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ABSTRACT 

In this paper, a feed-forward spiking neural network with 

memristive synapses is designed to learn a spatio-temporal pattern 

representing the 25-pixel character ‘B’ by separating correlated and 

uncorrelated afferents. The network uses spike-timing-dependent 

plasticity (STDP) learning behavior, which is implemented using 

biphasic neuron spikes. A TiO2 memristor non-linear drift model is 

used to simulate synaptic behavior in the neuromorphic circuit. The 

network uses a many-to-one topology with 25 pre-synaptic neurons 

(afferent) each connected to a memristive synapse and one post-

synaptic neuron. The memristor model is modified to include the 

experimentally observed effect of state-altering radiation. During 

the learning process, irradiation of the memristors alters their 

conductance state, and the effect on circuit learning behavior is 

determined. Radiation is observed to generally increase the 

synaptic weight of the memristive devices, making the network 

connections more conductive and less stable. However, the network 

appears to relearn the pattern when radiation ceases but does take 

longer to resolve the correlation and pattern. Network recovery 

time is proportional to flux, intensity, and duration of the radiation. 

Further, at lower but continuous radiation exposure, (flux 1x1010 

cm−2s−1 and below), the circuit resolves the pattern successfully for 

up to 100 s.  
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1 INTRODUCTION 

Neuromorphic circuits or artificial neural networks are systems 

inspired by biological neural networks such as the brain. These 

highly connected networks process information in parallel and are 

widely used for pattern recognition tasks. Neural networks have 

recently been applied in areas including image processing for visual 

recognition [14], character recognition [5,23], voice-activated 

assistance [13], stock market forecasting [12], and self-driving cars 

[4].  

In the near future, neuromorphic networks are likely to find 

application in harsh, radiation prone environments such as space 

and at nuclear and military installations. Currently, researchers are 

developing neural networks that could be used in solar radiation 

forecasting, large data capturing, object classification and 

matching, event filtering, facial recognition, combat automation, 

target identification and weapon optimization [9,17,20,26,27]. 

Thus, it is important to understand and model the effect of radiation 

events on neuromorphic circuits. While shielding and hardening are 

often used to protect devices and circuits, these techniques are 

unable to block all particles from interacting with underlying 

electronics [10,16].  

Multiple experimental studies have examined the effects of 

different types and intensity of radiation on memristive devices 

with different active materials and physical mode of operations 

[3,7,8,11,19,22]. This study uses the non-linear drift memristor 

model modified to capture its behavior under radiation [6]. The 

modified model is used in the simulation of a feed-forward 

memristor-based (many-to-one) neuromorphic circuit, which is 

taught to learn a spatio-temporal pattern by separating correlated 

and uncorrelated inputs. The circuit is exposed to state-altering 

radiation events of different flux, intensity, and duration during the 

learning period and the effect on the learning capacity of the 

network is observed. Section 2 briefly discusses the memristor 

model, neural network architecture, and its learning behavior. 

Section 3 discusses the effect of radiation on memristors and 

updated models, followed by section 4 that presents detailed 

network simulations with radiation effects. Section 5 concludes that 

once the radiation event ends, the neuromorphic circuit can resolve 

the pattern, but requires a longer time depending upon the radiation 

dose. Results also indicate that neuromorphic circuits have the 

capability to learn a pattern in the presence of low-flux and intensity 

radiation environment. This work shows that continuous training 

and use of the network can overcome larger amounts of radiation 

exposure. On the other hand, previous work showed that when the 

network is not undergoing training, the effects of radiation build up 

and the deposited energy is not dissipated. The network therefore 

never achieves a stable state [6]. 
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2 NEUROMORPHIC CIRCUIT DESIGN 

2.1 Non-Linear Drift Memristor Model 

The literature presents a wide range of memristor models 

[1,18,25]. Some of the models are more mathematical with many 

parameters to choose from making them input and application 

limited. This study uses the non-linear drift model as given by Chua 

et al. [2] which is motivated by TiO2 memristive devices. A 

window function is used to implement non-linearity. This model 

captures the non-linearity presented by memristive devices while 

using the physical characteristics of the device. Exact model 

parameters used in this study are presented in detail in [6]. The ratio 

w/D is referred to as the state variable of the device at any given 

time and is bounded between maximum and minimum resistance 

(0<w/D<1). The network and its components as in Figure 1 and 

Figure 2 were designed and simulated in the Cadence Virtuoso 

design suite using Verilog-A.    

