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Abstract. In this paper we prove large and moderate deviations principles
for the recursive kernel estimators of a probability density function defined
by the stochastic approximation algorithm introduced by Mokkadem et al.
([10]. The stochastic approximation method for the estimation of a prob-
ability density. J. Statist. Plann. Inference 139 (2009), 2459–2478). We
show that the estimator constructed using the stepsize which minimize the
variance of the class of the recursive estimators defined in [10] gives the same
pointwise LDP and MDP as the Rosenblatt kernel estimator. We provide
results both for the pointwise and the uniform deviations.

1. Introduction. Let X1, . . . ,Xn be independent, identically distrib-
uted R

d-valued random vectors, and let f denote the probability density of X1.
To construct a stochastic algorithm, which approximates the function f at a given
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point x, Mokkadem et al. [10] defined an algorithm of search of the zero of the
function h : y 7→ f(x) − y. They proceed as follows: (i) they set f0(x) ∈ R; (ii)
for all n ≥ 1, they set

fn(x) = fn−1(x) + γnWn(x)

where Wn(x) is an “observation” of the function h at the point fn−1(x) and (γn)
is a sequence of positive real numbers that goes to zero. To define Wn(x), they
follow the approach of Révész [13, 14] and of Tsybakov [16], and introduced a

kernel K (which is a function satisfying

∫

Rd

K(x)dx = 1) and a bandwidth (hn)

(which is a sequence of positive real numbers that goes to zero), and they set
Wn(x) = h−d

n K(h−1
n [x−Xn])−fn−1(x). The stochastic approximation algorithm

introduced in [10] which estimate recursively the density f at the point x is

(1) fn(x) = (1 − γn)fn−1(x) + γnh
−d
n K

(

x−Xn

hn

)

.

Recently, large and moderate deviations results have been proved for the well-
known nonrecursive kernel density estimator introduced by Rosenblatt [15] (see
also [11]). The large deviations principle has been studied by Louani [6] and
Worms [18]. Gao [5] and Mokkadem et al. [7] extend these results and provide
moderate deviations principles. The purpose of this paper is to establish large
and moderate deviations principles for the recursive density estimator defined by
the stochastic approximation algorithm (1).

Let us first recall that a R
m-valued sequence (Zn)n≥1 satisfies a large

deviations principle (LDP) with speed (νn) and good rate function I if :

1. (νn) is a positive sequence such that lim
n→∞

νn = ∞;

2. I : R
m → [0,∞] has compact level sets;

3. for every borel set B ⊂ R
m,

− inf
x∈

◦

B

I (x) ≤ lim inf
n→∞

ν−1
n log P [Zn ∈ B]

≤ lim sup
n→∞

ν−1
n log P [Zn ∈ B] ≤ − inf

x∈B
I (x) ,

where
◦
B and B denote the interior and the closure of B respectively. More-

over, let (vn) be a nonrandom sequence that goes to infinity; if (vnZn)
satisfies a LDP, then (Zn) is said to satisfy a moderate deviations principle
(MDP).
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The first aim of this paper is to establish pointwise LDP for the recursive
kernel density estimators defined by the stochastic approximation algorithm (1).
It turns out that the rate function depend on the choice of the stepsize (γn);
In the first part of this paper we focus on the following two special cases : (1)

(γn) =
(

n−1
)

and (2) (γn) =



hd
n

(

n
∑

k=1

hd
k

)−1


, the first one belongs to the

subclass of recursive kernel estimators which have a minimum MSE or MISE and
the second choice belongs to the subclass of recursive kernel estimators which
have a minimum variance (see [10]).

We show that using the stepsize (γn) =
(

n−1
)

and (hn) ≡
(

cn−a
)

with
c > 0 and a ∈ ]0, 1/d[, the sequence (fn (x) − f (x)) satisfies a LDP with speed
(

nhd
n

)

and the rate function defined as follows:

(2)







if f (x) 6= 0, Ia,x : t→ f (x) Ia

(

1 +
t

f (x)

)

if f (x) = 0, Ia,x (0) = 0 and Ia,x (t) = +∞ for t 6= 0.

where

Ia (t) = sup
u∈R

{ut− ψa (u)}

ψa (u) =

∫

[0,1]×Rd

s−ad
(

eusadK(z) − 1
)

dsdz,

which is the same rate function for the LDP of the Wolverton and Wagner [17]
kernel estimator (see [8]).

Moreover, we show that using the stepsize (γn) =



hd
n

(

n
∑

k=1

hd
k

)−1


 and

more general bandwiths defined as hn = h (n) for all n, where h is a regulary
varing function with exponent (−a), a ∈ ]0, 1/d[. We prove that the sequence

(fn (x) − f (x)) satisfies a LDP with speed
(

nhd
n

)

and the rate function defined

as follows:







if f (x) 6= 0, Ix : t→ f (x) I

(

1 +
t

f (x)

)

if f (x) = 0, Ix (0) = 0 and Ix (t) = +∞ for t 6= 0.

(3)
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where

I (t) = sup
u∈R

{ut− ψ (u)}

ψ (u) =

∫

Rd

(

euK(z) − 1
)

dz,

which is the same rate function for the LDP of the Rosenblatt kernel estimator
(see [7]).

Our second aim is to provide pointwise MDP for the density estimator
defined by the stochastic approximation algorithm (1). In this case, we consider
more general stepsizes defined as γn = γ (n) for all n, where γ is a regulary
function with exponent (−α), α ∈ ]1/2, 1]. Throughout this paper we will use
the following notation:

(4) ξ = lim
n→+∞

(nγn)−1 .

For any positive sequence (vn) satisfying

lim
n→∞

vn = ∞ and lim
n→∞

γnv
2
n

hd
n

= 0

and general bandwidths (hn), we prove that the sequence

vn (fn (x) − f (x))

satisfies a LDP of speed
(

hd
n/
(

γnv
2
n

)

)

and rate function Ja,α,x (.) defined by

(5)







if f (x) 6= 0, Ja,α,x : t→
t2 (2 − (α− ad) ξ)

2f (x)
∫

Rd K2 (z) dz

if f (x) = 0, Ja,α,x (0) = 0 and Ja,α,x (t) = +∞ for t 6= 0.

Let us point out that using the stepsize (γn) =



hd
n

(

d
∑

k=1

hd
k

)−1


 which mini-

mize the variance of fn, we obtain the same rate function for the pointwise LDP
and MDP as the one obtained for the Rosenblatt kernel estimator.
Finally, we give a uniform version of the previous results. More precisely, let U
be a subset of R

d; we establish large and moderate deviations principles for the

sequence

(

sup
x∈U

|fn (x) − f (x)|

)

.
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2. Assumptions and main results. We define the following class of
regularly varying sequences.

Definition 1. Let γ ∈ R and (vn)n≥1 be a nonrandom positive sequence.

