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Abstract. We further investigate the uniform regularity property of collec-

tions of sets via primal and dual characterizing constants. These constants

play an important role in determining convergence rates of projection algo-

rithms for solving feasibility problems.

1. Introduction. Regularity properties of collections of sets play an
important role in several areas of variational analysis and optimization like co-
derivative-subdifferential calculus, constraint qualifications, stability of solutions,
and convergence of numerical algorithms.

Various regularity properties of collections of sets have proved to be useful:
(bounded) linear regularity [2, 3, 4, 5, 6, 8, 30, 35, 40, 41], metric inequality [15,
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16, 36], (strong) conical hull intersection property [2, 5, 6, 9, 10, 13, 30], Jameson’s
property (G) [5, 28]. We refer the readers to [2, 5, 23] for the relationships between
these properties and the overview of the areas of their applications in analysis and
optimization.

The uniform regularity property introduced recently in [22] and further
developed in [23, 24, 25] is stronger than local linear regularity even in the convex
case. It corresponds to the metric regularity property of set-valued mappings and
is closely related to the (extended) extremal principle. The most recent devel-
opment is the application of this property in convergence analysis of projection
algorithms by Lewis et al. [29], Attouch et al. [1], Luke [31, 32], and Hesse and
Luke [14].

Uniform regularity of a collection of sets in a normed linear space is charac-
terized quantitatively in [22, 23, 24, 25] by certain nonnegative constants defined
in terms of elements of the primal or dual spaces. In the setting of a finite dimen-
sional Euclidean space, Lewis et al. [29] introduced another nonnegative constant
characterizing the uniform regularity of a collection of two sets and used it when
formulating convergence rates of averaged and alternating projections.

In the current note, we consider a (not necessarily nonnegative) modifi-
cation of the constant from [29] in the setting of an arbitrary Hilbert space and
establish its relationship with the dual space constant from [22, 23, 24, 25]. The
latter constant admits a simplified equivalent representation in Hilbert spaces.
As an application, we employ these constants to establish convergence results of
projection algorithms.

The structure of the paper is as follows. In Section 2, we recall the uniform
regularity property of a finite collection of sets in a normed linear space, its main
characterizations and connections with some other properties. In Section 3, we
consider the case of a collection of two sets in a Hilbert space and establish the
relationship between the dual space constants from [22, 23, 24, 25] and [29]. The
final Section 4 is dedicated to the convergence estimates of projection algorithms.

Our basic notation is standard, cf. [33, 38]. For a normed linear space X,
its topological dual is denoted X∗ while 〈·, ·〉 denotes the bilinear form defining
the pairing between the two spaces. The closed unit ball and the unit sphere in a
normed space are denoted B and S, respectively. Bδ(x) stands for the closed ball
with radius δ and center x.

2. Uniform regularity of a collection of sets. In this section, we
recall the uniform regularity property of a finite collection Ω := {Ω1,Ω2, . . . ,Ωm}
(m > 1) of sets in a normed linear space X near a given point x̄ ∈ ∩m

i=1Ωi. The
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property was introduced in [22] (under a different name) and further developed
in [23, 24, 25].

Definition 1. Ω is uniformly regular at x̄ if there exist numbers δ, α > 0
such that

m⋂

i=1

(Ωi − ωi − ai)
⋂

(ρB) 6= ∅

for any ρ ∈ (0; δ], ωi ∈ Ωi ∩ Bδ(x̄) and ai ∈ (αρ)B, i = 1, 2, . . . ,m.

Uniform regularity of a collection of sets can be equivalently characterized
in terms of certain nonnegative constants:

θρ[Ω](x̄) := sup

{

r ≥ 0

∣∣∣∣∣

m⋂

i=1

(Ωi − ai)
⋂

Bρ(x̄) 6= ∅, max
1≤i≤m

‖ai‖ ≤ r

}

, ρ ∈ (0;∞],

θ̂[Ω](x̄) := lim inf
ρ↓0, ωi

Ωi
→x̄ (1≤i≤m)

θρ[Ω1 − ω1,Ω2 − ω2, . . . ,Ωm − ωm](0)

ρ
.

Here ωi
Ωi→ x̄ means that ωi → x̄ with ωi ∈ Ωi.
These constants characterize the mutual arrangement of sets Ωi

(1 ≤ i ≤ m) in the primal space and are convenient for defining their extremality,
stationarity and regularity properties.

The next proposition follows directly from the definitions.

Proposition 1. Ω is uniformly regular at x̄ if and only if θ̂[Ω](x̄) > 0.

When constant θ̂[Ω](x̄) is positive, it provides a quantitative characteri-
zation of the uniform regularity property. It coincides with the supremum of all
α in Definition 1.

The case θ̂[Ω](x̄) = 0, i.e., the absence of the uniform regularity, cor-
responds to approximate stationarity [20, 21, 22, 23, 24] of Ω at x̄, the latter
property being a relaxation of the extremality property introduced and investi-
gated in [27]. We refer the reader to [25, Section 3] for a modern summary of
extremality, stationarity, and regularity conditions for finite collections of sets.

Another nonnegative primal space constant (being a slight modification
of the corresponding one introduced in [22]) can be used for characterizing the
uniform regularity:

ϑ̂[Ω](x̄) := lim inf
x→x̄, xi→0 (1≤i≤m)

x/∈
mT

i=1

(Ωi−xi)

max
1≤i≤m

d(x + xi,Ωi)

d

(
x,

m⋂
i=1

(Ωi − xi)

) .
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The next proposition corresponds to [22, Theorem 1].

Proposition 2. θ̂[Ω](x̄) = ϑ̂[Ω](x̄).
As a consequence, Ω is uniformly regular at x̄ if and only if ϑ̂[Ω](x̄) > 0.

It was shown in [22, 23, 24] that the uniform regularity of a collection of
sets can be interpreted as the direct analogue of the fundamental in variational
analysis metric regularity property of set-valued mappings.

