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Abstract. We study the existence of solutions of differential inclusions

with upper semicontinuous right-hand side. The presented approach is based

on the directionally continuous selections techniques developed by Bressan

and on Srivatsa’s Baire class 1 selectors for upper semicontinuous set-valued

maps. We propose a concept for invariant ε-approximation of an upper semi-

continuous set-valued map on the elements of a relatively open partitioning.

We prove a result of Olech type where the assumptions on the set of lower

semicontinuity is Gδ in contrast to the usual openness assumption. The

proof is based on a generalization of invariant ε-approximations.
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1. Introduction. We study the existence of solutions of the differential
inclusion

(1.1) ẋ ∈ F (x), x(0) = x0.

We assume that F : Rn ⇒ Rn is an upper semicontinuous bounded set-
valued map with nonempty compact values.

A longstanding open problem is the existence of solution of differential
inclusions with upper semicontinuous right-hand side with non-convex values. As
is seen from the well known Filippov’s examples, such a solution need not always
exist.

The question whether solutions exist for continuous F with non-convex
values was solved by Filippov in 1971 (cf. [13] and [14]). This was generalized to
the case of lower semicontinuous right-hand side, by Bressan (1980) by means of
the selection approach (cf. [4]), and by Lojasiewicz (1980) by means of Filippov’s
method (cf. [19]).

Bressan, Cellina and Colombo studied in 1989 the existence of solutions
to differential inclusions with upper semicontinuous cyclically monotone right-
hand sides (cf. [8]). These set-valued maps are exactly the upper semicontinous
(u.s.c.) ones, the graph of which is contained in the subdifferential of a proper
convex function. An extension of [8] is obtained by H. Benabdellah in [2] under
the assumption that F (x) is contained in the subdifferential of a locally Lipschitz
and regular function. The last result along these lines, known to the authors, is
obtained in 2005 by Bounkhel and Haddad (cf. [3]). A direct corollary of their
result is that the differential inclusion ẋ ∈ F (x) has a solution if the right-hand
side is an u.s.c. map with compact values, the graph of which is contained in the
graph of the proximal subdifferential of an uniformly regular l.s.c. function.

Another result (cf. [24]), obtained by Veliov in 1997, already proved to
be very useful in studying invariance, stability and attainability properties of a
given compact set with respect to a differential inclusion. It yields the existence
of solutions of differential inclusions with right-hand side of the form

F (x) =
{
η ∈ G(x) : D−ψ(x; η) ≤ φ(x)

}
,

where G is an u.s.c. map with compact convex values, ψ is a locally Lipschitz
function, φ is an u.s.c. real-valued function, and D− denotes the lower Dini
derivative.

In 2005 we (together with Ts. Tsachev) studied the existence of ε-solutions
of differential inclusions with upper semicontinuous right-hand side in [17], i.e. we
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investigated the existence of an absolutely continuous function x : [0, T ] → Rn

such that
∣∣∣∣∣
ẋ(t) ∈ F (x(t)) + εB̄ a.e. on [0, T ]

x(0) = x0.

A new concept “colliding on a set” was defined. In the case when the
admissible velocities do not “collide” on the set of discontinuities of the right-
hand side, we expect that at least one trajectory emanates from every point.
If the velocities do “collide” on the set of discontinuities of the right-hand side,
the existence of solutions is not guaranteed. Let us state the definition for “not
colliding on a set”: Let D be an intersection of an open and a closed subset of Rn

and let F : D ⇒ Rn be an upper semicontinuous set-valued map with nonempty
compact values which are uniformly bounded.

Definition 1.1. Let us fix an arbitrary ε > 0. It is said that F does
not ε-collide from D to the point x̂ of D iff there exist a subset A of D and a
multivalued map G : A⇒ Rn such that:

(i) the set A is an intersection of an open set and a closed set, and x̂ ∈ A ∩
cl(int A) (here int A denotes the interior of A relatively in D);

(ii) G is upper semicontinuous convex valued map with G(x) ⊂ F (x) + εB for
each x ∈ A;

(iii) for each point x ∈ ∂A ∩A (here ∂A denotes the boundary of A relatively in
D) and for each ζ ∈ N̂A(x) there exists v ∈ G(x) with

(1.2) 〈ζ, v〉 ≤ 0

(here N̂A(x) denotes the proximal normal cone to A at the point x).

The meaning of Definition 1.1 is that the differential inclusion ẋ ∈ G(x)
with x(0) = x0 has a solution on a small time interval whenever x0 ∈ A and
D is open in Rn, i.e. the set A is weakly invariant (viable) with respect to the
convex-valued ε-approximation G of F .

It is straightforward to verify that all lower semicontinuous set-valued
maps as well as all upper semicontinuous convex-valued maps do not collide at
any point.

Whenever the admissible velocities do “collide” on some set S, in order to
have a solution of ẋ ∈ F (x) which does not leave S, one has to assume that there



426 M. I. Krastanov, N. K. Ribarska

exist tangent velocities to S. More precisely, for the right-hand sides under con-
sideration, we assume the following Basic assumption: whenever the velocities
“collide” on a set S there exist tangent velocities (belonging to the Clarke tangent
cone to S) on a dense subset of S. Then we were able to prove existence of an
ε-solution for every ε > 0.

The idea of the corresponding proof is to construct a “suitable” relatively
open partitioning of D.

Definition 1.2. Let X be a topological space and

U = {Uα : 1 ≤ α < α0}

be a well ordered family of its subsets. It is said that U is a relatively open
partitioning of X iff

(i) Uα is contained in X \



⋃

β<α

Uβ


 and it is relatively open in it for every α;

(ii) X =
⋃

1≤α<α0

Uα.

Note that each element of a relatively open partitioning is an intersection
of an open set and a closed set.

