2
3 3 1 2 3 1 1 0 1 0 0 0 3 2
2 0 2 1 2 0 3 0 3 3 2 3 0 3
2 0 2 2 3 1 2 1 2 1 2 3 0 2
1 0 3 3 2 1 2 0 3 3 2 1 1 2
3 1 0 1 3 1 3 2 1 1 0 3 3 1
0 3 3 1 2 3 3 1 2 2 3 3 3 1
0 2 3 3 2 2 2 0 1 1 1 3 3 3
0 0 0 0 2 1 2 0 3 3 3 0 2 3
2 1 1 1 0 0 1 2 3 1 1 3 0 3
2 1 0 3 0 2 2 1 1 1 0 0 2 3
1 3 3 1 0 0 2 0 1 2 2 0 3 3
0 2 0 2 0 3 3 1 1 1 3 2 0 3
3 1 2 3 2 3 1 0 0 3 3 1 0 0
0 3 3 2 3 3 2 2 0 0 0 0 3 3
2 3 0 2 3 3 2 2 0 2 3 1 1 0
3 3 2 1 3 0 1 3 0 3 0 0 0 1
2 2 2 0 0 2 3 0 2 3 2 3 2 1
3 3 3 3 0 1 1 1 1 1 0 2 3 3
0 1 3 3 1 1 1 3 0 2 3 3 0 0
2 0 2 0 2 0 2 1 1 0 1 1 2 1
3 2 2 2 1 0 0 2 0 1 0 2 1 1
2 3 3 0 1 3 3 3 2 2 1 2 0 1
3 1 3 3 3 3 0 0 0 2 1 1 3 3
3 3 1 1 3 1 1 2 3 0 1 1 2 0
2 3 2 2 0 1 3 1 1 0 3 0 3 0
2 2 1 3 3 3 3 2 1 0 0 3 2 2
0 3 3 0 3 0 3 0 0 1 3 3 0 2
1 0 2 1 1 1 1 1 0 0 1 0 0 2
2 3 1 1 3 1 0 3 2 3 3 2 1 1
3 2 2 1 2 1 2 2 1 1 2 0 2 3
3 3 3 3 3 3 3 3 1 0 0 0 1 1
2 3 3 0 1 2 0 1 0 0 0 2 1 1
3 2 1 2 2 0 1 3 3 2 0 0 2 2
1 3 0 3 0 3 0 1 2 2 2 2 1 1
0 3 2 1 0 2 1 0 2 2 3 1 1 2

Table A.9: (14, 205, 7)4 Code - Code205-2



Appendix B

Results

B.1 Direct vs Fuzzy Analysis for Each Code

The summary statistics of fitness value for four different combination of mutations, named
as experiments (E1, E2, E3, and E4) with eight different ranges of sates have been presented
from table B.1 to B.72 for each code. The results of both direct and fuzzy classification for
each set of mutations are shown synchronously. Each table has maximum fitness (number
of corrected errors), median fitness, interquartile range of 30 runs and the percentage of
maximum fitness of both training and verification dataset for every eight ranges of states.
The fitness values in each table are measured for all distances that are the sum of the fitness
value of distance 1, 2 and 3 for an individual machine and also the fitness value of distance
1, 2 and 3 explicitly.

The violin plots demonstrate the distribution of fitness of distance 1, 2, and 3 for training
and verification, for both direct and fuzzy classification for each range of state. The x-axis
indicates each distance and the y-axis represents the fitness value or the corrected number
of errors for each distance. The figure for each range of state is generated from the 30 runs
for each experiment.

96
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B.1.1 Code of length 12

Code55

State Error Training Training Training Training Verification Verification Verification Verification
Range Dist. Max Median IQR Max % Max Median IQR Max %
4to6 All 1024 991 19 51.7 1013 958 44 51.2

1 454 427.5 10 68.8 442 412 19 67
2 362 349.5 16 54.8 368 339.5 17 55.8
3 229 213 18 34.7 241 201 7 36.5

4to8 All 1270 1243 27 64.1 1257 1222 33 63.5
1 550 523.5 23 83.3 539 524 22 81.7
2 455 442 10 68.9 460 444 9 69.7
3 288 273 11 43.6 278 263 13 42.1

6to12 All 1421 1380 35 71.8 1391 1327 55 70.3
1 589 566.5 18 89.2 573 554 22 86.8
2 506 483 19 76.7 502 476 26 76.1
3 343 328 19 52 337 298 12 51.1

6to18 All 1446 1378.5 59 73 1408 1319 54 71.1
1 593 564.5 15 89.8 579 550 24 87.7
2 516 489 25 78.2 499 472.5 23 75.6
3 360 328 28 54.5 344 304.5 30 52.1

8to14 All 1475 1390.5 37 74.5 1399 1340 57 70.7
1 598 566 20 90.6 592 553.5 28 89.7
2 515 490 14 78 503 473 28 76.2
3 374 336 16 56.7 337 304.5 24 51.1

8to18 All 1467 1404 62 74.1 1445 1342.5 49 73
1 603 569 23 91.4 595 556 24 90.2
2 520 490 25 78.8 517 476.5 22 78.3
3 372 334.5 26 56.4 333 305 24 50.5

10to16 All 1451 1389 69 73.3 1419 1334.5 58 71.7
1 594 569 23 90 588 557 15 89.1
2 512 488.5 26 77.6 512 477.5 15 77.6
3 375 330.5 21 56.8 353 302.5 23 53.5

14to18 All 1457 1423 44 73.6 1426 1364 42 72
1 594 575 19 90 589 559.5 15 89.2
2 518 494.5 11 78.5 514 479 22 77.9
3 364 347.5 17 55.2 358 315.5 26 54.2

Table B.1: Code55, Direct Classification Fitness Result For Experiment 1

State Error Training Training Training Training Verification Verification Verification Verification
Range Dist. Max Median IQR Max % Max Median IQR Max %
4to6 All 1421 1376 40 71.8 1433 1355.5 46 72.4

1 545 521 7 82.6 533 510 16 80.8
2 503 479 14 76.2 495 476 21 75
3 389 369 20 58.9 409 369 27 62

4to8 All 1664 1558.5 96 84 1639 1551.5 111 82.8
1 602 575.5 28 91.2 595 570 28 90.2
2 566 540 28 85.8 568 539 36 86.1
3 496 445 46 75.2 479 437.5 46 72.6

6to12 All 1690 1620 61 85.4 1663 1594.5 67 84
1 613 596 15 92.9 608 588 25 92.1
2 579 555.5 25 87.7 577 554.5 20 87.4
3 513 468 30 77.7 486 449 23 73.6

6to18 All 1704 1597 61 86.1 1670 1579.5 62 84.3
1 622 597.5 20 94.2 613 588 20 92.9
2 582 551 20 88.2 574 548 18 87
3 513 456.5 36 77.7 492 447 16 74.5

8to14 All 1727 1618 68 87.2 1706 1600 74 86.2
1 618 591.5 22 93.6 617 587 31 93.5
2 596 551 22 90.3 586 551 26 88.8
3 520 466 25 78.8 509 454.5 26 77.1

8to18 All 1746 1614.5 89 88.2 1739 1589 89 87.8
1 625 597 22 94.7 619 589.5 25 93.8
2 599 550.5 23 90.8 601 553 28 91.1
3 522 468.5 32 79.1 519 448 30 78.6

10to16 All 1723 1625 72 87 1694 1595 58 85.6
1 628 599 23 95.2 626 591.5 22 94.8
2 588 554.5 18 89.1 585 555.5 19 88.6
3 515 475.5 34 78 483 455.5 26 73.2

14to18 All 1710 1618 44 86.4 1694 1600.5 44 85.6
1 617 600 15 93.5 625 594 13 94.7
2 582 554.5 18 88.2 586 553 18 88.8
3 514 460.5 27 77.9 504 456 21 76.4

Table B.2: Code55, Fuzzy Classification Fitness Result For Experiment 1
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Figure B.1: Code55, violin plots representing the distribution of correctly decoded error
patterns for different ranges of states for the 30 runs for experiment 1



APPENDIX B. RESULTS 99

State Error Training Training Training Training Verification Verification Verification Verification
Range Dist. Max Median IQR Max % Max Median IQR Max %
4to6 All 1024 998 15 51.7 1013 980 56 51.2

1 446 432 13 67.6 442 422 20 67
2 362 350 13 54.8 368 342 16 55.8
3 230 217.5 21 34.8 241 205.5 25 36.5

4to8 All 1270 1242 51 64.1 1257 1218.5 70 63.5
1 550 522 30 83.3 546 517 32 82.7
2 455 441 10 68.9 448 440.5 24 67.9
3 288 273 14 43.6 277 269 14 42

6to12 All 1428 1368.5 65 72.1 1400 1329.5 66 70.7
1 598 562 21 90.6 593 553 22 89.8
2 502 479.5 19 76.1 497 472.5 16 75.3
3 360 328 25 54.5 336 296.5 33 50.9

6to18 All 1460 1397 46 73.7 1432 1343.5 46 72.3
1 600 573 21 90.9 590 562.5 18 89.4
2 514 485.5 20 77.9 506 480.5 15 76.7
3 357 334.5 27 54.1 347 304 25 52.6

8to14 All 1455 1366.5 62 73.5 1460 1327 36 73.7
1 590 563.5 24 89.4 589 549.5 19 89.2
2 506 483.5 18 76.7 520 473 14 78.8
3 363 324 25 55 361 299.5 16 54.7

8to18 All 1473 1389.5 91 74.4 1425 1340.5 65 72
1 596 567.5 18 90.3 589 560 19 89.2
2 515 487 27 78 505 476 24 76.5
3 377 336.5 32 57.1 337 306.5 18 51.1

10to16 All 1418 1382 54 71.6 1394 1325 46 70.4
1 588 564 15 89.1 586 555 15 88.8
2 499 485 17 75.6 504 470 23 76.4
3 360 329 32 54.5 328 298 19 49.7

14to18 All 1476 1419.5 51 74.5 1420 1360 52 71.7
1 593 575.5 15 89.8 590 564 17 89.4
2 522 497 17 79.1 513 482 16 77.7
3 372 345.5 22 56.4 351 317 17 53.2

Table B.3: Code55, Direct Classification Fitness Result For Experiment 2

State Error Training Training Training Training Verification Verification Verification Verification
Range Dist. Max Median IQR Max % Max Median IQR Max %
4to6 All 1692 1373 40 85.5 1682 1355.5 58 84.9

1 615 522.5 7 93.2 596 510.5 23 90.3
2 578 472.5 14 87.6 574 472 21 87
3 499 370 23 75.6 512 367.5 29 77.6

4to8 All 1664 1589.5 172 84 1639 1575 168 82.8
1 602 584 44 91.2 601 572 38 91.1
2 566 541 48 85.8 568 539 56 86.1
3 497 462.5 80 75.3 479 460 60 72.6

6to12 All 1744 1619.5 95 88.1 1706 1600 73 86.2
1 623 595.5 17 94.4 625 589.5 21 94.7
2 596 553 29 90.3 584 554 27 88.5
3 530 475.5 35 80.3 499 461 36 75.6

6to18 All 1740 1622.5 68 87.9 1744 1600.5 61 88.1
1 628 598 18 95.2 623 590.5 17 94.4
2 582 552 20 88.2 596 553.5 18 90.3
3 533 471 33 80.8 525 453.5 22 79.5

8to14 All 1684 1624.5 61 85.1 1684 1603 68 85.1
1 620 599 21 93.9 623 593 26 94.4
2 583 552.5 19 88.3 579 561 20 87.7
3 497 473 29 75.3 500 456.5 23 75.8

8to18 All 1697 1630 65 85.7 1662 1610.5 78 83.9
1 619 603 24 93.8 613 594 18 92.9
2 582 555 16 88.2 579 557.5 25 87.7
3 506 473.5 33 76.7 489 452 31 74.1

10to16 All 1703 1619.5 75 86 1674 1600.5 73 84.5
1 621 596.5 29 94.1 617 594 30 93.5
2 582 550 22 88.2 581 552 18 88
3 512 468 37 77.6 491 457 32 74.4

14to18 All 1728 1605.5 52 87.3 1699 1581.5 58 85.8
1 629 601 18 95.3 626 593.5 20 94.8
2 593 552 19 89.8 585 549 21 88.6
3 519 454.5 25 78.6 500 441 25 75.8

Table B.4: Code55, Fuzzy Classification Fitness Result For Experiment 2
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Figure B.2: Code55, violin plots representing the distribution of correctly decoded error
patterns for different ranges of states for the 30 runs for experiment 2
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State Error Training Training Training Training Verification Verification Verification Verification
Range Dist. Max Median IQR Max % Max Median IQR Max %
4to6 All 1024 990.5 25 51.7 1006 951.5 47 50.8

1 454 432 17 68.8 442 409.5 20 67
2 362 350.5 14 54.8 368 341.5 12 55.8
3 230 211.5 16 34.8 241 203 26 36.5

4to8 All 1270 1239 47 64.1 1257 1211.5 46 63.5
1 550 519 23 83.3 544 515 22 82.4
2 455 440 8 68.9 452 432 24 68.5
3 288 271 12 43.6 282 259 20 42.7

6to12 All 1420 1343 45 71.7 1360 1308 55 68.7
1 587 559.5 24 88.9 572 550 22 86.7
2 496 473.5 26 75.2 487 466.5 16 73.8
3 347 314 24 52.6 333 287.5 16 50.5

6to18 All 1450 1394.5 85 73.2 1387 1329.5 56 70.1
1 590 564 27 89.4 582 552.5 21 88.2
2 514 488.5 27 77.9 503 477.5 28 76.2
3 358 334.5 35 54.2 329 302 17 49.8

8to14 All 1440 1387 58 72.7 1407 1329.5 47 71.1
1 587 569.5 23 88.9 585 557 23 88.6
2 508 483 12 77 504 473.5 23 76.4
3 359 329 28 54.4 337 299.5 24 51.1

8to18 All 1455 1392 45 73.5 1416 1341.5 54 71.5
1 597 571.5 20 90.5 592 560.5 19 89.7
2 515 489 22 78 514 479 20 77.9
3 367 334 21 55.6 333 307.5 22 50.5

10to16 All 1467 1373.5 78 74.1 1438 1323.5 72 72.6
1 595 568.5 23 90.2 585 556 23 88.6
2 511 478.5 25 77.4 510 469.5 24 77.3
3 372 322.5 34 56.4 347 296.5 20 52.6

14to18 All 1488 1408 55 75.2 1430 1356 75 72.2
1 610 572 18 92.4 605 565.5 26 91.7
2 521 493 21 78.9 505 479 22 76.5
3 379 343.5 19 57.4 342 310.5 26 51.8

Table B.5: Code55, Direct Classification Fitness Result For Experiment 3

State Error Training Training Training Training Verification Verification Verification Verification
Range Dist. Max Median IQR Max % Max Median IQR Max %
4to6 All 1687 1362.5 50 85.2 1698 1352 53 85.8

1 607 521.5 15 92 607 511 20 92
2 578 474.5 22 87.6 595 472 22 90.2
3 502 366 28 76.1 496 366.5 36 75.2

4to8 All 1674 1592 129 84.5 1691 1591.5 96 85.4
1 607 584.5 32 92 596 587 27 90.3
2 566 544 33 85.8 586 550.5 38 88.8
3 504 457.5 65 76.4 509 465 45 77.1

6to12 All 1692 1611 82 85.5 1660 1600.5 64 83.8
1 614 595.5 28 93 611 590.5 26 92.6
2 575 549.5 28 87.1 573 554.5 22 86.8
3 508 464.5 37 77 490 457 31 74.2

6to18 All 1690 1605.5 64 85.4 1668 1604.5 72 84.2
1 614 598 17 93 611 592.5 21 92.6
2 575 548.5 26 87.1 587 556.5 27 88.9
3 501 464.5 35 75.9 492 457 36 74.5

8to14 All 1741 1645 98 87.9 1711 1623.5 67 86.4
1 621 603 17 94.1 619 591 28 93.8
2 600 562 30 90.9 596 559 27 90.3
3 520 476 39 78.8 516 463 25 78.2

8to18 All 1721 1620.5 34 86.9 1692 1608 54 85.5
1 619 599 16 93.8 621 596.5 18 94.1
2 592 554 21 89.7 585 556 16 88.6
3 513 470 35 77.7 496 455 27 75.2

10to16 All 1698 1614 62 85.8 1687 1595 76 85.2
1 630 597.5 22 95.5 624 589 26 94.5
2 587 548.5 21 88.9 587 551.5 25 88.9
3 517 464 27 78.3 500 454 30 75.8

14to18 All 1727 1614.5 105 87.2 1697 1600 93 85.7
1 628 601.5 16 95.2 630 592.5 25 95.5
2 592 548 35 89.7 595 554 31 90.2
3 515 463.5 40 78 505 450.5 41 76.5

Table B.6: Code55, Fuzzy Classification Fitness Result For Experiment 3
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Figure B.3: Code55, violin plots representing the distribution of correctly decoded error
patterns for different ranges of states for the 30 runs for experiment 3
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State Error Training Training Training Training Verification Verification Verification Verification
Range Dist. Max Median IQR Max % Max Median IQR Max %
4to6 All 1024 990.5 23 51.7 1006 980.5 41 50.8

1 454 435 11 68.8 442 422 15 67
2 362 355.5 13 54.8 368 342 11 55.8
3 227 212 26 34.4 241 206 17 36.5

4to8 All 1270 1235 30 64.1 1243 1212 40 62.8
1 544 522.5 7 82.4 529 516 19 80.2
2 455 442 10 68.9 448 439.5 18 67.9
3 288 272.5 13 43.6 275 264.5 20 41.7

6to12 All 1402 1352.5 33 70.8 1377 1319.5 31 69.5
1 575 559 22 87.1 569 550.5 19 86.2
2 500 477.5 17 75.8 492 471.5 15 74.5
3 353 315.5 22 53.5 338 297 14 51.2

6to18 All 1460 1380 32 73.7 1413 1340.5 55 71.4
1 596 562.5 22 90.3 588 554.5 30 89.1
2 517 483 20 78.3 509 477 22 77.1
3 360 332 19 54.5 330 305.5 16 50

8to14 All 1440 1365 80 72.7 1411 1316 59 71.3
1 584 566 22 88.5 575 550.5 23 87.1
2 507 480 25 76.8 492 469.5 25 74.5
3 361 327.5 44 54.7 357 295.5 23 54.1

8to18 All 1487 1409.5 36 75.1 1429 1351.5 45 72.2
1 593 574 15 89.8 594 556.5 19 90
2 537 489 18 81.4 504 481.5 16 76.4
3 381 341 31 57.7 352 309 30 53.3

10to16 All 1463 1392.5 75 73.9 1445 1342 75 73
1 594 561 28 90 590 555 25 89.4
2 513 482.5 22 77.7 514 477.5 24 77.9
3 372 326.5 36 56.4 364 307 25 55.2

14to18 All 1462 1419 36 73.8 1415 1371 55 71.5
1 605 575 13 91.7 582 561.5 21 88.2
2 520 497 15 78.8 508 484 23 77
3 378 348.5 18 57.3 349 312.5 28 52.9

Table B.7: Code55, Direct Classification Fitness Result For Experiment 4

State Error Training Training Training Training Verification Verification Verification Verification
Range Dist. Max Median IQR Max % Max Median IQR Max %
4to6 All 1687 1364.5 49 85.2 1698 1356 44 85.8

1 607 521 8 92 607 511 19 92
2 578 476 22 87.6 595 472 19 90.2
3 502 369 16 76.1 496 371.5 29 75.2

4to8 All 1664 1583.5 127 84 1639 1574 106 82.8
1 602 579 32 91.2 595 571.5 22 90.2
2 566 546.5 35 85.8 570 545.5 38 86.4
3 496 455.5 61 75.2 479 460 50 72.6

6to12 All 1700 1607.5 59 85.9 1687 1604.5 65 85.2
1 618 592.5 20 93.6 613 586 14 92.9
2 575 551 18 87.1 583 552.5 27 88.3
3 511 470 31 77.4 501 458 33 75.9

6to18 All 1716 1597 65 86.7 1707 1582.5 58 86.2
1 622 592.5 17 94.2 617 587 19 93.5
2 572 542.5 20 86.7 580 550 24 87.9
3 524 462.5 25 79.4 510 450 28 77.3

8to14 All 1693 1607.5 65 85.5 1674 1590.5 79 84.5
1 617 595.5 17 93.5 612 588 23 92.7
2 579 552 20 87.7 579 553 27 87.7
3 508 461.5 30 77 488 451.5 32 73.9

8to18 All 1706 1615.5 68 86.2 1656 1585 72 83.6
1 623 595 19 94.4 617 591 26 93.5
2 587 553 26 88.9 578 550.5 16 87.6
3 504 459.5 30 76.4 486 442.5 27 73.6

10to16 All 1714 1597 59 86.6 1698 1579.5 55 85.8
1 626 590.5 20 94.8 625 583.5 17 94.7
2 587 551.5 16 88.9 578 547.5 21 87.6
3 514 464.5 29 77.9 495 449 27 75

14to18 All 1717 1623 47 86.7 1668 1594.5 55 84.2
1 630 600.5 13 95.5 626 593 20 94.8
2 588 553.5 10 89.1 578 551 26 87.6
3 501 468 28 75.9 488 450.5 27 73.9

Table B.8: Code55, Fuzzy Classification Fitness Result For Experiment 4
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Figure B.4: Code55, violin plots representing the distribution of correctly decoded error
patterns for different ranges of states for the 30 runs for experiment 4
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Code60-1

State Error Training Training Training Training Verification Verification Verification Verification
Range Dist. Max Median IQR Max % Max Median IQR Max %
4to6 All 1085 1051 27 50.2 1102 1032 42 51

1 484 470 8 67.2 502 477 31 69.7
2 378 361.5 11 52.5 387 362.5 28 53.8
3 249 223.5 12 34.6 243 208 21 33.8

4to8 All 1335 1294.5 34 61.8 1340 1268.5 70 62
1 586 561 27 81.4 587 553.5 42 81.5
2 487 454.5 12 67.6 479 454 20 66.5
3 301 283 12 41.8 281 260.5 19 39

6to12 All 1529 1486 55 70.8 1482 1434.5 57 68.6
1 650 615 20 90.3 626 608.5 10 86.9
2 535 511.5 21 74.3 542 504.5 26 75.3
3 380 349 22 52.8 350 315.5 30 48.6

6to18 All 1570 1508.5 53 72.7 1518 1450 54 70.3
1 640 619.5 22 88.9 648 618.5 18 90
2 559 523 19 77.6 540 508.5 18 75
3 388 363 30 53.9 357 320.5 29 49.6

8to14 All 1540 1469.5 65 71.3 1501 1414.5 70 69.5
1 646 613 27 89.7 629 602 26 87.4
2 539 508.5 26 74.9 532 499 29 73.9
3 382 349 28 53.1 356 314 32 49.4

8to18 All 1570 1512 34 72.7 1505 1454 43 69.7
1 658 622 19 91.4 632 612 18 87.8
2 548 516 20 76.1 536 510.5 20 74.4
3 401 364 23 55.7 369 324.5 29 51.2

10to16 All 1594 1482.5 78 73.8 1523 1432 53 70.5
1 646 618 17 89.7 635 611.5 18 88.2
2 543 516 23 75.4 537 503.5 27 74.6
3 413 354 44 57.4 366 316 39 50.8

14to18 All 1578 1533.5 39 73.1 1520 1458.5 45 70.4
1 650 625.5 15 90.3 640 622 20 88.9
2 560 535 15 77.8 532 508 19 73.9
3 402 375.5 17 55.8 361 327.5 16 50.1

Table B.9: Code60-1, Direct Classification Fitness Result For Experiment 1

State Error Training Training Training Training Verification Verification Verification Verification
Range Dist. Max Median IQR Max % Max Median IQR Max %
4to6 All 1587 1472 68 73.5 1555 1477 78 72

1 606 568 27 84.2 590 566 16 81.9
2 542 509.5 23 75.3 546 515 26 75.8
3 439 399.5 16 61 422 392 31 58.6

4to8 All 1805 1676.5 118 83.6 1824 1664 141 84.4
1 654 626.5 29 90.8 655 621 36 91
2 616 578.5 39 85.6 628 572.5 46 87.2
3 545 480 59 75.7 542 469 65 75.3

