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ABSTRACT. In this paper we prove large and moderate deviations principles
for the recursive kernel estimators of a probability density function defined
by the stochastic approximation algorithm introduced by Mokkadem et al.
([10]. The stochastic approximation method for the estimation of a prob-
ability density. J. Statist. Plann. Inference 139 (2009), 2459-2478). We
show that the estimator constructed using the stepsize which minimize the
variance of the class of the recursive estimators defined in [10] gives the same
pointwise LDP and MDP as the Rosenblatt kernel estimator. We provide
results both for the pointwise and the uniform deviations.

1. Introduction. Let Xi,..., X, be independent, identically distrib-
uted R%valued random vectors, and let f denote the probability density of X;.
To construct a stochastic algorithm, which approximates the function f at a given

2010 Mathematics Subject Classification: 62G07, 621.20, 60F10.
Key words: Density estimation, stochastic approximation algorithm, large and moderate
deviations principles.
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point z, Mokkadem et al. [10] defined an algorithm of search of the zero of the
function h :y — f(z) —y. They proceed as follows: (i) they set fo(z) € R; (ii)
for all n > 1, they set

fa@) = fn1(x) + 1 Wa(z)

where W,,(z) is an “observation” of the function A at the point f,,—1(z) and (7,)
is a sequence of positive real numbers that goes to zero. To define W, (z), they
follow the approach of Révész [13, 14] and of Tsybakov [16], and introduced a

kernel K (which is a function satisfying / K(z)dz = 1) and a bandwidth (h,,)
Rd

(which is a sequence of positive real numbers that goes to zero), and they set
Wo(z) = hy “K (h, [z — X,,]) = fa_1(x). The stochastic approximation algorithm
introduced in [10] which estimate recursively the density f at the point x is

) Fole) = (1= 3 faa )+t (252,
n

Recently, large and moderate deviations results have been proved for the well-
known nonrecursive kernel density estimator introduced by Rosenblatt [15] (see
also [11]). The large deviations principle has been studied by Louani [6] and
Worms [18]. Gao [5] and Mokkadem et al. [7] extend these results and provide
moderate deviations principles. The purpose of this paper is to establish large
and moderate deviations principles for the recursive density estimator defined by
the stochastic approximation algorithm (1).

Let us first recall that a R™-valued sequence (Z,),~, satisfies a large
deviations principle (LDP) with speed () and good rate function I if :

1. (vy) is a positive sequence such that lim v, = oo;
n—oo

2. I:R™ — [0, 00] has compact level sets;
3. for every borel set B ¢ R™,
—inf I'(z) < liminfy, 'logP[Z, € B]

n—00
zeB

< limsupy, 'logP[Z, € B] < — inf I (z),

n— o0 x€eB

where B and B denote the interior and the closure of B respectively. More-
over, let (v,) be a nonrandom sequence that goes to infinity; if (v,Z,)
satisfies a LDP, then (Z,,) is said to satisfy a moderate deviations principle
(MDP).
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The first aim of this paper is to establish pointwise LDP for the recursive
kernel density estimators defined by the stochastic approximation algorithm (1).
It turns out that the rate function depend on the choice of the stepsize (yy);
In the first part of this paper we focus on the following two special cases : (1)

n ~1
(Yn) = (n_l) and (2) (ym) = [ rd (Z h‘,ﬁ) , the first one belongs to the

subclass of recursive kernel estimators which have a minimum MSE or MISE and
the second choice belongs to the subclass of recursive kernel estimators which
have a minimum variance (see [10]).

We show that using the stepsize (y,) = (n_l) and (hy,) = (en™®) with
¢ >0 and a € ]0,1/d], the sequence (f, (x) — f (z)) satisfies a LDP with speed
<nhi) and the rate function defined as follows:

. o t
o [ I@#0 L )Ia( f(x)
) =

if f(z)=0, I-(0)=0 and I, (t) =400 for t#0.

where

I, (t) = sup {ut — g (u)}

u€R
Yo (u) = / s—ad (e“sadK(z) — 1) dsdz,
[0,1] xR

which is the same rate function for the LDP of the Wolverton and Wagner [17]
kernel estimator (see [8]).

-1
Moreover, we show that using the stepsize (v,,) = (Z hd> and

more general bandwiths defined as h, = h(n) for all n, where h is a regulary
varing function with exponent (—a), a € ]0,1/d[. We prove that the sequence
(fn(x) — f (z)) satisfies a LDP with speed (nhi) and the rate function defined
as follows:

it f(2) 20, Ix:t—>f(ac)[<l+ﬁ)

if f(z)=0, I,(0)=0 and I,(t)=+oc0 for t#0.

3)
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where

I(t) = sup {ut — ¢ (u)}

u€eR

Y (u) = /Rd (e“K(Z) - 1) dz,

which is the same rate function for the LDP of the Rosenblatt kernel estimator
(see [7]).