The origin of the techniques from [17] is the directionally continuous se-
lections approach developed by Bressan and Srivatsa’s Baire class 1 selectors for
upper semicontinuous set-valued maps (cf. [21]). The present note is devoted to
further development of these ideas. In Section 2 we propose a concept for invari-
ant ε-approximation of an upper semicontinuous mapping on the elements of a
relatively open partitioning. This definition is motivated by the main result of Ve-
liov in [23]. From our point of view the properties collected in Proposition 2.1 are
important for understanding of the approach proposed here and allow us to prove
a better version of Theorem 5.1 in [17]. In Section 3 we generalize the structure
developed in Section 2 in order to cope with the case when the local finiteness
of the partitioning is not possible to achieve. Theorem 3.4 proved there reveals
where the difficulties in the general problem appear. This theorem suggests a
scheme which could be implemented in different particular cases (of course, if one
can handle the “bad points” of the right-hand side) to ensure existence of solution
of differential inclusions. Section 4 serves as an example of applying this general
scheme. The obtained result is closely related to the results of Olech [1975] (cf.
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[18]), Lojasiewicz [1985] (cf. [20]), T. Haddad, A. Jourani and L.Thibault (cf.
[15]) and T. Haddad and L.Thibault (cf. [16]) (the last three papers are based
on the Filippov’s approach), but the assumptions on the set of lower semiconti-
nuity is Gδ in contrast to the usual openness assumption. Let us point out that
it is well known that every upper semicontinuous mapping with values in Rn is
lower semicontinuous on a dense Gδ subset of its domain. This suggests that the
idea of the proof of the main result from section 4 could be used in more general
situations.

2. Viability – locally finite case. We start this section with the
standard

Definition 2.1. Let D be an intersection of an open subset and a closed
subset of Rn and let x : [0, T ) → Rn be an absolutely continuous function. It is
said that the set D is invariant with respect to the curve x(·) if for each t ∈ [0, T )
with x(t) ∈ D there exists δ > 0 such that x(τ) ∈ D for each τ ∈ [t, t+ δ).

We are going to construct “suitable” partitionings of the domain D of F ,
where “suitable” means that the elements of the partitioning should be weakly
invariant with respect to F + εB. In fact, usually they are going to be weakly
invariant with respect to F + ηB for each 0 < η < ε.

Definition 2.2. Let the set D be an intersection of an open subset and a
closed subset of Rn and F : D̄ =⇒ Rn be a multi-valued mapping with nonempty
values. Let ε > 0, U = {Uα : 1 ≤ α < α0} be a relatively open partitioning of D
and

G := {GU : U ∈ U}

be a family of multi-valued maps. We say that the pair (U ,G) is an invariant
ε-approximation of F iff

(i) GUα : Ūα → Rn is upper semicontinuous multi-valued mapping with non-
empty convex compact values for each α ∈ [1, α0);

(ii) for each x ∈ Ūα and for each α ∈ [1, α0) the intersection GUα(x) ∩ TDα(x)

(where Dα = D̄ \ (
⋃

β<α

Uβ)) is nonempty and

GUα(x) ∩ TDα(x) ⊂ F (x) + εB̄.

(here TDα(x) denotes the the Bouligand tangent cone to A at the point x).
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Note that if we denote by Uα0 the set D̄ \ D, the family U ∪ {Uα0} is a
relatively open partitioning of the closure D̄ of the set D. Moreover, the condition
(ii) guarantees that Uα is weakly invariant with respect toGUα for each α ∈ [1, α0).

Proposition 2.3. Let D be an intersection of a closed set S and an open
set U of Rn, F : D =⇒ Rn be uniformly bounded and (U ,G) be an invariant
ε-approximation of F . Then

(i) for each point x0 ∈ D there exists an ε-solution ϕ(·) of ẋ ∈ F (x) starting
from x0 and defined on the interval [0, T ) (T = +∞ or ϕ(t) tends to a point
in Rn \ U whenever t→ T ) such that each element of the partitioning U is
invariant with respect to ϕ;

(ii) for each absolutely continuous function ϕ : [0, T ) → D with respect to which
the elements of U are invariant, the function

t→ α(t), where ϕ(t) ∈ Uα(t)

is monotone increasing;

(iii) if U is locally finite, ϕk : [0, T ] → D, k = 1, 2, . . . is a sequence of ε-
solutions of ẋ ∈ F (x) with respect to which the elements of U are invariant
and ϕ : [0, T ] → D is its uniform limit, then ϕ is an ε-solution of ẋ ∈ F (x).

P r o o f. (i) For every point x ∈ D there exists a unique index αx such
that x ∈ Uαx . According to Definition ??, (ii) and applying Theorem 3.2.4 from
[1] (cf., also, [23]) to GUαx , we obtain the existence of tx > 0 and an absolutely
continuous function ϕx,τ : [τ, τ + tx) → Uαx which is well defined on [τ, τ + tx)
(here τ is an arbitrary positive real) and is a solution of the following differential
inclusion

∣∣∣∣∣
ẋ(t) ∈ GUαx

(x(t)), a.e. on [τ, τ + tx)

x(τ) = x.

In fact, as ϕx,τ (t) ∈ Uαx for each t ∈ [τ, τ+tx) and Dαx = D\



⋃

β<αx

Uβ


,

we have that

ϕ̇x,τ (t) ∈ GUαx
(ϕx,τ (t)) ∩ TDαx

(ϕx,τ (t)) ⊂ F (ϕx,τ (t)) + εB̄ a.e. on [τ, τ + tx).
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In particular, for the point x0 there exists an absolutely continuous func-
tion ϕx0,0 : [0, tx0) → Uαx0

. We define inductively an absolutely continuous
function ϕ : [0,∞) → D as follows: We set ϕ(t) := ϕx0,0(t) for each t ∈ [0, tx0).
Assume that ϕ is defined on some interval [0, t̂). Then for each increasing sequence
{tn}

∞
n=1 → t̂ we have

‖ϕ(tn) − ϕ(tn−1)‖ ≤

∫ tn

tn−1

‖ϕ̇(τ)‖ dτ ≤ c (tn − tn−1).

This means that the sequence {ϕ(tn)}∞n=1 is a Cauchy sequence. Hence, there
exist ϕ(t̂) := lim

t→t̂
ϕ(t). If ϕ(t̂) ∈ D, then we define an absolutely continuous

extension of the function ϕ by ϕϕ(t̂),t̂ on the interval
[
t̂, t̂+ tϕ(t̂)

)
. Let [0, T ) be

the maximal interval on which ϕ(·) can be defined in this way. If T 6= +∞, in a
similar way we obtain that the point ϕ(t) tends to the boundary of U as t tends
to T . This completes the proof.