Regularity properties can also be characterized in terms of elements of the
dual space using appropriate concepts of normal elements. Given a subset Ω of
X, a point x̄ in Ω, and a number δ ≥ 0, the sets (cf. [20, 33])

NΩ(x̄) :=

{
x∗ ∈ X∗ | lim sup

x
Ω
→x̄

〈x∗, x − x̄〉
‖x − x̄‖ ≤ 0

}
,

N̂Ω(x̄, δ) :=
⋃

x∈Ω∩Bδ(x̄)

NΩ(x),

NΩ(x̄) := lim sup

x
Ω
→x̄

NΩ(x) =
⋂

δ>0

cl∗N̂Ω(x̄, δ)

denote the Fréchet normal cone, the strict δ-normal cone, and the limiting normal

cone to Ω at x̄, respectively. The denotation u
Ω→ x in the above formulas means

that u → x with u ∈ Ω while cl∗ denotes the sequential weak∗ closure in X∗.
In the Asplund space setting, the uniform regularity of a collection of sets

can be characterized using the next dual space constant:

(1) η̂[Ω](x̄) := lim
δ↓0

inf

{∥∥∥∥∥

m∑

i=1

x∗
i

∥∥∥∥∥ | x∗
i ∈ N̂Ωi

(x̄, δ),

m∑

i=1

‖x∗
i ‖ = 1

}

,

where it is assumed that the infimum over the empty set equals 1; this corresponds
to all cones N̂Ωi

(x̄, δ) (1 ≤ i ≤ m) being trivial for some δ > 0 (x̄ can be an interior
point of ∩m

i=1Ωi.)
The next theorem corresponds to [24, Theorem 4 (v)–(vi)].

Theorem 1.

(i) θ̂[Ω](x̄) ≤ η̂[Ω](x̄).

(ii) Suppose X is Asplund and the sets Ωi (1 ≤ i ≤ m) are closed. Then
θ̂[Ω](x̄) = η̂[Ω](x̄).
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As a consequence, Ω is uniformly regular at x̄ if and only if η̂[Ω](x̄) > 0,
i.e., there exist α > 0 and δ > 0 such that

(2)

∥∥∥∥∥

m∑

i=1

x∗
i

∥∥∥∥∥ ≥ α
m∑

i=1

‖x∗
i ‖

for all xi ∈ Ωi ∩ Bδ(x̄) and x∗
i ∈ NΩi

(xi) (1 ≤ i ≤ m).

The dual characterization of the uniform regularity in Theorem 1 (ii)
is sometimes referred to as (Fréchet) normal uniform regularity, cf. [24, 25].
Constant η̂[Ω](x̄) coincides with the supremum of all α in the definition of this
property.

Part (i) of Theorem 1 was proved in [21], while part (ii) was established
in [24]. A slightly weaker estimate can be found in [21, 23].

Remark 1. In finite dimensions, constant (1) coincides with the corre-
sponding one defined in terms of limiting normals:

η̄[Ω](x̄) := min

{∥∥∥∥∥

m∑

i=1

x∗
i

∥∥∥∥∥ | x∗
i ∈ NΩi

(x̄),

m∑

i=1

‖x∗
i ‖ = 1

}

(with the similar natural convention about the minimum over the empty set.) The
dual uniform regularity criterion in Theorem 1 (ii) takes the following “exact” (“at
the point”) form:

there exists α > 0 such that (2) holds true for all x∗
i ∈ NΩi

(x̄) (1 ≤ i ≤ m),

or equivalently,

x∗
i ∈ NΩi

(x̄) (1 ≤ i ≤ m)
x∗

1 + x∗
2 + . . . + x∗

n = 0

}
=⇒ x∗

1 = x∗
2 = . . . = x∗

n = 0.

This is a well known qualification condition, cf. [33, Corollary 3.37].

Apart from the formulated in Theorem 1 (ii) necessary and sufficient
characterization of the uniform regularity, equality θ̂[Ω](x̄) = η̂[Ω](x̄) implies
also an equivalent characterization of approximate stationarity.

Corollary 1 (Extended extremal principle [20, 21]). Suppose X is As-
plund and the sets Ωi (1 ≤ i ≤ m) are closed. Ω is approximately stationary at
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x̄ if and only if η̂[Ω](x̄) = 0, i.e., for any ε > 0 there exist xi ∈ Ωi ∩ Bε(x̄) and
x∗

i ∈ NΩi
(xi) (1 ≤ i ≤ m) such that

∥∥∥∥∥

m∑

i=1

x∗
i

∥∥∥∥∥ < ε
m∑

i=1

‖x∗
i ‖.

This result extends the extremal principle [27, 34] and can be considered
as a generalization of the convex separation theorem to collections of nonconvex
sets. Some earlier formulations of Corollary 1 can be found in [17, 18, 19].

Remark 2. Corollary 1 provides also an equivalent characterization
of Asplund spaces, cf. [24, Theorem 5]. Theorem 1 (ii) can be extended from
Asplund to arbitrary Banach spaces if Fréchet normal cones are replaced by some
other kind of normal cones satisfying certain natural properties, e.g., Clarke nor-
mal cones, cf. [25].

Remark 3. Theorem 1 can be extended to infinite collections of sets.
This allows us to treat infinite and semi-infinite optimization problems, cf. [25,
26].

Verifying the uniform regularity (and several other properties) of a finite
collection of sets can always be reduced to that of two sets in the product space.

Proposition 3 ([22], Proposition 4). Ω is uniformly regular at x̄ if and
only if the collection of two sets

(3) Ω := Ω1 × Ω2 × . . . × Ωm and L := {(x, x, . . . , x) | x ∈ X}

in Xm (with any norm compatible with that in X) is uniformly regular at the point
(x̄, x̄, . . . , x̄).

Note the following simple representations of the Fréchet normal cones to
the sets in (3).

Proposition 4.

(i) Suppose xi ∈ Ωi (1 ≤ i ≤ m). Then

NΩ(z) =
m∏

i=1

NΩi
(xi),

where z = (x1, x2, . . . , xm).
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(ii) Suppose x ∈ X. Then

NL(z) = L⊥ =

{

z∗ = (x∗
1, . . . , x

∗
m) ∈ (X∗)m |

m∑

i=1

x∗
i = 0

}

,

where z = Ax := (x, x, . . . , x).

P r o o f. The first assertion follows directly from the definition while prov-
ing the second one is a simple exercise on application of standard tools of convex
analysis. �

3. Uniform regularity in a Hilbert space. In this section, we
limit ourselves to the case when X is a Hilbert space. For the collection of sets
Ω = {Ω1,Ω2, . . . ,Ωm} (m > 1), denote

(4) ĉ[Ω](x̄) := 1 − 2(η̂[Ω](x̄))2,

where η̂[Ω](x̄) is the dual space regularity constant defined by (1). By The-
orem 1 (ii), the uniform regularity of Ω at x̄ is equivalent to the inequality
ĉ[Ω](x̄) < 1. Note that constant (4) can be negative: ĉ[Ω](x̄) ≥ −1.