We say that (vn) ∈ GS (γ) if

lim
n→+∞

n

[

1 −
vn−1

vn

]

= γ.(6)

Condition (6) was introduced by Galambos and Seneta [4] to define reg-
ularly varying sequences (see also [1]), and by Mokkadem and Pelletier [9] in the
context of stochastic approximation algorithms. Typical sequences in GS (γ) are,
for b ∈ R, nγ (log n)b, nγ (log log n)b, and so on.

2.1. Pointwise LDP for the density estimator defined by the
stochastic approximation algorithm (1).

2.1.1. Choices of (γn) minimizing the MISE of fn. It was shown in
[10] that to minimize the MISE of fn, the stepsize (γn) must be chosen in GS (−1)
and must satisfy lim

n→∞
nγn = 1. The most simple example of stepsize belonging to

GS (−1) and such that lim
n→∞

nγn = 1 is (γn) =
(

n−1
)

. For this choice of stepsize,

the estimator fn defined by (1) equals the recursive kernel estimator introduced
by Wolverton and Wagner [17].

To establish pointwise LDP for fn in this case, we need the following
assumptions.

(L1) K : R
d → R is a bounded and integrable function satisfying

∫

Rd

K (z) dz =

1, and lim
‖z‖→∞

K (z) = 0.

(L2) i) (hn) =
(

cn−a
)

with a ∈ ]0, 1/d[ and c > 0.
ii) (γn) =

(

n−1
)

.

The following Theorem gives the pointwise LDP for fn in this case.

Theorem 1 (Pointwise LDP for Wolverton and Wagner estimator). Let

Assumptions (L1) and (L2) hold and assume that f is continuous at x. Then,

the sequence (fn (x) − f (x)) satisfies a LDP with speed
(

nhd
n

)

and rate function

defined by (2).

2.1.2. Choices of (γn) minimizing the variance of fn. It was shown
in [10] that to minimize the asymptotic variance of fn, the stepsize (γn) must
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be chosen in GS (−1) and must satisfy lim
n→∞

nγn = 1 − ad. The most simple

example of stepsize belonging to GS (−1) and such that lim
n→∞

nγn = 1 − ad is

(γn) =
(

(1 − ad)n−1
)

, an other stepsize satisfying this conditions is (γn) =


hd
n

(

n
∑

k=1

hd
k

)−1


. For this last choice of stepsize, the estimator fn defined

by (1) produces the estimator considered by Deheuvels [2] and Duflo [3].
To establish pointwise LDP for fn in this case, we assume that.

(L3) i) (hn) ∈ GS (−a) with a ∈ ]0, 1/d[.

ii) (γn) =



hd
n

(

n
∑

k=1

hd
k

)−1


.

The following Theorem gives the pointwise LDP for fn in this case.

Theorem 2 (Pointwise LDP for Deheuvels estimator). Let Assumptions

(L1) and (L3) hold and assume that f is continuous at x. Then, the sequence

(fn (x) − f (x)) satisfies a LDP with speed
(

nhd
n

)

and rate function defined by (3).

2.2. Pointwise MDP for the density estimator defined by the
stochastic approximation algorithm (1). Let (vn) be a positive sequence;
we assume that

(M1) K : R
d → R is a continuous, bounded function satisfying

∫

Rd

K (z) dz = 1,

and, for all j ∈ {1, . . . d},

∫

R

zjK (z) dzj = 0 and

∫

Rd

z2
j |K (z) |dz <∞.

(M2) i) (γn) ∈ GS (−α) with α ∈ ]1/2, 1].
ii) (hn) ∈ GS (−a) with a ∈ ]0, α/d[.
iii) lim

n→∞
(nγn) ∈]min{2a, (α − ad)/2},∞].

(M3) f is bounded, twice differentiable, and, for all i, j ∈ {1, . . . d}, ∂2f/∂xi∂xj

is bounded.

(M4) lim
n→∞

vn = ∞ and lim
n→∞

γnv
2
n/h

d
n = 0.

The following Theorem gives the pointwise MDP for fn.

Theorem 3 (Pointwise MDP for the recursive estimator defined by (1)).
Let Assumptions (M1)− (M4) hold and assume that f is continuous at x. Then,



Large and moderate deviation principles for recursive kernel . . . 59

the sequence (fn (x) − f (x)) satisfies a MDP with speed
(

hd
n/
(

γnv
2
n

)

)

and rate

function Ja,α,x defined in (5).

2.3. Uniform LDP and MDP for the density estimator defined
by the stochastic approximation algorithm (1). To establish uniform large
deviations principles for the density estimator defined by the stochastic approxi-
mation algorithm (1) on a bounded set, we need the following assumptions:

(U1) i) For all j ∈ {1, . . . d},

∫

R

zjK (z) dzj = 0 and

∫

Rd

z2
j |K (z) |dz <∞.

ii) K is Hölder continuous.

(U2) f is bounded, twice differentiable, and, sup
x∈Rd

‖D2f (x) ‖ <∞.

(U3) lim
n→∞

γnv
2
n log (1/hn)

hd
n

= 0 and lim
n→∞

γnv
2
n log vn

hd
n

= 0.

Set U ⊆ R
d; in order to state in a compact form the uniform large and

moderate deviations principles for the density estimator defined by the stochastic
approximation algorithm (1) on U , we set:

gU (δ) =































‖f‖U,∞Ia

(

1 +
δ

‖f‖U,∞

)

when vn ≡ 1, (L1) and (L2) hold

‖f‖U,∞I

(

1 +
δ

‖f‖U,∞

)

when vn ≡ 1, (L1) and (L3) hold

δ2 (2 − (α− ad) ξ)

2‖f‖U,∞

∫

Rd K2 (z) dz
when vn → ∞, (M1) − (M4) hold

g̃U (δ) = min {gU (δ) , gU (−δ)}

where ‖f‖U,∞ = sup
x∈U

|f (x)|.

Remark 1. The functions gU (.) and g̃U (.) are non-negative, continuous,
increasing on ]0,+∞[ and decreasing on ]−∞, 0[, with a unique global minimum
in 0 (g̃U (0) = gU (0) = 0). They are thus good rate functions (and gU (.) is strictly
convex).

Theorem 4 below states uniform LDP on U in the case U is bounded, and
Theorem 5 in the case U is unbounded.

Theorem 4 (Uniform deviations on a bounded set for the recursive esti-
mator defined by (1)). Let (U1) − (U3) hold. Then for any bounded subset U of
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R
d and for all δ > 0,

lim
n→∞

γnv
2
n

hd
n

log P

[

sup
x∈U

vn |fn (x) − f (x)| ≥ δ

]

= −g̃U (δ)(7)

To establish uniform large deviations principles for the density estimator
defined by the stochastic approximation algorithm (1) on an unbounded set, we
need the following additionnal assumptions:

(U4) i) There exists β > 0 such that

∫

Rd

‖x‖βf (x) dx <∞.

ii) f is uniformly continuous.