(ii) Let U = {Uα : 1 ≤ α < α0} and let us define Wα :=
⋃

β<α

Uβ for each

α ∈ [0, α0). It is straightforward to check that W = {Wα : 1 ≤ α < α0} is an
increasing family of open subsets of D. Clearly, the function t→ α(t) is constant
on [0, tx0) for some tx0 > 0 (because of the weak invariance) and the assertion
holds true. Let us assume that the function t → α(t) is monotone increasing
on [0, t̂). Let 0 < t̂ < T . Then ϕ(t̂) ∈ Wα(t̂)+1. Since the set Wα(t̂)+1 is open

and ϕ(·) is continuous, there exists t′ ∈ [0, t̂) such that ϕ(t) ∈ Wα(t̂)+1 for each

t ∈ [t′, t̂]. Hence, α(t) ≤ α(t̂) for each t ∈ [t′, t̂ ]. The inductive assumption implies
that α(t) ≤ α(t′) ≤ α(t̂) for each t ∈ [0, t′). Thus α(t) ≤ α(t̂) for each t ∈ [0, t̂ ].
Because of the definition of weak invariance and the definition of ϕ(·), there exists
an interval [t̂, t̂+ δt̂), δt̂ > 0, such that α(t) = α(t̂) for each t ∈ [t̂, t̂+ δt̂). Hence,
our function α(·) remains monotone increasing on [0, t̂+ δt̂).

(iii) For almost all τ in [0, T ] (cf. Lemma 2 from [20]) the derivatives ϕ̇(τ)
and ϕ̇k(τ) exist and

ϕ̇(τ) ∈ co {ϕ̇k(τ) : k ≥ k0}

for any positive integer k0.

Let us fix τ̄ in [0, T ]. Then there exists a neighbourhood V of x(τ̄) that
intersects at most finitely many members of U . Because V is open and ‖F (·)‖
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is uniformly bounded, there exist a positive integer k0 and a positive real δ such
that ϕk(t) ∈ V for each t ∈ (τ̄ − δ, τ̄ + δ) ∩ [0, T ] and for each k ≥ k0.

Let α1 < α2 < · · · < αs be such that V ∩ Uα = ∅ whenever α 6= αs, s =

1, . . . , s̄. Then {ϕk(t) : t ∈ (τ̄ − δ, τ̄ + δ) ∩ [0, T ]} ⊂
s̄⋃

s=1

Uαs whenever k ≥ k0.

We set

∆k
s := {t : ϕk(t) ∈ Uαs} , s = 1, 2, . . . , s̄.

According to (ii) the sets ∆k
s , s = 1, 2, . . . , s̄, are intervals such that ts1 < ts2

whenever ts1 and ts2 are arbitrary points from ∆k
s1

and ∆k
s2

, respectively, with

s1 < s2. Of course, some of the sets ∆k
s can be empty.

Let us denote by tks , s = 1, 2, . . . , s̄, the points of transition of the trajec-
tory ϕk(·) from the set Uαs−1 to the set Uαs . We set tks+1 := min{τ̄ + δ, T}. If the

trajectory passes from Uαs to Uαl
with l ≥ s + 2, then we set tks = tks+1 = · · · =

tkl−1 = tkl . If the trajectory enters (leaves) V through Uαs for s > 1 (s ≤ s̄), we

set tk1 = tk2 = · · · = tks

(
tks+1 = tks+1 = · · · = tks+1

)
.

Without loss of generality, we may think that each sequence
{
tks

}∞

k=k0

is

convergent and tends to the number ts, s = 1, 2, . . . , s̄. The inequalities tks ≤ tks+1,
imply that ts ≤ ts+1, s = 1, 2, . . . , s̄.

Let τ ∈ ((τ̄ − δ, τ̄ + δ) ∩ [0, T ]) \ {ts : s = 1, 2, . . . , s̄} and let ϕ̇(τ) and
ϕ̇k(τ), k ≥ k0, exist and ϕ̇k(τ) ∈ GU

αk(τ)
(ϕk(τ)), where ϕk(τ) ∈ Uαk(τ). Note

that these conditions are satisfied for almost all τ ∈ (τ̄ − δ, τ̄ + δ) ∩ [0, T ]. Then
τ ∈ (ts−1, ts) for some s, and so τ ∈ (tks−1, t

k
s) for all sufficiently large k. Thus

the points ϕk(τ), k ≥ k1 ≥ k0, belong to one and the same element of the
partitioning U , say U := Uαs−1 , for all sufficiently large k ≥ k1 ≥ k0. Using the
upper semicontinuity of GU := GUαs−1

at the point ϕ(τ) ∈ Ū , we obtain that for

each η > 0 we have that GU (ϕk(τ)) ⊂ GU (ϕ(τ)) + ηB̄ for k ≥ kη ≥ k1. Thus

ϕ̇(τ) ∈ co {ϕ̇k(τ) : k ≥ kη} ⊂ co



⋃

k≥kη

GU
αk(τ)

(ϕk(τ))


 =

= co



⋃

k≥kη

GU (ϕk(τ))


 ⊂ co

(
GU (ϕ(τ)) + ηB̄

)
= GU (ϕ(τ)) + ηB̄.
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As η > 0 is arbitrary and GU (ϕ(τ)) is closed, we obtain that ϕ̇(τ) ∈
GU (ϕ(τ)).

According to Theorem 2.10 of [10] and Ū ⊂ Dαs−1 , we have that

ϕ̇(τ) ∈ TŪ (ϕ(τ)) ⊂ TDαs−1
(ϕ(τ))

and so

ϕ̇(τ) ∈ GU (ϕ(τ)) ∩ TDαs−1
(ϕ(τ)) ⊂ F (ϕ(τ)) + εB̄.

This completes the proof. �

Definition 2.4. Let U1 and U2 be two relatively open partitionings of D.
We say that U2 ≺ U1 (U2 is a refinement of U1) if

(i) for every element U2 ∈ U2 there exists an element U1 ∈ U1 with U2 ⊂ U1;

(ii) if U2 ∋ U2
βi

⊂ U1
αi

∈ U1, i = 1, 2, with α1 < α2, then β1 < β2;

Definition 2.5. Let the set D be an intersection of an open subset and
a closed subset of Rn and F : D̄ ⇒ Rn be a multi-valued mapping with nonempty
values. Let (U1,G1) be an invariant ε1-approximation of F and (U2,G2) be an
invariant ε2-approximation of F , where U1 and U2 are relatively open partitionings
of D. It is said that (U2,G2) is a refinement of (U1,G1) iff

(i) 0 < ε2 < ε1;

(ii) U2 ≺ U1;

(iii) if U2 ∋ U2
β ⊂ U1

α ∈ U1, then G2
β(x) ⊆ G1

α(x) for each x ∈ Ū2
β .