Our second aim is to provide pointwise MDP for the density estimator
defined by the stochastic approximation algorithm (1). In this case, we consider
more general stepsizes defined as ~, = 7 (n) for all n, where v is a regulary
function with exponent (—a), a € ]1/2,1]. Throughout this paper we will use
the following notation:

(4) = lim (n*yn)_l.

n—-+o00

For any positive sequence (v,) satisfying

=0

2

. ) v
lim v, =00 and lim i d"
n—oo n—oo hn

and general bandwidths (h,,), we prove that the sequence
on (fn () = f (2))
satisfies a LDP of speed (hi / ('ynvi)) and rate function J, o 4 () defined by

. ‘ t2(2 - (a —ad) &)
if f (.’E) 7é 07 Ja,a@ 1t — 2f (1‘) fRd K2 (Z) dz
if f(z)=0, Jyae(0)=0 and Jgaq(t) =400 for t#0.

(5)

~1
d
Let us point out that using the stepsize (y,) = | h¢ (Z hi) which mini-
k=1

mize the variance of f,, we obtain the same rate function for the pointwise LDP
and MDP as the one obtained for the Rosenblatt kernel estimator.

Finally, we give a uniform version of the previous results. More precisely, let U
be a subset of RY; we establish large and moderate deviations principles for the

sequence (sup |fn () — f (ac)\)
zelU
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2. Assumptions and main results. We define the following class of
regularly varying sequences.

Definition 1. Let v € R and (Un)n21 be a nonrandom positive sequence.
We say that (v,) € GS () if

(6) lim n [1 - ”"1] — 1.

n—+o00 Un
Condition (6) was introduced by Galambos and Seneta [4] to define reg-
ularly varying sequences (see also [1]), and by Mokkadem and Pelletier [9] in the

context of stochastic approximation algorithms. Typical sequences in GS (7) are,
for b € R, n” (log n)b, n” (loglog n)b, and so on.

2.1. Pointwise LDP for the density estimator defined by the
stochastic approximation algorithm (1).

2.1.1. Choices of (v,) minimizing the MISE of f,. It was shown in
[10] that to minimize the MISE of f,,, the stepsize (y;,) must be chosen in GS (—1)

and must satisfy lim n~, = 1. The most simple example of stepsize belonging to
n—oo

GS (—1) and such that lim ny, =11is (y,) = (n_l). For this choice of stepsize,
n—oo

the estimator f, defined by (1) equals the recursive kernel estimator introduced

by Wolverton and Wagner [17].

To establish pointwise LDP for f,, in this case, we need the following
assumptions.

(L1) K : R? — R is a bounded and integrable function satisfying / K (z)dz =
Rd
1,and lim K (z)=0.

[l2]| =00
(L2) i) (hy) = (en™*) with @ €]0,1/d[ and ¢ > 0.
i) () = (n71).

The following Theorem gives the pointwise LDP for f,, in this case.
Theorem 1 (Pointwise LDP for Wolverton and Wagner estimator). Let

Assumptions (L1) and (L2) hold and assume that f is continuous at x. Then,
the sequence (fn (x) — f (x)) satisfies a LDP with speed (nhi) and rate function
defined by (2).

2.1.2. Choices of (vy,) minimizing the variance of f,,. It was shown
in [10] that to minimize the asymptotic variance of f,, the stepsize (7,) must
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be chosen in GS (—1) and must satisfy lim nvy, = 1 — ad. The most simple
n—oo
example of stepsize belonging to GS (—1) and such that lim ny, = 1 — ad is
n—oo

(vn) = ((1—ad) n_l), an other stepsize satisfying this conditions is (y,) =

hd

-1
n
( hﬁ) . For this last choice of stepsize, the estimator f,, defined
1
)

by (1) produces the estimator considered by Deheuvels [2] and Duflo [3].
To establish pointwise LDP for f,, in this case, we assume that.

(13) 1) () € GS (~a) with a € J0,1/d].
v [4fE9

The following Theorem gives the pointwise LDP for f,, in this case.

Theorem 2 (Pointwise LDP for Deheuvels estimator). Let Assumptions
(L1) and (L3) hold and assume that f is continuous at x. Then, the sequence
(fn (z) — f (x)) satisfies a LDP with speed <nh7‘i> and rate function defined by (3).

2.2. Pointwise MDP for the density estimator defined by the
stochastic approximation algorithm (1). Let (v,) be a positive sequence;
we assume that

(M1) K : R — R is a continuous, bounded function satisfying [ K (z)dz =1,
R4
and, for all j € {1,...d}, / zjK (2)dz; = 0 and / ZJQ\K (2) |dz < 0.
Rd

(M2) i) () € GS (—a) with a € ]1/2,1].
it) (hyn) € GS (—a) with a € ]0, a/d|.
i17) 711220 (nyy,) €] min{2a, (o — ad)/2}, c0].

(M3) f is bounded, twice differentiable, and, for all 7, j € {1,...d}, 82f/81:¢8xj
is bounded.

(M4) lim v, = oo and lim ~,v2/h =0
n—oo n—oo
The following Theorem gives the pointwise MDP for f,.
Theorem 3 (Pointwise MDP for the recursive estimator defined by (1)).
Let Assumptions (M 1) — (M4) hold and assume that f is continuous at x. Then,
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the sequence (fn (x) — f(x)) satisfies a MDP with speed (hi/ (’y,ﬂ),%)) and rate
function Jq o4 defined in (5).