Lemma 1. Suppose Ω is uniformly regular at x̄. Then, for any c′ >
ĉ[Ω](x̄), there is δ > 0 such that, for any i, j ∈ {1, 2, . . . ,m}, i 6= j, and any
u ∈ N̂Ωi

(x̄, δ) ∩ S, v ∈ N̂Ωj
(x̄, δ) ∩ S, it holds:

(5) −〈u, v〉 < c′.

P r o o f. By definition (1), for any c′ > ĉ[Ω](x̄)), there is δ > 0 such that

2

∥∥∥∥∥

m∑

k=1

x∗
k

∥∥∥∥∥

2

> 1 − c′ for all x∗
k ∈ N̂Ωk

(x̄, δ) with

m∑

k=1

‖x∗
k‖ = 1.

Choose any i, j ∈ {1, 2, . . . ,m}, i 6= j, and any u ∈ N̂Ωi
(x̄, δ)∩S, v ∈ N̂Ωj

(x̄, δ)∩S.
Set x∗

i = u/2, x∗
j = v/2, and x∗

k = 0 for k ∈ {1, 2, . . . ,m} \ {i, j}. Then x∗
k ∈

N̂Ωk
(x̄, δ) (k ∈ {1, 2, . . . ,m}) and

m∑

k=1

‖x∗
k‖ = 1. It follows that

‖u + v‖2 = 4

∥∥∥∥∥

m∑

k=1

x∗
k

∥∥∥∥∥

2

> 2(1 − c′),
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or equivalently

2 + 2〈u, v〉 > 2(1 − c′).

In its turn, the last inequality is equivalent to (5). �

In the rest of the section, we assume that m = 2, i.e., Ω = {Ω1,Ω2}.
Definition (1) of the constant characterizing the uniform regularity of a collection
of sets can be simplified.

Proposition 5. The following representation holds true:

(6) η̂[Ω](x̄) = lim
δ↓0

inf

{
‖x∗

1 + x∗
2‖ | x∗

i ∈ N̂Ωi
(x̄, δ), ‖x∗

i ‖ =
1

2
(i = 1, 2)

}
,

where it is assumed that the infimum over the empty set equals 1.

P r o o f. If, for some δ > 0, one of the cones N̂Ω1
(x̄, δ) or N̂Ω2

(x̄, δ) is
trivial, then η̂[Ω](x̄) = 1 and the equality is satisfied automatically. Take arbitrary
nonzero x∗

1 ∈ N̂Ω1
(x̄, δ) and x∗

2 ∈ N̂Ω2
(x̄, δ) such that ‖x∗

1‖ + ‖x∗
2‖ = 1. Then

(‖x∗
1‖ − ‖x∗

2‖)2 = ‖x∗
1‖2 + ‖x∗

2‖2 − 2‖x∗
1‖‖x∗

2‖,
1 = ‖x∗

1‖2 + ‖x∗
2‖2 + 2‖x∗

1‖‖x∗
2‖.

Hence,

‖x∗
1‖2 + ‖x∗

2‖2 =
1 + (‖x∗

1‖ − ‖x∗
2‖)2

2
,

‖x∗
1‖‖x∗

2‖ =
1 − (‖x∗

1‖ − ‖x∗
2‖)2

4
.

Set

z∗1 :=
x∗

1

2‖x∗
1‖

and z∗2 :=
x∗

2

2‖x∗
2‖

.

Then z∗1 ∈ N̂Ω1
(x̄, δ), z∗2 ∈ N̂Ω2

(x̄, δ), ‖z∗i ‖ = ‖z∗2‖ =
1

2
, and

‖z∗1 + z∗2‖2 =
1

2
+

〈x∗
1, x

∗
2〉

2 ‖x∗
1‖ ‖x∗

2‖
.

Next we show that

‖x∗
1 + x∗

2‖ ≥ ‖z∗1 + z∗2‖ .
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Indeed,

‖x∗
1 + x∗

2‖2 − ‖z∗1 + z∗2‖2 = ‖x∗
1‖2 + ‖x∗

2‖2 + 2〈x∗
1, x

∗
2〉 −

1

2
− 〈x∗

1, x
∗
2〉

2 ‖x∗
1‖ ‖x∗

2‖

=
1 + (‖x∗

1‖ − ‖x∗
2‖)2

2
− 1

2
+ 2〈x∗

1, x
∗
2〉 −

〈x∗
1, x

∗
2〉

2 ‖x∗
1‖ ‖x∗

2‖

=
(‖x∗

1‖ − ‖x∗
2‖)2

2
+

4 ‖x∗
1‖ ‖x∗

2‖ − 1

2 ‖x∗
1‖ ‖x∗

2‖
〈x∗

1, x
∗
2〉

=
(‖x∗

1‖ − ‖x∗
2‖)2

2
− (‖x∗

1‖ − ‖x∗
2‖)2

2 ‖x∗
1‖ ‖x∗

2‖
〈x∗

1, x
∗
2〉

=
(‖x∗

1‖ − ‖x∗
2‖)2

2

(
1 − 〈x∗

1, x
∗
2〉

‖x∗
1‖ ‖x∗

2‖

)
≥ 0.

This completes the proof. �

The following example shows that the conclusion of Proposition 5 is not
true in non-Hilbert spaces.

Example 1. Consider R
2 with the sum norm, ‖(x, y)‖ = |x| + |y|, and

take Ω1 = {(x1, x2) | x2 ≤ 0}, Ω2 = {(x1, x2) | x2 ≥ 2x1} and x̄ = (0, 0) ∈ Ω1∩Ω2.
Then, for any δ > 0, we have

N̂Ω1
(x̄, δ) = {t(0, 1) | t ∈ R

+},

N̂Ω2
(x̄, δ) = {t(2,−1) | t ∈ R

+}.
Thus,

z∗1 ∈ N̂Ω1
(x̄, δ) with ‖z∗1‖ =

1

2
=⇒ z∗1 = (0, 1/2),

z∗2 ∈ N̂Ω2
(x̄, δ) with ‖z∗2‖ =

1

2
=⇒ z∗2 = (1/3,−1/6),

and the right-hand side of (6) equals ‖z∗1 + z∗2‖ = ‖(1/3, 1/3)‖ = 2/3. At the

same time, with x∗
1 = (0, 1/4) ∈ N̂Ω1

(x̄, δ) and x∗
2 = (

1

2
,−1/4) ∈ N̂Ω2

(x̄, δ) it

holds ‖x∗
1‖+‖x∗

2‖ = 1 and ‖x∗
1 +x∗

2‖ =
1

2
. Hence, η̂[Ω](x̄) ≤ ‖x∗

1 +x∗
2‖ < 2/3. △

The next proposition provides an equivalent representation of constant (4).