Using these concepts and imposing additional assumptions, we can pass
to the limit as ε→ 0 and obtain a solution of the considered differential inclusion.
Using Proposition 2.3, we can drop the assumption on monotonicity of the ap-
proximate solutions in Theorem 5.1 of [17] and reformulate the respective result
as follows:

Theorem 2.6. Let the set D be an intersection of an open subset and
a closed subset of Rn and F : D̄ ⇒ Rn be a uniformly bounded multi-valued
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mapping with nonempty closed values. We assume that there exist invariant
1

k
-

approximations (Uk,Gk) of F such that Uk is a locally finite relatively open parti-
tioning of D, and (Uk+1,Gk+1) is a refinement of (Uk,Gk), for each k = 1, 2, . . . .

Then for every x0 ∈ D there exist T > 0 and an absolutely continuous
function x : [0, T ] → D such that

∣∣∣∣∣
ẋ(t) ∈ F (x(t)) a.e. on [0, T ]

x(0) = x0.

P r o o f. Let us fix an arbitrary point x0 ∈ D and an arbitrary positive

integer k. According to Proposition 2.3, (i) and (ii), there exists some
1

k
-solution

xk(·) of F starting from x0 and defined on some interval [0, Tk) such that each
Uk

α is weak invariant with respect to Gk, and hence the function

t→ αk(t), where xk(t) ∈ U
k
αk(t)

is monotone increasing. Since D = G ∩ U , where U is an open subset and G is a
closed subset of Rn, and D is invariant with respect to xk,

Tk ≥ T :=
dist(x0, R

n \ U)

c+ 1
> 0,

where c is an upper bound for {‖F (x)‖ : x ∈ D}.
Without loss of generality we may think that the sequence {xk(·)}

∞
k=1 is

uniformly convergent on the interval [0, T ] to an absolutely continuous function
denoted by x(·).

Let us fix an arbitrary positive integer m. Because (Uk,Gk) is a refinement
of (Um,Gm) whenever k ≥ m, the elements of Um are invariant with respect to
the trajectories xk(·) for k ≥ m. According to Proposition 2.1 (iii), x(·) is a
1

m
-solution of ẋ ∈ F (x), i.e.

ẋ(τ) ∈ F (x(τ)) +
1

m
B̄ for almost all τ ∈ [0, T ].

Since ẋ(τ) does not depend on m, the set-valued map F is closed valued
and the union of countably many sets of measure zero is a set of measure zero,
we obtain that

ẋ(τ) ∈ F (x(τ)) for almost all τ.
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This completes the proof. �

The above Theorem is a natural extension of the approach proposed by
Bressan for studying the lower semi-continuous case as well as his “patchy vec-
tor fields approach”. The difference is that the elements of the relatively open
partitionings are weakly invariant in contrast to the strong invariance hypothesis
imposed by Bressan. Another difference is that we do not impose any smoothness
assumptions regarding the boundary of these elements and regarding the vector
fields.

3. Viability – the general case. A natural question is the following
one: Can we apply the above theorem whenever the Basic assumption is satisfied
and thus the existence of an ε-solution of F is guaranteed for each ε > 0? At
least, can we do it when F does not collide from D to any point?

A natural class to investigate when trying to answer this question is the
class of monotone usco operators. The reason is that they do not collide. It

is proved in [17] that for each positive integer k there exists an invariant
1

k
-

approximation (Uk,Gk) of F such that Uk is a finite family. Nevertheless, the
existence of solution problem for ẋ ∈ F (x) is open. Indeed, there exist monotone
operators which can not be expressed as a sum of a cyclically monotone map
and a continuous function (J. Borwein, private communication), thus the result
of Bounkhel and Haddad [3] is not applicable.

The answer of the above question is no. Let us consider the following
simple example:

F (x, y) :=





(
1 −

1

ln
√
x2 + y2

)
(x, y)√
x2 + y2

−

−
1

ln
√
x2 + y2

(−y, x)√
x2 + y2

if (x, y) 6= (0, 0)

{
(p, q) : p2 + q2 = 1

}
if (x, y) = (0, 0)

The set-valued map F : D ⇒ R2, where D :=
{
(p, q) : p2 + q2 < 1

}
, is

monotone and upper semicontinuous. Clearly, the differential inclusion (ẋ, ẏ) ∈
F (x, y) has a solution starting from each point of D including the origin. It is re-
markable that any solution starting from the origin revolves infinitely many times
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around it for arbitrary small time due to the fact that the integral

∫ ̺o

0

d̺

̺ ln ̺
is

divergent. This observation shows that any attempt to find locally finite parti-
tionings with weakly invariant (with respect to F + εB̄ for every ε > 0) elements
for every monotone usco operator is doomed. This example demonstrates that
the applicability of Theorem 2.6 is rather restricted. To obtain some extension of
Theorem 2.6 one should give up either the refinement condition or the local finite-
ness of the relatively open partitionings. The first one means that the pieces of the
partitionings possess a stronger invariance property. We opted for giving up the
second one. To do this we need to develop a more complicated set structure than
relatively open partitionings. It is based on countably many open partitionings
each of them refining the previous one.

Definition 3.1. Let the set D be an intersection of an open subset and
a closed subset of Rn and F : D̄ ⇒ Rn be a multi-valued mapping with nonempty
values. Let us fix ε > 0 and let U be a σ-relatively open partitioning of D (that

is U =
∞⋃

m=1

Um, where each Um is a relatively open partitioning of D) such that

Um+1 ≺ Um for every positive integer m.
We say that the pair (U ,G) is an invariant partial ε-approximation of F

if there exist a disjunct subfamily Green U of U and a family G := {GU : U ∈
Green U} such that

(i) whenever U ∈ (Green U) ∩ Um then U ∈ Uk for every positive integer
k ≥ m.

(ii) for every point x ∈ ∪ (Green U) there is a neighborhood of x intersecting
at most finitely many members of Green U ;

(iii) the set ∪ (Green U) is open in D;

(iv) (Green U ,G) is an invariant ε-approximation of F , i.e.