(U5) There exists τ > 0 such that z 7→ ‖z‖τK (z) is a bounded function.

(U6) i) There exists ζ > 0 such that

∫

Rd

‖z‖ζ |K (z)| dz <∞

ii) There exists η > 0 such that z 7→ ‖z‖ηf (z) is a bounded function.

Theorem 5 (Uniform deviations on an unbounded set for the recursive
estimator defined by (1)). Let (U1) − (U6) hold. Then for any subset U of R

d

and for all δ > 0,

−g̃U (δ) ≤ lim inf
n→∞

γnv
2
n

hd
n

log P

[

sup
x∈U

vn |fn (x) − f (x)| ≥ δ

]

≤ lim sup
n→∞

γnv
2
n

hd
n

log P

[

sup
x∈U

vn |fn (x) − f (x)| ≥ δ

]

≤ −
β

β + d
g̃U (δ)

The following corollary is a straightforward consequence of Theorem 5.

Corollary 1. Under the assumptions of Theorem 5, if

∫

Rd

‖x‖ξf (x) dx <

∞ for all ξ in R, then for any subset U of R
d,

lim
n→∞

γnv
2
n

hd
n

log P

[

sup
x∈U

vn |fn (x) − f (x)| ≥ δ

]

= −g̃U (δ)(8)

Comment. Since the sequence

(

sup
x∈U

|fn (x) − f (x)|

)

is positive and

since g̃U is continuous on [0,+∞[, increasing and goes to infinity as δ → ∞, the



Large and moderate deviation principles for recursive kernel . . . 61

application of Lemma 5 in [18] allows to deduce from (7) or (8) that sup
x∈U

|fn(x)−

f(x)| satisfies a LDP with speed
(

γ−1
n hd

n

)

and good rate function g̃U on R
+.

3. Proofs. Throught this section we use the following notation:

Πn =

n
∏

j=1

(1 − γj) ,

Zn (x) = h−d
n Yn,

Yn = K

(

x−Xn

hn

)

(9)

Throughout the proofs, we repeatedly apply Lemma 2 in [10]. For the convenience
of the reader, we state it now.

Lemma 1. Let (vn) ∈ GS (v∗), (γn) ∈ GS (−α), and m > 0 such that

m− v∗ξ > 0 where ξ is defined in (4). We have

lim
n→+∞

vnΠm
n

n
∑

k=1

Π−m
k

γk

vk
=

1

m− v∗ξ
.

Moreover, for all positive sequence (αn) such that lim
n→+∞

αn = 0, and for all

δ ∈ R,

lim
n→+∞

vnΠm
n

[

n
∑

k=1

Π−m
k

γk

vk
αk + δ

]

= 0.

Noting that, in view of (1), we have

fn (x) − f (x) = (1 − γn) (fn−1 (x) − f (x)) + γn (Zn (x) − f (x))

=

n−1
∑

k=1





n
∏

j=k+1

(1 − γj)



 γk (Zk (x) − f (x)) + γn (Zn (x) − f (x))

+





n
∏

j=1

(1 − γj)



 (f0 (x) − f (x))

= Πn

n
∑

k=1

Π−1
k γk (Zk (x) − f (x)) + Πn (f0 (x) − f (x)) .
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It follows that

E [fn (x)] − f (x) = Πn

n
∑

k=1

Π−1
k γk (E [Zk (x)] − f (x)) + Πn (f0 (x) − f (x)) .

Then, we can write that

fn (x) − E [fn (x)] = Πn

n
∑

k=1

Π−1
k γk (Zk (x) − E [Zk (x)])

= Πn

n
∑

k=1

Π−1
k γkh

−d
k (Yk − E [Yk])

Let (Ψn) and (Bn) be the sequences defined as

Ψn (x) = Πn

n
∑

k=1

Π−1
k γkh

−d
k (Yk − E [Yk])

Bn (x) = E [fn (x)] − f (x)

We have:

fn (x) − f (x) = Ψn (x) +Bn (x)(10)

Theorems 1, 2, 3, 4 and 5 are consequences of (10) and the following propositions.

Proposition 1 (Pointwise LDP and MDP for (Ψn)).

1. Under the assumptions (L1) and (L2), the sequence (fn (x) − E (fn (x)))

satisfies a LDP with speed
(

nhd
n

)

and rate function Ia,x.

2. Under the assumptions (L1) and (L3), the sequence (fn (x) − E (fn (x)))

satisfies a LDP with speed
(

nhd
n

)

and rate function Ix.

3. Under the assumptions (M1) − (M4), the sequence (vnΨn (x)) satisfies a

LDP with speed
(

hd
n/
(

γnv
2
n

)

)

and rate function Ja,α,x.

Proposition 2 (Uniform LDP and MDP for (Ψn)).

1. Let (U1) − (U3) hold. Then for any bounded subset U of R
d and for all

δ > 0,

lim
n→∞

γnv
2
n

hd
n

log P

[

sup
x∈U

vn |Ψn (x)| ≥ δ

]

= −g̃U (δ)
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2. Let (U1) − (U6) hold. Then for any subset U of R
d and for all δ > 0,

−g̃U (δ) ≤ lim inf
n→∞

γnv
2
n

hd
n

log P

[

sup
x∈U

vn |Ψn (x)| ≥ δ

]

≤ lim sup
n→∞

γnv
2
n

hd
n

log P

[

sup
x∈U

vn |Ψn (x)| ≥ δ

]

≤ −
ξ

ξ + d
g̃U (δ)

The proof of the following proposition is given [10].

Proposition 3 (Pointwise and uniform convergence rate of (Bn)). Let

Assumptions (M1) − (M3) hold.

1. If for all i, j ∈ {1, . . . d}, ∂2f/∂xi∂xj is continuous at x. We have

If a ≤ α/(d + 4), then

Bn (x) = O
(

h2
n

)

.

If a > α/(d + 4), then

Bn (x) = o

(
√

γnh
−d
n

)

.

2. If (U2) holds, then:

If a ≤ α/(d + 4), then

sup
x∈Rd

|Bn (x)| = O
(

h2
n

)

.

If a > α/(d + 4), then

sup
x∈Rd

|Bn (x)| = o

(
√

γnh
−d
n

)

.

Set x ∈ R
d; since the assumptions of Theorems 1 and 2 guarantee that

lim
n→∞

Bn (x) = 0, Theorem 1 (respectively Theorem 2) is a straightforward con-

sequence of the application of Part 1 (respectively of Part 2) of Proposition 1.
Moreover, under the assumptions of Theorem 3, we have by application of Pro-
postion 3, lim

n→∞
vnBn (x) = 0; Theorem 3 thus straightfully follows from the

application of Part 3 of Proposition 1. Finaly, Theorem 4 and 5 follows from
Proposition 2 and the second part of Proposition 3.
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We now state a preliminary lemma, which will be used in the proof of
Proposition 1.