6to12 All 1840 1760 54 85.2 1840 1741.5 92 85.2
1 675 645 17 93.8 666 642.5 20 92.5
2 631 603 18 87.6 625 594.5 30 86.8
3 549 513.5 32 76.2 553 510.5 49 76.8

6to18 All 1851 1771.5 63 85.7 1853 1736.5 90 85.8
1 675 650.5 16 93.8 676 651 26 93.9
2 636 607.5 24 88.3 638 597 22 88.6
3 549 512.5 30 76.2 544 490 43 75.6

8to14 All 1868 1729.5 73 86.5 1832 1713.5 86 84.8
1 674 641.5 33 93.6 668 637 24 92.8
2 632 596.5 30 87.8 620 587 32 86.1
3 565 499 36 78.5 545 492 33 75.7

8to18 All 1856 1760 72 85.9 1813 1737 87 83.9
1 679 647.5 27 94.3 677 648.5 24 94
2 634 598 28 88.1 627 596.5 39 87.1
3 544 510 27 75.6 539 496 35 74.9

10to16 All 1842 1770.5 67 85.3 1876 1735.5 89 86.9
1 669 649 22 92.9 679 640.5 23 94.3
2 634 603.5 20 88.1 639 595 24 88.8
3 548 507 38 76.1 558 498.5 42 77.5

14to18 All 1873 1762.5 83 86.7 1849 1725 91 85.6
1 671 648 16 93.2 674 648.5 25 93.6
2 650 608.5 26 90.3 636 588.5 23 88.3
3 553 505.5 41 76.8 541 494 46 75.1

Table B.10: Code60-1, Fuzzy Classification Fitness Result For Experiment 1
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Figure B.5: Code60-1, violin plots representing the distribution of correctly decoded error
patterns for different ranges of states for the 30 runs for experiment 1
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State Error Training Training Training Training Verification Verification Verification Verification
Range Dist. Max Median IQR Max % Max Median IQR Max %
4to6 All 1085 1056 26 50.2 1102 1035.5 32 51

1 494 472 5 68.6 502 475 28 69.7
2 375 363.5 12 52.1 384 360 16 53.3
3 249 222 11 34.6 243 208 18 33.8

4to8 All 1339 1306.5 59 62 1340 1267 47 62
1 582 561.5 27 80.8 587 555 33 81.5
2 487 455 14 67.6 479 456 24 66.5
3 302 286 15 41.9 279 265 26 38.8

6to12 All 1536 1482 62 71.1 1508 1422.5 73 69.8
1 637 610.5 24 88.5 632 606 19 87.8
2 533 514 26 74 530 496.5 20 73.6
3 390 353 35 54.2 365 315.5 39 50.7

6to18 All 1575 1514 87 72.9 1513 1452 69 70
1 641 622.5 20 89 643 614.5 13 89.3
2 557 524 27 77.4 532 503 25 73.9
3 415 368.5 40 57.6 369 328 45 51.2

8to14 All 1578 1502.5 80 73.1 1505 1445.5 62 69.7
1 656 626 37 91.1 638 608 20 88.6
2 555 521 20 77.1 533 504.5 27 74
3 410 357 29 56.9 369 323.5 41 51.2

8to18 All 1597 1512 63 73.9 1532 1445 58 70.9
1 649 619.5 24 90.1 635 607 20 88.2
2 567 525 22 78.8 535 511 28 74.3
3 401 372 35 55.7 375 327 30 52.1

10to16 All 1610 1478 59 74.5 1529 1427.5 64 70.8
1 644 614.5 20 89.4 639 610 15 88.8
2 543 514.5 12 75.4 540 496.5 22 75
3 424 351 36 58.9 367 317.5 41 51

14to18 All 1614 1533 47 74.7 1518 1450.5 46 70.3
1 653 625.5 19 90.7 638 611.5 20 88.6
2 558 531 19 77.5 531 512 20 73.8
3 411 372 27 57.1 379 327 23 52.6

Table B.11: Code60-1, Direct Classification Fitness Result For Experiment 2

State Error Training Training Training Training Verification Verification Verification Verification
Range Dist. Max Median IQR Max % Max Median IQR Max %
4to6 All 1592 1474.5 70 73.7 1602 1437 57 74.2

1 589 565 23 81.8 609 559 19 84.6
2 550 517 20 76.4 550 510 24 76.4
3 456 398 26 63.3 443 383 41 61.5

4to8 All 1805 1682 113 83.6 1812 1653 139 83.9
1 654 626 32 90.8 652 624 37 90.6
2 616 582 49 85.6 619 573.5 42 86
3 545 473 52 75.7 542 464 66 75.3

6to12 All 1847 1746.5 64 85.5 1840 1716 83 85.2
1 676 638.5 24 93.9 681 637 28 94.6
2 637 597 21 88.5 626 586 27 86.9
3 552 502.5 33 76.7 547 488 50 76

6to18 All 1838 1762.5 39 85.1 1813 1737 67 83.9
1 669 646.5 13 92.9 672 650 16 93.3
2 632 604 14 87.8 620 589.5 16 86.1
3 546 507.5 26 75.8 533 497 38 74

8to14 All 1906 1741 55 88.2 1877 1714.5 55 86.9
1 681 641 27 94.6 676 636.5 20 93.9
2 649 596 17 90.1 636 587.5 33 88.3
3 576 504.5 38 80 565 487 37 78.5

8to18 All 1817 1738 83 84.1 1798 1712 93 83.2
1 665 642.5 20 92.4 664 638 15 92.2
2 627 594 23 87.1 616 585.5 15 85.6
3 550 501 29 76.4 537 491.5 57 74.6

10to16 All 1811 1753 52 83.8 1802 1734.5 56 83.4
1 663 644.5 20 92.1 672 641.5 19 93.3
2 625 599.5 26 86.8 625 585.5 24 86.8
3 552 513 27 76.7 531 504 26 73.8

14to18 All 1860 1745 59 86.1 1842 1719.5 66 85.3
1 680 652.5 14 94.4 667 641 23 92.6
2 638 599 23 88.6 622 587 26 86.4
3 543 503.5 25 75.4 553 489.5 28 76.8

Table B.12: Code60-1, Fuzzy Classification Fitness Result For Experiment 2
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Figure B.6: Code60-1, violin plots representing the distribution of correctly decoded error
patterns for different ranges of states for the 30 runs for experiment 2
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State Error Training Training Training Training Verification Verification Verification Verification
Range Dist. Max Median IQR Max % Max Median IQR Max %
4to6 All 1085 1068 23 50.2 1102 1040.5 69 51

1 488 472 7 67.8 502 480 35 69.7
2 375 363 9 52.1 387 364.5 12 53.8
3 249 225 16 34.6 243 211 27 33.8

4to8 All 1339 1314 51 62 1340 1276 63 62
1 582 566.5 26 80.8 587 557 32 81.5
2 487 455 25 67.6 479 454 9 66.5
3 302 284.5 14 41.9 281 261 21 39

6to12 All 1529 1459 79 70.8 1468 1417.5 70 68
1 639 610 21 88.8 621 603 21 86.2
2 544 501.5 26 75.6 523 497 24 72.6
3 387 343.5 43 53.8 346 314 42 48.1

6to18 All 1586 1513 69 73.4 1525 1445.5 55 70.6
1 646 613 26 89.7 633 610 18 87.9
2 570 526 32 79.2 537 509 21 74.6
3 400 361.5 33 55.6 374 325 31 51.9

8to14 All 1560 1453.5 88 72.2 1515 1393.5 89 70.1
1 635 607.5 22 88.2 644 600.5 35 89.4
2 553 508 24 76.8 517 491.5 33 71.8
3 411 342.5 42 57.1 354 309 43 49.2

8to18 All 1584 1469.5 73 73.3 1502 1422 49 69.5
1 648 611.5 24 90 630 606 18 87.5
2 551 511 29 76.5 523 496 18 72.6
3 414 340 43 57.5 362 315.5 33 50.3

10to16 All 1589 1481 87 73.6 1558 1423 61 72.1
1 648 617.5 23 90 637 610 18 88.5
2 563 518.5 29 78.2 545 500.5 25 75.7
3 414 360.5 41 57.5 376 313.5 30 52.2

14to18 All 1590 1541 63 73.6 1543 1466.5 58 71.4
1 651 632.5 20 90.4 637 621 15 88.5
2 559 532 18 77.6 541 516 22 75.1
3 414 374 29 57.5 375 331 28 52.1

Table B.13: Code60-1, Direct Classification Fitness Result For Experiment 3

State Error Training Training Training Training Verification Verification Verification Verification
Range Dist. Max Median IQR Max % Max Median IQR Max %
4to6 All 1587 1500 55 73.5 1555 1497.5 84 72

1 606 571 19 84.2 590 569 20 81.9
2 542 520.5 22 75.3 546 527 29 75.8
3 448 410 28 62.2 441 403 34 61.2

4to8 All 1805 1675 110 83.6 1812 1664 125 83.9
1 654 626 28 90.8 652 632 32 90.6
2 616 587 49 85.6 619 574 35 86
3 545 483.5 49 75.7 542 471 47 75.3

6to12 All 1835 1751 80 85 1841 1721 80 85.2
1 665 642 22 92.4 664 637 24 92.2
2 620 592 24 86.1 629 583.5 24 87.4
3 567 509 34 78.8 566 502.5 28 78.6

6to18 All 1823 1752 68 84.4 1823 1731.5 76 84.4
1 672 645.5 22 93.3 667 642.5 20 92.6
2 633 600 16 87.9 618 589 23 85.8
3 554 504.5 33 76.9 557 503.5 45 77.4

8to14 All 1823 1731.5 51 84.4 1823 1709 61 84.4
1 664 643 15 92.2 670 633.5 22 93.1
2 623 593 19 86.5 614 585 18 85.3
3 554 492.5 35 76.9 557 489 31 77.4

8to18 All 1838 1737.5 61 85.1 1829 1728 76 84.7
1 676 641 22 93.9 665 641 15 92.4
2 623 600.5 27 86.5 620 582.5 17 86.1
3 556 504 35 77.2 547 508.5 51 76

10to16 All 1841 1744 78 85.2 1817 1720 63 84.1
1 666 644.5 23 92.5 670 644.5 29 93.1
2 639 600.5 28 88.8 624 584.5 25 86.7
3 545 500 29 75.7 543 481.5 39 75.4

14to18 All 1867 1773.5 70 86.4 1812 1758 56 83.9
1 673 657 18 93.5 676 651 13 93.9
2 648 607.5 21 90 623 590.5 25 86.5
3 548 513 35 76.1 539 501 30 74.9

Table B.14: Code60-1, Fuzzy Classification Fitness Result For Experiment 3
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Figure B.7: Code60-1, violin plots representing the distribution of correctly decoded error
patterns for different ranges of states for the 30 runs for experiment 3
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State Error Training Training Training Training Verification Verification Verification Verification
Range Dist. Max Median IQR Max % Max Median IQR Max %
4to6 All 1085 1068 26 50.2 1102 1039 65 51

1 488 470.5 10 67.8 502 479 30 69.7
2 375 365 12 52.1 387 363.5 27 53.8
3 249 225 11 34.6 243 208 28 33.8

4to8 All 1335 1302.5 52 61.8 1340 1266 56 62
1 582 559.5 31 80.8 587 545.5 49 81.5
2 487 459 15 67.6 479 454 20 66.5
3 299 282 13 41.5 281 256 23 39

6to12 All 1545 1455.5 87 71.5 1484 1407 60 68.7
1 638 608.5 16 88.6 633 596.5 18 87.9
2 536 507.5 25 74.4 516 498.5 23 71.7
3 390 336.5 51 54.2 374 312 48 51.9

6to18 All 1572 1490.5 69 72.8 1521 1419.5 77 70.4
1 641 619 15 89 636 604.5 20 88.3
2 553 523.5 27 76.8 535 500 27 74.3
3 400 354 32 55.6 374 319.5 46 51.9

8to14 All 1553 1476.5 89 71.9 1507 1410.5 62 69.8
1 651 608 23 90.4 626 603 26 86.9
2 545 514 24 75.7 534 495.5 26 74.2
3 402 346.5 39 55.8 372 314.5 29 51.7

8to18 All 1596 1509 98 73.9 1513 1431.5 66 70
1 644 617 20 89.4 634 607 28 88.1
2 560 517 20 77.8 525 504 23 72.9
3 402 365.5 47 55.8 371 320 33 51.5

10to16 All 1603 1488 79 74.2 1494 1429.5 59 69.2
1 636 618.5 20 88.3 631 604.5 21 87.6
2 565 518 23 78.5 522 502.5 14 72.5
3 421 360.5 33 58.5 366 322.5 29 50.8

14to18 All 1625 1529 53 75.2 1522 1472.5 69 70.5
1 659 622 21 91.5 646 621.5 24 89.7
2 573 534 23 79.6 546 510.5 21 75.8
3 419 374 21 58.2 355 332 22 49.3

Table B.15: Code60-1, Direct Classification Fitness Result For Experiment 4

State Error Training Training Training Training Verification Verification Verification Verification
Range Dist. Max Median IQR Max % Max Median IQR Max %
4to6 All 1587 1495.5 58 73.5 1586 1488 86 73.4

1 610 570.5 20 84.7 597 570.5 20 82.9
2 543 521.5 24 75.4 558 522.5 20 77.5
3 439 407 20 61 444 404.5 31 61.7

4to8 All 1805 1650 153 83.6 1812 1648 143 83.9
1 654 620.5 34 90.8 651 618.5 41 90.4
2 615 574 56 85.4 619 566 44 86
3 545 467.5 67 75.7 542 463.5 60 75.3

6to12 All 1812 1743 56 83.9 1822 1729 64 84.4
1 656 640 21 91.1 664 637 17 92.2
2 619 596.5 25 86 619 589 28 86
3 549 515 32 76.2 546 506.5 29 75.8

6to18 All 1836 1749 70 85 1831 1735 82 84.8
1 671 643 17 93.2 673 640 21 93.5
2 632 602.5 22 87.8 623 593 29 86.5
3 565 509.5 45 78.5 550 503.5 50 76.4

8to14 All 1795 1739 53 83.1 1797 1708 66 83.2
1 669 637.5 12 92.9 664 634 23 92.2
2 622 591.5 22 86.4 611 582 19 84.9
3 537 500.5 29 74.6 533 488.5 34 74

8to18 All 1813 1751.5 71 83.9 1818 1717.5 57 84.2
1 665 640.5 18 92.4 665 636.5 17 92.4
2 626 599 25 86.9 620 586.5 31 86.1
3 539 507 46 74.9 548 492 39 76.1

10to16 All 1813 1742 64 83.9 1821 1721 59 84.3
1 668 646 18 92.8 659 640 21 91.5
2 628 590.5 19 87.2 616 583 24 85.6
3 539 502 32 74.9 546 494 45 75.8

14to18 All 1853 1763 95 85.8 1872 1737 113 86.7
1 678 648.5 21 94.2 679 650.5 17 94.3
2 644 605.5 29 89.4 637 592 31 88.5
3 545 502.5 41 75.7 556 493 61 77.2

Table B.16: Code60-1, Fuzzy Classification Fitness Result For Experiment 4
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Figure B.8: Code60-1, violin plots representing the distribution of correctly decoded error
patterns for different ranges of states for the 30 runs for experiment 4
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Code60-2

State Error Training Training Training Training Verification Verification Verification Verification
Range Dist. Max Median IQR Max % Max Median IQR Max %
4to6 All 1068 1051.5 17 49.4 1052 1022 29 48.7

1 485 456 26 67.4 495 471 20 68.8
2 374 364 7 51.9 364 350 15 50.6
3 249 223 26 34.6 218 203 23 30.3

4to8 All 1327 1267.5 56 61.4 1319 1232 83 61.1
1 585 545 16 81.2 584 536.5 24 81.1
2 476 452 14 66.1 474 438.5 25 65.8
3 292 270 21 40.6 290 257 23 40.3

6to12 All 1500 1451.5 34 69.4 1463 1395 41 67.7
1 631 598.5 20 87.6 626 596.5 17 86.9
2 543 514.5 16 75.4 522 489 17 72.5
3 353 337.5 20 49 343 306.5 18 47.6

6to18 All 1564 1492.5 56 72.4 1476 1408 37 68.3
1 643 612 29 89.3 626 601.5 23 86.9
2 557 524 22 77.4 533 497.5 21 74
3 391 353 30 54.3 337 316.5 25 46.8

8to14 All 1534 1461 70 71 1475 1398 55 68.3
1 645 603 28 89.6 628 600.5 12 87.2
2 541 512 20 75.1 517 495 17 71.8
3 377 342.5 27 52.4 354 305 31 49.2

8to18 All 1569 1493 61 72.6 1500 1419.5 37 69.4
1 655 614.5 16 91 631 610.5 21 87.6
2 547 520.5 22 76 521 492.5 26 72.4
3 390 353.5 26 54.2 352 314.5 17 48.9

10to16 All 1533 1468 54 71 1457 1395.5 53 67.5
1 631 606 22 87.6 621 598 17 86.2
2 544 515 28 75.6 519 489.5 18 72.1
3 374 333.5 23 51.9 346 302 24 48.1

14to18 All 1570 1510.5 36 72.7 1491 1426 58 69
1 638 618 17 88.6 626 609.5 17 86.9
2 557 529.5 18 77.4 533 505 25 74
3 397 362.5 21 55.1 345 316 28 47.9

Table B.17: Code60-2, Direct Classification Fitness Result For Experiment 1

State Error Training Training Training Training Verification Verification Verification Verification
Range Dist. Max Median IQR Max % Max Median IQR Max %
4to6 All 1693 1458 125 78.4 1732 1440 102 80.2

1 620 553 28 86.1 641 559.5 30 89
2 588 516 31 81.7 591 499 40 82.1
3 485 396.5 37 67.4 500 386 51 69.4

4to8 All 1830 1621.5 97 84.7 1810 1618 119 83.8
1 663 607 33 92.1 651 611 37 90.4
2 635 561.5 33 88.2 615 557 41 85.4
3 532 454 41 73.9 544 451.5 47 75.6

6to12 All 1846 1707.5 79 85.5 1819 1700 79 84.2
1 673 637.5 21 93.5 666 635 24 92.5
2 641 596 22 89 620 582.5 26 86.1
3 536 481.5 32 74.4 543 473 39 75.4

6to18 All 1882 1717.5 77 87.1 1857 1677 81 86
1 683 641.5 28 94.9 666 633 24 92.5
2 647 596 25 89.9 630 577 21 87.5
3 552 481.5 44 76.7 561 463 50 77.9

8to14 All 1847 1705.5 69 85.5 1831 1687.5 101 84.8
1 688 639 14 95.6 690 635 24 95.8
2 637 588.5 26 88.5 638 582.5 31 88.6
3 541 481.5 44 75.1 541 461.5 56 75.1

8to18 All 1872 1737.5 78 86.7 1846 1708.5 65 85.5
1 675 643.5 22 93.8 672 642 20 93.3
2 650 596 28 90.3 638 587 26 88.6
3 547 490 30 76 536 482 38 74.4

10to16 All 1854 1715 65 85.8 1848 1692.5 74 85.6
1 676 640 16 93.9 674 634 15 93.6
2 633 591.5 19 87.9 635 582 27 88.2
3 549 483 30 76.2 541 468.5 51 75.1

14to18 All 1822 1736.5 64 84.4 1794 1707 94 83.1
1 680 649.5 17 94.4 667 642.5 22 92.6
2 636 601 26 88.3 617 591 28 85.7
3 533 487.5 36 74 518 474.5 47 71.9

Table B.18: Code60-2, Fuzzy Classification Fitness Result For Experiment 1
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Figure B.9: Code60-2, violin plots representing the distribution of correctly decoded error
patterns for different ranges of states for the 30 runs for experiment 1
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State Error Training Training Training Training Verification Verification Verification Verification
Range Dist. Max Median IQR Max % Max Median IQR Max %
4to6 All 1089 1053 24 50.4 1053 1022.5 31 48.8

1 488 464 19 67.8 492 473 20 68.3
2 381 363 7 52.9 371 352 15 51.5
3 249 219.5 21 34.6 221 203 21 30.7

4to8 All 1327 1274.5 45 61.4 1316 1248 37 60.9
1 585 547.5 27 81.2 584 542 31 81.1
2 476 450.5 17 66.1 471 444 17 65.4
3 292 272.5 15 40.6 282 264 18 39.2

6to12 All 1515 1447.5 83 70.1 1450 1390 59 67.1
1 623 604.5 14 86.5 621 594.5 16 86.2
2 541 512 31 75.1 517 489.5 22 71.8
3 378 336 32 52.5 334 304 34 46.4

6to18 All 1583 1493 106 73.3 1495 1428 70 69.2
1 654 613.5 26 90.8 633 604 24 87.9
2 557 526 34 77.4 536 501.5 34 74.4
3 400 352 46 55.6 356 309 20 49.4

8to14 All 1555 1466.5 69 72 1493 1402.5 63 69.1
1 632 605 22 87.8 617 598 23 85.7
2 545 516 21 75.7 534 491.5 24 74.2
3 390 342 32 54.2 347 310.5 23 48.2

8to18 All 1583 1469 84 73.3 1517 1410 67 70.2
1 639 612.5 21 88.8 646 602.5 31 89.7
2 556 519.5 21 77.2 535 493.5 22 74.3
3 392 343.5 41 54.4 351 311.5 39 48.8

10to16 All 1537 1465.5 99 71.2 1488 1398.5 72 68.9
1 630 607 18 87.5 631 605 25 87.6
2 554 518 36 76.9 522 491.5 31 72.5
3 373 339 33 51.8 356 305.5 30 49.4

14to18 All 1583 1524.5 66 73.3 1526 1444.5 74 70.6
1 647 626 16 89.9 635 616 22 88.2
2 568 535 25 78.9 538 506.5 24 74.7
3 388 360 29 53.9 360 322.5 35 50

Table B.19: Code60-2, Direct Classification Fitness Result For Experiment 2

State Error Training Training Training Training Verification Verification Verification Verification
Range Dist. Max Median IQR Max % Max Median IQR Max %
4to6 All 1595 1471.5 60 73.8 1561 1445 65 72.3

1 594 559 26 82.5 592 556.5 21 82.2
2 554 523 25 76.9 544 504 23 75.6
3 447 396 28 62.1 427 385.5 45 59.3

4to8 All 1845 1633 69 85.4 1844 1635 121 85.4
1 664 610 33 92.2 659 613 36 91.5
2 637 564.5 22 88.5 642 561.5 43 89.2
3 544 455.5 50 75.6 543 460 34 75.4

6to12 All 1816 1741 63 84.1 1813 1710.5 69 83.9
1 661 645 21 91.8 665 640.5 22 92.4
2 629 600 23 87.4 626 595.5 25 86.9
3 542 492 32 75.3 536 487 35 74.4

6to18 All 1815 1740 60 84 1798 1718.5 76 83.2
1 679 645.5 24 94.3 670 642.5 24 93.1
2 632 602 22 87.8 625 595 24 86.8
3 527 491 26 73.2 533 472.5 41 74

8to14 All 1833 1721 106 84.9 1803 1700 130 83.5
1 669 638.5 25 92.9 666 633.5 33 92.5
2 643 599.5 36 89.3 622 587 41 86.4
3 530 492.5 35 73.6 528 480.5 41 73.3

8to18 All 1837 1727 64 85 1826 1703.5 89 84.5
1 670 646.5 19 93.1 675 642 21 93.8
2 631 598 24 87.6 638 582 28 88.6
3 539 489.5 26 74.9 537 481 33 74.6

10to16 All 1872 1734 72 86.7 1866 1708.5 87 86.4
1 678 646.5 23 94.2 672 646 27 93.3
2 640 602.5 28 88.9 640 589 21 88.9
3 563 490 28 78.2 554 475 38 76.9

14to18 All 1832 1746.5 76 84.8 1809 1734.5 74 83.8
1 678 654.5 16 94.2 675 651.5 18 93.8
2 628 605.5 23 87.2 627 595.5 18 87.1
3 535 488 39 74.3 521 479 32 72.4