(iv.a) GU : Ū → Rn is upper semicontinuous multi-valued mapping with
nonempty convex compact values for each U ∈ Green U ;

(iv.b) whenever Um
α ∈ (Green U) ∩ Um then for each x ∈ Ūm

α and for
each α ∈ [1, αm

0 ) the intersection GUm
α

(x) ∩ TDm
α

(x) (where Dm
α =

D̄ \ (
⋃

β<α

Um
β )) is nonempty and

GUm
α

(x) ∩ TDm
α

(x) ⊂ F (x) + εB̄.
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Remark 3.2. There is a natural linear ordering ≺ in the family Green

U inherited from the ordering in Um, m = 1, 2, . . . . We have to point out that
already (Green U ,≺) is not well ordered.

Definition 3.3. Let the set D be an intersection of an open subset and
a closed subset of Rn and F : D̄ ⇒ Rn be a multi-valued mapping with nonempty
values. Let U i be a σ- relatively open partitioning of D and (U i,Gi) be an invariant
partial εi-approximation of F , i = 1, 2. It is said that (U2,G2) is a refinement of
(U1,G1) iff

(i) 0 < ε2 < ε1;

(ii) for every element U2 ∈ Green U2 there exists an element U1 ∈ Green U1

with U2 ⊂ U1;

(iii) if Green U2 ∋ U2
i ⊂ U1

i ∈ Green U1 , i = 1, 2, with U1
2 ≺ U1

1 , then
U2

2 ≺ U2
1 ;

(iv) if Green U2 ∋ U2 ⊂ U1 ∈ Green U1, then GU2(x) ⊆ GU1(x) for each
x ∈ Ū2.

Extended Euler curves. Let the set D be an intersection of an open
subset and a closed subset of Rn, x0 ∈ D and F : D̄ ⇒ Rn be a uniformly
bounded multi-valued mapping with nonempty values. Let Uk be a σ-relatively
open partitioning of D and (Uk,Gk) be an invariant partial εk -approximation of
F for every k = 1, 2, . . . ,m, such that (Uk+1,Gk+1) is a refinement of (Uk,Gk)
for each k = 1, 2, . . . ,m − 1. Let x0 belong to the set D. We call an absolutely
continuous function xm : [0, T ] → D (starting from x0) an εm-extended Euler
curve subordinated to (Uk,Gk), k = 1, 2, . . . ,m, if there exist countably many
knots xm(ti), i ∈ I (I well ordered) with ti < tj whenever i < j, such that ti+1 −

ti < εm and whenever xm(ti) ∈ U for some U ∈ Green Uk \

(
∪

l>k
Green U l

)

then xm(t) ∈ U for each t ∈ [ti, ti+1) and ẋm(t) ∈ GU (xm(t)) for almost every
t ∈ [ti, ti+1).

The below written argument convince us that for arbitrary x0 ∈ D and
arbitrary invariant partial εk-approximations (Uk,Gk) of F , k = 1, 2, . . . ,m, such
that (Uk+1,Gk+1) is a refinement of (Uk,Gk) for each k = 1, 2, . . . ,m − 1, there
exists an εm-extended Euler curve subordinated to (Uk,Gk), k = 1, 2, . . . ,m,
starting from x0 and defined on some interval [0, T ] with T > 0.

We set (U0,G0) to be U0 = {D}, Green U0 = {D} and G0 = {G}, where
G(x) = (c+1)B for each point x ∈ D and c is an upper bound of ‖F (x)‖, x ∈ D.
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For every point x ∈ D there exists unique maximal index kx ∈ {0, 1, . . . ,m} such
that x ∈ Green Ukx . Then there exists unique set Ux ∈ Green Ukx such that
x ∈ Ux. According to Definition 3.1 and the result of [23], there exist tx > 0 and
an absolutely continuous function ϕx,τ : [τ, τ + tx) → Ux which is well defined on
[τ, τ + tx) (here τ is an arbitrary positive real) and is a solution of the following
differential inclusion

∣∣∣∣∣∣∣∣

ẋ(t) ∈ Gkx

Ux
(x(t)) a.e. on [τ, τ + tx),

x(τ) = x,

x(t) ∈ Ux for each t ∈ [τ, τ + tx).

We define inductively an absolutely continuous function xm : [0, T ) → D

as follows: We set xm(t) := ϕx0,0(t) for each t ∈ [0,min{εm, tx0}). Let us have
defined xm on some interval [0, t̂). Then for each increasing sequence {tn}

∞
n=1 → t̂

we have

‖xm(tn) − xm(tn−1)‖ ≤

∫ tn

tn−1

‖ẋm(τ)‖ dτ ≤ c (tn − tn−1).

This means that the sequence {xm(tn)}∞n=1 is a Cauchy sequence. Hence, there
exist xm(t̂) := lim

t→t̂
xm(t). Then we define an absolutely continuous extension of

the function xm by ϕxm(t̂),t̂ on the interval
[
t̂, t̂+ min{εm, txm(t̂)}

)
. Let [0, Tm)

be the maximal interval on which xm can be defined in this way. Since D = G∩U ,
where U is an open subset and G is a closed subset of Rn, and D is invariant with
respect to xm,

(3.1) Tm ≥ T :=
dist(x0, R

n \ U)

c+ 1
> 0.

Note that each εm-extended Euler curve subordinated to (Uk,Gk), k =
1, 2, . . . ,m, is an εk-extended Euler curve subordinated to (U l,Gl), l = 1, 2, . . . , k,
for each k ≤ m.

Theorem 3.4. Let the set D be an intersection of an open subset and a
closed subset of Rn, x0 ∈ D and F : D̄ ⇒ Rn be a uniformly bounded multi-valued
mapping with nonempty closed values. Let εk −→ 0 be a sequence of positive
reals tending to zero, Uk be a σ-relatively open partitioning of D and (Uk,Gk)
be an invariant partial εk-approximation of F for every k = 1, 2, . . . such that
(Uk+1,Gk+1) is a refinement of (Uk,Gk) for each k = 1, 2, . . . . Then there exists
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an absolutely continuous function x : [0, T ] → D satisfying x(0) = x0 and such
that ẋ(t) ∈ F (x(t)) almost everywhere in the set

[0, T ]
⋂
(

∞⋂

m=1

{
τ : x(τ) ∈

(⋃
Green Um

)})
.

P r o o f. For each positive integer k we denote by xk(·) an εk -extended
Euler curve subordinated to (Us,Gs), s = 1, 2, . . . , k, starting from x0. Without
loss of generality we may think that the sequence {xk(·)}

∞
k=1 is uniformly con-

vergent on the interval [0, T ] to an absolutely continuous function denoted by
x(·).