 

Figure 1: Non-linear drift memristor model implemented in 

Cadence Virtuoso Spectre. State-altering radiation (Irad_sc) is 

added to the auxiliary circuit so it can modify the state of device 

instantaneously.  

 

Figure 2: Memristor-based neural network used in this study. 

25 pre-synaptic neurons are connected to one post-synaptic 

leaky integrate-and-fire neuron via single memristors. The 

network uses shaped pulses to achieve pair-based STDP for 

pattern learning. 

2.2 Pattern Learning and STDP 

Figure 3 shows the change in synaptic weight based on the 

relative timing of pre- and post-synaptic neuron (STDP learning 

curve) presented by all the memristors (M1 to M25) in the neural 

network during a 100 s pattern learning simulation. The 

conductance of the memristor increases when a pre-synaptic neuron 

(N1 to N25) spikes before the post-synaptic neuron and vice-versa. 

An interspike interval of up to 8 ms would affect the weight or 

conductivity (w/D) of the memristive device.  This is also known 

as the learning window. Figure 3 inset also shows the triangular 

biphasic pre- and post-synaptic spikes of 10 ms used in the network. 

The difference in the potentiation time of the two spikes leads to 

stronger depression in the STDP curve, which in turn leads to faster 

pattern learning. 

 

Figure 3: Change in synaptic weight based on the relative 

timing of pre- and post-synaptic action potentials. Weight 

change of all 25 synaptic devices in the neural network is 

plotted during 100 s of simulation. The inset shows the 

difference in pre- and post-synaptic neuron pulse shape that 

leads to fast learning and asymmetry in the STDP curve. 

In the neural network (Figure 2), a pre-synaptic neuron 

corresponding to white pixels in Figure 4 (b) fires mutually 

correlated spikes similar to ones in Figure 4 (a), N12 and N13. The 

remaining uncorrelated neurons (black pixels) fired uncorrelated, 

Poisson-distributed spikes similar to those in Figure 4 (a), N14 and 

N15. In other words, correlated afferents are simply firing 

periodically, whereas non-participating afferents fire randomly 

which could be produced through noise generating circuits. All pre-

synaptic neurons were firing at an average rate of 5 Hz [24]. Post-

synaptic neuron spikes lead to a change in the state (w/D) of the 

memristors due to STDP. 

 

Figure 4: (a) Spike times of a few pre-synaptic neurons, two 

correlated (N12, N13) and two uncorrelated (N14, N15), firing 

at an average rate of 5 Hz. (b) Change in synaptic weight of all 

the memristors. Initially (at 0 s), memristors are kept in low 

resistance state. After 30 s of learning, the network was able to 

separate the uncorrelated synapses and the pattern starts to 

resolve.  
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In this study, the network is learning a spatio-temporal pattern 

representing a 25-pixel character ‘B’. All memristors were initially 

placed in low resistance as in Figure 4 (Initial State). After 30 s of 

learning, the network depressed the synaptic weight of uncorrelated 

(non-participating) neurons and the pattern is notable. At this point, 

the post-synaptic neuron is firing at a constant rate. 

3 ADDING RADIATION  

3.1 Modeling Radiation in Memristors  

Many factors influence the effect of a radiation event on a 

memristive device. A few of them are radiation trajectory, 

wavelength or energy of the radiation, secondary electron creation, 

and the thickness of the device shielding and packaging. Thus, in 

the literature, the experimental studies on memristor behavior in the 

presence of radiation leads to generally inconclusive results. 