For any u ∈ R, Set

Λn,x (u) =
γnv

2
n

hd
n

log E

[

exp

(

u
hd

n

γnvn
Ψn (x)

)]

ΛL,1
x (u) = f (x) (ψa (u) − u) ,

ΛL,2
x (u) = f (x) (ψ (u) − u) ,

ΛM
x (u) =

u2

2 (2 − (α− ad) ξ)
f (x)

∫

Rd

K2 (z) dz

Lemma 2. (Convergence of Λn,x)

1. (Pointwise convergence)
If f is continuous at x, then for all u ∈ R

lim
n→∞

Λn,x (u) = Λx (u)(11)

where

Λx (u) =















ΛL,1
x (u) when vn ≡ 1, (L1) and (L2) hold

ΛL,2
x (u) when vn ≡ 1, (L1) and (L3) hold

ΛM
x (u) when vn → ∞, (M1) − (M4) hold

2. (Uniform convergence)
If f is uniformly continuous, then the convergence (11) holds uniformly in

x ∈ U .

Our proofs are now organized as follows: Lemma 2 is proved in Section 3.1,
Proposition 1 in Section 3.4 and Proposition 2 in Section 3.3.

3.1. Proof of Lemma 2. Set u ∈ R, un = u/vn and an = hd
nγ

−1
n . We

have:

Λn,x (u) =
v2
n

an
log E [exp (unanΨn (x))]

=
v2
n

an
log E

[

exp

(

unanΠn

n
∑

k=1

Π−1
k a−1

k (Yk − E [Yk])

)]
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=
v2
n

an

n
∑

k=1

log E

[

exp

(

un
anΠn

akΠk
Yk

)]

− uvnΠn

n
∑

k=1

Π−1
k a−1

k E [Yk]

By Taylor expansion, there exists ck,n between 1 and E

[

exp

(

un
anΠn

akΠk
Yk

)]

such

that

log E

[

exp

(

un
anΠn

akΠk
Yk

)]

= E

[

exp

(

un
anΠn

akΠk
Yk

)

− 1

]

−
1

2c2k,n

(

E

[

exp

(

un
anΠn

akΠk
Yk

)

− 1

])2

and Λn,x can be rewriten as

Λn,x (u) =
v2
n

an

n
∑

k=1

E

[

exp

(

un
anΠn

akΠk
Yk

)

− 1

]

−
v2
n

2an

n
∑

k=1

1

c2k,n

(

E

[

exp

(

un
anΠn

akΠk
Yk

)

− 1

])2

−uvnΠn

n
∑

k=1

Π−1
k a−1

k E [Yk](12)

First case: vn → ∞. A Taylor’s expansion implies the existence of c′k,n

between 0 and un
anΠn

akΠk
Yk such that

E

[

exp

(

un
anΠn

akΠk
Yk

)

− 1

]

= un
anΠn

akΠk
E [Yk] +

1

2

(

un
anΠn

akΠk

)2

E
[

Y 2
k

]

+
1

6

(

un
anΠn

akΠk

)3

E

[

Y 3
k e

c′
k,n

]

Therefore,

Λn,x (u) =
1

2
u2anΠ2

n

n
∑

k=1

Π−2
k a−2

k E
[

Y 2
k

]

+
1

6
u2una

2
nΠ3

n

n
∑

k=1

Π−3
k a−3

k E

[

Y 3
k e

c′
k,n

]

−
v2
n

2an

n
∑

k=1

1

c2k,n

(

E

[

exp

(

un
anΠn

akΠk
Yk

)

− 1

])2
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=
1

2
f (x) u2anΠ2

n

n
∑

k=1

Π−2
k a−1

k γk

∫

Rd

K2 (z) dz +R(1)
n,x (u) +R(2)

n,x (u)(13)

with

R(1)
n,x (u) =

1

2
u2anΠ2

n

n
∑

k=1

Π−2
k a−1

k γk

∫

Rd

K2 (z) [f (x− zhk) − f (x)] dz

R(2)
n,x (u) =

1

6

u3

vn
a2

nΠ3
n

n
∑

k=1

Π−3
k a−3

k E

[

Y 3
k e

c′
k,n

]

−
v2
n

2an

n
∑

k=1

1

c2k,n

(

E

[

exp

(

un
anΠn

akΠk
Yk

)

− 1

])2

Since f is continuous, we have lim
k→∞

|f (x− zhk) − f (x)| = 0, and thus, by the

dominated convergence theorem, (M1) implies that

lim
k→∞

∫

Rd

K2 (z) |f (x− zhk) − f (x)| dz = 0.

Since (an) ∈ GS (α− ad), and lim
n→∞

(nγn) > (α− ad) /2. Lemma 1 then ensures

that

anΠ2
n

n
∑

k=1

Π−2
k a−1

k γk =
1

(2 − (α− ad) ξ)
+ o (1) ,(14)

it follows that lim
n→∞

∣

∣

∣R(1)
n,x (u)

∣

∣

∣ = 0.

Moreover, in view of (9), we have |Yk| ≤ ‖K‖∞, then

c′k,n ≤

∣

∣

∣

∣

un
anΠn

akΠk
Yk

∣

∣

∣

∣

≤ |un| ‖K‖∞(15)

Noting that E |Yk|
3 ≤ hd

k ‖f‖∞

∫

Rd

∣

∣K3 (z)
∣

∣ dz. Hence, using Lemma 1 and (15),

there exists a positive constant c1 such that, for n large enough,

(16)

∣

∣

∣

∣

∣

u3

vn
a2

nΠ3
n

n
∑

k=1

Π−3
k a−3

k E

[

Y 3
k e

c′
k,n

]

∣

∣

∣

∣

∣

≤ c1e
|un|‖K‖

∞

u3

vn
‖f‖∞

∫

Rd

∣

∣K3 (z)
∣

∣ dz
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which goes to 0 as n→ ∞ since vn → ∞.
Moreover, Lemma 1 ensures that

∣

∣

∣

∣

∣

v2
n

2an

n
∑

k=1

1

c2k,n

(

E

[

exp

(

un
anΠn

akΠk
Yk

)

− 1

])2
∣

∣

∣

∣

∣

≤
v2
n

2an

n
∑

k=1

(

E

[

exp

(

un
anΠn

akΠk
Yk

)

− 1

])2

≤
u2

2
‖f‖2

∞ anΠ2
n

n
∑

k=1

Π−2
k a−1

k γkh
d
k + o

(

anΠ2
n

n
∑

k=1

Π−2
k a−1

k γkh
d
k

)

= o (1)(17)

The combination of (16) and (17) ensures that lim
n→∞

∣

∣

∣
R(2)

n,x (u)
∣

∣

∣
= 0. Then, we

obtain from (13) and (14), lim
n→∞

Λn,x (u) = ΛM
x (u).