Table B.20: Code60-2, Fuzzy Classification Fitness Result For Experiment 2
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Figure B.10: Code60-2, violin plots representing the distribution of correctly decoded error
patterns for different ranges of states for the 30 runs for experiment 2
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State Error Training Training Training Training Verification Verification Verification Verification
Range Dist. Max Median IQR Max % Max Median IQR Max %
4to6 All 1089 1057.5 14 50.4 1044 1018.5 23 48.3

1 488 465.5 13 67.8 492 469 10 68.3
2 382 364 7 53.1 371 353 9 51.5
3 249 223 14 34.6 217 202 11 30.1

4to8 All 1327 1285.5 33 61.4 1316 1271 40 60.9
1 585 557.5 20 81.2 584 551 30 81.1
2 476 456 12 66.1 471 452.5 21 65.4
3 292 270.5 19 40.6 278 266 19 38.6

6to12 All 1502 1445.5 99 69.5 1477 1375.5 101 68.4
1 632 600.5 32 87.8 629 594 35 87.4
2 538 508.5 28 74.7 519 487 29 72.1
3 370 333 33 51.4 342 295 34 47.5

6to18 All 1551 1447.5 107 71.8 1508 1412 90 69.8
1 646 602.5 28 89.7 627 599.5 23 87.1
2 547 512.5 37 76 535 499 33 74.3
3 375 337.5 41 52.1 346 303.5 29 48.1

8to14 All 1529 1447 100 70.8 1494 1393 48 69.2
1 641 604 26 89 634 597.5 30 88.1
2 540 505.5 35 75 521 489.5 30 72.4
3 372 337 34 51.7 358 305.5 32 49.7

8to18 All 1590 1487 78 73.6 1533 1428 67 71
1 648 618 27 90 641 610.5 25 89
2 562 519 27 78.1 533 497 31 74
3 400 345 39 55.6 359 316.5 33 49.9

10to16 All 1549 1475.5 75 71.7 1487 1416 57 68.8
1 643 610 23 89.3 633 608.5 21 87.9
2 552 523.5 31 76.7 523 502 20 72.6
3 388 347 30 53.9 354 315 28 49.2

14to18 All 1566 1515.5 59 72.5 1536 1436.5 70 71.1
1 642 622 22 89.2 640 612 20 88.9
2 561 534 26 77.9 540 505 28 75
3 397 362 26 55.1 376 324 25 52.2

Table B.21: Code60-2, Direct Classification Fitness Result For Experiment 3

State Error Training Training Training Training Verification Verification Verification Verification
Range Dist. Max Median IQR Max % Max Median IQR Max %
4to6 All 1595 1479 60 73.8 1561 1452 71 72.3

1 594 560 12 82.5 592 558 27 82.2
2 554 519 17 76.9 544 505.5 26 75.6
3 447 391 30 62.1 431 390.5 28 59.9

4to8 All 1776 1648.5 93 82.2 1751 1647 106 81.1
1 650 613.5 33 90.3 642 613 33 89.2
2 608 567 24 84.4 600 567.5 35 83.3
3 518 459.5 34 71.9 517 459 35 71.8

6to12 All 1814 1731 90 84 1800 1692 95 83.3
1 665 640.5 27 92.4 664 634 35 92.2
2 624 599 31 86.7 612 582 29 85
3 533 494.5 30 74 536 463.5 39 74.4

6to18 All 1833 1731.5 55 84.9 1817 1697.5 56 84.1
1 673 640 17 93.5 664 636 17 92.2
2 638 596.5 18 88.6 613 586.5 22 85.1
3 522 488.5 31 72.5 548 474.5 28 76.1

8to14 All 1807 1716 71 83.7 1828 1683 76 84.6
1 661 641 21 91.8 659 634 26 91.5
2 635 594 24 88.2 622 579 31 86.4
3 526 483.5 38 73.1 551 469 43 76.5

8to18 All 1832 1746.5 82 84.8 1823 1717.5 80 84.4
1 681 650.5 33 94.6 679 649.5 28 94.3
2 635 602 26 88.2 625 588 40 86.8
3 529 497 23 73.5 544 479.5 36 75.6

10to16 All 1845 1760 90 85.4 1833 1728 84 84.9
1 670 651.5 19 93.1 664 644.5 28 92.2
2 640 605 28 88.9 632 595 26 87.8
3 546 501 35 75.8 542 497 53 75.3

14to18 All 1833 1727.5 79 84.9 1829 1703 91 84.7
1 672 650 22 93.3 668 646 27 92.8
2 634 601.5 31 88.1 620 587.5 28 86.1
3 532 482.5 32 73.9 546 471.5 59 75.8

Table B.22: Code60-2, Fuzzy Classification Fitness Result For Experiment 3
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Figure B.11: Code60-3, violin plots representing the distribution of correctly decoded error
patterns for different ranges of states for the 30 runs for experiment 1
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State Error Training Training Training Training Verification Verification Verification Verification
Range Dist. Max Median IQR Max % Max Median IQR Max %
4to6 All 1069 1053.5 24 49.5 1053 1022.5 29 48.8

1 478 464.5 19 66.4 492 469 18 68.3
2 377 363 11 52.4 367 354 12 51
3 245 225 21 34 221 199 14 30.7

4to8 All 1327 1283.5 34 61.4 1316 1264.5 61 60.9
1 585 548.5 22 81.2 584 545.5 19 81.1
2 476 456.5 12 66.1 471 452.5 25 65.4
3 292 271.5 16 40.6 283 260 17 39.3

6to12 All 1488 1429 64 68.9 1432 1379 46 66.3
1 620 596.5 25 86.1 614 594 11 85.3
2 529 504.5 23 73.5 523 485.5 30 72.6
3 353 327.5 37 49 315 298 16 43.8

6to18 All 1586 1494 73 73.4 1541 1422 71 71.3
1 644 617 30 89.4 650 609.5 29 90.3
2 558 523.5 22 77.5 541 500.5 28 75.1
3 391 350 26 54.3 364 315 21 50.6

8to14 All 1515 1439.5 80 70.1 1453 1387.5 69 67.3
1 631 604.5 22 87.6 633 600.5 15 87.9
2 536 507 28 74.4 516 488 19 71.7
3 371 326 35 51.5 334 298 25 46.4

8to18 All 1580 1476 66 73.1 1527 1415 78 70.7
1 635 608 18 88.2 636 603.5 25 88.3
2 559 518 19 77.6 541 494 28 75.1
3 398 350 31 55.3 358 311.5 40 49.7

10to16 All 1563 1481 74 72.4 1481 1405 77 68.6
1 645 609.5 20 89.6 632 605.5 28 87.8
2 551 521 25 76.5 529 501 29 73.5
3 380 342.5 31 52.8 348 307 31 48.3

14to18 All 1580 1515.5 47 73.1 1509 1440.5 74 69.9
1 634 622 16 88.1 645 610.5 24 89.6
2 549 535 18 76.2 529 508.5 22 73.5
3 401 361 26 55.7 356 327 31 49.4

Table B.23: Code60-2, Direct Classification Fitness Result For Experiment 4

State Error Training Training Training Training Verification Verification Verification Verification
Range Dist. Max Median IQR Max % Max Median IQR Max %
4to6 All 1643 1511.5 90 76.1 1660 1501.5 105 76.9

1 605 566 18 84 629 578 23 87.4
2 562 525 29 78.1 563 525.5 35 78.2
3 476 409.5 43 66.1 468 395 51 65

4to8 All 1776 1651 93 82.2 1782 1652.5 107 82.5
1 650 616 33 90.3 648 615 32 90
2 613 570 28 85.1 604 571 35 83.9
3 518 463 37 71.9 530 465.5 37 73.6

6to12 All 1812 1723.5 34 83.9 1820 1708 43 84.3
1 667 640 24 92.6 666 637 14 92.5
2 635 593.5 16 88.2 618 587 21 85.8
3 519 493 19 72.1 546 483.5 27 75.8

6to18 All 1891 1735 123 87.5 1879 1714.5 113 87
1 685 653.5 29 95.1 680 652.5 29 94.4
2 651 603 38 90.4 638 592.5 31 88.6
3 562 487 54 78.1 561 477 65 77.9

8to14 All 1834 1730.5 58 84.9 1816 1716 65 84.1
1 672 641 27 93.3 676 642 19 93.9
2 633 597.5 24 87.9 626 588 23 86.9
3 549 492 31 76.2 545 481 33 75.7

8to18 All 1830 1725.5 67 84.7 1820 1706.5 68 84.3
1 668 642.5 22 92.8 662 643.5 23 91.9
2 633 596 23 87.9 629 584 32 87.4
3 529 482 29 73.5 538 473.5 36 74.7

10to16 All 1831 1737 73 84.8 1842 1726.5 67 85.3
1 674 648 23 93.6 674 642.5 19 93.6
2 628 601 20 87.2 632 593 23 87.8
3 544 492 33 75.6 549 486.5 37 76.2

14to18 All 1803 1748 45 83.5 1774 1729.5 51 82.1
1 679 655 14 94.3 668 648.5 17 92.8
2 625 606 19 86.8 615 591 25 85.4
3 526 491 29 73.1 512 476 41 71.1

Table B.24: Code60-2, Fuzzy Classification Fitness Result For Experiment 4
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Figure B.12: Code60-2, violin plots representing the distribution of correctly decoded error
patterns for different ranges of states for the 30 runs for experiment 4
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B.1.2 Codes of Length 10

Code17-1

State Error Training Training Training Training Verification Verification Verification Verification
Range Dist. Max Median IQR Max % Max Median IQR Max %
4to6 All 349 344 7 68.4 333 324 24 65.3

1 146 139 3 85.9 147 140.5 4 86.5
2 135 126 3 79.4 122 114 9 71.8
3 85 75.5 6 50 77 70 11 45.3

4to8 All 389 373.5 14 76.3 366 340 21 71.8
1 162 151.5 7 95.3 157 147 11 92.4
2 144 134.5 7 84.7 134 117.5 12 78.8
3 98 87 7 57.6 89 73 14 52.4

6to12 All 409 394.5 18 80.2 367 345 22 72
1 162 156.5 7 95.3 157 149 6 92.4
2 154 140.5 9 90.6 133 123.5 7 78.2
3 104 96 4 61.2 91 75 15 53.5

6to18 All 419 390 16 82.2 362 340.5 20 71
1 167 155.5 9 98.2 156 149 9 91.8
2 154 141.5 8 90.6 131 119.5 9 77.1
3 112 94.5 9 65.9 87 72.5 10 51.2

8to14 All 419 385.5 26 82.2 360 330.5 24 70.6
1 164 153 9 96.5 157 145 10 92.4
2 154 138 13 90.6 131 114.5 12 77.1
3 110 95.5 14 64.7 86 73 9 50.6

8to18 All 415 390.5 15 81.4 367 336 29 72
1 165 155.5 8 97.1 157 145 11 92.4
2 148 141.5 9 87.1 133 117 12 78.2
3 108 96.5 8 63.5 82 72.5 11 48.2

10to16 All 411 392 25 80.6 370 339 15 72.5
1 163 156 6 95.9 155 147 5 91.2
2 151 142.5 6 88.8 133 118.5 10 78.2
3 112 95 14 65.9 91 72 7 53.5

14to18 All 421 392.5 17 82.5 391 329 25 76.7
1 164 155 7 96.5 161 143 11 94.7
2 148 140 9 87.1 134 117.5 12 78.8
3 114 98 8 67.1 96 71.5 11 56.5

Table B.25: Code17-1, Direct Classification Fitness Result For Experiment 1

State Error Training Training Training Training Verification Verification Verification Verification
Range Dist. Max Median IQR Max % Max Median IQR Max %
4to6 All 424 380 31 83.1 420 385 25 82.4

1 158 147.5 10 92.9 161 146.5 4 94.7
2 152 139 13 89.4 143 136 10 84.1
3 119 95 10 70 123 103 11 72.4

4to8 All 441 407 31 86.5 433 391 32 84.9
1 163 155.5 8 95.9 166 153 7 97.6
2 159 150 11 93.5 152 134 10 89.4
3 120 102.5 11 70.6 123 101.5 15 72.4

6to12 All 456 406 29 89.4 430 379 50 84.3
1 166 158 9 97.6 167 153 10 98.2
2 163 148.5 12 95.9 151 133.5 17 88.8
3 131 102.5 14 77.1 126 94 18 74.1

6to18 All 455 405 18 89.2 438 378 33 85.9
1 167 158 5 98.2 165 153.5 11 97.1
2 158 149 9 92.9 146 132.5 14 85.9
3 137 99 13 80.6 127 95 11 74.7

8to14 All 430 405.5 31 84.3 414 375.5 34 81.2
1 165 157 11 97.1 161 152 8 94.7
2 156 147 12 91.8 150 130 18 88.2
3 115 100.5 14 67.6 115 96.5 12 67.6

8to18 All 427 401 29 83.7 415 374 33 81.4
1 163 154.5 8 95.9 163 149.5 10 95.9
2 156 145.5 10 91.8 147 129.5 15 86.5
3 119 97.5 14 70 113 92.5 18 66.5

10to16 All 448 407 34 87.8 419 383.5 31 82.2
1 167 157 7 98.2 164 153 8 96.5
2 158 145.5 14 92.9 147 132 14 86.5
3 125 101 16 73.5 109 97 16 64.1

14to18 All 416 387 15 81.6 417 357 21 81.8
1 165 154 6 97.1 162 150 9 95.3
2 154 140.5 8 90.6 146 125.5 7 85.9
3 115 96 9 67.6 109 85.5 15 64.1

Table B.26: Code17-1, Fuzzy Classification Fitness Result For Experiment 1
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Figure B.13: Code17-1, violin plots representing the distribution of correctly decoded error
patterns for different ranges of states for the 30 runs for experiment 1
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State Error Training Training Training Training Verification Verification Verification Verification
Range Dist. Max Median IQR Max % Max Median IQR Max %
4to6 All 350 343 9 68.6 333 316.5 20 65.3

1 150 140 8 88.2 147 140 13 86.5
2 135 126 5 79.4 123 113 8 72.4
3 85 76.5 6 50 77 67 7 45.3

4to8 All 389 371.5 11 76.3 353 330.5 20 69.2
1 159 151 8 93.5 152 143 7 89.4
2 144 135 5 84.7 132 118.5 12 77.6
3 94 86.5 6 55.3 83 72 11 48.8

6to12 All 417 375.5 21 81.8 385 337.5 30 75.5
1 162 151 10 95.3 158 145.5 7 92.9
2 150 137 7 88.2 134 116 11 78.8
3 107 92 10 62.9 94 75 16 55.3

6to18 All 422 387 27 82.7 357 335 24 70
1 165 156 9 97.1 161 145.5 8 94.7
2 151 141.5 7 88.8 136 117 6 80
3 115 92 13 67.6 86 72 9 50.6

8to14 All 418 393 23 82 366 345 14 71.8
1 162 157 6 95.3 155 147 6 91.2
2 154 145.5 13 90.6 132 122 10 77.6
3 110 94 10 64.7 87 76 10 51.2

8to18 All 409 390.5 27 80.2 364 341 32 71.4
1 164 157 8 96.5 158 149.5 11 92.9
2 150 141 9 88.2 130 119 11 76.5
3 104 92.5 10 61.2 84 69 12 49.4

10to16 All 413 395.5 18 81 369 344 15 72.4
1 166 158.5 7 97.6 157 148 6 92.4
2 150 139 7 88.2 130 121 12 76.5
3 109 96.5 11 64.1 94 72 13 55.3

14to18 All 417 397.5 16 81.8 373 338 23 73.1
1 163 156.5 5 95.9 158 148 8 92.9
2 151 142.5 6 88.8 133 119 8 78.2
3 110 98.5 9 64.7 88 73 9 51.8

Table B.27: Code17-1, Direct Classification Fitness Result For Experiment 2

State Error Training Training Training Training Verification Verification Verification Verification
Range Dist. Max Median IQR Max % Max Median IQR Max %
4to6 All 428 388 36 83.9 421 377 34 82.5

1 159 148 11 93.5 161 147 13 94.7
2 155 143.5 13 91.2 147 131.5 8 86.5
3 116 97 13 68.2 123 97.5 18 72.4

4to8 All 436 405 34 85.5 431 389.5 30 84.5
1 166 156 8 97.6 165 152 9 97.1
2 159 147.5 12 93.5 155 134.5 14 91.2
3 121 103 15 71.2 117 99 14 68.8

6to12 All 436 398.5 42 85.5 423 379.5 42 82.9
1 166 154 12 97.6 165 151 8 97.1
2 155 145.5 11 91.2 150 130.5 14 88.2
3 120 101.5 18 70.6 120 94.5 19 70.6

6to18 All 453 396 24 88.8 455 372.5 35 89.2
1 165 155.5 6 97.1 165 151 7 97.1
2 161 144 7 94.7 156 130 12 91.8
3 127 98.5 16 74.7 134 92.5 16 78.8

8to14 All 439 407 26 86.1 428 384.5 31 83.9
1 166 157 6 97.6 162 152 6 95.3
2 160 148 9 94.1 155 134 9 91.2
3 119 101.5 12 70 117 95.5 15 68.8

8to18 All 442 400 36 86.7 426 378 32 83.5
1 168 155 12 98.8 166 152 12 97.6
2 163 145.5 9 95.9 151 133 14 88.8
3 122 99 15 71.8 115 93 18 67.6

10to16 All 448 411.5 34 87.8 432 381 35 84.7
1 168 161 7 98.8 165 152.5 11 97.1
2 161 148 10 94.7 152 133.5 10 89.4
3 127 103 18 74.7 121 94.5 23 71.2

14to18 All 427 392.5 33 83.7 408 362 38 80
1 163 156 9 95.9 158 151 11 92.9
2 155 142.5 11 91.2 142 126.5 15 83.5
3 114 93.5 21 67.1 110 81.5 20 64.7

Table B.28: Code17-1, Fuzzy Classification Fitness Result For Experiment 2
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Figure B.14: Code17-1, violin plots representing the distribution of correctly decoded error
patterns for different ranges of states for the 30 runs for experiment 2
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State Error Training Training Training Training Verification Verification Verification Verification
Range Dist. Max Median IQR Max % Max Median IQR Max %
4to6 All 348 341 9 68.2 345 322 22 67.6

1 150 142 5 88.2 149 139.5 10 87.6
2 135 124.5 5 79.4 123 114 10 72.4
3 84 74.5 8 49.4 81 67.5 8 47.6

4to8 All 380 373.5 16 74.5 363 339 22 71.2
1 159 151.5 8 93.5 154 144.5 7 90.6
2 140 133.5 4 82.4 132 118 11 77.6
3 97 86 9 57.1 85 74 14 50

6to12 All 409 383 27 80.2 372 341.5 21 72.9
1 163 154 11 95.9 159 145.5 8 93.5
2 149 139 8 87.6 131 120 10 77.1
3 105 92.5 11 61.8 93 77 9 54.7

6to18 All 426 390 20 83.5 353 338.5 22 69.2
1 165 157 7 97.1 159 147 7 93.5
2 149 139.5 7 87.6 129 118 7 75.9
3 112 94 10 65.9 86 71.5 6 50.6

8to14 All 416 387 18 81.6 372 343 23 72.9
1 166 154.5 6 97.6 160 150 6 94.1
2 149 139 6 87.6 133 119.5 9 78.2
3 112 94 13 65.9 92 72.5 8 54.1

8to18 All 419 393.5 25 82.2 369 336.5 22 72.4
1 165 157 5 97.1 156 148.5 8 91.8
2 151 142 6 88.8 137 118.5 13 80.6
3 112 90 16 65.9 86 72.5 9 50.6

10to16 All 420 393.5 30 82.4 368 342 20 72.2
1 164 156 6 96.5 157 149 7 92.4
2 153 143.5 9 90 131 121 7 77.1
3 109 94.5 11 64.1 87 74 11 51.2

14to18 All 422 405.5 13 82.7 369 345 16 72.4
1 165 160 6 97.1 158 149.5 5 92.9
2 153 145 7 90 131 121 9 77.1
3 111 99 10 65.3 89 75.5 9 52.4

Table B.29: Code17-1, Direct Classification Fitness Result For Experiment 3

State Error Training Training Training Training Verification Verification Verification Verification
Range Dist. Max Median IQR Max % Max Median IQR Max %
4to6 All 440 393 39 86.3 440 384 30 86.3

1 161 149.5 11 94.7 162 150.5 8 95.3
2 159 142 13 93.5 152 131 11 89.4
3 121 94 13 71.2 126 98 18 74.1

4to8 All 453 407 25 88.8 442 395 26 86.7
1 166 155.5 6 97.6 165 152.5 4 97.1
2 163 147 9 95.9 157 137.5 16 92.4
3 124 101 14 72.9 123 104 18 72.4

6to12 All 449 407.5 31 88 445 388.5 42 87.3
1 166 153 10 97.6 164 151 11 96.5
2 162 147.5 14 95.3 153 136 15 90
3 123 100.5 15 72.4 129 99 15 75.9

6to18 All 443 401.5 25 86.9 427 374 33 83.7
1 167 158.5 6 98.2 167 153 9 98.2
2 162 146 11 95.3 147 133.5 16 86.5
3 122 99.5 11 71.8 117 90.5 15 68.8

8to14 All 436 412.5 27 85.5 434 396.5 33 85.1
1 166 156.5 8 97.6 167 155 7 98.2
2 158 148.5 11 92.9 154 138 12 90.6
3 120 106 11 70.6 116 102 17 68.2

8to18 All 438 402.5 24 85.9 423 376.5 43 82.9
1 165 157 7 97.1 164 151 10 96.5
2 154 144.5 6 90.6 145 131.5 13 85.3
3 120 98.5 16 70.6 122 92 18 71.8

10to16 All 430 401.5 24 84.3 411 371 26 80.6
1 164 158 9 96.5 160 152.5 9 94.1
2 156 146 10 91.8 148 129 12 87.1
3 116 99 13 68.2 115 91 15 67.6

14to18 All 432 393.5 20 84.7 406 365 30 79.6
1 166 156 6 97.6 162 151.5 8 95.3
2 156 142.5 9 91.8 143 125.5 15 84.1
3 114 95 11 67.1 105 82.5 18 61.8

Table B.30: Code17-1, Fuzzy Classification Fitness Result For Experiment 3
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Figure B.15: Code17-1, violin plots representing the distribution of correctly decoded error
patterns for different ranges of states for the 30 runs for experiment 3
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State Error Training Training Training Training Verification Verification Verification Verification
Range Dist. Max Median IQR Max % Max Median IQR Max %
4to6 All 349 344.5 6 68.4 333 322 18 65.3

1 150 141.5 8 88.2 149 140 13 87.6
2 141 128 9 82.9 121 113 5 71.2
3 85 75 7 50 78 68 6 45.9

4to8 All 389 367.5 15 76.3 362 327 32 71
1 162 148 7 95.3 155 144 9 91.2
2 144 133 10 84.7 135 115 12 79.4
3 94 86 9 55.3 86 69 11 50.6

6to12 All 416 381 32 81.6 363 343.5 27 71.2
1 162 152.5 6 95.3 155 148 15 91.2
2 155 136 9 91.2 130 118 12 76.5
3 107 92 15 62.9 89 71.5 15 52.4

6to18 All 413 385.5 22 81 365 343.5 29 71.6
1 164 157 9 96.5 154 147 11 90.6
2 150 138 12 88.2 134 120.5 11 78.8
3 108 92 14 63.5 90 74.5 13 52.9

8to14 All 416 388 24 81.6 360 345 29 70.6
1 164 155.5 6 96.5 160 147 12 94.1
2 150 140.5 13 88.2 128 119 10 75.3
3 104 91.5 7 61.2 90 73.5 9 52.9

8to18 All 424 388.5 21 83.1 361 342.5 24 70.8
1 165 158 7 97.1 158 146.5 10 92.9
2 151 139 10 88.8 131 120 11 77.1
3 115 91.5 11 67.6 87 70 11 51.2

10to16 All 422 390 13 82.7 368 339.5 25 72.2
1 164 157 5 96.5 156 148 6 91.8
2 150 141 8 88.2 130 121.5 13 76.5
3 112 95 11 65.9 87 71.5 11 51.2

14to18 All 425 407.5 19 83.3 384 339.5 16 75.3
1 165 159 9 97.1 158 147 10 92.9
2 154 144.5 10 90.6 142 117 6 83.5
3 115 101.5 10 67.6 91 74.5 10 53.5