However, TiO2 devices consistently show an increase in current 

(decrease in device resistance) after x-ray, alpha or proton 

irradiation without affecting the high or low resistance limits of the 

devices [8,19,22]. As device is bombarded by the radiation ions, 

more oxygen vacancies are generated thus instantaneously 

increasing the conductivity of the TiO2 layer. This paper focuses on 

modeling such widely observed state-altering (Δw/D) behavior in 

TiO2 memristive devices. Non-linear drift memristor model was 

modified to include the state change effect using radiation current 

as Irad_sc as in Figure 1, more details can be found in [6]. 

3.2 Quantifying Radiation 

The radiation model used in [6] and in this study is essentially 

agnostic to the type of materials used in the memristor and the exact 

source of radiation. Radiation is artificially induced in the circuit 

using a current pulse of 1 ms duration. The current pulse directly 

changes the state of the memristive device in the model to make it 

more conductive. Radiation current pulse interval follows the 

random Poisson’s distribution and magnitude follows random 

Gaussian distribution with mean μ and standard deviation σ.  In this 

case, one current pulse does not necessarily correspond to one 

radiation interaction event.  For example, 10, 20, 25, and 30 current 

pulses of magnitude μ = 25 μA and σ = 12.5 μA induced 30%, 77%, 

90%, and 95% change in resistance (from off state) of memristor in 

the model, respectively. Similar changes in resistance are 

experimentally observed in [7], [3,8] , [21], and [19] using a total 

fluence of  7.7x1015 350-keV proton/cm2, 1.4x1011 1-MeV 

alpha/cm2, 4.9x1012 14.1-MeV neutrons/cm2, and 7.75x1016 10-

keV x-rays/cm2. These are experiments carried out under 

laboratory conditions using radiation sources of different 

intensities. Electronic circuits see a spectrum of radiation in space 

from ultraviolet and infrared to gamma and streams of electrons and 

protons during solar flares. A spacecraft can observe from a few 

rad to 100 krad (Si) around the trapped radiation belts like Jupiter 

[15]. The magnitude and frequency of the current pulses in the 

model were modulated by varying the mean current magnitude 

(following a random Gaussian distribution) and pulse interval 

(following a random Poisson distribution) [6]. As the mean 

magnitude and frequency (flux) of radiation current increases, the 

change in synaptic weight (Δw/D) of memristive device increases.  

3.3 Radiation Effects on STDP learning 

Figure 5 represents the change in the STDP curve at different 

radiation intensities. In this case, a radiation current pulse of a given 

intensity is induced in memristor before pre- and post-synaptic 

neuron spikes arrive, biphasic spikes used are as shown in Figure 5 

(inset).  It is noted as radiation intensity increased the memristors 

tended to favor a positive change in synaptic weight thus forcing 

artificial correlation. The shape of the STDP curve in Figure 5 is 

symmetrical because the pre- and post-synaptic spikes are the same. 

On the other hand, post-synaptic spikes in Figure 3 (and used in the 

network simulations) have stronger depression for reasons 

explained in section 2.2. 

 

Figure 5: STDP pattern observed by memristor devices in the 

presence of radiation. Radiation brings asymmetry in the 

STDP curve favoring untrue correlation. The inset shows the 

shape of the pre- and post-afferent spikes used. 

4 RADIATION SIMULATIONS  

The following simulations present the learning behavior of the 

neural network when subjected to state-altering radiation of 

different flux, magnitude, and time. Initial conditions in each case 

were set the same as in Figure 4 (b). In sections 4.1 and 4.2, the 

system was able to resolve the pattern and separate uncorrelated 

synapses as in Figure 4 (b) (at 30 s) and the radiation was induced 

in the network at this point (after 30 s) for a specified time and/or 

flux intensity. In section 4.3, the system was irradiated 

continuously from 0 s until 100 s and the system’s capability to 

learn the pattern in the presence of radiation is simulated. Current 

flux calculations are based on an assumed memristor device with 

interaction cross-section of 100 nm by 100 nm. 