Second case: (vn) ≡ 1. It follows from (12) that

Λn,x (u) =
1

an

n
∑

k=1

E

[

exp

(

u
anΠn

akΠk
Yk

)

− 1

]

−
1

2an

n
∑

k=1

1

c2k,n

(

E

[

exp

(

u
anΠn

akΠk
Yk

)

− 1

])2

− uΠn

n
∑

k=1

Π−1
k a−1

k E [Yk]

=
1

an

n
∑

k=1

hd
k

∫

Rd

[

exp

(

u
anΠn

akΠk
K (z)

)

− 1

]

f (x) dz

−uΠn

n
∑

k=1

Π−1
k γk

∫

Rd

K (z) f (x) dz −R(3)
n,x (u) +R(4)

n,x (u)

= f (x)
1

an

n
∑

k=1

hd
k

[
∫

Rd

(exp (uVn,kK (z)) − 1) − uVn,kK (z)

]

dz

−R(3)
n,x (u) +R(4)

n,x (u)(18)

with

Vn,k =
anΠn

akΠk



68 Yousri Slaoui

R(3)
n,x (u) =

1

2an

n
∑

k=1

1

c2k,n

(

E

[

exp

(

u
anΠn

akΠk
Yk

)

− 1

])2

R(4)
n,x (u) =

1

an

n
∑

k=1

hd
k

∫

Rd

[

exp

(

u
anΠn

akΠk
K (z)

)

− 1

]

[f (x− zhk) − f (x)] dz

−uΠn

n
∑

k=1

Π−1
k γk

∫

Rd

K (z) [f (x− zhk) − f (x)] dz.

It follows from (17), that lim
n→∞

∣

∣

∣R(3)
n,x (u)

∣

∣

∣ = 0.

Since
∣

∣et − 1
∣

∣ ≤ |t| e|t|, we have

∣

∣

∣R(4)
n,x (u)

∣

∣

∣ ≤
1

an

n
∑

k=1

hd
k

∫

Rd

∣

∣

∣

∣

[

exp

(

u
anΠn

akΠk
K (z)

)

− 1

]

[f (x− zhk) − f (x)]

∣

∣

∣

∣

dz

+ |u|Πn

n
∑

k=1

Π−1
k γk

∫

Rd

|K (z)| |f (x− zhk) − f (x)| dz

≤ |u| e|u|‖K‖
∞Πn

n
∑

k=1

Π−1
k γk

∫

Rd

|K (z)| |f (x− zhk) − f (x)| dz

+ |u|Πn

n
∑

k=1

Π−1
k γk

∫

Rd

|K (z)| |f (x− zhk) − f (x)| dz

≤ |u|
(

e|u|‖K‖
∞ + 1

)

Πn

n
∑

k=1

Π−1
k γk

∫

Rd

|K (z)| |f (x− zhk) − f (x)| dz

In view of Lemma 1 the sequence

(

Πn

n
∑

k=1

Π−1
k γk

)

is bounded, then, the domi-

nated convergence theorem ensures that lim
n→∞

R(4)
n,x (u) = 0.

In the case f is uniformly continuous, set ε > 0 and let M > 0 such that

2 ‖f‖∞

∫

‖z‖≤M
|K (z)| dz ≤ ε/2. We need to prove that for n sufficiently large

sup
x∈Rd

∫

‖z‖≤M
|K (z)| |f (x− zhk) − f (x)| dz ≤ ε/2

which is a straightforward consequence of the uniform continuity of f .
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Then, it follows from (18), that

(19) lim
n→∞

Λn,x (u)

= lim
n→∞

f (x)
γn

hd
n

n
∑

k=1

hd
k

∫

Rd

[(exp (uVn,kK (z)) − 1) − uVn,kK (z)] dz

In the case when (vn) ≡ 1, (L1) and (L2) hold

Πn

Πk
=

n
∏

j=k+1

(1 − γj)

=
k

n
,

then,

Vn,k =
anΠn

akΠk

=

(

k

n

)ad

.

Consequently, it follows from (19) and from some analysis considerations that

lim
n→∞

Λn,x (u) = f (x)

∫

Rd

[
∫ 1

0
s−ad

(

exp
(

usadK (z)
)

− 1
)

− usadK (z)

]

dsdz

= ΛL,1
x (u)

In the case when (vn) ≡ 1, (L1) and (L3) hold. We have

Πn

Πk
=

n
∏

j=k+1

(1 − γj)

=

n
∏

j=k+1

(

1 −
hd

j
∑j

l=1 h
d
l

)

=

n
∏

j=k+1

∑j−1
l=1 h

d
l

∑j
l=1 h

d
l
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=

∑k
l=1 h

d
l

∑n
l=1 h

d
l

=

∑k
l=1 h

d
l

hd
k

hd
k

hd
n

hd
n

∑n
l=1 h

d
l

=
γn

γk

hd
k

hd
n

,

then,

Vn,k = 1.

Consequently, it follows from (19) that

lim
n→∞

Λn,x (u) = f (x)

∫

Rd

[(exp (uK (z)) − 1) − uK (z)] dz

= ΛL,2
x (u)

and thus Lemma 1 is proved. �

3.2. Proof of Proposition 1. To prove Proposition 1, we apply Propo-
sition 1 in [8], Lemma 2 and the following result (see [12]).

Lemma 3. Let (Zn) be a sequence of real random variables, (νn) a

positive sequence satisfying lim
n→∞

νn = +∞, and suppose that there exists some

convex non-negative function Γ defined on R such that

∀u ∈ R, lim
n→∞

1

νn
log E [exp (uνnZn)] = Γ (u) .

If the Legendre function Γ∗ of Γ is a strictly convex function, then the sequence

(Zn) satisfies a LDP of speed (νn) and good rate fonction Γ∗.

In our framework, when vn ≡ 1 and γn = n−1, we take Zn = fn (x) −
E (fn (x)), νn = nhd

n with hn = cn−a where a ∈ ]0, 1/d[ and Γ = ΛL,1
x . In

this case, the Legendre transform of Γ = ΛL,1
x is the rate function Ia,x : t →

f (x) Ia

(

t

f (x)
+ 1

)

which is strictly convex by Proposition 1 in [8]. Farther,

when vn ≡ 1 and γn = hd
n

(

n
∑

k=1

hd
k

)−1

, we take Zn = fn (x)−E (fn (x)), νn = nhd
n

with hn ∈ GS (−a) where a ∈ ]0, 1/d[ and Γ = ΛL,2
x . In this case, the Legendre
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transform of Γ = ΛL,2
x is the rate function Ix : t → f (x) I

(

t

f (x)
+ 1

)

which

is strictly convex by Proposition 1 in [7]. Otherwise, when, vn → ∞, we take
Zn = vn (fn (x) − E (fn (x))), νn = hd

n/
(

γnv
2
n

)

and Γ = ΛM
x ; Γ∗ is then the

quadratic rate function Ja,α,x defined in (5) and thus Proposition 1 follows. �

3.3. Proof of Proposition 2. In order to prove Proposition 2, we first
establish some lemmas.

Lemma 4. Let φ : R
+ → R be the function defined for δ > 0 as

φ (δ) =































(

ψ′
a

)−1
(

1 +
δ

‖f‖U,∞

)

when vn ≡ 1, (L1) and (L2) hold

(

ψ′
)−1

(

1 +
δ

‖f‖U,∞

)

when vn ≡ 1, (L1) and (L3) hold

δ (2 − (α− ad) ξ)

‖f‖U,∞

∫

Rd K2 (z) dz
when vn → ∞, (M1) − (M4) hold

1. sup
u∈R

{

uδ − sup
x∈U

Λx (u)

}

equals gU (δ) and is achieved for u = φ (δ) > 0.