Proposition 6. The following representation holds true:

(7) ĉ[Ω](x̄) = lim
δ↓0

sup
{
−〈x∗

1, x
∗
2〉 | x∗

i ∈ N̂Ωi
(x̄, δ), ‖x∗

i ‖ = 1 (i = 1, 2)
}

.
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where it is assumed that the supremum over the empty set equals −1.

P r o o f. If, for some δ > 0, one of the cones N̂Ω1
(x̄, δ) or N̂Ω2

(x̄, δ) is
trivial, then η̂[Ω](x̄) = 1, the right-hand side of (7) equals −1 and coincides with
ĉ[Ω](x̄) computed in accordance with definition (4). Let both cones be nontrivial
for any δ > 0. Then, by (4), (6), and (7),

ĉ[Ω](x̄) = lim
δ↓0

sup

{
1 − 2 ‖x∗

1 + x∗
2‖2 | x∗

i ∈ N̂Ωi
(x̄, δ), ‖x∗

i ‖ =
1

2
(i = 1, 2)

}

= lim
δ↓0

sup

{
−〈2x∗

1, 2x
∗
2〉 | x∗

i ∈ N̂Ωi
(x̄, δ), ‖x∗

i ‖ =
1

2
(i = 1, 2)

}

= ĉ[Ω](x̄). 2

Another dual space constant can be used alongside (6) and (7) for char-
acterizing the uniform regularity of a collection of two sets in a Hilbert space:

ν̂[Ω](x̄) := lim
δ↓0

sup

{
‖x∗

1 − x∗
2‖ | x∗

i ∈ N̂Ωi
(x̄, δ), ‖x∗

i ‖ =
1

2
(i = 1, 2)

}
,(8)

where it is assumed that the supremum over the empty set equals 0; this corre-
sponds to one of the cones N̂Ω1

(x̄, δ) or N̂Ω2
(x̄, δ) being trivial for some δ > 0 (x̄

can be an interior point of either Ω1 or Ω2.)

Remark 4. Unlike constants η̂[Ω](x̄) and ĉ[Ω](x̄), the definition of
constant ν̂[Ω](x̄) is specific for the case of two sets.

Remark 5. Condition ‖x∗
i ‖ =

1

2
, i = 1, 2, in definition (8) cannot be

replaced by ‖x∗
1‖ + ‖x∗

2‖ = 1 (as in (1)): it would always be equal to 1.

Theorem 2. The following relations hold true:

(i) (η̂[Ω](x̄))2 + (ν̂[Ω](x̄))2 = 1;

(ii) 1 + ĉ[Ω](x̄) = 2(ν̂[Ω](x̄))2.

P r o o f. If, for some δ > 0, one of the cones N̂Ω1
(x̄, δ) or N̂Ω2

(x̄, δ) is
trivial, then η̂[Ω](x̄) = 1, ν̂[Ω](x̄) = 0, ĉ[Ω](x̄) = −1, and equalities (i) and (ii)
are satisfied automatically. Let both cones be nontrivial for any δ > 0. Fix an
arbitrary ε > 0.

(i) By definition (8), there exists δ > 0 such that

‖x∗
1 − x∗

2‖ ≤ ν̂[Ω](x̄) + ε
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for any x∗
i ∈ N̂Ωi

(x̄, δ) with ‖x∗
i ‖ =

1

2
(i = 1, 2). At the same time, by (6), there

are elements x∗
i ∈ N̂Ωi

(x̄, δ) with ‖x∗
i ‖ =

1

2
(i = 1, 2) such that

‖x∗
1 + x∗

2‖ ≤ η̂[Ω](x̄) + ε.

Hence,

(η̂[Ω](x̄) + ε)2 + (ν̂[Ω](x̄) + ε)2 ≥ ‖x∗
1 − x∗

2‖2 + ‖x∗
1 + x∗

2‖2 = 1.

Since ε is arbitrary, we have

η̂[Ω](x̄)2 + ν̂[Ω](x̄)2 ≥ 1.

Similarly, by (6) and (8), we find elements x∗
i ∈ N̂Ωi

(x̄, δ) with ‖x∗
i ‖ =

1

2
(i = 1, 2) such that

‖x∗
1 − x∗

2‖ ≥ ν̂[Ω](x̄) − ε,

‖x∗
1 + x∗

2‖ ≥ η̂[Ω](x̄) − ε.

This yields
(ν̂[Ω](x̄) − ε)2 + (η̂[Ω](x̄) − ε)2 ≤ 1,

and consequently,
η̂[Ω](x̄)2 + ν̂[Ω](x̄)2 ≤ 1.

(ii) follows immediately from (i) and definition (4). �

Corollary 2. {Ω1,Ω2} is uniformly regular at x̄ ∈ Ω1 ∩Ω2 if and only if
one of the following equivalent conditions holds true:

(i) η̂[Ω](x̄) > 0;

(ii) ν̂[Ω](x̄) < 1;

(iii) ĉ[Ω](x̄) < 1.

The next example shows that the equality in Theorem 2 (ii) remains true
when ĉ[Ω](x̄) ≤ 0.

Example 2. In R
2 with the Euclidean norm, we fix Ω1 = {(x1, x2) | x2 ≤

0} and x̄ = (0, 0). Then, for any δ > 0, N̂Ω1
(x̄, δ) = {t(0, 1) | t ≥ 0}. We consider

the following two cases of Ω2:
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Case 1. Ω2 = {(x1, x2) | x1 ≤ 0}. For any δ > 0, N̂Ω2
(x̄, δ) = {t(1, 0) |

t ≥ 0}. Then ĉ[Ω](x̄) = 0 and ν̂[Ω](x̄) =

√
2

2
.