2.3. Uniform LDP and MDP for the density estimator defined
by the stochastic approximation algorithm (1). To establish uniform large
deviations principles for the density estimator defined by the stochastic approxi-
mation algorithm (1) on a bounded set, we need the following assumptions:

(U1) @) For all j € {1,...d}, / 2K (2)dz; = 0 and / zj2|K(z) |dz < oo.
R R4

i1) K is Holder continuous.

(U2) f is bounded, twice differentiable, and, sup ||D*f (z) || < oc.

xzeR4
2 0g (1/h 2
(U3) lim 1n0n 08 1°/0n) 08 (1/hn) _ o 1d 1im In¥nlog8on _ o

Set U C R? in order to state in a compact form the uniform large and
moderate deviations principles for the density estimator defined by the stochastic
approximation algorithm (1) on U, we set:

.
| fll,00la (1 + Hf”d ) when v, =1, (L1) and (L2) hold
U,oco

gu (0) = | flloood (1+W when v, =1, (L1) and (L3) hold

U,o00

2(9 _ —
"2 (a ‘;d)g) when v, — 0o, (M1)— (M4) hold
C 20 f Moo Jpa K2 (2) dz

gu (6) = min{gy (§),g9v (—0)}

where || f[|v,c0 = sup [ f (2)]-
zelU

Remark 1. The functions gy (.) and gy (.) are non-negative, continuous,
increasing on |0, +oo[ and decreasing on |—o0, 0], with a unique global minimum
in 0 (g (0) = g (0) = 0). They are thus good rate functions (and gy (.) is strictly
convex).

Theorem 4 below states uniform LDP on U in the case U is bounded, and
Theorem 5 in the case U is unbounded.

Theorem 4 (Uniform deviations on a bounded set for the recursive esti-
mator defined by (1)). Let (Ul) — (U3) hold. Then for any bounded subset U of
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R? and for all § > 0,

1)2
@ 2 gP [supun £ (o)~ £ (0)] 2 6] = 0 9

n—0o0 h% zelU

To establish uniform large deviations principles for the density estimator
defined by the stochastic approximation algorithm (1) on an unbounded set, we
need the following additionnal assumptions:

(U4) i) There exists 3 > 0 such that / |z||P f (x) dz < oo.
Rd

i1) f is uniformly continuous.

(U5) There exists 7 > 0 such that z — ||z]|” K (z) is a bounded function.

(U6) i) There exists ¢ > 0 such that / |2]|° | K (2)] dz < oo
d

R
i1) There exists n > 0 such that z — ||z]|7f () is a bounded function.

Theorem 5 (Uniform deviations on an unbounded set for the recursive
estimator defined by (1)). Let (U1) — (U6) hold. Then for any subset U of RY
and for all § > 0,

2
0 (6) < tmint P 0gP [sup, 1 (0) — £ (0)] 2 ]
n—0o0 n zeU
< limsup 2% 10 P[s o () f()]>6}< 5z (6)
imsu up v | fn () — f(2)] > 6| < —
S TRl D £ 5+al

The following corollary is a straightforward consequence of Theorem 5.

Corollary 1. Under the assumptions of Theorem 5, if/ 2|6 f (x) dz <
Rd
oo for all € in R, then for any subset U of R,

2
(8) lim 12Un

d
—
n—oo  h&

log P [225 vl (@) — f(2)] > 5] — 9 (6)

Comment. Since the sequence (sup |fn (z) — f(ac)]) is positive and
zelU

since gy is continuous on [0, +oo[, increasing and goes to infinity as 6 — oo, the
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application of Lemma 5 in [18] allows to deduce from (7) or (8) that sup |f,(x) —
zeU

f(x)| satisfies a LDP with speed ('y;lh;o and good rate function § on RT.

3. Proofs. Throught this section we use the following notation:

n

IL, = H (1 - /7]') )
j=1
Zy (x) = h, %Y,
(9) Yn:K<$7lnX">

Throughout the proofs, we repeatedly apply Lemma 2 in [10]. For the convenience
of the reader, we state it now.

Lemma 1. Let (v,) € GS (v*), () € GS(—a), and m > 0 such that
m —v*¢ > 0 where £ is defined in (4). We have

n
. _ 1
lim v, I E Hkm% = —.
n——+00 P v om—v¥E

Moreover, for all positive sequence (o) such that lirf an = 0, and for all
n—-+0oo
0 eR,
- Y
I e | > ™ Ly + 6| = 0.
n—1>r—sl:loovn n Pt k Ukak+ 0

Noting that, in view of (1), we have

fa(x)=f(x) = (1=m)(fa1(@) = f (@) + 70 (Zn (z) - ()
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It follows that

Efn(2)] = f(2) =Ty Zn:ﬂilw (E[Zy ()] = [ (2)) + 1L (fo (2) = f () -
Then, we can write thatk:1

fa(@) =Elfu@)] = WY I (Ze (2) - E[Zg ()

k=1
n
= T, ) T My (Ve — E [YR])
k=1
Let (¥,,) and (B,,) be the sequences defined as

Uy () = T,y T 'ywh® (Ve — E[V3))
k=1

By (z) = E[fu(z)] - f(2)
We have:
(10) fo(x) = f(2) = Wn (2) + Bn (2)
Theorems 1, 2, 3, 4 and 5 are consequences of (10) and the following propositions.
Proposition 1 (Pointwise LDP and MDP for (¥,,)).
1. Under the assumptions (L1) and (L2), the sequence (f, (z) —E (fn(x)))
satisfies a LDP with speed (nhi) and rate function I, ;.