4.1 Effect of Radiation Flux on Learning 

Figure 6 represents the behavior of the neural network when 

irradiated with a flux of 1010 cm−2s−1 (b), 3x1010 cm−2s−1 (c), and 

5x1010 cm−2s−1 (d) for 10 s (again, starting at 30 s) at a magnitude 

μ = 25 μA and σ = 12.5 μA.  
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Figure 6: Synaptic weight distribution immediately after the 

end of 10 s of radiation exposure (magnitude μ = 25 μA and σ = 

12.5 μA), at 70 s, and 100 s. As the flux increases, pattern 

distortion also increases, resulting in complete saturation in (d) 

at 40 s. At the same time, the system was able to resolve the 

pattern and separate uncorrelated neurons but took much 

longer time to stabilize post-radiation. 

 

Figure 7: The average synaptic-weight evolution of all 

memristors as radiation flux increases. After 30 s of learning, 

memristors were simulated with state-altering radiation 

(magnitude μ = 25 μA and σ = 12.5 μA) for 10 s (grey area). 

After the end of the radiation event as the network tries to 

relearn the pattern, the average synaptic weight of radiated 

memristors evolves towards the non-radiated weight curve. 

In Figure 6, the synaptic weight distribution is recorded right at 

the end of radiation events (at 40 s) and at 70 s and 100 s as learning 

continued. It is observed that as flux increases to 5x1010 cm−2s−1 (d) 

the pattern completely disappears (at 0 s post-radiation). As pattern 

learning continues after the end of radiation, the system was able to 

relearn the pattern even in the case of intense radiation flux (Figure 

6 (d)). Although it did take much longer for the system to depress 

the non-participating afferents, the difference in synaptic weight 

distribution can be noted at 70 s and 100 s. 

Evolution of the average synaptic weight of all 25 memristors 

is plotted in Figure 7. Simulated irradiation of the system for 10 s 

starts at 30 s (grey region) at different flux with a mean magnitude 

μ = 25 μA and σ = 12.5 μA. As expected, after the end of radiation 

at 40 s, mean weights start to evolve towards the non-radiated trace 

as the network tries to relearn the pattern. At higher flux of 5x1010 

cm−2s−1, all weights saturate post-radiation and the network is 

unable to recognize the pattern as in (Figure 6 (d)) at 40 s. 

4.2 Effect of Radiation Duration on Learning 

Figure 8 b and c represent the behavior of the neural network 

when irradiated for a longer period (20 s and 40 s, starting at time 

30 s) with Gaussian distributed pulses of average magnitude μ = 5 

μA and σ = 2.5 μA at 3x1010 cm−2s−1 flux. The weight distribution 

was recorded right at the end of radiation events (at 50 s/70 s) and 

after 30 s (at 80 s/100 s). Figure 6 (d) at 40 s shows more distortion 

in the pattern than Figure 8 (c) at 70 s even though Figure 8 (c) saw 

a longer period of exposure that is due to lower flux. Thus, it was 

also quicker for the network to depress the neurons and relearn the 

pattern. 

 

Figure 8: The left column shows the synaptic weight 

distribution after the end of state-altering radiation event 

(3x1010 cm−2s−1 flux, magnitude μ = 5 μA and σ = 2.5 μA) for (b) 

20 s and (c) 40 s, after 30 s of uninterrupted learning. The right 

column shows the weight distribution 30 s after the end of 

radiation. In (c), the network is still in an early stage of learning 

as radiation effects accumulated over time and delay the 

learning process. 

Figure 9 plots the evolution of average synaptic weight when 

the system is irradiated for longer periods (colored region) with 

pulse magnitude μ = 5 μA and σ = 2.5 μA each at 3x1010 cm−2s−1 

flux.  After the end of the radiation events, mean weights start to 

evolve towards the non-irradiated trace. Even when exposed to 

radiation for 40 s, weights do not saturate unlike the effect observed 

in Figure 7 at higher flux.  
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Figure 9: Average synaptic-weight evolution of all memristors 

as state-altering radiation (3x1010 cm−2s−1 flux, magnitude μ = 

5 μA and σ = 2.5 μA) time increases from 10 s to 40 s (colored 

area). After the end of the radiation event as the network tries 

to relearn the pattern, the average synaptic weight of radiated 

memristors evolves towards the non-radiated weight curve. 