Case 2. Ω2 = {(x1, x2) | x1 + x2 ≤ 0}. For any δ > 0, N̂Ω2
(x̄, δ) =

{t(1, 1) | t ≥ 0}. Then ĉ[Ω](x̄) = − 1√
2

and ν̂[Ω](x̄) =

√
2 −

√
2

2
.

In both cases the equality in Theorem 2 (ii) holds true. △
Remark 6. In finite dimensions, constants (6)–(7) coincide with the

corresponding ones defined in terms of limiting normals:

η̄[Ω](x̄) := min

{
‖x∗

1 + x∗
2‖ | x∗

i ∈ NΩi
(x̄), ‖x∗

i ‖ =
1

2
(i = 1, 2)

}
,

ν̄[Ω](x̄) := max

{
‖x∗

1 − x∗
2‖ | x∗

i ∈ NΩi
(x̄), ‖x∗

i ‖ =
1

2
(i = 1, 2)

}
,(9)

c̄[Ω](x̄) := max
{
−〈x∗

1, x
∗
2〉 | x∗

i ∈ NΩi
(x̄), ‖x∗

i ‖ = 1 (i = 1, 2)
}

(10)

(with the similar natural conventions about the minimum and maximum over the
empty set.) The relations amongst the above constants are consequences of those
in Theorem 2:

1. (η̄[Ω](x̄))2 + (ν̄[Ω](x̄))2 = 1;

2. 1 + c̄[Ω](x̄) = 2(ν̄[Ω](x̄))2;

3. 1 − c̄[Ω](x̄) = 2(η̄[Ω](x̄))2.

Remark 7. Constant (10) is closely related with the one introduced
in [29]:

c̄ := max
{
−〈x∗

1, x
∗
2〉 | x∗

i ∈ NΩi
(x̄) ∩ B (i = 1, 2)

}
.

Indeed, c̄ = (c̄[Ω](x̄))+, where (α)+ := max{α, 0}.
Given a collection of m sets Ω = {Ω1,Ω2, . . . ,Ωm} in a finite dimensional

Hilbert space X and a point x̄ ∈ ∩m
i=1Ωi, one can consider the Hilbert space Xm

with the norm

‖(x1, x2, . . . , xn)‖ =

(
m∑

i=1

‖xi‖2

) 1

2

and compute constants (6), (7), and (8) corresponding to the collection Ω
′ :=

{Ω, L} and the point z̄ := Ax̄ = (x̄, x̄, . . . , x̄) ∈ Ω∩L, where Ω and L are defined
by (3).
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Proposition 7. The following representations hold true:

(11) η̂[Ω′](z̄) = lim
δ↓0

inf

{(
1

2
− 1

2

(
1 − 1

m
‖x∗

1 + . . . + x∗
m‖2

) 1

2

) 1

2

|

x∗
i ∈ N̂Ωi

(x̄, δ) (1 ≤ i ≤ m),
m∑

i=1

‖x∗
i ‖2 = 1

}
,

(12) ν̂[Ω′](z̄) = lim
δ↓0

sup

{(
1

2
+

1

2

(
1 − 1

m
‖x∗

1 + . . . + x∗
m‖2

) 1

2

) 1

2

|

x∗
i ∈ N̂Ωi

(x̄, δ) (1 ≤ i ≤ m),
m∑

i=1

‖x∗
i ‖2 = 1

}
,

(13) ĉ[Ω′](z̄) = lim
δ↓0

sup

{(
1 − 1

m
‖x∗

1 + . . . + x∗
m‖2

) 1

2

|

x∗
i ∈ N̂Ωi

(x̄, δ) (1 ≤ i ≤ m),

m∑

i=1

‖x∗
i ‖2 = 1

}

.

P r o o f. If z1 = (x1, x2, . . . , xn), z2 = (u1, u2, . . . , un) ∈ Xm, then

‖z1 + z2‖2 =

m∑

i=1

‖xi‖2 +

m∑

i=1

‖ui‖2 + 2

m∑

i=1

〈xi, ui〉.

By the structure of Ω
′ and (6), we have

η̂[Ω′](z̄) = lim
δ↓0

inf

{(
1

2
+ 2

m∑

i=1

〈x∗
i , ui〉

) 1

2

|
m∑

i=1

‖x∗
i ‖2 =

m∑

i=1

‖ui‖2 =
1

4
,

x∗
i ∈ N̂Ωi

(x̄, δ),

m∑

i=1

ui = 0 (1 ≤ i ≤ m)

}

= lim
δ↓0

inf

{(
1

2
+

1

2

m∑

i=1

〈x∗
i , ui〉

) 1

2

|
m∑

i=1

‖x∗
i ‖2 =

m∑

i=1

‖ui‖2 = 1,
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x∗
i ∈ N̂Ωi

(x̄, δ),

m∑

i=1

ui = 0 (1 ≤ i ≤ m)

}

.(14)

Fix any x∗
i ∈ N̂Ωi

(x̄, δ) (1 ≤ i ≤ m) with

m∑

i=1

‖x∗
i ‖2 = 1 and denote

x∗
0 :=

1

m

m∑

i=1

x∗
i .(15)

Consider the following minimization problem in Xm which is an important com-
ponent of (14):

minimize f(u) :=
m∑

i=1

〈x∗
i , ui〉

subject to

m∑

i=1

ui = 0 and

m∑

i=1

‖ui‖2 = 1.

Since f is continuous and the constraint set is compact, the above problem has a
solution u◦ = (u◦

1, u
◦
2, . . . , u

◦
m). In accordance with the Lagrange multiplier rule,

there exist multiplies λ0, λ1 ∈ R and u∗ ∈ X, not all zero, such that

λ0x
∗
i + 2λ1u

◦
i + u∗ = 0 (1 ≤ i ≤ m).(16)

Adding the equalities together and taking into account that
m∑

i=1

u◦
i = 0, we obtain

λ0

m∑

i=1

x∗
i + mu∗ = 0.(17)

If λ0 = 0, then u∗ = 0 and consequently λ1 6= 0 and, by (16), u◦
i = 0 for all

i ∈ {1, 2, . . . ,m}, which is impossible thanks to
m∑

i=1

‖u◦
i ‖2 = 1. Hence, λ0 6= 0

and we can take λ0 = 1. It follows from (16), (17), and (15) that

x∗
i + 2λ1u

◦
i = x∗

0 (1 ≤ i ≤ m),(18)

and consequently

4λ2
1 =

m∑

i=1

‖x∗
0 − x∗

i ‖2 = m‖x∗
0‖2 +

m∑

i=1

‖x∗
i ‖2 − 2

〈
m∑

i=1

x∗
i , x

∗
0

〉
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=

m∑

i=1

‖x∗
i ‖2 − m‖x∗

0‖2.(19)

At the same time,

2λ1f(u◦) =
m∑

i=1

〈x∗
i , 2λ1u

◦
i 〉 =

m∑

i=1

〈x∗
i , x

∗
0 − x∗

i 〉

=

(〈
m∑

i=1

x∗
i , x

∗
0

〉

−
m∑

i=1

‖x∗
i ‖2

)

=

(
m‖x∗

0‖2 −
m∑

i=1

‖x∗
i ‖2

)
= −4λ2

1.