2. Under the assumptions (L1) and (L3), the sequence (fn(x) —E (fy (x)))
satisfies a LDP with speed (nhi) and rate function I,.

3. Under the assumptions (M1) — (M4), the sequence (v, V,, (x)) satisfies a
LDP with speed (hi/ ('ynvi)) and rate function Jo -

Proposition 2 (Uniform LDP and MDP for (¥,,)).

1. Let (U1) — (U3) hold. Then for any bounded subset U of R and for all
0 >0,
’anr%

lim ——"log P [sup U [ Uy (2)| > 0| = —gu (9)
n—oe hn zeU
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2. Let (U1) — (U6) hold. Then for any subset U of R and for all § > 0,

2
—gu () < liminf %gn log P [sup Uy [, ()] > 5]
n—oo hn zelU
< limsu ’an’% log P [su Un | Wy ()] > 5] < — gu (9)
= 7kﬂmp h% g xeg n | ¥n =z > f_*_ng

The proof of the following proposition is given [10].

Proposition 3 (Pointwise and uniform convergence rate of (B,)). Let
Assumptions (M1) — (M3) hold.

L If for alli,j € {1,...d}, 9*f/0x;0x; is continuous at x. We have
Ifa < a/(d+4), then
B, (z) =0 (h2).

Ifa> a/(d+4), then

2. If (U2) holds, then:
Ifa < a/(d+4), then

Ifa > a/(d+4), then

sup [, (2] = (ol

zERI

Set € RY; since the assumptions of Theorems 1 and 2 guarantee that
lim B, (z) = 0, Theorem 1 (respectively Theorem 2) is a straightforward con-
n—oo

sequence of the application of Part 1 (respectively of Part 2) of Proposition 1.

Moreover, under the assumptions of Theorem 3, we have by application of Pro-

postion 3, lim v,B, (x) = 0; Theorem 3 thus straightfully follows from the
n—oo

application of Part 3 of Proposition 1. Finaly, Theorem 4 and 5 follows from
Proposition 2 and the second part of Proposition 3.
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We now state a preliminary lemma, which will be used in the proof of
Proposition 1.
For any u € R, Set

np he,
Apg(u) = ’th log E [exp (u%vnllln (l’)):|
Apt(w) = f(2)(Wa(u) —u),
AP (W) = f(2) (@ (u)—u),
M = v x 2(2)dz
MW = srag! @ [ K e

Lemma 2. (Convergence of A, ;)

1. (Pointwise convergence)
If f is continuous at x, then for all u € R

(11) lim A, . (u) = Ay (u)
where
ALY (w) when v, =1, (L1) and (L2) hold
Ay (u) =< AZ2%(u) when v,=1, (L1) and (L3) hold

AM (u)  when v, — oo, (M1)— (M4) hold

2. (Uniform convergence)
If f is uniformly continuous, then the convergence (11) holds uniformly in

zeU.

Our proofs are now organized as follows: Lemma 2 is proved in Section 3.1,
Proposition 1 in Section 3.4 and Proposition 2 in Section 3.3.

3.1. Proof of Lemma 2. Set u € R, u,, = u/v, and a, = hf;ygl. We

have:

2

v

Apz(u) = a—" log E [exp (unan ¥, (x))]
n
2 n
] logE |exp (unanﬂn Z I e, (Y —E [Yk])>
n k=1
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2 n .
(% aan >:| o

= E logE |exp | © Y; —uvy Il I e R Y
n k=1 & |: P( nakﬂk k n ”; k Yk [ k]

II
By Taylor expansion, there exists ¢y, between 1 and E [exp <un aan Ykﬂ such
aplly
that

II
logE [exp (unan—nYk)]
a Il

apll, 1 apll, 2
=K —Y. ) —1| — E Y. | —1
[exp (un arlly k) ] 2¢;, ., ( [exp (un ag1ly k) D

and A, ; can be rewriten as

2 n
) a, Il
A = 2N E "y, ) -1
n,T (’U,) an ; [exp (un aplly k) :|
2 n 2
II
_;_n —— (E [exp <unan nYk> — 1])
n = Ci a1l
n
(12) —uv, Ty, Y T ay B [V]
k=1

FIRST CASE: v, — 0o. A Taylor’s expansion implies the existence of ¢}, ,,

II
between 0 and unan—nY;C such that
akﬂk

II
E [exp <un an nYk> - 1]
apIl

aan 2 2 1 aan 3 3 c
— u, B (V] + < (un ENE] + g (o) B [vietha]

Therefore,

1 - 1 - /
Moo (0) = Sulaull} 3 1170 E [¥2] + culualll Y 11 o °E [Y,f’eckvn}
k=1 k=1

2 n 2
1 II
_Yn —— <IE [exp (un n nYk> — 1])
2an, = Cm arlly
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(13) = %f (x) u?a,IT;, i 1Ly, "y /R K ?(2)dz + R, (u) + RY), (u)
with
RY (w) = %u%nﬂi Z I, % e /R K2 (2 = 2hy) = f (2)) d
k=1
R (u) = éZ—gaiHi zn: T30, %K [Y,g’ec;w}
" k=1