2. sup
u∈R

{

−uδ − sup
x∈U

Λx (u)

}

equals gU (δ) and is achieved for u = φ (−δ) < 0.

P r o o f o f L em m a 4. We just prove the first part, the prrof of the
second part one being similar.

• First case : vn ≡ 1, (L1) and (L2) hold.
Since et ≥ 1 + t, for all t, we have ψa (u) ≥ u and therefore,

uδ − sup
x∈U

Λx (u) = uδ − ‖f‖U,∞ (ψa (u) − u)

= ‖f‖U,∞

[

u

(

1 +
δ

‖f‖U,∞

)

− ψa (u)

]

The function u 7→ uδ− sup
x∈U

Λx (u) has second derivative −‖f‖U,∞ψ
′′
a (u) < 0

and thus it has a unique maximum achieved for

u0 =
(

ψ′
a

)−1
(

1 +
δ

‖f‖U,∞

)

Now, since ψ′
a is increasing and since ψ′

a (0) = 1, we deduce that u0 > 0.
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• Second case : vn ≡ 1, (L1) and (L3) hold.
Since et ≥ 1 + t, for all t, we have ψ (u) ≥ u and therefore,

uδ − sup
x∈U

Λx (u) = uδ − ‖f‖U,∞ (ψ (u) − u)

= ‖f‖U,∞

[

u

(

1 +
δ

‖f‖U,∞

)

− ψ (u)

]

The function u 7→ uδ− sup
x∈U

Λx (u) has second derivative −‖f‖U,∞ψ
′′ (u) < 0

and thus it has a unique maximum achieved for

u0 =
(

ψ′
)−1

(

1 +
δ

‖f‖U,∞

)

Now, since ψ′ is increasing and since ψ′ (0) = 1, we deduce that u0 > 0.

• Third case vn → ∞ and (M2) holds. In this case, we have

uδ − sup
x∈U

Λx (u) = uδ −
u2

2 (2 − (α− ad) ξ)
‖f‖U,∞

∫

Rd

K2 (z) dz.

In view of the assumption (M2), we have ξ−1 > (α− ad) /2, then the
function u 7→ uδ − sup

x∈U
Λx (u) has second derivative

−
1

(2 − (α− ad) ξ)
‖f‖U,∞

∫

Rd

K2 (z) dz < 0

and thus it has a unique maximum achieved for

u0 =
δ (2 − (α− ad) ξ)

‖f‖U,∞

∫

Rd K2 (z) dz
> 0 2

Lemma 5.

• In the case when (vn) ≡ 1 and (γn) =
(

n−1
)

, let (L1) and (L2) hold;

• In the case when (vn) ≡ 1 and (γn) =



hd
n

(

n
∑

k=1

hd
k

)−1


, let (L1) and

(L3) hold;
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• In the case when vn → ∞, let (M1) − (M4) hold.

Then for any δ > 0,

lim
n→∞

γnv
2
n

hd
n

log sup
x∈U

P [vnΨn (x) ≥ δ] = −gU (δ)

lim
n→∞

γnv
2
n

hd
n

log sup
x∈U

P [vnΨn (x) ≤ −δ] = −gU (−δ)

lim
n→∞

γnv
2
n

hd
n

log sup
x∈U

P [vn |Ψn (x)| ≤ −δ] = −g̃U (−δ)

P r o o f o f L e m m a 5. The proof of Lemma 5 is similar to the proof of
Lemma 4 in [8]. �

Lemma 6. Let Assumptions (U1) − (U3) hold and assume that either

(vn) ≡ 1 or (U4) holds.

1. If U is a bounded set, then for any δ > 0, we have

lim
n→∞

γnv
2
n

hd
n

log P

[

sup
x∈U

vn |Ψn (x)|

]

≤ −g̃U (δ)

2. If U is an unbounded set, then, for any b > 0 and δ > 0,

lim sup
n→∞

γnv
2
n

hd
n

log P

[

sup
x∈U,‖x‖≤wn

vn |Ψn (x)|

]

≤ db− g̃U (δ)

where wn = exp

(

bhd
n

γnv2
n

)

.

P r o o f o f L e m m a 6. Set ρ ∈ ]0, δ[, let β denote the Hölder order of

K, and ‖K‖H its corresponding Hölder norm. Set wn = exp

(

bhd
n

γnv2
n

)

and

Rn =

(

ρ

2‖K‖HvnΠn
∑n

k=1 Π−1
k γkh

−(d+β)
k

) 1
β

We begin with the proof of the second part of Lemma 6. There exist N ′ (n) points

of R
d, y

(n)
1 , y

(n)
2 , . . . , y

(n)
N ′(n) such that the ball

{

x ∈ R
d; ‖x‖ ≤ wn

}

can covered
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by the N ′ (n) balls B
(n)
i =

{

x ∈ R
d; ‖x− y

(n)
i ‖ ≤ Rn

}

and such that N ′ (n) ≤

2

(

2wn

Rn

)d

. Considering only the N (n) balls that intersect {x ∈ U ; ‖x‖ ≤ wn},

we can write

{x ∈ U ; ‖x‖ ≤ wn} ⊂ ∪
N(n)
i=1 B

(n)
i .

For each i ∈ {1, . . . , N (n)}, set x
(n)
i ∈ B

(n)
i ∩ U . We then have:

P

[

sup
x∈U,‖x‖≤wn

vn |Ψn (x)| ≥ δ

]

≤

N(n)
∑

i=1

P



 sup
x∈B

(n)
i

vn |Ψn (x)| ≥ δ





≤ N (n) max
1≤i≤N(n)

P



 sup
x∈B

(n)
i

vn |Ψn (x)| ≥ δ



 .