Clearly, it is sufficient to prove that ẋ(τ) ∈ F (x(τ)) + εmB̄ for almost

every τ from the set
⋂{

t : x(t) ∈
⋃

Green Um
}

for each positive integer m.

Indeed, let us fix an arbitrary positive integer m and let

τ̄ ∈ [0, T ]
⋂{

t : x(t) ∈
⋃

Green Um
}
.

Then there exists a neighbourhood W of x(τ̄) that intersects at most finitely

many members of Um and W ⊂
⋃

Green Um (cf. (i) and (ii) of Definition 3.1).

Then we can find an open neighbourhood V of x(τ̄) and a positive real r such
that V̄ + rB ⊂ W . Because the set V is open and the map F is bounded, there
exist a positive integer k0 ≥ m and a positive real δ such that xk(t) ∈ V for each
t ∈ (τ̄ − δ, τ̄ + δ) ∩ [0, T ] and for each k ≥ k0. Moreover, we may think that k0 is
so large that c εk0 < r.

Since the nonempty elements of the family V
⋂

Um are finitely many,
this family is a relatively open partitioning of V ∩D. Let us denote its nonempty
elements by Vs, s = 1, 2, . . . , s(m). Then {xk(t) : t ∈ (τ̄ − δ, τ̄ + δ) ∩ [0, T ]} ⊂
s(m)⋃

s=1

Vs whenever k ≥ k0.

According to the definition of extended Euler curves, we denote by x̄k :=
xk(t̄k) the last knot of xk(·) which is before xk(τ̄ − δ) for each k ≥ k0. Then the
following inequality holds true

‖xk(τ̄ − δ) − x̄k‖ ≤ c(τ̄ − δ − t̄k) ≤ c εk ≤ c εk0 < r.

Therefore, x̄k ∈ V +rB ⊂W ⊂
⋃

Green Um. For each t ∈ (τ̄−δ, τ̄+δ)∩

[0, T ] there exists uniquely defined sk
t ∈ {1, 2, . . . , s(m)} with xk(t) ∈ Vsk

t
. Thus
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from x̄k ∈
⋃

Green Um and from xk(·) being an εm-extended curve (according

to the remark at the end of the definition of extended Euler curves) we obtain that
for each t ∈ (τ̄−δ, τ̄+δ)∩ [0, T ] there exists uniquely defined sk

t ∈ {1, 2, . . . , s(m)}
with xk(t) ∈ Vsk

t
and such that xk(·) is a solution of the following differential

inclusion
∣∣∣∣∣
ẋk(τ) ∈ Gm

V
sk
t

(xk(τ)) a.e. on [t, t+ δk
t ) for some δk

t > 0,

xk(τ) ∈ Vsk
t

for each τ ∈ [t, t+ δk
t ).

The above written relations imply that

ẋk(τ) ∈ G
m
V

sk
t

(xk(τ))∩T
D \

(
∪s<sk

t
Vs

)(xk(τ)) ⊂ F (xk(τ))+εmB̄ a.e. on [t, t+δk
t ).

Hence {xk(·)}k≥k0 is a sequence of εm-solutions of ẋ ∈ F (x) with respect
to which the elements of V ∩ Um are weakly invariant. As V ∩ Um is locally
finite, then Proposition 2.1 (iii) yields that x(·) is an εm-solution of ẋ ∈ F (x) on
(τ̄ − δ, τ̄ + δ) ∩ [0, T ], thus having the same conclusion almost everywhere in the

relatively open (hence measurable) subset [0, T ]
⋂{

t : x(t) ∈
⋃

Green Um
}

of [0, T ]. This completes the proof. �

4. An Olech type result. The following assertion is closely related to
the results of Olech [1975] (cf. [18]), Lojasiewicz [1985] (cf. [20]), T. Haddad, A.
Jourani and L. Thibault (cf. [15]) and T. Haddad and L. Thibault (cf. [16]). In
our assumptions the set of lower semicontinuity of one of the summands is Gδ in
contrast to the usual openness assumption. Our theorem is not a generalization
of some of the above mentioned results because we consider for simplicity the
autonomous case.

Theorem 4.1. Let F and G be bounded mappings defined on an intersec-
tion D of an open subset and a closed subset of Rn. We assume that there exist
a sequence of positive reals εk, k = 1, 2, . . . , tending to zero as k tends to infinity
and relatively open (in D) sets Dk such that F is εk-lower semicontinuous on Dk

(we assume that D1 = D). Let F be upper semicontinuous and convex valued on

the set D \
∞⋂

k=1

Dk and let G be upper semicontinuous and convex valued on D.

We assume that the following tangential assumption holds true:
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for each positive integer k, for each x ∈ Dk and for each
y ∈ F (x) there exists y′ ∈ F (x) ∩ B̄(y, εk) ∩ (TD(x) −G(x)).

Then the differential inclusion ẋ ∈ F (x)+G(x) has a local solution starting
at each point of the set D and remaining in D.

Remark 4.2. The tangential assumption from the above formulated
theorem reduces to the standard assumptions in the purely lower semicontinuous
case as well as in the purely upper semicontinuous convex valued case.

P r o o f. We follow the construction of Bressan (cf. Lemma 6.2 in [11], p.
67). First, we define the “ice-cream cone”

Kδ :=
{
(x, t) ∈ Rn+1 : ‖x‖ ≤ (c+ 1)t, t ∈ [0, δ)

}
,

where c is an upper bound of {‖y‖ : y ∈ F (x) +G(x), x ∈ D}.
Without loss of generality we may assume that Dk+1 ⊂ Dk and εk+1 ≤

1

2
εk for every k = 1, 2, . . . .

Let x0 be an arbitrary point in D. We choose T to be an element of the

interval

(
0,

dist(x0, R
n \ U)

c+ 1

)
(where D = K ∩ U , K closed and U open).

Let us fix an arbitrary positive integer k. Then the set Dk is open in
D and F is εk -l.s.c. at each point of Dk. The sets D̃ := D × [0, T ], D̃k :=
Dk × [0, T ] are intersections of a closed subset and an open subset of Rn+1. We
set z = (x, t) ∈ Rn+1, F̃ (z) := F (x) × {1}, G̃(z) := G(x) × {1} and consider the
differential inclusion ż ∈ F̃ (z) + G̃(z), z ∈ D̃.