2 n 2
1 II
_n - <IE [exp (una”_”yk> — 1})
2an, — Cm aillg

Since f is continuous, we have klim |f (x — zh) — f (x)| = 0, and thus, by the

—

dominated convergence theorem, (M1) implies that

lim K2 (2)|f (x — zhg) — f (z)|dz = 0.

k—oo JRd

Since (ay) € GS (o — ad), and lim (ny,) > (o —ad) /2. Lemma 1 then ensures

n—oo
that

n
(14) an T2 > T %y e = ( +o(1),

— 2—(a—ad)f)

it follows that lim ‘RS}L (u)‘ =0.
n— o0 ’
Moreover, in view of (9), we have |Yj| < || K|, then

anll,
" gy,

/
ck,n <

U

v
(15) <l 1K

Noting that E|V;|> < hd ||f||oo/ ‘K?’ (z)| dz. Hence, using Lemma 1 and (15),
Rd

there exists a positive constant ¢; such that, for n large enough,

3 n ,
(16) :—aini Y 1% %R {Yg’e%,n]
n

3
< eyl K gy / K3 (2)| dz
1 Un R4
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which goes to 0 as n — oo since v, — 0.
Moreover, Lemma 1 ensures that

2 = 1 anll 2
— exp [ u MY) — 1})
Z< oo (i
2 n I 2
ank 1 aplly

\YJ

u?
< 5 HfH anIl? ZH a; Lyehd + o (anl'[2 ZH a; ’ykhk>

k=1 k=1

an  =o(l)

The combination of (16) and (17) ensures that lim ’Rff?c (u)‘ = 0. Then, we

n—oo

obtain from (13) and (14), lim A, (u) = AY ().

SECOND CASE: (v,) = 1. It follows from (12) that

I w1l
Apy(u) = G—ZE [exp <uz T Yk> — 1}

_L L anlIl, B 2 - .
2an = C%,n (E [e P (uak kYk) 1]) ull ;H a;, E[Yi]
_ i n d « uaan B . 3
B n;hk/d[ep<ak kK )> 1:|f()d
_unnink17k K (z) f(x)d R®) ( )_|_R(4) (u)
k=1 R
1 <.y
— £ onE | [ fexm (i () = 1)~ ¥k (2)]
R R4
(18) —R®), (u) + RY), (u)
with
Ve = apll,
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It follows from (17), that lim ’RS;; (u)’ —0.
Since |e" — 1| < [¢] el we have

n

1
mi | < o3 ]

k=

oo (220K ) 1] F (0= ) - £ ()]

arIly

Tl T, S Ty / K (2)||f (@ — 2he) — f (2)|d=
=1 Rd

IN

] ML, S [ K @I @ = 2) — £ (@) dz
k=1 Rd
TS T b / K (2)||f (@ — 2he) — f (2)|d=
k=1 Rd

< ful (N 1) 1, Y /R K ()| |f (& — 2h) — f (2)| da
k=1

n
In view of Lemma 1 the sequence (Hn Z H,;lﬁyk> is bounded, then, the domi-
k=1
nated convergence theorem ensures that lim R®) (u) = 0.
n—0o0 ’

In the case f is uniformly continuous, set ¢ > 0 and let M > 0 such that

2 Hf||oo/|| u |K (2)| dz < €/2. We need to prove that for n sufficiently large
z||<

sup/ K @f (@ — 2he) — f ()] dz < /2
z€RL J||z||<M

which is a straightforward consequence of the uniform continuity of f.



(19)

then,
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Then, it follows from (18), that

lim Ay, . (u)

n—oo

\g

n

= lim f(x) -~ Z hd / (exp (uVy kK (2)) — 1) —uV, 1, K (2)] dz

n— o0 h
k=1

S

IN THE CASE WHEN (v,,) =1, (L1) AND (L2) HOLD

n

o= M a-w

j=k+1
k
= )
n
anlly,
Vok = ——
a1l

()

Consequently, it follows from (19) and from some analysis considerations that

Tim A, (w) = f(2) /R d [ /0 g (exp (us“dK (2)) - 1) — us¥K (z)] dsdz

= AR

IN THE CASE WHEN (v,) =1, (L1) AND (L3) HOLD. We have

E—: = I a-

j=k+1

n d
()
j=k+1 1=1 N

thd
_ HZ

d
j=k+1 h
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Sy b
Sy b

i b i by

n

B b Y b

Vo M
Vi hd’
then,

mG =1.

Consequently, it follows from (19) that

lim Ay, (u) = f(2) /Rd [(exp (uK (2)) — 1) —uK (2)] dz

= AR ()

and thus Lemma 1 is proved. O

3.2. Proof of Proposition 1. To prove Proposition 1, we apply Propo-
sition 1 in [8], Lemma 2 and the following result (see [12]).

Lemma 3. Let (Z,) be a sequence of real random wvariables, (v,) a
positive sequence satisfying lim v, = 400, and suppose that there exists some
n—oo
convezr non-negative function I' defined on R such that

1
Vu € R, lim — logE [exp (uv, Z,)] =T (u) .

n—oo U,

If the Legendre function T'* of T is a strictly convex function, then the sequence
(Z,,) satisfies a LDP of speed (vy,) and good rate fonction T'*.