Now, for any i ∈ {1, . . . , N (n)} and any x ∈ B
(n)
i ,

vn |Ψn| ≤ vn

∣

∣

∣
Ψn

(

x
(n)
i

)∣

∣

∣

+vnΠn

n
∑

k=1

Π−1
k γkh

−d
k

∣

∣

∣

∣

∣

K

(

x−Xk

hk

)

−K

(

x
(n)
i −Xk

hk

)∣

∣

∣

∣

∣

+vnΠn

n
∑

k=1

Π−1
k γkh

−d
k E

∣

∣

∣

∣

∣

K

(

x−Xk

hk

)

−K

(

x
(n)
i −Xk

hk

)∣

∣

∣

∣

∣

≤ vn

∣

∣

∣Ψn

(

x
(n)
i

)∣

∣

∣+ 2vn‖K‖HΠn

n
∑

k=1

Π−1
k γkh

−d
k

(

‖x− x
(n)
i ‖

hk

)β

≤ vn

∣

∣

∣
Ψn

(

x
(n)
i

)∣

∣

∣
+ 2vn‖K‖HΠn

n
∑

k=1

Π−1
k γkh

−(d+β)
k Rβ

n

≤ vn

∣

∣

∣Ψn

(

x
(n)
i

)∣

∣

∣+ ρ

Hence, we deduce that

P

[

sup
x∈U,‖x‖≤wn

vn |Ψn (x)| ≥ δ

]

≤ N (n) max
1≤i≤N(n)

P

[

vn

∣

∣

∣
Ψn

(

x
(n)
i

)∣

∣

∣
≥ δ − ρ

]

≤ N (n) sup
x∈U

P

[

vn

∣

∣

∣Ψn

(

x
(n)
i

)∣

∣

∣ ≥ δ − ρ
]
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Further, by definition of N (n) and wn, we have

logN (n) ≤ logN ′ (n) ≤ db
hd

n

γnv2
n

+ (d+ 1) log 2 − d logRn

and

γnv
2
n

hd
n

logRn =
γnv

2
n

βhd
n

[

log ρ− log (2‖K‖H) − log vn − log

(

Πn

n
∑

k=1

Π−1
k γkh

−(d+β)
k

)]

.

Moreover, we have
(

h(d+β)
n

)

∈ GS (−a (d+ β)). Lemma 1 ensures that

Πn

n
∑

k=1

Π−1
k γkh

−(d+β)
k = O

(

h−(d+β)
n

)

,

then, in view of (U3), we have

lim sup
n→∞

γnv
2
n

hd
n

logN (n) ≤ db(20)

The application of Lemma 5 then yiels

lim sup
n→∞

γnv
2
n

hd
n

log P

[

sup
x∈U,‖x‖≤wn

vn |Ψn (x)| ≥ δ

]

≤ lim sup
n→∞

γnv
2
n

hd
n

logN (n) − g̃U (δ − ρ)

≤ db− g̃U (δ − ρ) .

Since the inequality holds for any ρ ∈ ]0, δ[, part 2 of Lemma 6 thus follows from
the continuity of g̃U .

Let us now consider part 1 of Lemma 6. This part is proved by following
the same steps as for part 2, except that the number N (n) of balls covering
U is at most the integer part of (∆/Rn)d, where ∆ denotes the diameter of U .
Relation (20) then becomes

lim sup
n→∞

γnv
2
n

hd
n

logRn ≤ 0

and Lemma 6 is proved. �
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Lemma 7. Let (U1) i), (M2) and (U6) i) hold. Assume that either

(vn) ≡ 1 or (U3) and (U6) ii) hold. Moreover assume that f is continuous. For

any b > 0 if we set wn = exp

(

bhd
n

γnv2
n

)

then, for any ρ > 0, we have, for n large

enough,

sup
x∈U,‖x‖≥wn

vnΠn

n
∑

k=1

Π−1
k γkh

−d
k

∣

∣

∣

∣

E

[

K

(

x−Xk

hk

)]∣

∣

∣

∣

≤ ρ

P r o o f o f L e m m a 7. We have

(21) vnΠn

n
∑

k=1

Π−1
k γkh

−d
k E

[

K

(

x−Xk

hk

)]

= vnΠn

n
∑

k=1

Π−1
k γk

∫

Rd

K (z) f (x− zhk) dz.

First, Lemma 1, ensures that

Πn

n
∑

k=1

Π−1
k γk = 1 + o (1) .(22)

Set ρ > 0. In the case (vn) ≡ 1, we setM such that ‖f∞‖

∫

‖z‖>M
|K (z)| dz ≤ ρ/2;

it follows from (22) that

vnΠn

n
∑

k=1

Π−1
k γkh

−d
k

∣

∣

∣

∣

E

[

K

(

x−Xk

hk

)]∣

∣

∣

∣

≤
ρ

2
+ f (x)

∫

‖z‖≤M
|K (z)| dz

+Πn

n
∑

k=1

Π−1
k γk

∫

‖z‖>M
|K (z)| |f (x− zhk) − f (x)| dz.

Lemma 7 then follows from the fact that f fulfills (U6) ii). As matter of fact,
this conditions implies that lim

‖x‖→∞,x∈U
f (x) = 0 and that the third term in the

right-hand-side of the previous inequality goes to 0 as n→ ∞ (by the dominated
convergence).
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Let us now assume that lim
n→∞

vn = ∞; relation (21) can be rewritten as

vnΠn

n
∑

k=1

Π−1
k γkh

−d
k E

[

K

(

x−Xk

hk

)]

= vnΠn

n
∑

k=1

Π−1
k γk

∫

‖z‖≤wn/2
K (z) f (x− zhk) dz

+vnΠn

n
∑

k=1

Π−1
k γk

∫

‖z‖≥wn/2
K (z) f (x− zhk) dz.

First, since ‖x‖ ≥ wn and ‖z‖ ≤ wn/2, we have

‖x− zhk‖ ≥ wn (1 − hi/2)

≥ wn/2 for n large enough.

Moreover, in view of assumptions (U3), for all ξ > 0,

lim
n→∞

vn

wξ
n

= lim
n→∞

exp

{

−ξb
hd

n

γnv2
n

(

1 −
v2
n log vn

ξbhd
n

)}

= 0.(23)

Set Mf = sup
x∈Rd

‖x‖ηf (x). Assumption (U6) ii) and equations (22), (23) implie

that, for n sufficiently large,

sup
‖x‖≥wn

vnΠn

n
∑

k=1

Π−1
k γk

∫

‖z‖≤wn/2
|K (z) f (x− zhk)| dz

≤Mf sup
‖x‖≥wn

vnΠn

n
∑

k=1

Π−1
k γk

∫

‖z‖≤wn/2
|K (z)| ‖x− zhk‖

−ηdz

≤ 2ηMf
vn

wη
n

∫

Rd

|K (z)| dz

≤
ρ

2
.

Moreover, in view of (U3), (U6) i) and (22), (23), for n sufficiently large,

sup
‖x‖≥wn

vnΠn

n
∑

k=1

Π−1
k γk

∫

‖z‖>wn/2
|K (z) f (x− zhk)| dz
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≤ 2ζMf
vn

wζ
n

∫

‖z‖>wn/2
‖z‖ζ |K (z)| dz

≤
ρ

2
.

