XXVIII International Conference on Organometallic Chemistry, Florence (Italy), 15-20/7/2018 LEAVE THIS LINE BLANK

Controlling selectivity in alkene oxidation: anion driven *syn*dihydroxylation or epoxidation catalysed by [Iron(III)(Pyridine-Containing Ligand)] complexes

<u>Alessandro Caselli</u>,^{a,*} Giorgio Tseberlidis,^a Nicola Panza,^a Ruben Vicente.^b ^a Dip. Chimica and ISTM-CNR-Milano, Univ. degli Studi, via Golgi 19 – 20133 Milano (Italy). ^b Dep. Química Orgánica e Inorgánica, Univ. Oviedo. c/ Julián Clavería 8, 33007, Oviedo (Spain). Email: alessandro.caselli@unimi.it

The introduction of a pyridine moiety into the skeleton of a polyazamacrocyclic ligand affects both thermodynamic properties and coordination kinetics of the resulting metal complexes.¹ These features have engendered a great interest of the scientific community. Much of the efforts in the use of macrocyclic pyridine containing ligands have been devoted to the study of catalytic oxidation reactions.² We report here the synthesis and characterisation of [Fe(III)Pc-L's)] complexes (Pc-L = Pyridine-Containing Ligand) and their catalytic applications in alkene oxidation reactions using H₂O₂ as the terminal oxidant under mild conditions (Figure). Depending on the anion employed for the synthesis of the iron(III) metal complex, we observed a completely reversed selectivity. When X = OTf, a selective *syn*-dihydroxylation reaction was observed. On the other hand, employing X = Cl, we obtained the epoxide as the major product. It should be pointed out that under otherwise identical reaction conditions, using FeCl₃·6H₂O as catalyst in the absence of the ligand, no reaction was observed.

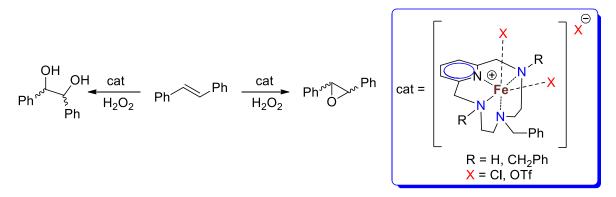


Figure. Selective epoxidation or syn-dihydroxylation of alkenes catalysed by [Fe(III)Pc-L's)].

Acknowledgements

Financial support from the Università degli Studi di Milano (Unimi- piano di sostegno alla ricerca 2015-17 - Linea 2 Azione B") is gratefully acknowledged.

References

- 1. Tseberlidis, G.; Intrieri, D.; Caselli, A. Eur. J. Inorg. Chem., 2017, 2017, 3589.
- Serrano-Plana, J.; Aguinaco, A.; Belda, R.; García-España, E.; Basallote, M. G.; Company, A.; Costas, M. Angew. Chem. Int. Ed. 2016, 55, 6310.