In our framework, when v, = 1 and v, = n~ !, we take Z, = f, (x) —
E (fn (z)), vn = nh® with h, = en™® where a € ]0,1/d[ and T = ALl In
this case, the Legendre transform of I' = A£’1 is the rate function I,, : t —

t
f(x) I, (m + 1) which is strictly convex by Proposition 1 in [8]. Farther,
x

-1

n

when v, = 1 and v, = hd (Z hi) , we take Z, = fp, (2)—E (fn (2)), vy = nh?
k=1

with h, € GS (—a) where a € 0,1/d[ and T' = AL2. In this case, the Legendre
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transform of T' = AL? is the rate function I, : t — f(z) ] <% + 1) which
x

is strictly convex by Proposition 1 in [7]. Otherwise, when, v, — oo, we take
Zn = Op (fn () —E(fn(2), vp = hi/ (%ﬂ)i) and T = Ai\/‘[; T'* is then the
quadratic rate function J, o, defined in (5) and thus Proposition 1 follows. O

3.3. Proof of Proposition 2. In order to prove Proposition 2, we first
establish some lemmas.

Lemma 4. Let ¢ : RT — R be the function defined for § > 0 as

( (Tﬁ;)il (1 + Hf’ono) when vy, =1, (L1) and (L2) hold

$(0) = (w’)*l (1 + m) when v, =1, (L1) and (L3) hold
5(2— (o= ad)§)
I fllt.00 fpa K2 (2) dz

when v, — oo, (M1)— (M4) hold

1. sup {u5 —sup A, (u)} equals gy (0) and is achieved for u = ¢ (§) > 0.
u€R zeU

2. sup {—u(5 —sup A, (u)} equals gy (9) and is achieved for u = ¢ (—J) < 0.
u€R zelU

Proof of Lemma 4. We just prove the first part, the prrof of the
second part one being similar.

e First case : v, =1, (L1) and (L2) hold.
Since ¢! > 1 +t, for all ¢, we have 1, (u) > u and therefore,

ud —sup Ay (u) = ud — || fllv,co (Vo (v) —u)

xeU
o)
T [u (1 " W) ~ e <u>]

The function u — ud —sup A, (u) has second derivative —|| f{|y.c0?) (u) <0
zeU
and thus it has a unique maximum achieved for

o

w= 0" (1 )

Now, since 9, is increasing and since v, (0) = 1, we deduce that ug > 0.
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e Second case : v, =1, (L1) and (L3) hold.
Since ¢’ > 1 +t, for all ¢, we have 1 (u) > u and therefore,

ud —sup Ay (u) = ud — || fllv,co (¥ (u) —u)

h Hﬂmw@(LWv%;)—wwﬂ

The function u — ud —sup A, (u) has second derivative —|| f{|y.c0?” (u) <0
zeU
and thus it has a unique maximum achieved for

e 5
w= )" (14 )

Now, since ¢’ is increasing and since 1’ (0) = 1, we deduce that uy > 0.

e Third case v, — oo and (M2) holds. In this case, we have

S ) = w s s [ K
B e T T

In view of the assumption (M2), we have €1 > (a —ad) /2, then the

function u — ud — sup A, (u) has second derivative
zelU

B 1
(2—(a—ad)f)

and thus it has a unique maximum achieved for

\mmm/'K%am<o
Rd

§(2—(a—ad)f)

= >0 O
£ llv0 Jpa B (2) dz

Ug

Lemma 5.

e In the case when (v,) =1 and (y,) = (n™'), let (L1) and (L2) hold;

n —1
e In the case when (v,) = 1 and (v,) = | hS (Z hg) , let (L1) and
k=1

(L3) hold;
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e [n the case when v, — oo, let (M1) — (M4) hold.
Then for any 6 > 0,

2
lim %;LZ” logsup P v, ¥, () >8] = —gu(9)
T
lim Zd” logsup P[v, ¥, (z) < =6] = —gy (=)
. '771”721 P
lim 1 logsup P [v, | U, (2)] < =0] = —gu (—9)

Proof of Lemma 5. The proof of Lemma 5 is similar to the proof of
Lemma 4 in [8]. O

Lemma 6. Let Assumptions (U1l) — (U3) hold and assume that either
(vn) =1 or (U4) holds.
1. If U is a bounded set, then for any § > 0, we have

L nlp _
lim h log P |sup vy, |¥y, (2)|| < —gu (9)
n—0o0 xeU

n

2. If U is an unbounded set, then, for any b >0 and § > 0,

. 'anr%
lim sup
hd
n— o0 n

< bhd >
where w, = exp .

Tn U%

10gP [ sup Un ‘\Iln (x)‘ < db— gU (6)

zeU,[|z|| <wn

Proof of Lemma 6. Set p € ]0,0[, let 5 denote the Holder order of

bhd
K, and || K|/ its corresponding Holder norm. Set w,, = exp (—"2) and
TnVn

We begin with the proof of the second part of Lemma 6. There exist N (n) points

of RY, ygn),yén), . 791(\77/)(71) such that the ball {:1: eR% x| < wn} can covered
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by the N’ (n) balls Bi(n) = {J: eRY: ||z — ygn)H < Rn} and such that N’ (n) <

2 d
2 <&> . Considering only the N (n) balls that intersect {z € U; ||z|| < w,},

Ry,

we can write

N(n n
{x € U; |z < w,} c UXPBM.