This yields either f(u◦) = −2λ1 or λ1 = 0. In the last case, by (18), x∗
i = x∗

0 for
all i ∈ {1, 2, . . . ,m}, and consequently

f(u◦) =

m∑

i=1

〈x∗
0, u

◦
i 〉 =

〈
x∗

0,

m∑

i=1

u◦
i

〉
= 0.

Hence, in both cases, f(u◦) = −2λ1. Since u◦ is a point of minimum, λ1 must be
nonnegative, and consequently, by (19),

f(u◦) = −
(

m∑

i=1

‖x∗
i ‖2 − m‖x∗

0‖2

) 1

2

= −
(
1 − m‖x∗

0‖2
) 1

2 .

Combining this with (14), we get (11).

(12) and (13) follow from (11) thanks to Theorem 2. �

Corollary 3. The following estimates hold true:

0 ≤ η̂[Ω′](z̄) ≤
(

1

2
− 1

2

√
1 − 1

m

) 1

2

;

(
1

2
+

1

2

√
1 − 1

m

) 1

2

≤ ν̂[Ω′](z̄) ≤ 1;

√
1 − 1

m
≤ ĉ[Ω′](z̄) ≤ 1.
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P r o o f. The estimates follow from Proposition 7 due to the fact that

min{‖x1 + x2 + . . . + xm‖ | ‖x1‖2 + ‖x2‖2 + . . . + ‖xm‖2 = 1} ≤ 1. 2

Dual space constants (11), (12), and (13) can be used to characterize the
uniform regularity of collections of m sets.

The next corollary follows from Proposition 3 and Corollary 2.

Corollary 4. Ω is uniformly regular at x̄ ∈ ∩m
i=1Ωi if and only if one of

the following equivalent conditions holds true:

(i) η̂[Ω′](z̄) > 0;

(ii) ν̂[Ω′](z̄) < 1;

(iii) ĉ[Ω′](z̄) < 1.

Observe that, when m = 2, constants (11), (12), and (13) do not coincide
with the corresponding constants (6), (8), and (7).

Corollary 5. When m = 2, the following relations hold true:

η̂[Ω′](z̄) = lim
δ↓0

inf

{(
1 − ‖x∗

1 − x∗
2‖

2

) 1

2

| x∗
i ∈ N̂Ωi

(x̄, δ) (i = 1, 2),

‖x∗
1‖2 + ‖x∗

2‖2 =
1

2

}
,

ν̂[Ω′](z̄) = lim
δ↓0

sup

{(
1 + ‖x∗

1 − x∗
2‖

2

) 1

2

| x∗
i ∈ N̂Ωi

(x̄, δ) (i = 1, 2),

‖x∗
1‖2 + ‖x∗

2‖2 =
1

2

}

,

ĉ[Ω′](z̄) = lim
δ↓0

sup

{
‖x∗

1 − x∗
2‖ | x∗

i ∈ N̂Ωi
(x̄, δ) (i = 1, 2),

‖x∗
1‖2 + ‖x∗

2‖2 =
1

2

}
.(20)
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P r o o f. From Proposition 7, we have

ĉ[Ω′](z̄) = lim
δ↓0

sup

{(
1 − 1

2
‖x∗

1 + x∗
2‖2

)1/2

| x∗
i ∈ N̂Ωi

(x̄, δ) (i = 1, 2),

‖x∗
1‖2 + ‖x∗

2‖2 = 1

}
.

In the above formula,

1 − 1

2
‖x∗

1 + x∗
2‖2 =

1

2
(2 − ‖x∗

1 + x∗
2‖2)

=
1

2

(
2(‖x∗

1‖2 + ‖x∗
2‖2) − (‖x∗

1‖2 + ‖x∗
2‖2 + 2〈x∗

1, x
∗
2〉)
)

=
1

2
(‖x∗

1‖2 + ‖x∗
2‖2 − 2〈x∗

1, x
∗
2〉)

=
1

2
‖x∗

1 − x∗
2‖2 =

∥∥∥∥
x∗

1√
2
− x∗

2√
2

∥∥∥∥
2

and
∥∥∥∥

x∗
1√
2

∥∥∥∥
2

+

∥∥∥∥
x∗

2√
2

∥∥∥∥
2

=
1

2
.

This proves (20), which also implies the other relations. �

The next relation between ĉ[Ω′](z̄) and ν̂[Ω](x̄) can be of interest.

Proposition 8. When m = 2, it holds:

(21) ĉ[Ω′](z̄) ≥ ν̂[Ω](x̄).

Furthermore, (21) holds as an equality whenever ν̂[Ω](x̄) > 1/
√

2.

P r o o f. In view of (20) and (8), inequality (21) is always true.
We prove the second assertion. Suppose ν̂[Ω](x̄) > 1/

√
2. By (8), for

any δ > 0, one can find x∗
i ∈ N̂Ωi

(x̄, δ) with ‖x∗
i ‖ =

1

2
(i = 1, 2) such that

‖x∗
1 − x∗

2‖ > 1/
√

2.