Table B.31: Code17-1, Direct Classification Fitness Result For Experiment 4

State Error Training Training Training Training Verification Verification Verification Verification
Range Dist. Max Median IQR Max % Max Median IQR Max %
4to6 All 420 393 41 82.4 420 384 30 82.4

1 161 153 13 94.7 161 149.5 15 94.7
2 154 144.5 12 90.6 147 132 6 86.5
3 115 94 15 67.6 123 98 15 72.4

4to8 All 450 406 37 88.2 440 388.5 38 86.3
1 167 156.5 14 98.2 164 153 13 96.5
2 159 148 11 93.5 153 136.5 14 90
3 124 103.5 14 72.9 123 100 18 72.4

6to12 All 444 411 38 87.1 430 394.5 36 84.3
1 165 155.5 8 97.1 167 153.5 12 98.2
2 159 146.5 15 93.5 152 138.5 19 89.4
3 129 103 22 75.9 119 98 20 70

6to18 All 429 408.5 25 84.1 417 382.5 30 81.8
1 164 158.5 7 96.5 162 152 7 95.3
2 152 143 6 89.4 153 134 12 90
3 121 104 15 71.2 116 96 10 68.2

8to14 All 436 415.5 33 85.5 428 388 39 83.9
1 165 158.5 8 97.1 163 154.5 8 95.9
2 158 147 11 92.9 151 135.5 12 88.8
3 120 105 13 70.6 118 99.5 21 69.4

8to18 All 475 400.5 38 93.1 444 370 43 87.1
1 165 158.5 9 97.1 164 152.5 13 96.5
2 164 144.5 15 96.5 160 131 14 94.1
3 146 99 19 85.9 120 90 23 70.6

10to16 All 451 403.5 30 88.4 419 379 34 82.2
1 168 159.5 6 98.8 164 153 8 96.5
2 161 143.5 11 94.7 152 133 12 89.4
3 127 98 12 74.7 106 93 14 62.4

14to18 All 453 395 36 88.8 435 359.5 39 85.3
1 167 156.5 10 98.2 165 148.5 10 97.1
2 159 141.5 14 93.5 153 124 15 90
3 127 97 19 74.7 122 86 17 71.8

Table B.32: Code17-1, Fuzzy Classification Fitness Result For Experiment 4
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Figure B.16: Code17-1, violin plots representing the distribution of correctly decoded error
patterns for different ranges of states for the 30 runs for experiment 4
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Code17-2

State Error Training Training Training Training Verification Verification Verification Verification
Range Dist. Max Median IQR Max % Max Median IQR Max %
4to6 All 353 340 18 69.2 347 319.5 19 68

1 150 139.5 8 88.2 151 132.5 10 88.8
2 129 119.5 11 75.9 132 118 7 77.6
3 91 82 8 53.5 88 66.5 11 51.8

4to8 All 387 371 21 75.9 369 340.5 19 72.4
1 155 148 7 91.2 149 142.5 9 87.6
2 141 130.5 9 82.9 132 124 9 77.6
3 106 94 10 62.4 90 76.5 11 52.9

6to12 All 409 388 17 80.2 367 342 25 72
1 158 151 8 92.9 152 142 10 89.4
2 145 134 10 85.3 134 122.5 10 78.8
3 114 102.5 11 67.1 85 74 10 50

6to18 All 414 381.5 24 81.2 360 335.5 20 70.6
1 162 148.5 10 95.3 155 141 12 91.2
2 145 133 11 85.3 133 122 6 78.2
3 114 102 8 67.1 88 72 8 51.8

8to14 All 415 386 25 81.4 360 337 20 70.6
1 166 150 10 97.6 157 140.5 12 92.4
2 151 135 9 88.8 131 123.5 5 77.1
3 112 100.5 10 65.9 83 73.5 9 48.8

8to18 All 424 387.5 20 83.1 370 342 26 72.5
1 165 151.5 6 97.1 157 143.5 9 92.4
2 150 134.5 11 88.2 134 124 14 78.8
3 119 101.5 10 70 95 73 7 55.9

10to16 All 417 388 19 81.8 377 341 27 73.9
1 162 151.5 10 95.3 156 143.5 12 91.8
2 152 133.5 12 89.4 140 125.5 11 82.4
3 114 105 12 67.1 90 76 10 52.9

14to18 All 419 387.5 27 82.2 368 332 26 72.2
1 165 151 6 97.1 162 140.5 16 95.3
2 147 137 8 86.5 133 120 6 78.2
3 121 99 15 71.2 89 71.5 11 52.4

Table B.33: Code17-2, Direct Classification Fitness Result For Experiment 1

State Error Training Training Training Training Verification Verification Verification Verification
Range Dist. Max Median IQR Max % Max Median IQR Max %
4to6 All 458 389 35 89.8 450 383 32 88.2

1 160 147 12 94.1 163 143 10 95.9
2 163 138.5 15 95.9 160 140 12 94.1
3 135 107.5 14 79.4 127 102 12 74.7

4to8 All 435 400.5 37 85.3 421 387 29 82.5
1 159 150.5 6 93.5 155 147 10 91.2
2 156 142.5 13 91.8 149 138.5 10 87.6
3 130 107.5 17 76.5 124 101 12 72.9

6to12 All 446 413 35 87.5 428 389 42 83.9
1 163 152.5 7 95.9 158 148.5 11 92.9
2 154 144 13 90.6 154 139.5 14 90.6
3 136 115.5 16 80 121 98 20 71.2

6to18 All 443 399 26 86.9 418 371.5 40 82
1 159 150.5 8 93.5 158 145.5 10 92.9
2 157 141 12 92.4 149 134 11 87.6
3 128 107.5 12 75.3 116 92.5 17 68.2

8to14 All 446 401 35 87.5 427 378 28 83.7
1 169 152 10 99.4 164 147.5 15 96.5
2 158 141 12 92.9 151 136.5 9 88.8
3 127 109 13 74.7 115 97.5 12 67.6

8to18 All 456 414 27 89.4 429 383.5 36 84.1
1 166 154 8 97.6 165 149.5 12 97.1
2 159 145 13 93.5 152 138 12 89.4
3 131 114.5 15 77.1 117 98 13 68.8

10to16 All 450 406 35 88.2 426 386.5 35 83.5
1 163 153 13 95.9 161 149.5 14 94.7
2 158 144.5 14 92.9 152 139 15 89.4
3 129 110.5 14 75.9 120 97.5 20 70.6

14to18 All 451 393.5 37 88.4 417 365 31 81.8
1 168 150.5 10 98.8 165 144 11 97.1
2 155 138.5 9 91.2 146 134 9 85.9
3 133 105 16 78.2 115 85.5 15 67.6

Table B.34: Code17-2, Fuzzy Classification Fitness Result For Experiment 1
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Figure B.17: Code17-2, violin plots representing the distribution of correctly decoded error
patterns for different ranges of states for the 30 runs for experiment 1
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State Error Training Training Training Training Verification Verification Verification Verification
Range Dist. Max Median IQR Max % Max Median IQR Max %
4to6 All 353 338 10 69.2 337 316.5 22 66.1

1 150 137 3 88.2 151 131 6 88.8
2 129 119.5 11 75.9 132 116 8 77.6
3 89 83 8 52.4 84 70.5 11 49.4

4to8 All 390 370 18 76.5 359 338 18 70.4
1 159 146.5 10 93.5 151 142 6 88.8
2 138 130.5 9 81.2 131 121.5 6 77.1
3 105 95 4 61.8 88 75.5 9 51.8

6to12 All 414 378 31 81.2 375 339.5 18 73.5
1 160 148 13 94.1 156 139.5 11 91.8
2 147 133.5 10 86.5 136 125 7 80
3 116 98 11 68.2 92 74 5 54.1

6to18 All 426 387 31 83.5 372 345 27 72.9
1 163 152 12 95.9 155 144.5 8 91.2
2 154 136 10 90.6 138 123 8 81.2
3 119 101.5 11 70 91 76.5 9 53.5

8to14 All 412 389 17 80.8 366 343 25 71.8
1 162 152 8 95.3 157 143 13 92.4
2 148 134 10 87.1 136 125 10 80
3 113 101 8 66.5 88 76 8 51.8

8to18 All 424 388.5 23 83.1 366 344.5 23 71.8
1 159 150.5 10 93.5 155 142 10 91.2
2 151 135.5 11 88.8 136 124 9 80
3 118 101 12 69.4 91 75.5 8 53.5

10to16 All 423 394 23 82.9 369 336 26 72.4
1 164 151 9 96.5 159 142 8 93.5
2 156 137 9 91.8 132 123 9 77.6
3 119 102.5 10 70 84 74 8 49.4

14to18 All 427 404 20 83.7 377 340.5 24 73.9
1 164 155 9 96.5 156 145 10 91.8
2 153 139.5 7 90 136 122 9 80
3 117 106.5 8 68.8 88 74.5 11 51.8

Table B.35: Code17-2, Direct Classification Fitness Result For Experiment 2

State Error Training Training Training Training Verification Verification Verification Verification
Range Dist. Max Median IQR Max % Max Median IQR Max %
4to6 All 458 387 39 89.8 450 370 28 88.2

1 160 144.5 4 94.1 163 142 6 95.9
2 163 136 19 95.9 160 133.5 8 94.1
3 135 106.5 16 79.4 127 97.5 18 74.7

4to8 All 443 407.5 32 86.9 424 391.5 39 83.1
1 162 151 10 95.3 159 149 10 93.5
2 155 142 11 91.2 153 138.5 11 90
3 128 112.5 10 75.3 117 101 11 68.8

6to12 All 453 397.5 30 88.8 437 381 39 85.7
1 162 148 10 95.3 158 145 10 92.9
2 158 140 13 92.9 156 137 10 91.8
3 136 110 13 80 123 98.5 17 72.4

6to18 All 456 421 37 89.4 430 399 35 84.3
1 164 157 11 96.5 161 153 6 94.7
2 165 146 11 97.1 153 141 13 90
3 133 119 17 78.2 117 100.5 13 68.8

8to14 All 467 419 35 91.6 440 391.5 48 86.3
1 167 154.5 9 98.2 167 149.5 12 98.2
2 162 146.5 15 95.3 156 141.5 17 91.8
3 138 117 12 81.2 117 101 21 68.8

8to18 All 442 411 40 86.7 414 379 50 81.2
1 162 152 14 95.3 158 150 12 92.9
2 156 142.5 13 91.8 151 138 10 88.8
3 128 113.5 19 75.3 109 93 21 64.1

10to16 All 442 407 24 86.7 433 375.5 36 84.9
1 165 151.5 9 97.1 165 147 12 97.1
2 159 145 9 93.5 151 135.5 11 88.8
3 129 110.5 11 75.9 125 92.5 14 73.5

14to18 All 447 416.5 36 87.6 427 384.5 61 83.7
1 163 156 8 95.9 163 150 13 95.9
2 158 142.5 14 92.9 152 136 15 89.4
3 135 112.5 20 79.4 123 96.5 22 72.4

Table B.36: Code17-2, Fuzzy Classification Fitness Result For Experiment 2
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Figure B.18: Code17-2, violin plots representing the distribution of correctly decoded error
patterns for different ranges of states for the 30 runs for experiment 2
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State Error Training Training Training Training Verification Verification Verification Verification
Range Dist. Max Median IQR Max % Max Median IQR Max %
4to6 All 353 338 16 69.2 337 315.5 20 66.1

1 150 137 7 88.2 145 131 8 85.3
2 131 119.5 9 77.1 122 115.5 11 71.8
3 90 80 9 52.9 83 66.5 9 48.8

4to8 All 386 369.5 16 75.7 364 339 20 71.4
1 156 146.5 8 91.8 152 142 10 89.4
2 138 130.5 6 81.2 133 122 10 78.2
3 106 95 11 62.4 88 75 11 51.8

6to12 All 411 389 21 80.6 372 344 17 72.9
1 166 150.5 8 97.6 159 142 8 93.5
2 146 137.5 10 85.9 133 126 6 78.2
3 112 102 8 65.9 91 74.5 8 53.5

6to18 All 429 385 26 84.1 378 340.5 15 74.1
1 161 149 8 94.7 152 142.5 10 89.4
2 148 135.5 12 87.1 141 124.5 10 82.9
3 120 99 10 70.6 86 74 6 50.6

8to14 All 408 384.5 14 80 369 336.5 20 72.4
1 162 148.5 6 95.3 156 140.5 7 91.8
2 143 135 10 84.1 141 122.5 9 82.9
3 115 99.5 10 67.6 90 73.5 8 52.9

8to18 All 431 392 25 84.5 367 339.5 31 72
1 166 151.5 7 97.6 156 144 10 91.8
2 149 139 10 87.6 135 124 11 79.4
3 119 103.5 14 70 93 74.5 11 54.7

10to16 All 419 386.5 21 82.2 364 343 29 71.4
1 161 149.5 6 94.7 154 142 10 90.6
2 148 133 10 87.1 138 124.5 9 81.2
3 119 102.5 13 70 87 76 6 51.2

14to18 All 433 398 24 84.9 364 341 22 71.4
1 165 153 8 97.1 153 142 10 90
2 152 138.5 9 89.4 133 122 11 78.2
3 123 106 13 72.4 85 74 8 50

Table B.37: Code17-2, Direct Classification Fitness Result For Experiment 3

State Error Training Training Training Training Verification Verification Verification Verification
Range Dist. Max Median IQR Max % Max Median IQR Max %
4to6 All 442 387 31 86.7 428 373 33 83.9

1 159 144.5 8 93.5 158 141 10 92.9
2 153 139 17 90 154 134 9 90.6
3 136 106.5 15 80 120 101 16 70.6

4to8 All 455 415.5 30 89.2 433 396 33 84.9
1 158 152 7 92.9 160 148 11 94.1
2 160 147 8 94.1 153 142.5 11 90
3 138 116 17 81.2 124 104.5 10 72.9

6to12 All 467 409 30 91.6 446 380.5 32 87.5
1 169 152 9 99.4 166 146 10 97.6
2 160 142.5 10 94.1 156 139.5 9 91.8
3 139 113.5 15 81.8 124 101 16 72.9

6to18 All 441 411.5 30 86.5 425 390.5 27 83.3
1 161 152 8 94.7 159 148 11 93.5
2 159 148 12 93.5 155 141.5 9 91.2
3 132 112.5 12 77.6 119 101.5 12 70

8to14 All 459 403.5 27 90 440 380 38 86.3
1 166 150.5 7 97.6 165 147 12 97.1
2 159 143 10 93.5 156 139 13 91.8
3 140 111.5 12 82.4 123 96.5 21 72.4

8to18 All 451 411 27 88.4 437 384 30 85.7
1 168 152 9 98.8 165 148 9 97.1
2 162 146 13 95.3 150 137.5 13 88.2
3 131 113.5 13 77.1 122 96.5 18 71.8

10to16 All 435 407 29 85.3 416 380.5 32 81.6
1 162 152 7 95.3 159 147 11 93.5
2 154 141.5 11 90.6 144 134 11 84.7
3 127 114 13 74.7 120 99 16 70.6

14to18 All 443 403.5 31 86.9 424 372 38 83.1
1 165 152.5 7 97.1 166 146 12 97.6
2 154 142 11 90.6 144 132.5 14 84.7
3 135 109.5 16 79.4 114 90.5 16 67.1

Table B.38: Code17-2, Fuzzy Classification Fitness Result For Experiment 3
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Figure B.19: Code17-2, violin plots representing the distribution of correctly decoded error
patterns for different ranges of states for the 30 runs for experiment 3
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State Error Training Training Training Training Verification Verification Verification Verification
Range Dist. Max Median IQR Max % Max Median IQR Max %
4to6 All 353 338.5 16 69.2 337 323.5 21 66.1

1 150 137 9 88.2 145 132 10 85.3
2 129 119 9 75.9 125 117 8 73.5
3 90 80.5 4 52.9 84 71 11 49.4

4to8 All 387 371.5 24 75.9 361 343 21 70.8
1 160 146 9 94.1 156 142.5 10 91.8
2 139 131 9 81.8 131 123.5 9 77.1
3 106 94 7 62.4 90 74 7 52.9

6to12 All 404 379.5 29 79.2 378 338.5 19 74.1
1 159 148 11 93.5 153 139.5 8 90
2 146 131.5 8 85.9 139 125 7 81.8
3 111 99 13 65.3 90 73.5 10 52.9

6to18 All 427 384.5 24 83.7 366 342 24 71.8
1 163 150 9 95.9 155 143.5 13 91.2
2 148 132 12 87.1 131 122 9 77.1
3 123 100.5 9 72.4 85 77.5 7 50

8to14 All 415 384 28 81.4 379 347 22 74.3
1 165 150.5 11 97.1 158 144.5 10 92.9
2 151 136 7 88.8 136 123.5 8 80
3 113 99.5 7 66.5 88 75 10 51.8

8to18 All 419 391.5 22 82.2 362 345.5 21 71
1 166 154 7 97.6 155 145.5 8 91.2
2 151 138 8 88.8 137 124.5 9 80.6
3 117 102 13 68.8 92 74.5 9 54.1

10to16 All 418 393 22 82 370 340 19 72.5
1 163 152.5 7 95.9 158 143 10 92.9
2 151 138 10 88.8 136 124.5 10 80
3 113 101.5 12 66.5 93 74 9 54.7

14to18 All 417 402 25 81.8 367 336.5 19 72
1 165 154.5 11 97.1 159 143 6 93.5
2 149 139 9 87.6 136 123 9 80
3 121 106.5 10 71.2 81 72 10 47.6

Table B.39: Code17-2, Direct Classification Fitness Result For Experiment 4

State Error Training Training Training Training Verification Verification Verification Verification
Range Dist. Max Median IQR Max % Max Median IQR Max %
4to6 All 427 387.5 29 83.7 428 379 30 83.9

1 159 145.5 10 93.5 158 141.5 15 92.9
2 153 137 14 90 154 136 15 90.6
3 121 107.5 15 71.2 118 103.5 16 69.4

4to8 All 456 413.5 25 89.4 429 401.5 28 84.1
1 166 151.5 8 97.6 165 148.5 10 97.1
2 159 146.5 11 93.5 155 143.5 9 91.2
3 136 115.5 14 80 128 106 13 75.3

6to12 All 438 402.5 29 85.9 419 385 26 82.2
1 162 148 9 95.3 156 147 8 91.8
2 158 142 13 92.9 151 138 11 88.8
3 125 110 16 73.5 118 98.5 14 69.4

6to18 All 446 406.5 45 87.5 432 383.5 52 84.7
1 165 151 9 97.1 163 151.5 15 95.9
2 156 141.5 18 91.8 152 136 14 89.4
3 130 113 17 76.5 120 96.5 21 70.6

8to14 All 456 421.5 32 89.4 435 399.5 35 85.3
1 168 155 12 98.8 165 149.5 11 97.1
2 158 147 11 92.9 155 142 13 91.2
3 134 117.5 19 78.8 118 105.5 13 69.4

8to18 All 451 409 34 88.4 421 384.5 43 82.5
1 167 153.5 10 98.2 164 150 10 96.5
2 159 145 13 93.5 149 139 13 87.6
3 135 112 16 79.4 121 98 12 71.2

10to16 All 447 401 41 87.6 420 378 45 82.4
1 167 153.5 10 98.2 166 148 9 97.6
2 156 142.5 16 91.8 149 136 18 87.6
3 133 109 19 78.2 114 92 16 67.1

14to18 All 440 404.5 30 86.3 413 376.5 33 81
1 166 152.5 12 97.6 166 148 11 97.6
2 156 140 14 91.8 145 133 14 85.3
3 125 111.5 18 73.5 106 92.5 14 62.4

Table B.40: Code17-2, Fuzzy Classification Fitness Result For Experiment 4
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Figure B.20: Code17-2, violin plots representing the distribution of correctly decoded error
patterns for different ranges of states for the 30 runs for experiment 4
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Code18

State Error Training Training Training Training Verification Verification Verification Verification
Range Dist. Max Median IQR Max % Max Median IQR Max %
4to6 All 369 350.5 17 68.3 345 321.5 23 63.9

1 156 147 7 86.7 145 137.5 6 80.6
2 130 124 7 72.2 131 115 10 72.8
3 92 85 8 51.1 85 69 8 47.2

4to8 All 391 377.5 11 72.4 371 343.5 23 68.7
1 166 155 12 92.2 161 147.5 8 89.4
2 140 132 9 77.8 133 122.5 14 73.9
3 99 88 9 55 84 73.5 11 46.7

6to12 All 425 389 16 78.7 376 346 20 69.6
1 168 155 10 93.3 160 147.5 10 88.9
2 149 137.5 7 82.8 138 122 11 76.7
3 112 96.5 7 62.2 87 74 9 48.3

6to18 All 422 402 21 78.1 368 344 24 68.1
1 171 160 9 95 163 148.5 9 90.6
2 152 142.5 14 84.4 137 121.5 11 76.1
3 116 98.5 9 64.4 85 73.5 10 47.2

8to14 All 418 392 17 77.4 366 350.5 14 67.8
1 166 160 7 92.2 163 152.5 8 90.6
2 152 137 6 84.4 132 123 8 73.3
3 109 95.5 13 60.6 88 74 6 48.9

8to18 All 431 397 17 79.8 374 349 25 69.3
1 168 161 8 93.3 165 147.5 9 91.7
2 154 137 11 85.6 138 125 10 76.7
3 118 96.5 12 65.6 84 74 11 46.7

10to16 All 414 396.5 13 76.7 380 348 19 70.4
1 167 157.5 6 92.8 164 150.5 10 91.1
2 147 138 10 81.7 138 122 10 76.7
3 109 99.5 8 60.6 84 77 10 46.7

14to18 All 431 403 18 79.8 390 346.5 24 72.2
1 168 161 10 93.3 160 149 10 88.9
2 156 141 8 86.7 139 122 10 77.2
3 121 104.5 9 67.2 95 74.5 12 52.8

Table B.41: Code18, Direct Classification Fitness Result For Experiment 1

State Error Training Training Training Training Verification Verification Verification Verification
Range Dist. Max Median IQR Max % Max Median IQR Max %
4to6 All 441 400.5 40 81.7 435 393 53 80.6

1 169 154 7 93.9 166 154.5 6 92.2
2 147 140.5 11 81.7 156 134 21 86.7
3 138 109 20 76.7 123 107 18 68.3

4to8 All 450 412 25 83.3 439 404 32 81.3
1 170 157.5 9 94.4 174 157 9 96.7
2 156 143 13 86.7 156 141.5 15 86.7
3 132 109 18 73.3 126 102 12 70

6to12 All 455 408 44 84.3 427 389 43 79.1
1 170 156.5 10 94.4 167 154.5 13 92.8
2 161 141 12 89.4 154 136 13 85.6
3 138 111 18 76.7 115 96.5 22 63.9

6to18 All 449 416 20 83.1 430 392.5 29 79.6
1 173 160 10 96.1 167 156.5 11 92.8
2 156 146 8 86.7 150 137 13 83.3
3 125 115.5 15 69.4 117 98.5 11 65

8to14 All 456 424.5 28 84.4 453 410.5 43 83.9
1 174 163 5 96.7 174 160 9 96.7
2 158 147 9 87.8 160 142 19 88.9
3 142 115 18 78.9 123 101.5 17 68.3

8to18 All 460 409.5 29 85.2 445 386 32 82.4
1 171 159 10 95 170 155.5 11 94.4
2 161 142.5 11 89.4 156 135 16 86.7
3 138 106 21 76.7 120 96 12 66.7

10to16 All 451 404.5 27 83.5 443 378 37 82
1 169 159.5 7 93.9 169 155 10 93.9
2 157 141 8 87.2 159 132.5 16 88.3
3 138 107 17 76.7 117 92.5 16 65

14to18 All 466 401.5 40 86.3 427 368 34 79.1
1 170 158 10 94.4 168 153 8 93.3
2 158 140 12 87.8 157 131 17 87.2
3 142 105 16 78.9 120 87 15 66.7

Table B.42: Code18, Fuzzy Classification Fitness Result For Experiment 1
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Figure B.21: Code18, violin plots representing the distribution of correctly decoded error
patterns for different ranges of states for the 30 runs for experiment 1
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State Error Training Training Training Training Verification Verification Verification Verification
Range Dist. Max Median IQR Max % Max Median IQR Max %
4to6 All 359 349.5 10 66.5 344 313.5 22 63.7