4.3 Learning During Radiation 

Simulations results shown in Figure 10 and Figure 11 

demonstrate the learning ability and the average synaptic weight 

evolution of the network in the presence of radiation of pulse 

magnitude μ = .5 μA and σ = .25 μA at different flux. In these cases, 

radiation events started at 0 s when the network was in its initial 

state as in Figure 4 (b). The goal of this experiment was to 

determine if the network can learn a pattern at all in the presence of 

radiation, or whether the weight evolutions are inevitably altered. 

Figure 10 shows until 40 s there was no major disruption in the 

network’s ability to learn the pattern. Figure 10  (b) at a lower flux 

of 1x1010 cm−2s−1 shows no change in pattern recognition capability 

of the network for 100 s. It can be observed from Figure 10  (c, d, 

and e) that as radiation flux increases network quickly becomes 

unstable sooner as radiation accumulates. A similar evolution can 

be noted in Figure 11, which plots the total average weight of all 

the afferent synapses versus time. In this plot, weight evolution is 

similar until flux reaches over 1x1010 cm−2s−1. Here, the flux weight 

evolution is similar to the no radiation curve, but higher flux causes 

a sudden decrease in total weight after 70 s, 50 s and 40 s in case of 

3x1010 cm−2s−1, 4x1010 cm−2s−1, and 5x1010 cm−2s−1 state-altering 

radiation flux. 

It is interesting to note that in both Figure 10 (d and e), the 

network becomes stable again at 80 s, but consistently starts 

recognizing a different pattern. Figure 11 shows the stable 

evolution of weight after 70 s in both cases when the flux is at 

4x1010 cm−2s−1, and 5x1010 cm−2s−1. More exploration and longer 

simulations are required to understand the behavior and stability of 

the network under these conditions. 

 

Figure 10: Memristors were exposed to state-altering radiation 

(flux magnitude μ = .5 μA and σ = .25 μA) throughout the 

learning process (for 100 s starting at 0 s). In each case network 

was able to resolve the pattern in 40 s. Although, at higher flux 

(c), (d) and (e) the network became unstable at 80 s, 60 s, and 

50 s. Network maintained the stability in (b) at lower flux value. 

 

Figure 11: Average synaptic-weight evolution of all memristors 

as the network tries to learn the pattern in presence of state-

altering radiation (for 100 s starting at 0 s) at different flux 

(pulse magnitude with μ = .5 μA and σ = .25 μA). The network 

tries to resolve the pattern but becomes unstable sooner as the 

flux increases but at lower flux network was successfully able 

to recognize the pattern throughout the time. 

5 CONCLUSIONS 

The effect of state-altering radiation on a memristor-based 

neuromorphic circuit was examined. The circuit learns spatio-
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temporal patterns by correlated spike timing and STDP. Subject to 

continued training, the network starts to recover when exposed to 

short-term radiation that alters the synaptic states. Since the 

memristive devices have to cope with the effect of radiation and 

relearn the pattern, system-learning time increased based on flux, 

intensity, and length of irradiation. The network is able to learn and 

separate the uncorrelated afferents when the pattern was presented 

in low flux radiation. 

At the same time, higher radiation flux causes instability in the 

network. To gain stability over time, it suppresses the inputs from 

a few of the correlated neurons and seems to learn a new pattern. 

Thus, future work includes analyzing the long-term effects of 

radiation on the pattern learning capability of the network. It may 

also be useful to incorporate features such as recurrent connections 

and inhibitory synapses, which may increase the stability of the 

network. Although the network used in this study are two layer 

networks with relatively few neurons, they represent a part of 

multi-layer deep spiking neural network where convolution layers 

may be able to recover from the insignificant errors at lower 

radiation exposures. 
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