Let us consider the compact set

Mk
s :=

{
x ∈ Dk : dist

(
x, D̄ \Dk

)
≥

1

s
, ‖x‖ ≤ s

}
× [0, T ]

for each positive integer s. The family {Mk
s : s = 1, 2, . . . } of compact sets is

increasing and its union is D̃k. For each z ∈ Mk
s we consider a neighborhood

W (z) of the form Mk
s ∩ (z̃+Kδ), where z̃ ∈ Dk × [τ̃ , T ] with τ̃ < 0, and z is in the

relative interior of W (z) with respect to Mk
s . Moreover, we choose W (z) to be so

small that F (x′)+εkB̄ ⊃ F (x) for each point z′ = (x′, t′) ∈ D̃k ∩ (z̃ +Kδ), where
z = (x, t) and B̄ is the unit ball of Rn. It is possible because F is εk-l.s.c. at each
point of Dk. Clearly the closed ball B̄(y, εk) centered at an arbitrary element y of
F (x) × {1} with radius εk has nonempty intersection with F̃ (z′) for every point

z′ ∈ D̃k ∩ (z̃ +Kδ).
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The compactness of Mk
s implies that there exist finitely many zi, i =

1, 2, . . . , m(k, s), with Mk
s =

m(k,s)⋃

i=1

W (zi). Let W (zi) = Mk
s ∩ (z̃i +Kδi

), where

z̃i = (x̃i, t̃i). We consider the reals {ti := t̃i + δi : i = 1, . . . ,m(k, s)}. Without
loss of generality we may assume that this finite sequence is non decreasing. We
set

V
k,s
1 := {z = (x, t) ∈ D̃k : t < t1} \




m(k,s)⋃

i=1

(z̃i +Kδi
)


 .

The set V k,s
1 is open in D̃k because the finitely many sets z̃i+Kδi

, i = 1, . . . ,m(k, s),
are closed in {z = (x, t) : t < t1}. Next, we define

(4.1) V
k,s
i+1 := {z = (x, t) ∈ D̃k : t < t1}

⋂

(z̃i +Kδi

) \




m(k,s)⋃

j=i+1

(z̃j +Kδj
)






for i = 1, . . . ,m(s, k). Each set V k,s
i is relatively open in D̃ \



⋃

j<i

V
k,s
j


. We

proceed in the same way in the next strips {z = (x, t) : t ∈ [tp, tp+1)}, p =
1, . . . ,m(k, s) − 1, by setting the first element in the strip to be

{z = (x, t) ∈ D̃k : t ∈ [tp, tp+1)} \




m(k,s)⋃

i=1

(z̃i +Kδi
)




and the next elements are constructed recursively as in (4.1) but replacing t < t1
by t ∈ [tp, tp+1). We put the last element of this relatively open partitioning Vk,s

to be the set D̃ \ D̃k.

Our goal is to construct for each positive integer k an invariant partial
3εk-approximation (Uk,Gk) of F̃ + G̃ such that ∪ (Green Uk) = D̃k.

We set U1,1 to be equal to V1,1 and (Green U1) ∩ U1,1 to be the family of
nonempty elements of V1,1 which are contained in some “ice-cream cone”. Let us
have constructed U1,s and (Green U1) ∩ U1,s for some positive integer s. We fix
an arbitrary element U ∈ U1,s. If U belongs to (Green U1) ∩ U1,s, we leave it as
it is. If U does not belong to (Green U1) ∩ U1,s, then V1,s+1 ∩ U is a relatively
open partitioning of U . Proceeding in this way with all elements of U1,s and using
the lexicographic order (cf. [22]) we obtain the relatively open partitioning U1,s+1
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of D̃. We set (Green U1) ∩ U1,s+1 to be the family of nonempty elements of
U1,s+1 which are contained in some “ice-cream cone”. In this way we obtain the

σ-relatively open partitioning U1 =
∞⋃

s=1

U1,s and its subfamily Green U1. Let V

be an arbitrary element of Green U1. Then it is contained in some “ice-cream
cone”, and therefore there is some element yV ∈ Rn such that the closed ball
B̄(yV , ε1) centered at yV with radius ε1 has nonempty intersection with F (x) for
every z = (x, t) in the closure of V . We define the value of G1

V at each point
z = (x, t) of V̄ to be (B̄(yV , 2ε1)+G(x))×{1}. Clearly, the map G1

V : V̄ → Rn+1

is upper semicontinuous with compact convex values. Also, yV ∈ F (x) + ε1B̄

and F (x) ⊂ TD(x) −G(x) + ε1B̄ imply that G1
V (z) ∩ T eD(z) 6= ∅ for each z ∈ V̄ .

Moreover, note that each ice-cream cone is strongly invariant with respect to the
trajectories of G1

V because of the choice of c and the fact that without loss of
generality we may think that 3ε1 < 1. Thus the set V is weakly invariant with
respect to G1

V . We have for every z = (x, t) ∈ V̄ that

G1
V (z) = (B̄(yV , 2ε1) +G(x)) × {1} = (yV + 2ε1B̄ +G(x)) × {1} ⊂

⊂ (F (x) + ε1B̄ + 2ε1B̄ +G(x)) × {1} = F̃ (z) + G̃(z) + 3ε1B̄
′,

where B̄′ is the closed unit ball of Rn+1.

We put G1 := {G1
V : V ∈ Green U1}. We have just checked that the so

obtained couple (U1,G1) is an invariant partial 3ε1-approximation of F̃ + G̃.
Let us assume that we have constructed the σ - relatively open partitioning

Uk :=

∞⋃

s=1

Uk,s, the family Green Uk and Gk := {Gk
U : U ∈ Green Uk} such

that (Uk,Gk) is an invariant partial 3εk-approximation of F̃ + G̃ for some positive
integer k. We set Uk+1,1 to be equal to Uk,1∩Vk+1,1 and (Green Uk+1) ∩ Uk+1,1

to be the family of nonempty elements of Green Uk∩Uk,1 which are contained in
some “ice-cream cone” coming from Vk+1,1. Let us have constructed Uk+1,s and
(Green Uk+1) ∩ Uk+1,s for some positive integer s. We fix an arbitrary element
U ∈ Uk+1,s. If U belongs to (Green Uk+1) ∩ Uk+1,s, we leave it as it is. If
U does not belong to (Green Uk+1) ∩ Uk+1,s, then Uk,s+1 ∩ Vk+1,s+1 ∩ U is a
relatively open partitioning of U . Proceeding in this way with all elements of
Uk+1,s and using the lexicographic order (cf. [22]) we obtain the relatively open
partitioning Uk+1,s+1 of D̃. We set (Green Uk+1) ∩ Uk+1,s+1 to be the family
of nonempty elements of Uk+1,s+1 which are contained in some “ice-cream cone”
coming from Vk+1,s+1. Since each element V of Green Uk+1 is contained in some
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“ice-cream cone” zV +KδV
with zV = (xV , tV ), and in some element U of (Green