1 156 148 12 86.7 146 136 7 81.1
2 130 123 7 72.2 131 113 14 72.8
3 88 79 7 48.9 85 65 7 47.2

4to8 All 396 380.5 12 73.3 371 351 26 68.7
1 168 155 8 93.3 161 147.5 11 89.4
2 142 135 5 78.9 136 123 13 75.6
3 104 90 11 57.8 93 73 8 51.7

6to12 All 408 388.5 20 75.6 371 349 17 68.7
1 166 156.5 8 92.2 164 147 9 91.1
2 153 136.5 10 85 135 126 7 75
3 105 96 10 58.3 91 74 5 50.6

6to18 All 438 398 19 81.1 390 346.5 23 72.2
1 169 160 12 93.9 167 151.5 7 92.8
2 154 139 7 85.6 136 121 11 75.6
3 118 97 12 65.6 93 74.5 12 51.7

8to14 All 427 396.5 23 79.1 383 351 29 70.9
1 169 159 10 93.9 166 152 9 92.2
2 154 138 6 85.6 139 125 10 77.2
3 115 99.5 18 63.9 91 75.5 11 50.6

8to18 All 416 396.5 19 77 383 346 28 70.9
1 170 160 6 94.4 167 151.5 14 92.8
2 153 138.5 11 85 135 122.5 15 75
3 108 100.5 8 60 87 75 8 48.3

10to16 All 423 399 20 78.3 376 353.5 26 69.6
1 170 162 6 94.4 166 152 14 92.2
2 157 139.5 9 87.2 137 124.5 8 76.1
3 114 100 12 63.3 88 75.5 9 48.9

14to18 All 439 405 20 81.3 392 351 26 72.6
1 171 159.5 11 95 168 152 12 93.3
2 157 143 13 87.2 137 124.5 17 76.1
3 117 106 10 65 87 74.5 14 48.3

Table B.43: Code18, Direct Classification Fitness Result For Experiment 2

State Error Training Training Training Training Verification Verification Verification Verification
Range Dist. Max Median IQR Max % Max Median IQR Max %
4to6 All 430 411.5 18 79.6 434 397 45 80.4

1 167 156.5 11 92.8 166 154 6 92.2
2 147 141.5 4 81.7 156 139 18 86.7
3 130 110 11 72.2 119 104 18 66.1

4to8 All 452 413.5 21 83.7 436 398 45 80.7
1 170 158.5 6 94.4 168 157 11 93.3
2 158 142.5 7 87.8 160 141 17 88.9
3 139 112 15 77.2 123 103 18 68.3

6to12 All 450 408.5 33 83.3 436 392 32 80.7
1 170 158.5 6 94.4 167 158 8 92.8
2 159 146 10 88.3 155 141 15 86.1
3 134 110.5 19 74.4 123 97.5 15 68.3

6to18 All 452 417.5 22 83.7 441 395.5 38 81.7
1 169 160 11 93.9 167 159 6 92.8
2 155 144 8 86.1 158 137 14 87.8
3 134 111.5 15 74.4 121 97 14 67.2

8to14 All 463 411 29 85.7 436 391 32 80.7
1 168 161.5 7 93.3 166 157 11 92.2
2 161 144 9 89.4 151 138.5 10 83.9
3 137 109 20 76.1 121 99.5 16 67.2

8to18 All 454 411.5 29 84.1 437 382.5 44 80.9
1 169 161 6 93.9 171 154.5 13 95
2 162 143 12 90 152 134 16 84.4
3 134 109 12 74.4 121 96 15 67.2

10to16 All 453 419.5 37 83.9 434 397 36 80.4
1 174 163.5 11 96.7 174 158.5 10 96.7
2 156 143.5 9 86.7 157 137.5 12 87.2
3 131 109 18 72.8 113 99 22 62.8

14to18 All 462 408 22 85.6 413 378 36 76.5
1 175 160.5 11 97.2 168 155 11 93.3
2 164 142.5 9 91.1 148 134.5 16 82.2
3 127 108.5 9 70.6 107 89.5 18 59.4

Table B.44: Code18, Fuzzy Classification Fitness Result For Experiment 2
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Figure B.22: Code18, violin plots representing the distribution of correctly decoded error
patterns for different ranges of states for the 30 runs for experiment 2
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State Error Training Training Training Training Verification Verification Verification Verification
Range Dist. Max Median IQR Max % Max Median IQR Max %
4to6 All 369 354 17 68.3 341 318.5 25 63.1

1 154 147 8 85.6 148 137 6 82.2
2 130 122.5 5 72.2 131 113.5 12 72.8
3 92 84 9 51.1 79 69 7 43.9

4to8 All 399 378 9 73.9 379 345 15 70.2
1 165 156 7 91.7 164 150.5 10 91.1
2 146 133 5 81.1 132 122 10 73.3
3 100 88.5 9 55.6 88 72.5 12 48.9

6to12 All 412 389.5 20 76.3 371 353 13 68.7
1 168 157.5 11 93.3 163 151 9 90.6
2 154 137 11 85.6 137 124 9 76.1
3 116 94.5 14 64.4 86 76 7 47.8

6to18 All 427 403 24 79.1 385 353.5 22 71.3
1 172 162 7 95.6 169 150 11 93.9
2 154 139 11 85.6 141 125.5 10 78.3
3 117 97.5 16 65 92 77.5 13 51.1

8to14 All 426 394.5 23 78.9 374 353 18 69.3
1 170 158 8 94.4 164 152.5 10 91.1
2 156 138 10 86.7 139 124 7 77.2
3 114 98 15 63.3 86 74 8 47.8

8to18 All 426 399.5 22 78.9 392 346 27 72.6
1 172 163 9 95.6 167 152.5 7 92.8
2 154 140 10 85.6 139 125 13 77.2
3 115 98 9 63.9 88 76 12 48.9

10to16 All 429 400 24 79.4 389 350 26 72
1 172 160 6 95.6 171 154.5 12 95
2 154 140.5 10 85.6 139 122 13 77.2
3 115 99 10 63.9 89 73 10 49.4

14to18 All 437 415.5 20 80.9 378 351 21 70
1 171 163.5 7 95 170 153 7 94.4
2 155 142 8 86.1 139 122.5 13 77.2
3 122 105.5 14 67.8 90 75.5 10 50

Table B.45: Code18, Direct Classification Fitness Result For Experiment 3

State Error Training Training Training Training Verification Verification Verification Verification
Range Dist. Max Median IQR Max % Max Median IQR Max %
4to6 All 430 395 46 79.6 432 393 62 80

1 161 155 7 89.4 164 152.5 6 91.1
2 148 136.5 11 82.2 156 133.5 17 86.7
3 130 109 22 72.2 125 104 23 69.4

4to8 All 454 414.5 29 84.1 435 403.5 26 80.6
1 171 160.5 7 95 168 158 8 93.3
2 161 143 10 89.4 156 141.5 13 86.7
3 131 110 16 72.8 120 105 9 66.7

6to12 All 458 417 30 84.8 452 400 28 83.7
1 171 160 10 95 168 157 4 93.3
2 159 144.5 7 88.3 163 142 14 90.6
3 133 111.5 14 73.9 123 100.5 18 68.3

6to18 All 443 420 27 82 430 396 28 79.6
1 173 164.5 7 96.1 168 156.5 10 93.3
2 156 145.5 9 86.7 156 138.5 9 86.7
3 126 109.5 12 70 120 98 16 66.7

8to14 All 447 418 34 82.8 431 400 28 79.8
1 169 161.5 6 93.9 167 159 8 92.8
2 158 146 8 87.8 157 138.5 10 87.2
3 134 114.5 20 74.4 122 101.5 14 67.8

8to18 All 442 417 30 81.9 436 394.5 35 80.7
1 172 163.5 11 95.6 172 157 7 95.6
2 159 145.5 12 88.3 153 138 18 85
3 124 110.5 14 68.9 114 100.5 18 63.3

10to16 All 455 421 20 84.3 448 403.5 35 83
1 171 161.5 8 95 176 161.5 12 97.8
2 161 147 11 89.4 155 139 12 86.1
3 132 111.5 12 73.3 125 101.5 15 69.4

14to18 All 454 413.5 33 84.1 426 383.5 34 78.9
1 175 160.5 11 97.2 170 157.5 8 94.4
2 155 143.5 9 86.1 154 134 11 85.6
3 126 107 20 70 112 92.5 20 62.2

Table B.46: Code18, Fuzzy Classification Fitness Result For Experiment 3
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Figure B.23: Code18, violin plots representing the distribution of correctly decoded error
patterns for different ranges of states for the 30 runs for experiment 3
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State Error Training Training Training Training Verification Verification Verification Verification
Range Dist. Max Median IQR Max % Max Median IQR Max %
4to6 All 369 353 14 68.3 347 321.5 25 64.3

1 155 148 9 86.1 150 138 6 83.3
2 131 125 6 72.8 131 114.5 8 72.8
3 92 81.5 10 51.1 85 68 9 47.2

4to8 All 399 381 22 73.9 375 341.5 34 69.4
1 165 155 8 91.7 166 146 10 92.2
2 150 135 10 83.3 135 122 18 75
3 104 89 9 57.8 83 71 13 46.1

6to12 All 428 392.5 19 79.3 374 346.5 26 69.3
1 172 156 8 95.6 165 150 9 91.7
2 153 138 10 85 136 123 12 75.6
3 112 96 12 62.2 87 72 9 48.3

6to18 All 424 392 16 78.5 374 347.5 21 69.3
1 165 158.5 8 91.7 161 147.5 9 89.4
2 151 137.5 10 83.9 138 123.5 10 76.7
3 111 97 12 61.7 93 75 12 51.7

8to14 All 421 392.5 29 78 385 348.5 21 71.3
1 170 160 8 94.4 161 150.5 11 89.4
2 151 139 11 83.9 137 122 12 76.1
3 113 98 12 62.8 88 77 10 48.9

8to18 All 422 395 21 78.1 383 347.5 24 70.9
1 167 159 8 92.8 163 150 6 90.6
2 149 140 7 82.8 134 123 11 74.4
3 113 98 9 62.8 88 74 10 48.9

10to16 All 428 397 23 79.3 383 349 27 70.9
1 173 161 10 96.1 163 150 10 90.6
2 152 140 11 84.4 136 124.5 8 75.6
3 118 100.5 11 65.6 92 73.5 18 51.1

14to18 All 434 404.5 27 80.4 377 354 33 69.8
1 171 159 7 95 170 153 18 94.4
2 153 141 11 85 139 121.5 8 77.2
3 122 105.5 8 67.8 92 77.5 10 51.1

Table B.47: Code18, Direct Classification Fitness Result For Experiment 4

State Error Training Training Training Training Verification Verification Verification Verification
Range Dist. Max Median IQR Max % Max Median IQR Max %
4to6 All 477 407.5 33 88.3 456 396 48 84.4

1 172 156.5 7 95.6 172 153 9 95.6
2 164 141.5 9 91.1 157 137 15 87.2
3 141 109 16 78.3 127 108.5 16 70.6

4to8 All 450 423.5 27 83.3 440 404.5 27 81.5
1 170 160.5 10 94.4 172 156.5 11 95.6
2 160 147 12 88.9 156 143 8 86.7
3 128 114.5 15 71.1 117 103.5 17 65

6to12 All 456 417.5 25 84.4 434 396 37 80.4
1 172 159 9 95.6 169 157 7 93.9
2 155 144.5 10 86.1 159 139.5 13 88.3
3 133 113.5 13 73.9 119 99.5 15 66.1

6to18 All 456 401.5 36 84.4 446 379 48 82.6
1 168 161 13 93.3 170 153 12 94.4
2 161 139 14 89.4 159 134.5 17 88.3
3 133 108.5 21 73.9 117 95.5 14 65

8to14 All 458 410.5 40 84.8 446 387.5 50 82.6
1 171 162 12 95 171 156 12 95
2 162 142 12 90 154 135 12 85.6
3 136 106 20 75.6 127 96 20 70.6

8to18 All 450 407.5 35 83.3 421 381 42 78
1 168 160 6 93.3 170 153.5 12 94.4
2 158 144 13 87.8 152 133 16 84.4
3 129 107 18 71.7 110 96 14 61.1

10to16 All 455 419 29 84.3 431 400 35 79.8
1 175 161 11 97.2 170 157.5 9 94.4
2 161 145 10 89.4 151 138 15 83.9
3 127 112 15 70.6 115 97.5 13 63.9

14to18 All 447 410 30 82.8 444 377.5 44 82.2
1 170 160 7 94.4 174 155.5 13 96.7
2 159 141 11 88.3 150 134 20 83.3
3 123 109.5 20 68.3 120 87.5 17 66.7

Table B.48: Code18, Fuzzy Classification Fitness Result For Experiment 4
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Figure B.24: Code18, violin plots representing the distribution of correctly decoded error
patterns for different ranges of states for the 30 runs for experiment 4
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B.1.3 Codes of Length 14

Code201

State Error Training Training Training Training Verification Verification Verification Verification
Range Dist. Max Median IQR Max % Max Median IQR Max %
4to6 All 3174 3140 44 37.6 3145 3077.5 92 37.3

1 1630 1587 20 57.9 1607 1559 29 57.1
2 1046 994 54 37.2 1020 973 15 36.2
3 583 544 26 20.7 584 548.5 47 20.8

4to8 All 3882 3805 49 46 3846 3736.5 53 45.6
1 1864 1806 45 66.2 1839 1766 39 65.4
2 1362 1305 36 48.4 1337 1291 34 47.5
3 756 703 40 26.9 741 690 33 26.3

6to12 All 5015 4917 138 59.4 4916 4828.5 164 58.2
1 2321 2236 63 82.5 2251 2185 63 80
2 1798 1718 60 63.9 1742 1686 47 61.9
3 1009 950.5 86 35.9 1003 930.5 61 35.6

6to18 All 5403 5089.5 251 64 5341 4998.5 208 63.3
1 2381 2287 73 84.6 2355 2249.5 98 83.7
2 1915 1787.5 82 68.1 1900 1747.5 99 67.5
3 1175 1008.5 112 41.8 1139 993 64 40.5

8to14 All 5252 5086 223 62.2 5130 4999 285 60.8
1 2340 2287 75 83.2 2306 2243.5 86 81.9
2 1839 1788.5 76 65.4 1801 1746.5 99 64
3 1118 1000.5 94 39.7 1062 981.5 83 37.7

8to18 All 5371 5161 233 63.6 5333 5059.5 223 63.2
1 2385 2305.5 46 84.8 2353 2257 59 83.6
2 1902 1806 79 67.6 1859 1775.5 64 66.1
3 1138 1052 93 40.4 1121 1012 66 39.8

10to16 All 5308 5108 325 62.9 5211 5005 282 61.7
1 2348 2284 103 83.4 2327 2254 106 82.7
2 1868 1796.5 110 66.4 1835 1762 92 65.2
3 1133 1018.5 112 40.3 1079 999 108 38.3

14to18 All 5413 5133.5 102 64.1 5309 5044.5 153 62.9
1 2363 2302 66 84 2365 2258.5 83 84
2 1915 1799 61 68.1 1835 1778.5 65 65.2
3 1141 1047.5 43 40.5 1153 1021.5 55 41

Table B.49: Code201, Direct Classification Fitness Result For Experiment 1

State Error Training Training Training Training Verification Verification Verification Verification
Range Dist. Max Median IQR Max % Max Median IQR Max %
4to6 All 5491 5363 189 65 5493 5300 118 65.1

1 2187 2140 77 77.7 2189 2101 59 77.8
2 1914 1859 65 68 1914 1819 49 68
3 1418 1348 45 50.4 1424 1344.5 67 50.6

4to8 All 5901 5438.5 175 69.9 5816 5425 231 68.9
1 2307 2184 48 82 2272 2164.5 66 80.7
2 2040 1892 73 72.5 2026 1872 95 72
3 1566 1376.5 87 55.7 1550 1374.5 100 55.1

6to12 All 6608 6200 251 78.3 6535 6118.5 158 77.4
1 2486 2394 61 88.3 2466 2351 52 87.6
2 2286 2122 111 81.2 2285 2129.5 73 81.2
3 1836 1671.5 106 65.2 1811 1657 111 64.4

6to18 All 6567 6309 267 77.8 6542 6277 257 77.5
1 2528 2440 87 89.8 2489 2408.5 116 88.5
2 2257 2185 91 80.2 2284 2164.5 96 81.2
3 1879 1682.5 83 66.8 1826 1674.5 78 64.9

8to14 All 6487 6324.5 187 76.8 6497 6274 167 77
1 2501 2433 31 88.9 2514 2396.5 48 89.3
2 2239 2178 45 79.6 2273 2170 75 80.8
3 1782 1710.5 88 63.3 1805 1708 83 64.1

8to18 All 6505 6347.5 228 77.1 6538 6290.5 230 77.4
1 2516 2447.5 56 89.4 2490 2419.5 57 88.5
2 2274 2174 73 80.8 2269 2174 69 80.6
3 1780 1685 108 63.3 1791 1687 97 63.6

10to16 All 6740 6220.5 248 79.8 6666 6203 296 79
1 2518 2421.5 80 89.5 2488 2379.5 84 88.4
2 2317 2141 92 82.3 2299 2166.5 101 81.7
3 1905 1682.5 118 67.7 1879 1678 129 66.8

14to18 All 6801 6261 426 80.6 6658 6252 338 78.9
1 2516 2421 91 89.4 2502 2394.5 92 88.9
2 2348 2153.5 130 83.4 2284 2156.5 91 81.2
3 1937 1680.5 129 68.8 1872 1673 126 66.5

Table B.50: Code201, Fuzzy Classification Fitness Result For Experiment 1
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Figure B.25: Code201, violin plots representing the distribution of correctly decoded error
patterns for different ranges of states for the 30 runs for experiment 1
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State Error Training Training Training Training Verification Verification Verification Verification
Range Dist. Max Median IQR Max % Max Median IQR Max %
4to6 All 3174 3125.5 50 37.6 3145 3071 16 37.3

1 1630 1590.5 32 57.9 1597 1559 29 56.8
2 1046 985 31 37.2 1020 974 24 36.2
3 583 550 21 20.7 584 549 34 20.8

4to8 All 3876 3814.5 59 45.9 3833 3737 96 45.4
1 1848 1796 43 65.7 1817 1738.5 57 64.6
2 1389 1313 31 49.4 1355 1282 50 48.2
3 761 701 24 27 756 698.5 26 26.9

6to12 All 5004 4895 185 59.3 5014 4809 210 59.4
1 2322 2224.5 110 82.5 2291 2197 87 81.4
2 1765 1705 46 62.7 1747 1680 63 62.1
3 994 951.5 55 35.3 990 940 59 35.2

6to18 All 5432 5117.5 193 64.3 5279 4986.5 180 62.5
1 2387 2287 55 84.8 2333 2254 47 82.9
2 1917 1795.5 113 68.1 1865 1756.5 70 66.3
3 1198 1036.5 123 42.6 1106 992 113 39.3

8to14 All 5248 5044.5 279 62.2 5211 4937.5 299 61.7
1 2335 2276 89 83 2321 2223.5 90 82.5
2 1847 1779 111 65.6 1817 1732 107 64.6
3 1070 983 116 38 1087 967.5 105 38.6

8to18 All 5418 5106.5 279 64.2 5316 4986 258 63
1 2428 2287 86 86.3 2407 2248 95 85.5
2 1916 1798.5 113 68.1 1892 1756.5 100 67.2
3 1168 1027 145 41.5 1113 978 102 39.6

10to16 All 5336 5146 220 63.2 5257 5047 207 62.3
1 2358 2301 53 83.8 2353 2275.5 70 83.6
2 1905 1795.5 92 67.7 1855 1772.5 91 65.9
3 1109 1044 92 39.4 1112 1017.5 67 39.5

14to18 All 5411 5173 79 64.1 5185 5098 124 61.4
1 2390 2306 43 84.9 2347 2273.5 66 83.4
2 1908 1822 41 67.8 1815 1782.5 42 64.5
3 1182 1056 50 42 1118 1021 55 39.7

Table B.51: Code201, Direct Classification Fitness Result For Experiment 2

State Error Training Training Training Training Verification Verification Verification Verification
Range Dist. Max Median IQR Max % Max Median IQR Max %
4to6 All 5509 5336 190 65.3 5547 5300 198 65.7

1 2173 2143.5 65 77.2 2167 2101 72 77
2 1928 1849.5 66 68.5 1926 1851 73 68.4
3 1414 1331 76 50.2 1454 1320 62 51.7

4to8 All 6095 5425 324 72.2 6104 5348.5 361 72.3
1 2371 2181.5 90 84.3 2344 2145.5 103 83.3
2 2106 1877 93 74.8 2125 1858.5 129 75.5
3 1618 1355 153 57.5 1635 1338.5 159 58.1

6to12 All 6515 6263.5 380 77.2 6555 6257.5 354 77.6
1 2481 2412.5 89 88.2 2463 2383.5 87 87.5
2 2242 2176 128 79.7 2289 2161.5 95 81.3
3 1792 1685 162 63.7 1807 1695 181 64.2

6to18 All 6776 6306 324 80.3 6715 6235.5 367 79.5
1 2529 2423 80 89.9 2501 2401.5 93 88.9
2 2311 2177.5 102 82.1 2342 2158 127 83.2
3 1936 1709 138 68.8 1872 1674 106 66.5

8to14 All 6524 6291.5 193 77.3 6470 6271.5 226 76.6
1 2476 2425.5 56 88 2451 2408 60 87.1
2 2269 2175.5 49 80.6 2265 2156.5 76 80.5
3 1837 1693.5 119 65.3 1783 1701 73 63.4

8to18 All 6855 6320.5 339 81.2 6833 6301 268 80.9
1 2565 2437 83 91.2 2561 2416.5 77 91
2 2343 2191.5 98 83.3 2364 2167.5 90 84
3 1947 1702.5 112 69.2 1908 1706 131 67.8

10to16 All 6551 6303 278 77.6 6493 6269 306 76.9
1 2502 2430 63 88.9 2476 2407 79 88
2 2260 2183.5 83 80.3 2250 2170.5 99 80
3 1830 1682.5 132 65 1803 1693.5 101 64.1

14to18 All 6681 6317.5 198 79.1 6670 6239.5 259 79
1 2542 2428 41 90.3 2533 2399.5 68 90
2 2298 2178 79 81.7 2301 2165.5 94 81.8
3 1847 1702.5 81 65.6 1836 1677.5 114 65.2

Table B.52: Code201, Fuzzy Classification Fitness Result For Experiment 2
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Figure B.26: Code201, violin plots representing the distribution of correctly decoded error
patterns for different ranges of states for the 30 runs for experiment 2
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State Error Training Training Training Training Verification Verification Verification Verification
Range Dist. Max Median IQR Max % Max Median IQR Max %
4to6 All 3175 3110 43 37.6 3145 3076.5 20 37.3

1 1630 1594.5 20 57.9 1597 1561 36 56.8
2 1046 980.5 42 37.2 1020 968 22 36.2
3 583 540 22 20.7 584 537.5 30 20.8

4to8 All 3882 3812.5 71 46 3860 3745 38 45.7
1 1835 1779.5 44 65.2 1807 1753.5 44 64.2
2 1362 1324.5 56 48.4 1338 1302.5 31 47.5
3 764 711.5 34 27.1 748 706 26 26.6

6to12 All 5015 4859 308 59.4 4941 4775.5 321 58.5
1 2307 2240.5 124 82 2285 2187.5 113 81.2
2 1762 1679 93 62.6 1735 1676.5 112 61.7
3 1009 923 76 35.9 1003 906.5 71 35.6

6to18 All 5437 5147 259 64.4 5315 5044 223 63
1 2391 2294 65 85 2343 2260.5 80 83.3
2 1891 1811.5 93 67.2 1884 1765 87 67
3 1155 1046 113 41 1115 1012.5 96 39.6

8to14 All 5234 5007.5 296 62 5101 4918.5 342 60.4
1 2343 2270.5 99 83.3 2318 2224 107 82.4
2 1837 1734 88 65.3 1807 1723.5 117 64.2
3 1082 985.5 105 38.5 1046 956.5 91 37.2