For each i € {1,...,N (n)}, set acl(n) € Bi(n) NU. We then have:

N(n)
P [ sup v, |V, (z)] > 6] < Z P | sup v, |¥,(x) >4
2€U, ||zl <wn i=1  |zeB™

< N(n) max P | sup v,|¥,(x)] >4
I<isN(n) | p(m

Now, for any i € {1,...,N (n)} and any x € Bgn),

n (n)
1 7d xr — Xk x,i - Xk-
toally S T0 hy 4 | K ( " ) _K (T)
n (n)
— — - X T, = — Xk
nnn§nlhdﬂ-«:K$ LA Il Al
“+v 2 k VRN < i i

k=1
n el = e
z ) + 20, | K[| T, S T0 ey S
k=1

Uun [ < vy

IN

vp |y

n)
n)) + QUnHK”HHn Z H};l,ykh;(dJrﬁ)Rg
k=1

< v |Py

(=
< oy |V, (1:5
(xl(n)) +p

Hence, we deduce that

P| swp v, |W(2) 28| < N(n) max Plu,
zeU,||z]|<wp 1<i<N(n)

IN

N (n)supP {vn
zelU
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Further, by definition of N (n) and w,, we have

hd
log N (n) <log N’ (n) < db—"5 + (d + 1)log 2 — dlog Ry,
’ann
and
Y0z Yntp 1, (@)
1 log R, = i log p — log (2||K||ir) — log v, — log | IT,, Zﬂk Yihy, .
n n k=1

Moreover, we have <h$fl+ﬂ)> € GS(—a(d+ ()). Lemma 1 ensures that

1, iH;L}/khlz(d+ﬂ) -0 <h;(d+ﬁ)> ’
k=1

then, in view of (U3), we have

2
(20) lim sup vng" log N (n) < db
n—oo hn

The application of Lemma 5 then yiels

2
lim sup %;LZ” log P sup v, |V, (z)] > 6
n—00 n zeU||z[|<wn
. 771”721 ~
< limsup = 2= log N (n) — gu (6 - p)

n—00 n

<db—gu(6—p).

Since the inequality holds for any p € |0, d[, part 2 of Lemma 6 thus follows from
the continuity of gy.

Let us now consider part 1 of Lemma 6. This part is proved by following
the same steps as for part 2, except that the number N (n) of balls covering
U is at most the integer part of (A/R,)?, where A denotes the diameter of U.
Relation (20) then becomes

. anr%
lim sup
hd
n— o0 n

log R, <0

and Lemma 6 is proved. 0O
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Lemma 7. Let (Ul)i), (M2) and (U6)i) hold. Assume that either

(vp) =1 or (U3) and (U6) ii) hold. Moreover assume that f is continuous. For

d
n

> then, for any p > 0, we have, for n large

(52|

anyb>0ifwesetwn:exp< 5
ntn
enough,

n

-1 —d

sup  v,ll, E IT, “yihy,
z€U,||lz||Zwn k=1

Proof of Lemma 7. We have

" - X
21) w,IL, S It~ h R | K[ Z 2k
1) o, Y e K (2

k=1 k

= v,11, Hlvk/ K (z) f(x— zhg)d-z.
S [ K () o= ot

First, Lemma 1, ensures that

n
(22) I, > Iy =1+0(1).
k=1
Set p > 0. In the case (v,) = 1, we set M such that || foo|| |K (2)|dz < p/2;

ll211>M
it follows from (22) that

n
vpIl, Z H,;lfykh,;d
k=1

2k (5]
@) /”Z§M1K<z>|dz

ML I [ R @I @ ) - f )] de

k=1 211> M

<

NI

Lemma 7 then follows from the fact that f fulfills (U6)1ii). As matter of fact,
this conditions implies that lim  f(x) = 0 and that the third term in the

||lz||—oc0,2eT
right-hand-side of the previous inequality goes to 0 as n — oo (by the dominated
convergence).
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Let us now assume that lim v, = oo; relation (21) can be rewritten as

n—oo
" —1 —d f—Xk
oIl Y TGy "R | K "
k=1

= U”H”ZHI;IW/l o) K (2) f (x — zhg) dz
z <wn /2

+u, 11, ZHk *yk/ K (2) f (x — zhy) dz.

ll2l|>wn /2
First, since ||z|| > w,, and ||z|| < w,, /2, we have

[l — zhy|

v

wp, (1 — hi/2)
> w,/2 for n large enough.

Moreover, in view of assumptions (U3), for all £ > 0,

d 2
(23) hm”—”:nmexp{ gth( —w)}:o.