Uk) ∩ Uk,s+1, we can find an element yV that belongs to F (xV ) ∩ B̄(yU , εk)
such that B̄(yV , εk+1) has nonempty intersection with F (x′) for every point z′ =
(x′, t′)) ∈ U . We define the value of Gk+1

V at each point of V̄ to be (B̄(yV , 2εk+1)+

G(x)) × {1}. Clearly, as in the case k = 0, the map Gk+1
V : V̄ → Rn+1 is upper

semicontinuous with compact convex values and Gk+1
V (z) ∩ T eD(z) 6= ∅ for each

z ∈ V̄ , so the set V is weakly invariant with respect to Gk+1
V . Also, for every

z = (x, t) ∈ V̄ we have Gk+1
V (z) ⊂ F̃ (z)+G̃(z)+3εk+1B̄

′. Therefore, (Uk+1,Gk+1)

is an invariant 3εk+1 approximation of F̃ + G̃. Moreover, for each point z′ ∈ V̄

we have

Gk+1
V (z′) := (B̄(yV , 2εk+1) +G(x′))×{1} ⊂ (B̄(yU , εk + 2εk+1) +G(x′))×{1} ⊂

⊂ (B̄(yU , 2εk) +G(x′)) × {1} = Gk
U (z′).

Therefore the so constructed (Uk+1,Gk+1) is a refinement of (Uk,Gk).

We show that for each positive integer k there exists an εk -extended Euler
curve zk(·) subordinated to (Us,Gs), s = 1, 2, . . . , k, starting from z0 = (x0, 0),
and such that

(4.2) żk(t) ∈ F̃ (B̄(zk(t), εk)) + G̃(B̄(zk(t), εk)) + 3εkB̄
′

almost everywhere on [0, T ]. Indeed, we have to specify the decision rule for the
inductive construction of an extended Euler curve starting from a knot zk(τ),
τ ∈ [0, T ) which does not belong to ∪Green Uk. Let zk(τ) belong to ∪Green

U l \ ∪s>l ( ∪Green Us) for some nonnegative integer l < k. Let zk(τ) ∈ U ∈
Green U l. Then Gl

U (z) has the appearance (B̄(yU , 2εl) + G(x)) × {1}, where
B̄(yU , εl) ∩ F (x) 6= ∅ for each z = (x, t) ∈ U . Let us denote by ȳx an arbitrary
point from B̄(yU , εl) ∩ F (x). According to the tangential assumption, we have
that there exists

yx ∈ F (x) ∩ B̄(ȳx, εl) ∩ (TD(x) −G(x)).

Since yx ∈ B̄(yU , 2εl) we obtain that

(4.3)

∅ 6=
(((

B̄(yU , 2εl) ∩ F (x)
)

+G(x)
)
∩ TD(x)

)
× {1} ⊂

⊂ Gl
U (z) ∩

(
F̃ (z) + G̃(z)

)
∩ T eD(z)
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Since zk(τ) does not belong to ∪Green Uk, F̃ (zk(τ)) is a convex subset
of Rn+1. The upper semicontinuity of F implies the existence of an open neigh-
bourhood V of zk(τ) such that V ⊂ B̄(zk(τ), εk) and F̃ (z) ⊂ F̃ (zk(τ)) + εkB̄

for each z ∈ V . So, co F̃ (z) ⊂ F̃ (zk(τ)) + εkB̄, and hence co
(
F̃ (z) + G̃(z)

)
⊂

F̃ (zk(τ)) + G̃(z) + εkB̄ for each z ∈ V .
We consider the differential inclusion

ż(t) ∈ Gl
U (z(t)) ∩ co

(
F̃ (z(t)) + G̃(z(t))

)

z(τ) = zk(τ).

There exists so small tzk(τ) > 0 that the solution of the above written differential
inclusion exists on [τ, τ+tzk(τ)) and remains in U∩V (because of (4.3)). Thus our
decision rule for extending zk(·) on [τ, τ + tzk(τ)) is to take an arbitrary solution
of the above written differential inclusion.

Without loss of generality we may think that the sequence {zk(·)}
∞
k=1 is

uniformly convergent on the interval [0, T ] to an absolutely continuous function
denoted by z(·).

Let us fix an arbitrary positive integer m and let

τ̄ ∈ [0, T ] \
{
t : z(t) ∈

⋃
Green Um

}
.

Then, for almost all such τ̄ we have

ż(τ̄) ∈ co {żk(τ) : k ≥ k0} .

As F̃ and G̃ are upper semicontinuous at z(τ̄ ) by assumption, there is a neighbor-
hood W of z(τ̄) such that F̃ (z) ⊂ F̃ (z(τ̄ )) + εmB̄

′ and G̃(z) ⊂ G̃(z(τ̄ )) + εmB̄
′

for every z ∈W . Let k0 be so big that zk(τ̄)+εkB̄
′ ⊂W whenever k ≥ k0. Thus,

using the convexity of F̃ (z(τ̄ )) + G̃(z(τ̄ )), k0 ≥ m and (4.2), we have

ż(τ̄) ∈ co {żk(τ̄) : k ≥ k0} ⊂

⊂ co



⋃

k≥k0

(
F̃ (B̄(zk(τ̄), εk)) + G̃(B̄(zk(τ̄ ), εk)) + 3εkB̄

′
)

 ⊂

⊂ co



⋃

k≥k0

(
F̃ (z(τ̄ )) + εmB̄

′ + G̃(z(τ̄ )) + εmB̄
′ + 3εkB̄

′
)

 ⊂
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⊂ F̃ (z(τ̄ )) + G̃(z(τ̄ )) + 5εmB̄
′.

This, combined with the conclusion of Theorem 3.4, completes the proof. �
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