8to18 All 5319 5103 138 63 5217 5000 131 61.8
1 2377 2297.5 58 84.5 2344 2269.5 35 83.3
2 1877 1791.5 68 66.7 1823 1748 59 64.8
3 1119 1025 64 39.8 1097 995 49 39

10to16 All 5380 5016.5 237 63.7 5326 4924 253 63.1
1 2358 2262 72 83.8 2345 2226 86 83.3
2 1903 1771 79 67.6 1856 1732 91 66
3 1130 1012 111 40.2 1135 974.5 96 40.3

14to18 All 5484 5187.5 116 65 5428 5091 117 64.3
1 2416 2298.5 66 85.9 2390 2277 65 84.9
2 1920 1821.5 44 68.2 1894 1781 50 67.3
3 1161 1059 49 41.3 1144 1024 54 40.7

Table B.53: Code201, Direct Classification Fitness Result For Experiment 3

State Error Training Training Training Training Verification Verification Verification Verification
Range Dist. Max Median IQR Max % Max Median IQR Max %
4to6 All 5442 5336 181 64.5 5493 5283 135 65.1

1 2173 2123 52 77.2 2156 2097.5 47 76.6
2 1914 1838.5 60 68 1913 1834 47 68
3 1392 1337 63 49.5 1424 1341.5 70 50.6

4to8 All 6036 5308.5 178 71.5 6033 5258.5 167 71.5
1 2341 2151.5 41 83.2 2313 2132 64 82.2
2 2073 1846 47 73.7 2086 1835 65 74.1
3 1622 1320.5 126 57.6 1634 1317.5 70 58.1

6to12 All 6561 6277 240 77.7 6569 6265 262 77.8
1 2488 2419.5 72 88.4 2456 2391 75 87.3
2 2263 2155 97 80.4 2290 2172 93 81.4
3 1810 1689 88 64.3 1823 1686.5 96 64.8

6to18 All 6696 6272.5 183 79.3 6670 6250.5 209 79
1 2526 2432 56 89.8 2518 2405.5 94 89.5
2 2303 2175.5 74 81.8 2316 2162.5 87 82.3
3 1867 1701.5 96 66.3 1836 1678 78 65.2

8to14 All 6718 6273.5 308 79.6 6679 6223 349 79.1
1 2562 2416.5 64 91 2535 2381.5 74 90.1
2 2293 2154 122 81.5 2316 2156.5 112 82.3
3 1863 1695 147 66.2 1828 1679 153 65

8to18 All 6740 6296 236 79.8 6719 6250 211 79.6
1 2564 2434.5 68 91.1 2530 2407 67 89.9
2 2315 2167.5 73 82.3 2346 2165.5 77 83.4
3 1861 1697.5 96 66.1 1843 1696.5 98 65.5

10to16 All 6521 6233 169 77.2 6542 6189.5 209 77.5
1 2491 2415.5 71 88.5 2480 2384.5 68 88.1
2 2248 2157 55 79.9 2247 2152 85 79.9
3 1818 1655.5 78 64.6 1815 1650.5 93 64.5

14to18 All 6670 6378.5 280 79 6674 6329.5 311 79.1
1 2552 2445.5 75 90.7 2524 2426 85 89.7
2 2314 2189 81 82.2 2332 2191.5 121 82.9
3 1846 1719.5 119 65.6 1832 1711.5 127 65.1

Table B.54: Code201, Fuzzy Classification Fitness Result For Experiment 3
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Figure B.27: Code201, violin plots representing the distribution of correctly decoded error
patterns for different ranges of states for the 30 runs for experiment 3
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State Error Training Training Training Training Verification Verification Verification Verification
Range Dist. Max Median IQR Max % Max Median IQR Max %
4to6 All 3174 3131 60 37.6 3145 3082 65 37.3

1 1630 1590 18 57.9 1607 1571.5 22 57.1
2 1046 987 38 37.2 1020 976 23 36.2
3 583 539 17 20.7 584 545.5 44 20.8

4to8 All 5320 3827.5 75 63 5252 3766.5 92 62.2
1 2374 1815 73 84.4 2327 1770.5 79 82.7
2 1842 1317.5 58 65.5 1835 1300.5 34 65.2
3 1104 712 29 39.2 1090 697 38 38.7

6to12 All 5006 4871 195 59.3 4933 4784 244 58.4
1 2317 2232.5 123 82.3 2265 2195 111 80.5
2 1744 1704.5 86 62 1733 1669 84 61.6
3 1011 902.5 86 35.9 1003 913.5 61 35.6

6to18 All 5354 5105.5 230 63.4 5301 5010 232 62.8
1 2396 2279 92 85.1 2369 2247 93 84.2
2 1929 1800 102 68.6 1854 1761 98 65.9
3 1135 1039 116 40.3 1088 999 59 38.7

8to14 All 5239 4939 254 62.1 5162 4875.5 239 61.1
1 2350 2266 51 83.5 2342 2233 64 83.2
2 1817 1730 86 64.6 1820 1709.5 95 64.7
3 1115 960.5 129 39.6 1084 953.5 120 38.5

8to18 All 5363 5082.5 366 63.5 5305 5052 383 62.8
1 2387 2295.5 119 84.8 2348 2249 114 83.4
2 1904 1777 142 67.7 1865 1768 125 66.3
3 1154 1001 155 41 1111 992 105 39.5

10to16 All 5403 5035 301 64 5258 4926 295 62.3
1 2383 2271.5 101 84.7 2333 2227.5 82 82.9
2 1914 1768 128 68 1877 1730.5 127 66.7
3 1125 1006 139 40 1075 968 122 38.2

14to18 All 5388 5186.5 156 63.8 5279 5124.5 150 62.5
1 2433 2322.5 55 86.5 2402 2295.5 65 85.4
2 1909 1819 59 67.8 1846 1786.5 46 65.6
3 1121 1048 65 39.8 1124 1022.5 61 39.9

Table B.55: Code201, Direct Classification Fitness Result For Experiment 4

State Error Training Training Training Training Verification Verification Verification Verification
Range Dist. Max Median IQR Max % Max Median IQR Max %
4to6 All 5504 5336 189 65.2 5493 5286.5 187 65.1

1 2173 2133.5 56 77.2 2156 2101 50 76.6
2 1914 1865 53 68 1913 1839 67 68
3 1464 1331 64 52 1424 1342 74 50.6

4to8 All 6558 5539.5 467 77.7 6527 5483.5 557 77.3
1 2501 2209.5 105 88.9 2479 2179.5 131 88.1
2 2243 1910 156 79.7 2262 1903.5 158 80.4
3 1818 1424 217 64.6 1818 1400.5 240 64.6

6to12 All 6527 6288.5 243 77.3 6470 6223 291 76.6
1 2467 2420 67 87.7 2438 2385.5 68 86.6
2 2267 2171 119 80.6 2257 2156 114 80.2
3 1793 1689 132 63.7 1805 1682 149 64.1

6to18 All 6676 6269 196 79.1 6666 6211 223 79
1 2546 2425 58 90.5 2522 2396 75 89.6
2 2282 2178.5 60 81.1 2301 2152 73 81.8
3 1855 1673 117 65.9 1851 1671 144 65.8

8to14 All 6575 6287 195 77.9 6600 6265.5 247 78.2
1 2489 2417 35 88.5 2487 2396 60 88.4
2 2273 2172 60 80.8 2307 2167.5 73 82
3 1829 1697.5 61 65 1808 1702.5 99 64.3

8to18 All 6707 6312.5 324 79.4 6650 6300 339 78.8
1 2552 2430.5 74 90.7 2528 2390.5 95 89.8
2 2307 2168.5 109 82 2319 2176.5 111 82.4
3 1848 1695 142 65.7 1821 1701.5 102 64.7

10to16 All 6568 6324.5 241 77.8 6526 6257.5 228 77.3
1 2531 2428.5 59 89.9 2499 2409 67 88.8
2 2262 2172 74 80.4 2277 2177 105 80.9
3 1795 1705.5 112 63.8 1810 1670.5 97 64.3

14to18 All 6820 6459 345 80.8 6753 6381 303 80
1 2586 2478.5 87 91.9 2572 2449.5 79 91.4
2 2348 2223 88 83.4 2366 2202.5 123 84.1
3 1905 1748.5 152 67.7 1905 1751.5 119 67.7

Table B.56: Code201, Fuzzy Classification Fitness Result For Experiment 4
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Figure B.28: Code201, violin plots representing the distribution of correctly decoded error
patterns for different ranges of states for the 30 runs for experiment 4
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Code205-1

State Error Training Training Training Training Verification Verification Verification Verification
Range Dist. Max Median IQR Max % Max Median IQR Max %
4to6 All 3333 3217.5 44 38.7 3231 3159 77 37.5

1 1679 1628 32 58.5 1651 1601 44 57.5
2 1097 1007 30 38.2 1039 1005.5 30 36.2
3 609 571.5 22 21.2 574 559 23 20

4to8 All 4005 3937 55 46.5 3980 3863 56 46.2
1 1881 1840 26 65.5 1872 1829 37 65.2
2 1386 1339.5 36 48.3 1377 1319 37 48
3 782 745.5 28 27.2 774 701 35 27

6to12 All 5107 4961.5 145 59.3 5086 4900.5 172 59.1
1 2331 2262.5 46 81.2 2325 2255.5 52 81
2 1788 1738 45 62.3 1781 1715 52 62.1
3 1042 962 74 36.3 1018 925.5 54 35.5

6to18 All 5537 5290.5 287 64.3 5460 5122 339 63.4
1 2461 2354.5 84 85.7 2447 2330 104 85.3
2 1967 1854.5 102 68.5 1909 1787 116 66.5
3 1195 1070 109 41.6 1120 993 95 39

8to14 All 5288 5125.5 192 61.4 5207 5018 229 60.5
1 2384 2329.5 85 83.1 2375 2303.5 57 82.8
2 1866 1789 84 65 1836 1748.5 51 64
3 1095 1019.5 70 38.2 1035 958 96 36.1

8to18 All 5571 5248.5 226 64.7 5386 5132.5 168 62.6
1 2451 2347.5 90 85.4 2449 2340 63 85.3
2 1972 1840 79 68.7 1875 1782 80 65.3
3 1150 1031.5 107 40.1 1095 1005 109 38.2

10to16 All 5496 5203 279 63.8 5392 5075 287 62.6
1 2432 2348 65 84.7 2420 2317 111 84.3
2 1921 1818.5 100 66.9 1893 1779 117 66
3 1143 1032 90 39.8 1100 973.5 95 38.3

14to18 All 5540 5282 168 64.3 5400 5182 177 62.7
1 2435 2363.5 67 84.8 2413 2353 71 84.1
2 1955 1857 69 68.1 1896 1807.5 55 66.1
3 1158 1066 49 40.3 1116 1033.5 48 38.9

Table B.57: Code205-1, Direct Classification Fitness Result For Experiment 1

State Error Training Training Training Training Verification Verification Verification Verification
Range Dist. Max Median IQR Max % Max Median IQR Max %
4to6 All 5662 5530.5 123 65.8 5593 5417 140 65

1 2243 2197 34 78.2 2235 2168 66 77.9
2 1931 1883 49 67.3 1938 1886 74 67.5
3 1494 1423.5 60 52.1 1439 1347 27 50.1

4to8 All 6131 5621 317 71.2 6051 5566.5 302 70.3
1 2367 2244.5 84 82.5 2373 2247 73 82.7
2 2111 1916 114 73.6 2076 1930.5 89 72.3
3 1653 1440 114 57.6 1602 1387.5 139 55.8

6to12 All 6725 6306 254 78.1 6708 6255.5 209 77.9
1 2562 2434.5 61 89.3 2536 2431 64 88.4
2 2327 2175 87 81.1 2327 2159.5 76 81.1
3 1878 1698.5 123 65.4 1853 1683 107 64.6

6to18 All 6839 6409 168 79.4 6755 6333 221 78.5
1 2608 2485.5 50 90.9 2594 2473.5 52 90.4
2 2398 2208 66 83.6 2326 2193.5 91 81
3 1833 1726.5 103 63.9 1839 1678 85 64.1

8to14 All 6843 6405 271 79.5 6826 6360 226 79.3
1 2575 2480.5 73 89.7 2559 2457.5 73 89.2
2 2366 2204.5 101 82.4 2389 2184.5 77 83.2
3 1902 1723 90 66.3 1878 1695 105 65.4

8to18 All 6809 6495 273 79.1 6804 6421.5 293 79
1 2590 2504.5 91 90.2 2613 2496 110 91
2 2375 2242 106 82.8 2348 2214.5 125 81.8
3 1878 1734.5 117 65.4 1864 1705 122 64.9

10to16 All 6812 6461.5 244 79.1 6794 6424 321 78.9
1 2593 2503.5 70 90.3 2594 2476 91 90.4
2 2361 2231.5 105 82.3 2365 2215 122 82.4
3 1858 1730.5 109 64.7 1835 1714 100 63.9

14to18 All 6775 6491.5 252 78.7 6719 6418.5 234 78
1 2581 2501.5 51 89.9 2585 2483 55 90.1
2 2353 2244.5 63 82 2311 2221.5 53 80.5
3 1865 1745 88 65 1863 1728 119 64.9

Table B.58: Code205-1, Fuzzy Classification Fitness Result For Experiment 1
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Figure B.29: code205-1, violin plots representing the distribution of correctly decoded
error patterns for different ranges of states for the 30 runs for experiment 1
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State Error Training Training Training Training Verification Verification Verification Verification
Range Dist. Max Median IQR Max % Max Median IQR Max %
4to6 All 3333 3229 91 38.7 3239 3181 97 37.6

1 1679 1628 35 58.5 1651 1604.5 42 57.5
2 1097 1014.5 34 38.2 1050 1008.5 32 36.6
3 609 572 29 21.2 582 559 22 20.3

4to8 All 4005 3933 57 46.5 3980 3822.5 71 46.2
1 1889 1825 33 65.8 1872 1810 25 65.2
2 1386 1356.5 37 48.3 1377 1310 38 48
3 782 754 35 27.2 774 693.5 25 27

6to12 All 5120 4958 195 59.5 5098 4876.5 130 59.2
1 2346 2283 87 81.7 2325 2256 58 81
2 1798 1730 45 62.6 1771 1700 55 61.7
3 1021 943.5 68 35.6 1025 909 48 35.7

6to18 All 5467 5226.5 197 63.5 5397 5109 189 62.7
1 2440 2342 66 85 2417 2331 75 84.2
2 1931 1832 70 67.3 1916 1793.5 67 66.8
3 1146 1052 81 39.9 1108 985 93 38.6

8to14 All 5351 5103.5 270 62.1 5262 5005.5 227 61.1
1 2395 2298.5 88 83.4 2393 2288.5 90 83.4
2 1861 1769 99 64.8 1845 1744 98 64.3
3 1135 1009 89 39.5 1087 938 79 37.9

8to18 All 5538 5252.5 274 64.3 5413 5185 250 62.9
1 2469 2348.5 97 86 2457 2331.5 69 85.6
2 1950 1839 93 67.9 1890 1812 96 65.9
3 1214 1056.5 69 42.3 1155 1021 96 40.2

10to16 All 5500 5120.5 555 63.9 5358 4981 550 62.2
1 2444 2327.5 225 85.2 2414 2292.5 178 84.1
2 1943 1796.5 189 67.7 1897 1742 196 66.1
3 1138 1014.5 143 39.7 1093 957 175 38.1

14to18 All 5648 5305 110 65.6 5458 5184.5 93 63.4
1 2492 2378 46 86.8 2446 2354 52 85.2
2 2000 1851 72 69.7 1918 1806.5 59 66.8
3 1199 1079 63 41.8 1111 1030.5 42 38.7

Table B.59: Code205-1, Direct Classification Fitness Result For Experiment 2

State Error Training Training Training Training Verification Verification Verification Verification
Range Dist. Max Median IQR Max % Max Median IQR Max %
4to6 All 5638 5524 86 65.5 5530 5417 80 64.2

1 2243 2198 41 78.2 2219 2169 42 77.3
2 1930 1891 44 67.2 1933 1886 57 67.4
3 1465 1403 57 51 1415 1358 30 49.3

4to8 All 5822 5548.5 252 67.6 5710 5487 359 66.3
1 2296 2199.5 73 80 2308 2221.5 89 80.4
2 2010 1904 87 70 1970 1883 120 68.6
3 1516 1422.5 134 52.8 1471 1363 126 51.3

6to12 All 6672 6375 254 77.5 6696 6338 257 77.8
1 2530 2461.5 74 88.2 2539 2448.5 61 88.5
2 2309 2187 89 80.5 2314 2190.5 114 80.6
3 1833 1716 94 63.9 1844 1704 120 64.3

6to18 All 6824 6473 352 79.3 6746 6434 297 78.4
1 2588 2482.5 96 90.2 2581 2477.5 89 89.9
2 2374 2238 126 82.7 2341 2224 88 81.6
3 1875 1743 123 65.3 1852 1731.5 125 64.5

8to14 All 6819 6382 215 79.2 6847 6306.5 178 79.5
1 2575 2474.5 85 89.7 2580 2445.5 48 89.9
2 2372 2186.5 59 82.6 2342 2182.5 56 81.6
3 1872 1707.5 86 65.2 1925 1693 100 67.1

8to18 All 6893 6396 201 80.1 6836 6357 168 79.4
1 2606 2468 70 90.8 2620 2457 68 91.3
2 2394 2209.5 81 83.4 2346 2193.5 62 81.7
3 1909 1724 69 66.5 1870 1707.5 71 65.2

10to16 All 6815 6366.5 420 79.2 6747 6311 469 78.4
1 2638 2475 121 91.9 2635 2443.5 124 91.8
2 2353 2181.5 122 82 2341 2178 162 81.6
3 1861 1703.5 169 64.8 1802 1663 184 62.8

14to18 All 6770 6488.5 179 78.6 6669 6414 141 77.5
1 2622 2509 60 91.4 2593 2487.5 50 90.3
2 2367 2238.5 54 82.5 2311 2208.5 57 80.5
3 1830 1742.5 83 63.8 1828 1722.5 85 63.7

Table B.60: Code205-1, Fuzzy Classification Fitness Result For Experiment 2
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Figure B.30: code205-1, violin plots representing the distribution of correctly decoded
error patterns for different ranges of states for the 30 runs for experiment 2
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State Error Training Training Training Training Verification Verification Verification Verification
Range Dist. Max Median IQR Max % Max Median IQR Max %
4to6 All 3333 3230 74 38.7 3231 3181 106 37.5

1 1679 1639 32 58.5 1651 1615.5 53 57.5
2 1097 1015.5 26 38.2 1040 995 32 36.2
3 609 572 28 21.2 572 562 22 19.9

4to8 All 4005 3915.5 68 46.5 3939 3846 81 45.7
1 1881 1835 29 65.5 1871 1813 45 65.2
2 1402 1348.5 31 48.9 1374 1317 46 47.9
3 781 740 35 27.2 748 704 20 26.1

6to12 All 5085 4843.5 286 59.1 5058 4735 301 58.7
1 2343 2210 121 81.6 2312 2211 130 80.6
2 1790 1695 84 62.4 1781 1641.5 95 62.1
3 1053 917 77 36.7 1009 857 54 35.2

6to18 All 5582 5289 183 64.8 5470 5149 170 63.5
1 2493 2363 44 86.9 2447 2333 57 85.3
2 1958 1853.5 75 68.2 1940 1807 86 67.6
3 1187 1062.5 86 41.4 1129 1010.5 57 39.3

8to14 All 5306 5021 317 61.6 5247 4960 343 60.9
1 2389 2289 110 83.2 2383 2274.5 102 83
2 1869 1756 136 65.1 1859 1723 114 64.8
3 1103 999 120 38.4 1089 953 157 37.9

8to18 All 5507 5236 238 64 5451 5131 301 63.3
1 2440 2371.5 56 85 2451 2345.5 42 85.4
2 1962 1835 105 68.4 1925 1788.5 105 67.1
3 1164 1044.5 97 40.6 1127 993.5 128 39.3

10to16 All 5439 5250 367 63.2 5369 5101.5 307 62.4
1 2432 2356.5 128 84.7 2431 2320.5 86 84.7
2 1924 1830.5 134 67 1894 1788 133 66
3 1119 1033.5 117 39 1089 995.5 102 37.9

14to18 All 5521 5311.5 155 64.1 5403 5155.5 159 62.8
1 2444 2361 59 85.2 2432 2333.5 67 84.7
2 1969 1852.5 54 68.6 1902 1810.5 66 66.3
3 1141 1073 70 39.8 1138 1011 73 39.7

Table B.61: Code205-1, Direct Classification Fitness Result For Experiment 3

State Error Training Training Training Training Verification Verification Verification Verification
Range Dist. Max Median IQR Max % Max Median IQR Max %
4to6 All 5714 5530.5 123 66.4 5645 5417 135 65.6

1 2248 2218 44 78.3 2260 2203 46 78.7
2 1987 1902 45 69.2 1966 1872.5 74 68.5
3 1490 1415 66 51.9 1422 1358 54 49.5

4to8 All 5851 5538.5 311 68 5845 5481 279 67.9
1 2306 2206.5 78 80.3 2304 2216 68 80.3
2 2035 1927.5 98 70.9 2020 1900.5 94 70.4
3 1516 1391.5 124 52.8 1525 1370.5 149 53.1

6to12 All 6696 6290.5 425 77.8 6599 6216.5 429 76.6
1 2532 2427.5 106 88.2 2492 2420.5 110 86.8
2 2316 2177 139 80.7 2279 2158 151 79.4
3 1848 1672 161 64.4 1838 1658 157 64

6to18 All 6940 6480 218 80.6 6888 6419 193 80
1 2626 2504.5 71 91.5 2597 2489.5 61 90.5
2 2394 2239.5 58 83.4 2376 2214 87 82.8
3 1920 1734.5 98 66.9 1922 1709.5 90 67

8to14 All 6702 6339.5 320 77.8 6621 6288 268 76.9
1 2556 2449 69 89.1 2518 2440 85 87.7
2 2327 2188 112 81.1 2294 2175 93 79.9
3 1840 1703 114 64.1 1824 1681 84 63.6

8to18 All 6787 6480 137 78.8 6714 6412.5 186 78
1 2581 2504.5 53 89.9 2566 2478 61 89.4
2 2335 2237.5 57 81.4 2338 2215 52 81.5
3 1879 1748 71 65.5 1861 1720.5 46 64.8

10to16 All 6646 6435 220 77.2 6604 6363 252 76.7
1 2584 2491.5 70 90 2586 2463.5 56 90.1
2 2322 2212 66 80.9 2288 2196.5 73 79.7
3 1831 1722.5 87 63.8 1802 1700.5 105 62.8

14to18 All 6831 6467 234 79.3 6754 6408 284 78.4
1 2608 2503 62 90.9 2593 2489 80 90.3
2 2369 2232.5 91 82.5 2336 2207.5 94 81.4
3 1898 1735 74 66.1 1870 1704.5 121 65.2

Table B.62: Code205-1, Fuzzy Classification Fitness Result For Experiment 3
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Figure B.31: code205-1, violin plots representing the distribution of correctly decoded
error patterns for different ranges of states for the 30 runs for experiment 3
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State Error Training Training Training Training Verification Verification Verification Verification
Range Dist. Max Median IQR Max % Max Median IQR Max %
4to6 All 3333 3224 107 38.7 3231 3163 79 37.5

1 1679 1627 50 58.5 1651 1615.5 34 57.5
2 1097 1025 32 38.2 1044 993 26 36.4
3 609 572 32 21.2 589 559.5 28 20.5

4to8 All 3991 3920.5 65 46.4 3939 3806 59 45.7
1 1904 1837 22 66.3 1871 1808.5 43 65.2
2 1402 1340 32 48.9 1377 1311.5 61 48
3 775 744 32 27 734 697.5 37 25.6

6to12 All 5052 4844.5 238 58.7 5040 4767 221 58.5
1 2344 2238.5 101 81.7 2329 2219.5 124 81.1
2 1795 1691.5 70 62.5 1741 1668 63 60.7
3 981 917 48 34.2 970 882 54 33.8

6to18 All 5454 5261 286 63.3 5347 5131.5 381 62.1
1 2441 2344.5 83 85.1 2393 2324 94 83.4
2 1934 1841.5 100 67.4 1884 1786 132 65.6
3 1152 1049 112 40.1 1103 1003 105 38.4