Observe that, for any x∗
1 and x∗

2 with ‖x∗
1‖2 + ‖x∗

2‖2 =
1

2
, it holds

‖x∗
1 − x∗

2‖2 =
1

2
− 2〈x∗

1, x
∗
2〉.
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Hence, maximizing ‖x∗
1 − x∗

2‖ is equivalent to minimizing 〈x∗
1, x

∗
2〉, and condition

‖x∗
1 − x∗

2‖ > 1/
√

2 is equivalent to 〈x∗
1, x

∗
2〉 < 0. Under the assumptions made,

sup
{
‖x∗

1 − x∗
2‖ | x∗

i ∈ N̂Ωi
(x̄, δ) (i = 1, 2), ‖x∗

1‖2 + ‖x∗
2‖2 =

1

2

}

= sup
{
‖x∗

1 − x∗
2‖ | x∗

i ∈ N̂Ωi
(x̄, δ) (i = 1, 2), ‖x∗

1‖2 + ‖x∗
2‖2 =

1

2
, 〈x∗

1, x
∗
2〉 < 0

}

= sup
{
‖x∗

1 − x∗
2‖ | x∗

i ∈ N̂Ωi
(x̄, δ), ‖x∗

i ‖ =
1

2
(i = 1, 2), 〈x∗

1, x
∗
2〉 < 0

}
,

and it follows from (20) that ĉ[Ω′](z̄) = ν̂[Ω](x̄). �

4. Applications in projection algorithms. Inspired by [29], we are
making an attempt to extend convergence results of the alternating projections for
solving feasibility problems to those of the cyclic projection algorithms in Hilbert
spaces. Recall that a feasibility problem consists in finding common points of
a collection of sets with nonempty intersection. This model incorporates many
important optimization problems.

We first recall some basic facts about projections. Given a nonempty set
Ω in a normed linear space X, the distance function and projection mapping are
defined, for x ∈ X, respectively, as follows:

d(x,Ω) := inf
ω∈Ω

‖x − ω‖ ,

PΩ(x) := {ω ∈ Ω | ‖x − ω‖ = d(x,Ω)} .

Lemma 2 ([11]). ω ∈ PΩ(x) =⇒ x − ω ∈ NΩ(ω).

From now on, we are considering a finite collection of closed sets Ω =
{Ω1,Ω2, . . . ,Ωm} (m > 1) and assuming the existence of a point x̄ ∈ ∩m

i=1Ωi.

Definition 2. A sequence (xk) is generated by

(i) the averaged projections for Ω if

(22) xk+1 ∈ 1

m

m∑

i=1

PΩi
(xk), k = 0, 1, . . . ;

(ii) the cyclic projections for Ω if

(23) xk+1 ∈ PΩk+1
(xk), k = 0, 1, . . . ,

with the convention Ωi+nm = Ωi for all i = 1, . . . ,m and n ∈ N.
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Note that the existence of the sequences in Definition 2 cannot be guar-
anteed in general, unless the space is finite dimensional.

From now on, we are assuming that X is a Hilbert space. The next
regularity property is needed in our analysis.

Definition 3 ([29, Definition 4.3]). A closed set Ω is super-regular at
x̄ ∈ Ω if, for any γ > 0, any two points x, z sufficiently close to x̄ with z ∈ Ω,
and any point y ∈ PΩ(x), it holds 〈z − y, x − y〉 ≤ γ‖z − y‖ · ‖x − y‖.

Lemma 3 ([29, Proposition 4.4]). A closed set Ω is super-regular at x̄ ∈ Ω
if and only if for any γ > 0, there is δ > 0 such that

〈u, z − x〉 ≤ γ‖u‖ · ‖z − x‖, ∀z, x ∈ Ω ∩ Bδ(x̄), u ∈ NΩ(x).

Remark 8. Similar to the well known prox-regularity property (the pro-
jection mapping associated with the set being single-valued around the reference
point; cf. [7, 12, 37, 39]), the super-regularity one in Definition 3 is a way of de-
scribing sets being locally “almost” convex. It is weaker than the prox-regularity
while stronger than the Clarke regularity and fits well the convergence analysis
of projections algorithms. For a detailed discussion and characterizations of this
property we refer the reader to [29].

Theorem 3. Suppose Ω is uniformly regular at x̄ with

(24) ĉ[Ω](x̄) <
1

m − 1

and Ω1 is super-regular at x̄. Then, for any c ∈ ((m − 1)ĉ[Ω](x̄), 1), a sequence
(xk) generated by cyclic projections for Ω linearly converges to some point in
∩m

i=1Ωi with rate m
√

c, provided that for each k = 0, 1, . . . ,

(25) ‖xkm+i+1 − xkm+i‖ ≤ ‖xkm+2 − xkm+1‖ (i = 2, . . . ,m)

and x0 is sufficiently close to x̄.

P r o o f. Let c ∈ ((m − 1)ĉ[Ω](x̄), 1). Choose c′ > ĉ[Ω](x̄) and γ > 0 such
that (m − 1)c′ + mγ < c and δ > 0 such that the conclusions of Lemmas 1 and 3
(with Ω = Ω1) are satisfied.



306 Alexander Y. Kruger, Nguyen H. Thao

Let x0 ∈ X be such that

‖x0 − x̄‖ <
δ(1 − c)

2(m + 1)
.

Then

(26) α := ‖x1 − x̄‖ ≤ ‖x1 − x0‖ + ‖x0 − x̄‖ ≤ 2‖x0 − x̄‖ <
δ(1 − c)

m + 1

and, by (25),

‖xi − x̄‖ ≤ ‖xi − xi−1‖ + . . . + ‖x1 − x̄‖
≤ (i − 1)‖x2 − x1‖ + ‖x1 − x̄‖ ≤ i‖x1 − x̄‖
= iα ≤ (m + 1)α (i = 2, . . . ,m + 1).(27)

We are going to prove by induction that, for all k = 0, 1, . . .,

(28) ‖xkm+i − x̄‖ ≤ (m + 1)α
1 − ck+1

1 − c
(i = 2, . . . ,m + 1).

When k = 0, the required inequalities have been established in (27). Supposing
that the inequalities are true for all k = 0, . . . , l where l ≥ 0, we show that they
hold true for k = l + 1.

We first prove that

‖x(k+1)m+1 − x(k+1)m‖ ≤ c‖xkm+2 − xkm+1‖ (k = 0, . . . , l).(29)

Indeed, if x(k+1)m+1 = x(k+1)m, the inequality is trivially satisfied. If xkm+2 =
xkm+1, then, by condition (25), x(k+1)m+1 = x(k+1)m, and the inequality is satis-
fied too. Otherwise, by (26) and (28), ‖xkm+i − x̄‖ < δ (i = 2, . . . ,m+ 1) and we
have by Lemmas 1 and 2, condition (25) and definition of projections:

〈x(k+1)m − x(k+1)m+1, xkm+i+1 − xkm+i〉
< c′‖x(k+1)m − x(k+1)m+1‖ · ‖xkm+i+1 − xkm+i‖
≤ c′‖x(k+1)m − x(k+1)m+1‖ · ‖xkm+2 − xkm+1‖ (i = 1, . . . ,m − 1).