R g mene 2 Ebhl

Set My = sup ||z[|"f (x). Assumption (U6)1ii) and equations (22), (23) implie
z€R4

that, for n sufficiently large,

sup  v,II, ZH_ / |K (2) f (x — zhy)|dz
2l <wn /2

llz]|Zwn k=1

< My sup v,Il, Zﬂk Vk;/ |K (2)] |z — zhg|| " "dz
lzl|>wn k=1 llzl|<wn /2

v
< QanUJ_Z]L/Rd |K (z)|dz

<

RS

Moreover, in view of (U3), (U6) 1) and (22), (23), for n sufficiently large,

wp vl > I [ K@l
[l || >wn k=1 ||| >wn /2
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(Y
<t [ e )
llzl[>wn /2

W,
<?
-2
This concludes the proof of Lemma 7. Since K is a bounded function that vanishes
at infinity, we have | lHlm |W,, ()| = 0 for every n > 1. Moreover, since K is
Z||—00

assumed to be continuous, V,, is continuous, and this ensures the existence of a
random variable s,, such that

Wy, (50)] = sup |V, (2)]. U
zeU

Lemma 8. Let Assumptions (U1) — (U3), (U4)1ii) and (U5) hold. Sup-
hd
pose either (v,) = 1 or (H6) hold. For any b > 0, set w, = exp (bﬁ); for
any d > 0, we have "

2

(24) 1imsup722’"1ogp[usnuzwn and |0, (s,)| >8] < —bB
n— oo n

Proof of Lemma 8. We first note that s,, € U and therefore

llsnll > w, and vy, [¥, (sp)| >0

14 $n — Xk
I, > T ' yehy UK v
k=1

= ||sp]| > w, and v,

+v,E >4

n s X
-1 —d n — Ak
k=1
- Sy, — X
= |lsnll > w, and vanZHglykh;d K (u)’
k=1 hi,

n

- X

— sup  vpll, E H,;lfykh,;dE'K (u)‘ > 0.
lal>wnacl Aot o

Set p € ]0,0[; the application of Lemma 7 ensures that, for n large enough,

Isnll > w, and vy, |, (sp)| >0
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= ||spl| > w, and wv, >0 —p.

=\ _ Sn — Xk
M Y TG yehi 'K <T>

k=1 k

Set k = sup ||z||7 |K (x)| (see Assumption (U5)). We obtain, for n sufficiently
z€RC
large,

lsnll > w, and vy, [P, (sp)| >0

V. Sp— X
= ||sp]| > w, and Jke{l,...,n} such that h—%}K(%) >85—p

ha
= [|spll > w, and 3k € {l,...,n} suchthat kh) > —E|s, — Xg||" (6 — p)
Un
JEE
kophl = |7
= |lsn|]| > w, and 3Jke{l,...,n} suchthat ||s,|— Xkl < By e
—p

1
/-wnhzfd K
o—p

= |lsn|]| > w, and 3Fke{l,...,n} suchthat |Xg| < |snl — [

= ||spll >w, and FJke{l,...,n} suchthat | Xg| <w,(l—wuyk) with
1
P y=d K 5
Un k= ’Ll}nl’l)»,’z hk’y (rp) .

Moreover, we can write uy, j as

d 2 _ 2 L
Bp—— (_b h [1 1 yuplogo, v —dyavh log(hk)D (5 K )”
—p

VnU%

by hd by hd

and assumption (U3) ensure that lim wu,; = 0, it then follows that 1 —u, ; > 0
n—oo

for n sufficiently large; therefore we can deduce that (see Assumption (U4)1)):

Pllsnll > wa and v, [ (s0)] = 0] < SO [IX]7 > ] (1= )]
i=1

IN

IN

n
STE (1X07) wi (1= wn )
=1

IN

nE (11X)1°) wi? max (1= ).
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Consequently,

Y2
hd

n

logP[||snll = wn, and v, |V, (sp)] > 6]

d
< I 3 h
< T [1ogn +logE (I1X1])%) - b3ty — Flog max (1 1)
and, thanks to assumptions (U3), it follows that

2
771 vn

logP[||sn|| > w, and v, |V, (sp)] =6 < —=b0,

lim sup
n—00 n

which concludes the proof of Lemma 8. O

3.4. Proof of Proposition 2. Let us at first note that the lower bound

In
2 li f i
(25) imin 1

n—~oo

08 |sup [0, (2)] > 5] > —gu (9)

n

follows from the application of Proposition 1 at a point zg € U such that f (zg) =
[ f1le7.00-

In the case U is bounded, Proposition 2 is thus a straightforward conse-
quence of (25) and the first part of Lemma 6. Let us now consider the case U is

unbounded. J

h
L ) Since, by definition

2

Set 0 > 0 and, for any b > 0 set w,, = exp (b
TnVUp

of sy,

P |:Sup Un ’\Ijn (1:)| > 6:|
xzeU

<P [ sup v | Uy ()| > 6| +Pllsnl|| > w, and vy, |¥y, (z)| > 6],

z€U,[|z|| <wn

it follows from Lemmas 6 and & that

lim sup
n—oo hd

logIP’ [supvn W, (z)| > (5] < max{-b8;db— gy ()}
zelU

and consequently

logIP’ [sup U | Uy, ()| > (5] < inf max {—b8;db — gy (9)} .
zelU b>0

lim sup
n—oo hd
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Since the infimum in the right-hand-side of the previous bound is achieved for
b=gu (6) /(B +0b) and equals —(3gy/ (6 + d), we obtain the upper bound

2
lim sup ’YZ:” log P sugvn |V, (z)] > 6] < =3 i ng ()
n— 00 n e

which concludes the proof of Proposition 2.

1]
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