8to14 All 5343 5131 381 62.1 5260 4974 286 61.1
1 2386 2317 117 83.1 2367 2289.5 141 82.5
2 1886 1786 147 65.7 1836 1740.5 103 64
3 1102 1011 116 38.4 1076 940 95 37.5

8to18 All 5509 5219.5 286 64 5362 5122.5 320 62.3
1 2465 2338.5 90 85.9 2426 2330.5 84 84.5
2 1942 1828 107 67.7 1885 1798 127 65.7
3 1185 1046.5 133 41.3 1112 1010 124 38.7

10to16 All 5422 5105.5 319 63 5327 5023 305 61.9
1 2432 2313.5 94 84.7 2424 2295.5 92 84.5
2 1905 1797.5 105 66.4 1856 1746.5 117 64.7
3 1091 1008 110 38 1095 984 110 38.2

14to18 All 5525 5304 119 64.2 5403 5177.5 126 62.8
1 2449 2376 45 85.3 2431 2356.5 61 84.7
2 1952 1865.5 48 68 1886 1810 50 65.7
3 1154 1061.5 69 40.2 1116 1019.5 47 38.9

Table B.63: Code205-1, Direct Classification Fitness Result For Experiment 4

State Error Training Training Training Training Verification Verification Verification Verification
Range Dist. Max Median IQR Max % Max Median IQR Max %
4to6 All 5619 5530.5 146 65.3 5575 5417 137 64.8

1 2246 2218 64 78.3 2235 2203 46 77.9
2 1949 1902 47 67.9 1940 1857 63 67.6
3 1454 1406 57 50.7 1420 1358 39 49.5

4to8 All 5826 5568.5 148 67.7 5744 5520 234 66.7
1 2309 2213 50 80.5 2289 2222.5 47 79.8
2 2013 1908.5 66 70.1 1971 1921 80 68.7
3 1517 1425.5 63 52.9 1508 1382 124 52.5

6to12 All 6681 6393.5 446 77.6 6672 6273 420 77.5
1 2530 2457 103 88.2 2527 2437 113 88
2 2300 2190 148 80.1 2319 2177 133 80.8
3 1865 1719.5 179 65 1826 1660.5 178 63.6

6to18 All 6716 6354 202 78 6686 6301.5 231 77.7
1 2589 2478.5 73 90.2 2577 2462 61 89.8
2 2319 2197 73 80.8 2298 2181 82 80.1
3 1848 1690 78 64.4 1852 1672.5 94 64.5

8to14 All 6714 6426 270 78 6590 6371 321 76.5
1 2561 2485 113 89.2 2572 2460.5 137 89.6
2 2330 2200.5 79 81.2 2280 2194 114 79.4
3 1823 1726 103 63.5 1795 1692.5 160 62.5

8to18 All 6764 6428 244 78.6 6699 6381.5 225 77.8
1 2597 2475.5 70 90.5 2597 2464 84 90.5
2 2349 2221 82 81.8 2337 2205.5 64 81.4
3 1885 1732 81 65.7 1841 1714 67 64.1

10to16 All 6852 6347 193 79.6 6817 6312.5 216 79.2
1 2622 2462 81 91.4 2606 2456 66 90.8
2 2394 2197.5 71 83.4 2345 2188.5 94 81.7
3 1836 1694 80 64 1879 1688.5 97 65.5

14to18 All 6739 6488 198 78.3 6714 6405 232 78
1 2577 2499 44 89.8 2583 2493 64 90
2 2333 2252 76 81.3 2327 2225.5 78 81.1
3 1847 1745.5 70 64.4 1828 1706.5 89 63.7

Table B.64: Code205-1, Fuzzy Classification Fitness Result For Experiment 4



APPENDIX B. RESULTS 160

Figure B.32: code205-1, violin plots representing the distribution of correctly decoded
error patterns for different ranges of states for the 30 runs for experiment 4
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Code205-2

State Error Training Training Training Training Verification Verification Verification Verification
Range Dist. Max Median IQR Max % Max Median IQR Max %
4to6 All 3212 3144 61 37.3 3301 3070 68 38.3

1 1611 1576 41 56.1 1624 1566 30 56.6
2 1053 993 41 36.7 1088 980.5 25 37.9
3 584 558 28 20.3 589 528 19 20.5

4to8 All 3949 3898 74 45.9 3942 3824 59 45.8
1 1869 1825 40 65.1 1881 1818 48 65.5
2 1396 1344.5 39 48.6 1415 1326.5 49 49.3
3 779 716.5 35 27.1 712 682.5 34 24.8

6to12 All 5081 4975.5 196 59 5064 4887 232 58.8
1 2319 2246 77 80.8 2307 2237.5 75 80.4
2 1818 1742.5 66 63.3 1806 1725.5 74 62.9
3 1049 957 86 36.6 1005 928.5 71 35

6to18 All 5528 5321 167 64.2 5477 5220.5 118 63.6
1 2429 2367 58 84.6 2435 2348 76 84.8
2 1978 1881.5 66 68.9 1946 1838 53 67.8
3 1171 1083.5 76 40.8 1123 1024.5 56 39.1

8to14 All 5316 5080 219 61.7 5228 4959 279 60.7
1 2400 2307 67 83.6 2377 2288.5 88 82.8
2 1877 1785 90 65.4 1850 1757 94 64.5
3 1110 995.5 77 38.7 1067 956 122 37.2

8to18 All 5486 5226.5 212 63.7 5376 5137 148 62.4
1 2446 2327 65 85.2 2409 2315 60 83.9
2 1965 1840.5 79 68.5 1924 1805.5 58 67
3 1156 1025.5 86 40.3 1090 988.5 76 38

10to16 All 5474 5223.5 232 63.6 5416 5109 286 62.9
1 2423 2329 103 84.4 2408 2307 104 83.9
2 1951 1842.5 94 68 1883 1824 119 65.6
3 1130 1041.5 64 39.4 1146 1001 92 39.9

14to18 All 5526 5273.5 159 64.2 5419 5152.5 200 62.9
1 2435 2359.5 62 84.8 2434 2343.5 64 84.8
2 1928 1865 79 67.2 1943 1828 68 67.7
3 1225 1069.5 52 42.7 1137 1004 72 39.6

Table B.65: Code205-2, Direct Classification Fitness Result For Experiment 1

State Error Training Training Training Training Verification Verification Verification Verification
Range Dist. Max Median IQR Max % Max Median IQR Max %
4to6 All 5707 5427 225 66.3 5705 5391.5 264 66.3

1 2232 2148 63 77.8 2255 2164 78 78.6
2 1985 1900 74 69.2 1994 1890.5 83 69.5
3 1516 1370.5 90 52.8 1474 1352 83 51.4

4to8 All 5927 5595.5 322 68.8 5870 5582 279 68.2
1 2295 2224 70 80 2319 2248 83 80.8
2 2062 1952 120 71.8 2074 1946 113 72.3
3 1582 1410.5 152 55.1 1512 1390.5 128 52.7

6to12 All 6610 6265.5 242 76.8 6590 6244.5 307 76.5
1 2516 2402 61 87.7 2512 2404.5 87 87.5
2 2300 2174.5 93 80.1 2276 2164.5 83 79.3
3 1814 1689 101 63.2 1802 1657 133 62.8

6to18 All 6874 6489.5 292 79.8 6848 6399 295 79.5
1 2615 2495.5 68 91.1 2617 2495 85 91.2
2 2404 2250 105 83.8 2397 2204 102 83.5
3 1908 1733.5 114 66.5 1853 1705.5 122 64.6

8to14 All 6993 6447.5 296 81.2 6899 6436 334 80.1
1 2630 2478 93 91.6 2610 2470 72 90.9
2 2404 2239 93 83.8 2398 2217.5 104 83.6
3 1959 1732 138 68.3 1891 1723 133 65.9

8to18 All 6866 6459 399 79.7 6901 6397.5 330 80.2
1 2592 2477 82 90.3 2597 2479.5 87 90.5
2 2393 2232 89 83.4 2374 2228 117 82.7
3 1906 1725 115 66.4 1930 1691.5 110 67.2

10to16 All 6846 6406.5 314 79.5 6794 6362 322 78.9
1 2575 2479 94 89.7 2583 2467 81 90
2 2355 2233 94 82.1 2352 2198 111 82
3 1942 1694 114 67.7 1908 1684.5 122 66.5

14to18 All 6775 6469 294 78.7 6689 6404 315 77.7
1 2563 2491.5 83 89.3 2580 2482 60 89.9
2 2344 2243.5 78 81.7 2329 2234.5 97 81.1
3 1880 1739.5 136 65.5 1817 1686 159 63.3

Table B.66: Code205-2, Fuzzy Classification Fitness Result For Experiment 1
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Figure B.33: code205-2, violin plots representing the distribution of correctly decoded
error patterns for different ranges of states for the 30 runs for experiment 1
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State Error Training Training Training Training Verification Verification Verification Verification
Range Dist. Max Median IQR Max % Max Median IQR Max %
4to6 All 3212 3147.5 69 37.3 3301 3106 97 38.3

1 1611 1584.5 35 56.1 1644 1593 44 57.3
2 1053 1005 55 36.7 1088 990 54 37.9
3 602 558 40 21 589 526 28 20.5

4to8 All 3976 3934 60 46.2 3957 3858.5 53 46
1 1879 1834 65 65.5 1881 1826.5 28 65.5
2 1406 1363 40 49 1415 1348 46 49.3
3 771 721 35 26.9 718 686 26 25

6to12 All 5055 4947.5 171 58.7 5066 4872.5 209 58.8
1 2307 2237.5 82 80.4 2309 2237.5 61 80.5
2 1809 1740 70 63 1803 1710 74 62.8
3 1037 942 58 36.1 980 916 67 34.1

6to18 All 5606 5155 266 65.1 5487 5093 237 63.7
1 2484 2341.5 98 86.6 2462 2325 73 85.8
2 1981 1818 111 69 1967 1787.5 100 68.5
3 1158 1001.5 99 40.3 1091 971 91 38

8to14 All 5326 5166.5 263 61.9 5308 5080.5 286 61.6
1 2399 2309 85 83.6 2403 2302 86 83.7
2 1912 1830 113 66.6 1896 1804 113 66.1
3 1125 1012 95 39.2 1071 972.5 107 37.3

8to18 All 5719 5163 292 66.4 5519 5073.5 280 64.1
1 2489 2325 100 86.7 2458 2316 107 85.6
2 2023 1819.5 104 70.5 1972 1781 78 68.7
3 1207 1014 75 42.1 1105 975 111 38.5

10to16 All 5388 5028.5 275 62.6 5331 4945 317 61.9
1 2413 2280 127 84.1 2401 2249 146 83.7
2 1904 1770 84 66.3 1916 1749 93 66.8
3 1112 974 77 38.7 1060 945 109 36.9

14to18 All 5589 5285.5 172 64.9 5482 5178 171 63.7
1 2438 2368 44 84.9 2429 2346 59 84.6
2 1966 1861.5 66 68.5 1964 1826.5 53 68.4
3 1201 1066 75 41.8 1134 1022 63 39.5

Table B.67: Code205-2, Direct Classification Fitness Result For Experiment 2

State Error Training Training Training Training Verification Verification Verification Verification
Range Dist. Max Median IQR Max % Max Median IQR Max %
4to6 All 5654 5464 225 65.7 5654 5447 264 65.7

1 2232 2188 56 77.8 2245 2170 85 78.2
2 1985 1935 77 69.2 1985 1918 92 69.2
3 1476 1374 94 51.4 1429 1359 107 49.8

4to8 All 5910 5547 277 68.6 5901 5523 350 68.5
1 2298 2221.5 93 80.1 2325 2225 91 81
2 2072 1945 99 72.2 2092 1935 119 72.9
3 1569 1396.5 134 54.7 1524 1379 126 53.1

6to12 All 6690 6256.5 250 77.7 6628 6207.5 233 77
1 2522 2415 60 87.9 2517 2419 68 87.7
2 2314 2182.5 118 80.6 2300 2165 116 80.1
3 1854 1665 101 64.6 1811 1620.5 83 63.1

6to18 All 6790 6504.5 315 78.9 6761 6443.5 342 78.5
1 2598 2487 79 90.5 2575 2486 79 89.7
2 2353 2248 108 82 2351 2249.5 120 81.9
3 1908 1742.5 133 66.5 1887 1721 142 65.7

8to14 All 6880 6421.5 246 79.9 6840 6358.5 252 79.4
1 2592 2471.5 63 90.3 2605 2469 82 90.8
2 2391 2229 89 83.3 2359 2219 90 82.2
3 1918 1719 124 66.8 1897 1695 133 66.1

8to18 All 6877 6415.5 336 79.9 6795 6360 303 78.9
1 2604 2461 114 90.7 2598 2472 85 90.5
2 2390 2235.5 110 83.3 2371 2220.5 119 82.6
3 1920 1716 145 66.9 1860 1681 161 64.8

10to16 All 6797 6336.5 446 78.9 6777 6297.5 427 78.7
1 2557 2441.5 124 89.1 2577 2443 115 89.8
2 2355 2197 147 82.1 2340 2215 127 81.5
3 1885 1701.5 156 65.7 1860 1655 130 64.8

14to18 All 6900 6453 170 80.1 6867 6379.5 168 79.8
1 2589 2480 55 90.2 2573 2482.5 59 89.7
2 2380 2244.5 56 82.9 2378 2223.5 77 82.9
3 1931 1743.5 71 67.3 1921 1691 61 66.9

Table B.68: Code205-2, Fuzzy Classification Fitness Result For Experiment 2
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Figure B.34: code205-2, violin plots representing the distribution of correctly decoded
error patterns for different ranges of states for the 30 runs for experiment 2
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State Error Training Training Training Training Verification Verification Verification Verification
Range Dist. Max Median IQR Max % Max Median IQR Max %
4to6 All 3212 3194.5 82 37.3 3301 3130 51 38.3

1 1611 1594.5 31 56.1 1624 1593.5 30 56.6
2 1053 1041 25 36.7 1088 990 59 37.9
3 584 558 45 20.3 589 543 34 20.5

4to8 All 3955 3888.5 55 45.9 3925 3848 88 45.6
1 1868 1826 33 65.1 1863 1816 27 64.9
2 1398 1344 38 48.7 1396 1325 38 48.6
3 755 724.5 27 26.3 747 688 31 26

6to12 All 5037 4848 280 58.5 4995 4799.5 334 58
1 2278 2206.5 125 79.4 2292 2202.5 109 79.9
2 1810 1703 117 63.1 1766 1688 130 61.5
3 1005 917 61 35 959 896 97 33.4

6to18 All 5490 5079 493 63.8 5392 5063 451 62.6
1 2460 2297 132 85.7 2415 2283 148 84.1
2 1935 1792 192 67.4 1910 1801 168 66.6
3 1144 996 171 39.9 1092 961 140 38

8to14 All 5327 5111 310 61.9 5310 4989 276 61.7
1 2375 2296 99 82.8 2374 2281 119 82.7
2 1906 1798 104 66.4 1885 1753 106 65.7
3 1125 979.5 114 39.2 1075 938 74 37.5

8to18 All 5566 5229 256 64.6 5417 5178 240 62.9
1 2497 2345 90 87 2462 2328.5 78 85.8
2 1939 1856.5 85 67.6 1937 1832 98 67.5
3 1173 1037 97 40.9 1133 1007 100 39.5

10to16 All 5539 5223.5 188 64.3 5462 5124 214 63.4
1 2453 2329.5 55 85.5 2419 2310 77 84.3
2 1935 1832.5 86 67.4 1945 1804 73 67.8
3 1233 1044 76 43 1159 1002 102 40.4

14to18 All 5534 5300.5 146 64.3 5521 5215.5 138 64.1
1 2445 2363.5 55 85.2 2443 2351 56 85.1
2 1972 1876 59 68.7 1945 1836.5 59 67.8
3 1150 1060 68 40.1 1133 1017 88 39.5

Table B.69: Code205-2, Direct Classification Fitness Result For Experiment 3

State Error Training Training Training Training Verification Verification Verification Verification
Range Dist. Max Median IQR Max % Max Median IQR Max %
4to6 All 5654 5544 130 65.7 5654 5593 164 65.7

1 2232 2195 82 77.8 2245 2207 50 78.2
2 1985 1935 3 69.2 1985 1971 63 69.2
3 1476 1413 96 51.4 1428 1410.5 63 49.8

4to8 All 5794 5473 248 67.3 5869 5462 328 68.2
1 2281 2201 59 79.5 2306 2204 71 80.3
2 2048 1898.5 88 71.4 2042 1899 102 71.1
3 1500 1368 103 52.3 1526 1342.5 98 53.2

6to12 All 6608 6204 368 76.7 6517 6168 407 75.7
1 2520 2404.5 78 87.8 2521 2408 76 87.8
2 2307 2163.5 110 80.4 2258 2139 153 78.7
3 1806 1655 145 62.9 1764 1647.5 179 61.5

6to18 All 6755 6384 259 78.5 6676 6381.5 251 77.5
1 2647 2463.5 82 92.2 2604 2461.5 89 90.7
2 2346 2218 103 81.7 2338 2227 94 81.5
3 1848 1717 89 64.4 1841 1690 94 64.1

8to14 All 6968 6360 275 80.9 6928 6335.5 244 80.5
1 2600 2447.5 71 90.6 2600 2449 57 90.6
2 2410 2217.5 103 84 2406 2204.5 110 83.8
3 1958 1704 101 68.2 1922 1684.5 108 67

8to18 All 7093 6404.5 255 82.4 7076 6359.5 235 82.2
1 2651 2459 89 92.4 2661 2454 80 92.7
2 2461 2213.5 92 85.7 2421 2210.5 77 84.4
3 1981 1709 127 69 1994 1705 99 69.5

10to16 All 7016 6359 288 81.5 6948 6321 288 80.7
1 2632 2462.5 62 91.7 2625 2454 95 91.5
2 2432 2211.5 106 84.7 2426 2191 81 84.5
3 1952 1699 115 68 1897 1678 93 66.1

14to18 All 6873 6626 349 79.8 6854 6579.5 372 79.6
1 2609 2522 91 90.9 2600 2518.5 80 90.6
2 2390 2282.5 132 83.3 2386 2280 135 83.1
3 1947 1805 138 67.8 1911 1771.5 134 66.6

Table B.70: Code205-2, Fuzzy Classification Fitness Result For Experiment 3
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Figure B.35: code205-2, violin plots representing the distribution of correctly decoded
error patterns for different ranges of states for the 30 runs for experiment 3
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State Error Training Training Training Training Verification Verification Verification Verification
Range Dist. Max Median IQR Max % Max Median IQR Max %
4to6 All 3212 3157 77 37.3 3301 3126.5 135 38.3

1 1611 1581.5 34 56.1 1644 1598.5 30 57.3
2 1053 1021 48 36.7 1088 990 113 37.9
3 602 558 32 21 589 533.5 33 20.5

4to8 All 3974 3922 45 46.2 3957 3830.5 74 46
1 1868 1837.5 39 65.1 1882 1837 64 65.6
2 1406 1362 45 49 1415 1340.5 38 49.3
3 771 719.5 32 26.9 732 661 30 25.5

6to12 All 5081 4918.5 157 59 5010 4822 125 58.2
1 2331 2246.5 75 81.2 2367 2219.5 68 82.5
2 1795 1732 56 62.5 1760 1701 53 61.3
3 1005 935 71 35 1001 897 43 34.9

6to18 All 5593 5185.5 499 65 5522 5143.5 549 64.1
1 2477 2316 175 86.3 2476 2315 155 86.3
2 1968 1833 208 68.6 1967 1801.5 161 68.5
3 1148 1027 159 40 1114 1009.5 142 38.8

8to14 All 5280 5078.5 198 61.3 5242 5033 245 60.9
1 2395 2290 89 83.4 2400 2303 71 83.6
2 1880 1802 63 65.5 1860 1784 109 64.8
3 1093 993.5 83 38.1 1045 974 86 36.4

8to18 All 5557 5267.5 303 64.5 5422 5186.5 242 63
1 2517 2336.5 88 87.7 2473 2346 76 86.2
2 1969 1853.5 75 68.6 1898 1819.5 94 66.1
3 1163 1047.5 100 40.5 1107 992 82 38.6

10to16 All 5482 5163 483 63.7 5360 5077.5 456 62.3
1 2436 2320 191 84.9 2427 2307 166 84.6
2 1944 1810.5 168 67.7 1903 1786.5 152 66.3
3 1161 1028 134 40.5 1102 978.5 122 38.4

14to18 All 5502 5266.5 167 63.9 5438 5206 135 63.2
1 2440 2345.5 76 85 2440 2344.5 85 85
2 1956 1857 59 68.2 1928 1827.5 45 67.2
3 1128 1049 57 39.3 1112 1014 58 38.7

Table B.71: Code205-2, Direct Classification Fitness Result For Experiment 4

State Error Training Training Training Training Verification Verification Verification Verification
Range Dist. Max Median IQR Max % Max Median IQR Max %
4to6 All 5654 5476 120 65.7 5654 5522.5 207 65.7

1 2232 2193 46 77.8 2245 2188 59 78.2
2 1985 1935 42 69.2 1985 1940.5 57 69.2
3 1476 1381 82 51.4 1429 1381.5 98 49.8

4to8 All 6139 5613 372 71.3 6076 5586 366 70.6
1 2328 2226 85 81.1 2366 2219.5 116 82.4
2 2154 1944 123 75.1 2123 1951 109 74
3 1657 1419 175 57.7 1587 1378.5 122 55.3

6to12 All 6895 6355 244 80.1 6933 6311 228 80.5
1 2575 2443 85 89.7 2593 2434 76 90.3
2 2415 2204.5 93 84.1 2402 2189.5 97 83.7
3 1905 1701 99 66.4 1938 1669 108 67.5

6to18 All 6900 6445 293 80.1 6880 6435 256 79.9
1 2579 2475.5 92 89.9 2600 2477 81 90.6
2 2417 2247.5 105 84.2 2351 2227.5 101 81.9
3 1939 1737.5 126 67.6 1929 1726 112 67.2

8to14 All 6733 6400.5 282 78.2 6749 6370 300 78.4
1 2559 2454 63 89.2 2586 2457 67 90.1
2 2347 2225.5 77 81.8 2336 2212 92 81.4
3 1827 1711.5 147 63.7 1827 1678 127 63.7

8to18 All 6819 6477 231 79.2 6786 6425.5 287 78.8
1 2634 2486 83 91.8 2629 2494.5 69 91.6
2 2396 2255.5 105 83.5 2363 2227 117 82.3
3 1885 1734 112 65.7 1871 1697 149 65.2

10to16 All 6842 6400 289 79.5 6793 6328.5 360 78.9
1 2586 2462 118 90.1 2579 2452.5 98 89.9
2 2349 2210.5 148 81.8 2329 2189 109 81.1
3 1922 1727.5 70 67 1885 1690 137 65.7

14to18 All 6952 6538.5 194 80.7 6918 6455 170 80.3
1 2623 2486 66 91.4 2613 2485.5 72 91
2 2408 2261 90 83.9 2399 2235.5 70 83.6
3 1925 1751.5 96 67.1 1928 1739.5 99 67.2

Table B.72: Code205-2, Fuzzy Classification Fitness Result For Experiment 4
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Figure B.36: code205-2, violin plots representing the distribution of correctly decoded
error patterns for different ranges of states for the 30 runs for experiment 4
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B.2 Difference between Total and Visited number of states

B.2.1 Codes of Length 10
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Code17-1

Figure B.37: The final SEMs machine size (total states) against the number of visited states
across all experiments for code17-1
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State Final Machine E1 E1 E1 E1 E2 E2 E2 E2
Range State Size Mean Max Median IQR Mean Max Median IQR
4to6 Total 6 6 6 0 6 6 6 0
4to6 Visited 6 6 6 0 6 6 6 0
4to8 Total 8 8 8 0 8 8 8 0
4to8 Visited 8 8 8 0 8 8 8 0
6to12 Total 10.8 12 12 3 9.7 12 9.5 3
6to12 Visited 10.7 12 11.5 3 9.7 12 9.5 3
6to18 Total 13.2 18 13 8 11.6 18 10 4
6to18 Visited 12.7 18 13 7 11.4 18 10 4
8to14 Total 11.3 14 11.5 5 10.7 14 11 3
8to14 Visited 11 14 10.5 4 10.5 14 11 3
8to18 Total 12.6 18 12 8 12.3 18 12 5
8to18 Visited 12 18 12 6 12.1 18 12 4
10to16 Total 12.8 16 12.5 4 12.3 16 11 5
10to16 Visited 12.5 16 12 4 12.1 16 11 4
14to18 Total 15.9 18 16 4 15.1 18 14 2
14to18 Visited 15.5 18 15.5 3 14.9 18 14 1