Adding the above inequalities, we obtain

(30) 〈x(k+1)m − x(k+1)m+1, x(k+1)m − xkm+1〉
< (m − 1)c′‖x(k+1)m − x(k+1)m+1‖ · ‖xkm+2 − xkm+1‖.
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At the same time, by Lemma 3, the triangle inequality and condition (25),

〈x(k+1)m − x(k+1)m+1,xkm+1 − x(k+1)m+1〉
≤ γ‖x(k+1)m − x(k+1)m+1‖ · ‖x(k+1)m+1 − xkm+1‖,

‖x(k+1)m+1 − xkm+1‖ ≤
m∑

i=1

‖xkm+i+1 − xkm+i‖ ≤ m‖xkm+2 − xkm+1‖,

and consequently,

(31) 〈x(k+1)m − x(k+1)m+1, xkm+1 − x(k+1)m+1〉
≤ mγ‖x(k+1)m − x(k+1)m+1‖ · ‖xkm+2 − xkm+1‖.

Adding (30) and (31), we get

‖x(k+1)m − x(k+1)m+1‖2 < c‖x(k+1)m − x(k+1)m+1‖ · ‖xkm+2 − xkm+1‖,

or equivalently

‖x(k+1)m+1 − x(k+1)m‖ < c‖xkm+2 − xkm+1‖.

This proves (29).
Now with k = l + 1 and taking into account (29), we have for i = 2, . . . ,

m + 1:

‖x(l+1)m+i − x̄‖ ≤ ‖x(l+1)m+i − x(l+1)m+i−1‖ + . . . + ‖x(l+1)m − x̄‖
≤ i‖x(l+1)m+1 − x(l+1)m‖ + ‖x(l+1)m − x̄‖
≤ icl+1‖x2 − x1‖ + ‖xlm+m − x̄‖

≤ (m + 1)αcl+1 + (m + 1)α
1 − cl+1

1 − c
= (m + 1)α

1 − cl+2

1 − c
.

Finally we prove that (xn) converges to some point x̃ in ∩m
i=1Ωi with rate

m
√

c. Take any k, r ∈ N with k > r and choose n ∈ N and i ∈ {0, 1, . . . ,m − 1}
such that r = nm + i. We have

(32) ‖xk − xr‖ ≤
k−1∑

j=r

‖xj+1 − xj‖ ≤
∞∑

j=nm

‖xj+1 − xj‖

≤
∞∑

j=n

m−1∑

i=0

‖xmj+i+1 − xmj+i‖ ≤ m
∞∑

j=n

‖xmj+1 − xmj‖
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≤ m‖x2 − x1‖
∞∑

j=n

cj ≤ mαcn

1 − c
.

Hence, ‖xk − xr‖ → 0 as k, r → ∞, and consequently (xn) is a Cauchy sequence
and, therefore, converges to some point x̃ ∈ X. It follows from (32) that

‖x̃ − xr‖ ≤ mαcn

1 − c
=

mα

(1 − c)c
i
m

c
r
m ≤ mα

(1 − c)c
( m
√

c)r.

Finally, we check that x̃ ∈ ∩m
i=1Ωi. Indeed, for any i ∈ {1, 2, . . . ,m}, xnm+i ∈ Ωi.

At the same time, xnm+i → x̃ as n → ∞, and consequently, by the closedness of
Ωi, x̃ ∈ Ωi. �

Remark 9. When m = 2, conditions (25) and (24) are satisfied auto-
matically. In the general case of m sets, condition (25) can be ensured by, e.g.,
the next monotonicity condition:

‖xk+2 − xk+1‖ ≤ ‖xk+1 − xk‖ (k = 1, 2, . . . , ).

The convergence result of the alternating projection method, i.e., the
cyclic projection method (23) when m = 2, established in [29, Theorem 5.16]
is a consequence of Theorem 3.

Corollary 6. Suppose that Ω is uniformly regular at x̄ ∈ Ω1 ∩ Ω2 and
Ω1 is super-regular at this point. Then, any sequence generated by the alternating
projections for Ω linearly converges to some point in the intersection provided that
x0 is sufficiently close to x̄.

Now, we derive from Corollary 6 another convergence result of the aver-
aged projection algorithm for a collection of m sets. Given a collection of sets
Ω = {Ω1,Ω2, . . . ,Ωm} in X, we consider the collection Ω

′ := {Ω, L} of two sets
in Xm given by (3). For x ∈ X, denote Ax := (x, x, . . . , x) ∈ L.

Lemma 4.

(i) For any x ∈ X,

PΩ(Ax) = (PΩ1
(x), PΩ2

(x), . . . , PΩm(x)) .

(ii) For any (x1, x2, . . . , xm) ∈ Xm,

PL(x1, x2, . . . , xm) = A

(
x1 + x2 + . . . + xm

m

)
.
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P r o o f. The first assertion is straightforward (cf. [11, Exercise 1.8]). To
prove the second one, we consider the real-valued function f : X → R defined by

f(x) :=
m∑

i=1

‖x − xi‖2 .

It is obvious that Ax ∈ PL(x1, x2, . . . , xm) if and only if x is a minimizer of f .
The conclusion follows from the first order optimality condition. �

Corollary 7 ([29, Theorem 7.3]). Suppose that Ω is uniformly regular
at x̄ ∈ ∩m

i=1Ωi. Then any sequence (yk) generated by algorithm (22) linearly
converges to some point in ∩m

i=1Ωi provided that the initial point y0 is sufficiently
close to x̄.

P r o o f. Let (zn) be the sequence generated by the alternating projections
for the two sets Ω and L with the initial point z1 := Ay1. By Lemma 4, z2k =
Ayk, k = 1, 2, . . ., for some sequence (yn) ⊂ X. At the same time, {Ω, L} is
uniformly regular at Ax̄ by Proposition 3. Therefore, when y0 is sufficiently close
to x̄, Corollary 6 implies that the sequence (zn) linearly converges to some point
Ax̃ ∈ Ω1∩Ω2. It follows that the subsequence (z2k = Ayk) also linearly converges
to Ax̃. Hence, (yk) linearly converges to x̃ ∈ ∩m

i=1Ωi. �
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