This concludes the proof of Lemma 7. SinceK is a bounded function that vanishes
at infinity, we have lim

‖x‖→∞
|Ψn (x)| = 0 for every n ≥ 1. Moreover, since K is

assumed to be continuous, Ψn is continuous, and this ensures the existence of a
random variable sn such that

|Ψn (sn)| = sup
x∈U

|Ψn (x)| . 2

Lemma 8. Let Assumptions (U1) − (U3), (U4) ii) and (U5) hold. Sup-

pose either (vn) ≡ 1 or (H6) hold. For any b > 0, set wn = exp

(

b
hd

n

γnv2
n

)

; for

any δ > 0, we have

lim sup
n→∞

γnv
2
n

hd
n

log P [‖sn‖ ≥ wn and |Ψn (sn)| ≥ δ] ≤ −bβ(24)

P r o o f o f L e m m a 8. We first note that sn ∈ U and therefore

‖sn‖ ≥ wn and vn |Ψn (sn)| ≥ δ

⇒ ‖sn‖ ≥ wn and vn

∣

∣

∣

∣

∣

Πn

n
∑

k=1

Π−1
k γkh

−d
k K

(

sn −Xk

hk

)

∣

∣

∣

∣

∣

+vnE

∣

∣

∣

∣

∣

Πn

n
∑

k=1

Π−1
k γkh

−d
k K

(

sn −Xk

hk

)

∣

∣

∣

∣

∣

≥ δ

⇒ ‖sn‖ ≥ wn and vnΠn

n
∑

k=1

Π−1
k γkh

−d
k

∣

∣

∣

∣

K

(

sn −Xk

hk

)∣

∣

∣

∣

− sup
‖x‖≥wn,x∈U

vnΠn

n
∑

k=1

Π−1
k γkh

−d
k E

∣

∣

∣

∣

K

(

sn −Xk

hk

)∣

∣

∣

∣

≥ δ.

Set ρ ∈ ]0, δ[; the application of Lemma 7 ensures that, for n large enough,

‖sn‖ ≥ wn and vn |Ψn (sn)| ≥ δ
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⇒ ‖sn‖ ≥ wn and vn

∣

∣

∣

∣

∣

Πn

n
∑

k=1

Π−1
k γkh

−d
k K

(

sn −Xk

hk

)

∣

∣

∣

∣

∣

≥ δ − ρ.

Set κ = sup
x∈Rd

‖x‖γ |K (x)| (see Assumption (U5)). We obtain, for n sufficiently

large,

‖sn‖ ≥ wn and vn |Ψn (sn)| ≥ δ

⇒ ‖sn‖ ≥ wn and ∃k ∈ {1, . . . , n} such that
vn

hd
k

∣

∣

∣

∣

K

(

sn −Xk

hk

)∣

∣

∣

∣

≥ δ − ρ

⇒ ‖sn‖ ≥ wn and ∃k ∈ {1, . . . , n} such that κhγ
k ≥

hd
k

vn
‖sn −Xk‖

γ (δ − ρ)

⇒ ‖sn‖ ≥ wn and ∃k ∈ {1, . . . , n} such that |‖sn‖ − ‖Xk‖| ≤

[

κvnh
γ−d
k

δ − ρ

]
1
γ

⇒ ‖sn‖ ≥ wn and ∃k ∈ {1, . . . , n} such that ‖Xk‖ ≤ ‖sn‖ −

[

κvnh
γ−d
k

δ − ρ

] 1
γ

⇒ ‖sn‖ ≥ wn and ∃k ∈ {1, . . . , n} such that ‖Xk‖ ≤ wn (1 − un,k) with

un,k = w−1
n v

1
γ
n h

γ−d
γ

k

(

κ

δ − ρ

)
1
γ

.

Moreover, we can write un,k as

un,k = exp

(

−b
hd

n

γnv2
n

[

1 −
1

bγ

γnv
2
n log vn

hd
n

−
γ − d

bγ

γnv
2
n log (hk)

hd
n

])(

κ

δ − ρ

) 1
γ

and assumption (U3) ensure that lim
n→∞

un,k = 0, it then follows that 1− un,k > 0

for n sufficiently large; therefore we can deduce that (see Assumption (U4) i)):

P [‖sn‖ ≥ wn and vn |Ψn (sn)| ≥ δ] ≤

n
∑

i=1

P

[

‖Xk‖
β ≥ wβ

n (1 − un,k)
β
]

≤

n
∑

i=1

E

(

‖Xk‖
β
)

w−β
n (1 − un,k)

−β

≤ nE

(

‖X1‖
β
)

w−β
n max

1≤k≤n
(1 − un,k)

−β .
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Consequently,

γnv
2
n

hd
n

log P [‖sn‖ ≥ wn and vn |Ψn (sn)| ≥ δ]

≤
γnv

2
n

hd
n

[

log n+ log E

(

‖X1‖
β
)

− bβ
hd

n

γnv2
n

− β log max
1≤k≤n

(1 − un,k)

]

,

and, thanks to assumptions (U3), it follows that

lim sup
n→∞

γnv
2
n

hd
n

log P [‖sn‖ ≥ wn and vn |Ψn (sn)| ≥ δ] ≤ −bβ,

which concludes the proof of Lemma 8. �

3.4. Proof of Proposition 2. Let us at first note that the lower bound

lim inf
n→∞

γnv
2
n

hd
n

log P

[

sup
x∈U

vn |Ψn (x)| ≥ δ

]

≥ −g̃U (δ)(25)

follows from the application of Proposition 1 at a point x0 ∈ U such that f (x0) =
‖f‖U,∞.

In the case U is bounded, Proposition 2 is thus a straightforward conse-
quence of (25) and the first part of Lemma 6. Let us now consider the case U is
unbounded.

Set δ > 0 and, for any b > 0 set wn = exp

(

b
hd

n

γnv2
n

)

. Since, by definition

of sn,

P

[

sup
x∈U

vn |Ψn (x)| ≥ δ

]

≤ P

[

sup
x∈U,‖x‖≤wn

vn |Ψn (x)| ≥ δ

]

+ P [‖sn‖ ≥ wn and vn |Ψn (x)| ≥ δ] ,

it follows from Lemmas 6 and 8 that

lim sup
n→∞

γnv
2
n

hd
n

log P

[

sup
x∈U

vn |Ψn (x)| ≥ δ

]

≤ max {−bβ; db− g̃U (δ)}

and consequently

lim sup
n→∞

γnv
2
n

hd
n

log P

[

sup
x∈U

vn |Ψn (x)| ≥ δ

]

≤ inf
b>0

max {−bβ; db− g̃U (δ)} .
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Since the infimum in the right-hand-side of the previous bound is achieved for
b = g̃U (δ) / (β + b) and equals −βg̃U/ (β + d), we obtain the upper bound

lim sup
n→∞

γnv
2
n

hd
n

log P

[

sup
x∈U

vn |Ψn (x)| ≥ δ

]

≤ −
β

β + d
g̃U (δ)

which concludes the proof of Proposition 2.
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