Table B.73: Code17-1, Difference Between Total and Visited Number of States For Exper-
iment 1(E1) and For Experiment 2(E2)

State Final Machine E3 E3 E3 E3 E4 E4 E4 E4
Range State Size Mean Max Median IQR Mean Max Median IQR
4to6 Total 6 6 6 0 6 6 6 0
4to6 Visited 6 6 6 0 6 6 6 0
4to8 Total 7.8 8 8 0 7.6 8 8 1
4to8 Visited 7.8 8 8 0 7.6 8 8 1
6to12 Total 9.9 12 9 4 9.9 12 10 3
6to12 Visited 9.8 12 9 4 9.9 12 10 3
6to18 Total 11.6 18 11 5 10.3 16 10 4
6to18 Visited 11.4 17 11 5 10.2 16 10 4
8to14 Total 10.5 14 10 3 10.6 14 10 3
8to14 Visited 10.4 14 10 3 10.5 14 10 3
8to18 Total 12.4 18 12.5 4 11.8 18 11 6
8to18 Visited 12.3 18 12.5 4 11.6 18 11 6
10to16 Total 12 16 12 4 11.5 15 11 2
10to16 Visited 11.9 16 12 3 11.4 15 11 2
14to18 Total 14.9 18 14 2 15.3 18 14 3
14to18 Visited 14.8 18 14 2 15.1 18 14 3

Table B.74: Code17-1, Difference Between Total and Visited Number of States of Final
Machine For Experiment 3(E3) and For Experiment 4(E4)
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Code17-2

Figure B.38: The final SEMs machine size (total states) against the number of visited states
across all experiments for code17-2
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State Final Machine E1 E1 E1 E1 E2 E2 E2 E2
Range State Size Mean Max Median IQR Mean Max Median IQR
4to6 Total 6 6 6 0 6 6 6 0
4to6 Visited 6 6 6 0 6 6 6 0
4to8 Total 8 8 8 0 8 8 8 0
4to8 Visited 8 8 8 0 8 8 8 0
6to12 Total 10.8 12 12 3 9.7 12 9.5 3
6to12 Visited 10.7 12 11.5 3 9.7 12 9.5 3
6to18 Total 13.2 18 13 8 11.6 18 10 4
6to18 Visited 12.7 18 13 7 11.4 18 10 4
8to14 Total 11.3 14 11.5 5 10.7 14 11 3
8to14 Visited 11 14 10.5 4 10.5 14 11 3
8to18 Total 12.6 18 12 8 12.3 18 12 5
8to18 Visited 12 18 12 6 12.1 18 12 4
10to16 Total 12.8 16 12.5 4 12.3 16 11 5
10to16 Visited 12.5 16 12 4 12.1 16 11 4
14to18 Total 15.9 18 16 4 15.1 18 14 2
14to18 Visited 15.5 18 15.5 3 14.9 18 14 1

Table B.75: Code17-2, Difference Between Total and Visited Number of States of Final
Machine For Experiment 1(E1) and For Experiment 2(E2)

State Final Machine E3 E3 E3 E3 E4 E4 E4 E4
Range State Size Mean Max Median IQR Mean Max Median IQR
4to6 Total 6 6 6 0 6 6 6 0
4to6 Visited 6 6 6 0 6 6 6 0
4to8 Total 7.7 8 8 1 7.8 8 8 0
4to8 Visited 7.7 8 8 1 7.8 8 8 0
6to12 Total 9.8 12 10 3 9.2 12 9 2
6to12 Visited 9.8 12 10 2 9.2 12 9 2
6to18 Total 10.6 18 10 3 11.1 18 10 5
6to18 Visited 10.5 16 10 3 10.9 15 10 5
8to14 Total 10.5 14 10 4 10.1 14 10 2
8to14 Visited 10.5 14 10 4 10.1 14 10 2
8to18 Total 11.8 18 11 5 11.9 18 11 4
8to18 Visited 11.5 18 11 5 11.7 18 11 4
10to16 Total 11.3 15 11 2 12.6 16 12.5 5
10to16 Visited 11.3 15 11 2 12.4 16 12 4
14to18 Total 15.5 18 15 3 15.3 18 15 3
14to18 Visited 15.4 18 15 3 15.1 18 15 2

Table B.76: Code17-2, Difference Between Total and Visited Number of States of Final
Machine For Experiment 3(E3) and For Experiment 4(E4)
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Code18

Figure B.39: The final SEMs machine size (total states) against the number of visited states
across all experiments for code18
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State Final Machine E1 E1 E1 E1 E2 E2 E2 E2
Range State Size Mean Max Median IQR Mean Max Median IQR
4to6 Total 6 6 6 0 6 6 6 0
4to6 Visited 6 6 6 0 6 6 6 0
4to8 Total 7.9 8 8 0 8 8 8 0
4to8 Visited 7.9 8 8 0 8 8 8 0
6to12 Total 10.6 12 11 3 10.2 12 10 3
6to12 Visited 10.6 12 11 3 10.2 12 10 3
6to18 Total 13.4 18 13 8 12.5 18 11 5
6to18 Visited 12.7 18 13 5 12.2 17 11 5
8to14 Total 11.1 14 11 4 11.6 14 12 4
8to14 Visited 10.8 14 11 4 11.6 14 12 4
8to18 Total 13.3 18 13.5 7 12.4 18 12.5 4
8to18 Visited 13.1 18 13 6 12.2 18 12 4
10to16 Total 12.1 16 10.5 5 12.1 16 11.5 4
10to16 Visited 11.9 16 10.5 5 11.9 16 11 3
14to18 Total 15.5 18 14 4 15.2 18 14 2
14to18 Visited 15.2 18 14 3 15.1 18 14 2

Table B.77: Code18, Difference Between Total and Visited Number of States of Final
Machine For Experiment 1(E1) and For Experiment 2(E2)

State Final Machine E3 E3 E3 E3 E4 E4 E4 E4
Range State Size Mean Max Median IQR Mean Max Median IQR
4to6 Total 6 6 6 0 6 6 6 0
4to6 Visited 6 6 6 0 6 6 6 0
4to8 Total 7.8 8 8 0 7.8 8 8 0
4to8 Visited 7.8 8 8 0 7.8 8 8 0
6to12 Total 9.1 12 9 2 9.6 12 10 3
6to12 Visited 9.1 12 9 2 9.5 12 9.5 3
6to18 Total 11.8 18 12 5 10.9 18 10.5 4
6to18 Visited 11.7 18 12 5 10.8 18 10.5 4
8to14 Total 10.1 14 10 4 11 14 11 4
8to14 Visited 10.1 14 10 3 11 14 11 4
8to18 Total 12.3 18 11 5 11.9 18 11.5 5
8to18 Visited 12 18 11 5 11.9 18 11.5 5
10to16 Total 11.9 16 11 3 11.8 16 11 3
10to16 Visited 11.8 16 11 3 11.8 16 11 3
14to18 Total 15 17 15 2 15.5 18 15 3
14to18 Visited 15 17 15 2 15.1 18 14 3

Table B.78: Code18, Difference Between Total and Visited Number of States of Final
Machine For Experiment 3(E3) and For Experiment 4(E4)
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B.2.2 Codes of Length 12
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Code55

Figure B.40: The final SEMs machine size (total states) against the number of visited states
across all experiments for Code55
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State Final Machine E1 E1 E1 E1 E2 E2 E2 E2
Range State Size Mean Max Median IQR Mean Max Median IQR
4to6 Total 6 6 6 0 6 6 6 0
4to6 Visited 6 6 6 0 6 6 6 0
4to8 Total 8 8 8 0 8 8 8 0
4to8 Visited 8 8 8 0 8 8 8 0
6to12 Total 11.4 12 12 1 11.1 12 11.5 2
6to12 Visited 11.4 12 12 1 11.1 12 11.5 2
6to18 Total 14.2 18 15 6 12.6 18 12.5 3
6to18 Visited 13.2 17 13 4 12.1 16 12 2
8to14 Total 12.8 14 13 2 11.6 14 11.5 2
8to14 Visited 12.7 14 12.5 2 11.5 14 11.5 2
8to18 Total 13.3 18 13 5 13.1 18 13 4
8to18 Visited 12.7 17 12 3 12.7 18 13 3
10to16 Total 13 16 13 4 12.4 16 12 2
10to16 Visited 12.8 16 13 4 12.3 16 12 2
14to18 Total 15.5 18 14.5 3 15 18 14 3
14to18 Visited 14.8 18 14 2 14.4 17 14 1

Table B.79: Code55, Difference Between Total and Visited Number of States of Final
Machine For Experiment 1(E1) and For Experiment 2(E2)

State Final Machine E3 E3 E3 E3 E4 E4 E4 E4
Range State Size Mean Max Median IQR Mean Max Median IQR
4to6 Total 6 6 6 0 6 6 6 0
4to6 Visited 6 6 6 0 6 6 6 0
4to8 Total 8 8 8 0 8 8 8 0
4to8 Visited 8 8 8 0 8 8 8 0
6to12 Total 10.5 12 10.5 1 10.6 12 11 1
6to12 Visited 10.5 12 10.5 1 10.6 12 11 1
6to18 Total 12.1 16 12.5 4 12.6 18 12 3
6to18 Visited 12.1 16 12 4 12.4 17 12 2
8to14 Total 11.6 14 11.5 3 11.4 14 11 3
8to14 Visited 11.5 14 11 2 11.4 14 11 3
8to18 Total 13.2 18 13 2 13.8 18 13 6
8to18 Visited 13 18 13 2 13.5 18 13 4
10to16 Total 12.2 16 11 4 12.4 16 12.5 3
10to16 Visited 12 16 11 4 12.3 16 12.5 3
14to18 Total 14.8 18 14 1 15.2 18 14 2
14to18 Visited 14.3 17 14 1 14.6 18 14 1

Table B.80: Code55, Difference Between Total and Visited Number of States of Final
Machine For Experiment 3(E3) and For Experiment 4(E4)
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Code60-1

Figure B.41: The final SEMs machine size (total states) against the number of visited states
across all experiments for Code60-1
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State Final Machine E1 E1 E1 E1 E2 E2 E2 E2
Range State Size Mean Max Median IQR Mean Max Median IQR
4to6 Total 6 6 6 0 6 6 6 0
4to6 Visited 6 6 6 0 6 6 6 0
4to8 Total 8 8 8 0 8 8 8 0
4to8 Visited 8 8 8 0 8 8 8 0
6to12 Total 11.4 12 12 1 11.1 12 12 2
6to12 Visited 11.3 12 12 1 11.1 12 12 2
6to18 Total 14.2 18 14 5 13.8 18 13 6
6to18 Visited 13.3 17 13 2 12.9 18 13 3
8to14 Total 12.2 14 12 3 12.1 14 12 3
8to14 Visited 12 14 12 2 12 14 12 2
8to18 Total 13.8 18 14 3 13.9 18 13.5 5
8to18 Visited 12.8 15 13 2 13 16 13 2
10to16 Total 12.8 16 12.5 4 12.1 16 11.5 2
10to16 Visited 12.5 16 12 3 11.9 15 11.5 2
14to18 Total 15.8 18 16 4 14.6 18 14 0
14to18 Visited 14.6 18 14 1 14 17 14 0

Table B.81: Code60-1, Difference Between Total and Visited Number of States of Final
Machine For Experiment 1(E1) and For Experiment 2(E2)

State Final Machine E3 E3 E3 E3 E4 E4 E4 E4
Range State Size Mean Max Median IQR Mean Max Median IQR
4to6 Total 6 6 6 0 6 6 6 0
4to6 Visited 6 6 6 0 6 6 6 0
4to8 Total 8 8 8 0 8 8 8 0
4to8 Visited 8 8 8 0 8 8 8 0
6to12 Total 10.8 12 11 2 10.5 12 11 1
6to12 Visited 10.7 12 11 2 10.5 12 11 1
6to18 Total 12.7 18 12 3 12.4 18 12 3
6to18 Visited 12.5 16 12 3 12.3 16 12 3
8to14 Total 10.9 14 11 3 11.6 14 11.5 3
8to14 Visited 10.9 14 11 3 11.5 14 11.5 3
8to18 Total 11.6 18 11 3 12.8 18 12 5
8to18 Visited 11.4 14 11 3 12.4 17 12 4
10to16 Total 12.7 16 12 3 12.5 16 12 3
10to16 Visited 12.5 16 12 3 12.3 16 12 3
14to18 Total 15.4 18 15 3 14.6 18 14 1
14to18 Visited 14.8 18 14 2 14.2 18 14 0

Table B.82: Code60-1, Difference Between Total and Visited Number of States of Final
Machine For Experiment 3(E3) and For Experiment 4(E4)
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Code60-2

Figure B.42: The final SEMs machine size (total states) against the number of visited states
across all experiments for Code60-2
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State Final Machine E1 E1 E1 E1 E2 E2 E2 E2
Range State Size Mean Max Median IQR Mean Max Median IQR
4to6 Total 6 6 6 0 6 6 6 0
4to6 Visited 6 6 6 0 6 6 6 0
4to8 Total 8 8 8 0 8 8 8 0
4to8 Visited 8 8 8 0 8 8 8 0
6to12 Total 11.6 12 12 1 11.3 12 12 2
6to12 Visited 11.6 12 12 1 11.3 12 12 2
6to18 Total 14.8 18 15 4 13.7 18 14 5
6to18 Visited 14.1 18 14 3 13.4 18 14 4
8to14 Total 12.6 14 13 3 12 14 12 3
8to14 Visited 12.5 14 13 3 11.9 14 12 4
8to18 Total 14.4 18 14.5 5 13.4 18 13 5
8to18 Visited 13.3 17 13 3 13.1 18 13 4
10to16 Total 12.3 16 12 3 12.2 16 12 4
10to16 Visited 12.1 16 12 2 12.1 16 12 3
14to18 Total 15.2 18 14 3 15.2 18 14 3
14to18 Visited 14.7 17 14 2 14.8 18 14 2

Table B.83: Code60-2, Difference Between Total and Visited Number of States of Final
Machine For Experiment 1(E1) and For Experiment 2(E2)

State Final Machine E3 E3 E3 E3 E4 E4 E4 E4
Range State Size Mean Max Median IQR Mean Max Median IQR
4to6 Total 6 6 6 0 6 6 6 0
4to6 Visited 6 6 6 0 6 6 6 0
4to8 Total 8 8 8 0 8 8 8 0
4to8 Visited 8 8 8 0 8 8 8 0
6to12 Total 10.9 12 11 2 10.7 12 11 2
6to12 Visited 10.9 12 11 2 10.7 12 11 2
6to18 Total 12.3 18 11 3 13.3 18 13 3
6to18 Visited 12.1 18 11 3 13.2 17 13 3
8to14 Total 11.8 14 11.5 4 11.4 14 11 3
8to14 Visited 11.7 14 11.5 3 11.4 14 11 3
8to18 Total 12.8 18 12 4 12.8 18 12 4
8to18 Visited 12.7 18 12 3 12.7 16 12 4
10to16 Total 12.8 16 12.5 3 12.9 16 12 3
10to16 Visited 12.6 16 12.5 3 12.7 16 12 2
14to18 Total 15.1 18 14.5 2 14.9 18 14 2
14to18 Visited 14.7 18 14 1 14.7 17 14 2

Table B.84: Code60-2, Difference Between Total and Visited Number of States of Final
Machine For Experiment 3(E3) and For Experiment 4(E4)
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B.2.3 Codes of Length 14



APPENDIX B. RESULTS 184

Code201

Figure B.43: The final SEMs machine size (total states) against the number of visited states
across all experiments for Code201
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State Final Machine E1 E1 E1 E1 E2 E2 E2 E2
Range State Size Mean Max Median IQR Mean Max Median IQR
4to6 Total 6 6 6 0 6 6 6 0
4to6 Visited 6 6 6 0 6 6 6 0
4to8 Total 8 8 8 0 8 8 8 0
4to8 Visited 8 8 8 0 8 8 8 0
6to12 Total 11.8 12 12 0 11.6 12 12 0
6to12 Visited 11.8 12 12 0 11.6 12 12 0
6to18 Total 15 18 15 4 14.4 18 14 4
6to18 Visited 14 17 14 2 13.8 17 14 3
8to14 Total 13.1 14 14 2 12.9 14 13 2
8to14 Visited 13.1 14 14 2 12.9 14 13 2
8to18 Total 15.5 18 16 3 14.6 18 15 5
8to18 Visited 14.5 17 15 3 14.1 17 15 3
10to16 Total 14 16 14 2 14.1 16 14.5 3
10to16 Visited 13.7 16 14 2 13.9 16 14 2
14to18 Total 15.4 18 14.5 3 15.1 18 14.5 2
14to18 Visited 14.6 17 14 1 14.5 16 14 1

Table B.85: Code201, Difference Between Total and Visited Number of States of Final
Machine For Experiment 1(E1) and For Experiment 2(E2)

State Final Machine E3 E3 E3 E3 E4 E4 E4 E4
Range State Size Mean Max Median IQR Mean Max Median IQR
4to6 Total 6 6 6 0 6 6 6 0
4to6 Visited 6 6 6 0 6 6 6 0
4to8 Total 8 8 8 0 8.9 16 8 0
4to8 Visited 8 8 8 0 8.9 16 8 0
6to12 Total 11.3 12 12 1 11.3 12 12 1
6to12 Visited 11.3 12 12 1 11.3 12 12 1
6to18 Total 14.5 18 14 3 14.6 18 15 3
6to18 Visited 14.1 17 14 2 14.2 18 15 3
8to14 Total 12.6 14 13 2 12.4 14 12.5 3
8to14 Visited 12.6 14 13 2 12.4 14 12.5 3
8to18 Total 14.4 18 14 1 13.6 18 13.5 3
8to18 Visited 13.9 16 14 2 13.4 17 13.5 3
10to16 Total 13.5 16 14 3 13.4 16 13 3
10to16 Visited 13.3 16 13.5 2 13.3 16 13 3
14to18 Total 14.9 17 14 1 15.3 18 15 3
14to18 Visited 14.6 17 14 1 14.9 17 14 2

Table B.86: Code201, Difference Between Total and Visited Number of States of Final
Machine For Experiment 3(E3) and For Experiment 4(E4)
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Code205-1

Figure B.44: The final SEMs machine size (total states) against the number of visited states
across all experiments for Code205-1
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State Final Machine E1 E1 E1 E1 E2 E2 E2 E2
Range State Size Mean Max Median IQR Mean Max Median IQR
4to6 Total 6 6 6 0 6 6 6 0
4to6 Visited 6 6 6 0 6 6 6 0
4to8 Total 8 8 8 0 8 8 8 0
4to8 Visited 8 8 8 0 8 8 8 0
6to12 Total 11.9 12 12 0 11.7 12 12 0
6to12 Visited 11.9 12 12 0 11.7 12 12 0
6to18 Total 15.2 18 15 5 14.4 18 14 2
6to18 Visited 14.5 18 14.5 3 14 17 14 2
8to14 Total 13.3 14 14 1 12.7 14 13 2
8to14 Visited 13.3 14 14 1 12.7 14 13 2
8to18 Total 15.2 18 15 3 14.9 18 14 4
8to18 Visited 14.4 18 15 2 14.4 18 14 3
10to16 Total 14 16 14 2 13.6 16 13.5 4
10to16 Visited 13.8 16 14 2 13.4 16 13 3
14to18 Total 15.6 18 16 3 15.5 18 14.5 4
14to18 Visited 14.8 17 14 2 15 18 14 2

Table B.87: Code205-1, Difference Between Total and Visited Number of States of Final
Machine For Experiment 1(E1) and For Experiment 2(E2)

State Final Machine E3 E3 E3 E3 E4 E4 E4 E4
Range State Size Mean Max Median IQR Mean Max Median IQR
4to6 Total 6 6 6 0 6 6 6 0
4to6 Visited 6 6 6 0 6 6 6 0
4to8 Total 8 8 8 0 8 8 8 0
4to8 Visited 8 8 8 0 8 8 8 0
6to12 Total 11.4 12 12 1 11.4 12 11 1
6to12 Visited 11.4 12 12 1 11.4 12 11 1
6to18 Total 15.2 18 15 2 14.4 18 14 3
6to18 Visited 14.7 18 14 2 14.1 18 14 2
8to14 Total 12.4 14 12.5 2 12.7 14 13 2
8to14 Visited 12.4 14 12.5 2 12.7 14 13 2
8to18 Total 14.5 18 14.5 3 13.9 18 13 4
8to18 Visited 14.2 17 14 2 13.6 17 13 3
10to16 Total 13.7 16 14 3 13.1 16 13 2
10to16 Visited 13.6 16 14 3 12.9 15 13 2
14to18 Total 14.9 17 15 2 15.3 18 14.5 3
14to18 Visited 14.7 17 14 1 14.7 17 14 1

Table B.88: Code205-1, Difference Between Total and Visited Number of States of Final
Machine For Experiment 3(E3) and For Experiment 4(E4)
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Code205-2

Figure B.45: The final SEMs machine size (total states) against the number of visited states
across all experiments for Code205-2
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State Final Machine E1 E1 E1 E1 E2 E2 E2 E2
Range State Size Mean Max Median IQR Mean Max Median IQR
4to6 Total 6 6 6 0 6 6 6 0
4to6 Visited 6 6 6 0 6 6 6 0
4to8 Total 8 8 8 0 8 8 8 0
4to8 Visited 8 8 8 0 8 8 8 0
6to12 Total 11.7 12 12 0 11.7 12 12 0
6to12 Visited 11.7 12 12 0 11.7 12 12 0
6to18 Total 16.3 18 17 3 14.2 18 14 4
6to18 Visited 15 17 15 2 13.8 18 14 3
8to14 Total 13.2 14 13.5 2 13.2 14 14 2
8to14 Visited 13.1 14 13 2 13.2 14 14 2
8to18 Total 14.8 18 14.5 4 14.6 18 14.5 3
8to18 Visited 14.1 17 14 2 14 18 14 3
10to16 Total 13.9 16 14 3 12.8 16 12 2
10to16 Visited 13.7 16 14 2 12.7 15 12 2
14to18 Total 15.5 18 15 3 15.2 18 15 3
14to18 Visited 14.9 17 14.5 2 14.9 17 14.5 1

Table B.89: Code205-2, Difference Between Total and Visited Number of States of Final
Machine For Experiment 1(E1) and For Experiment 2(E2)

State Final Machine E3 E3 E3 E3 E4 E4 E4 E4
Range State Size Mean Max Median IQR Mean Max Median IQR
4to6 Total 6 6 6 0 6 6 6 0
4to6 Visited 6 6 6 0 6 6 6 0
4to8 Total 8 8 8 0 8 8 8 0
4to8 Visited 8 8 8 0 8 8 8 0
6to12 Total 11.4 12 11.5 1 11.6 12 12 1
6to12 Visited 11.4 12 11.5 1 11.6 12 12 1
6to18 Total 13.6 18 13 5 13.8 18 13.5 3
6to18 Visited 13.3 17 13 4 13.5 17 13.5 3
8to14 Total 12.5 14 13 3 12.8 14 13 2
8to14 Visited 12.5 14 13 3 12.8 14 13 2
8to18 Total 14.7 18 14.5 3 14.6 18 14.5 3
8to18 Visited 14.5 17 14.5 3 14.4 18 14.5 2
10to16 Total 14.1 16 14 1 13.4 16 13 2
10to16 Visited 14 16 14 2 13.4 16 13 2
14to18 Total 15.2 18 15 2 14.7 17 14 1
14to18 Visited 15 17 15 2 14.5 16 14 1

Table B.90: Code205-2, Difference Between Total and Visited Number of States of Final
Machine For Experiment 3(E3) and For Experiment 4(E4)


