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A popular Adam—Gibbs scenario has suggested that the excess entropy of glass and liquid over
crystal dominates the dynamical arrest at the glass transition with exclusive contribution from
configurational entropy over vibrational entropy. However, an intuitive structural rationale for the
emergence of frozen dynamics in relation to entropy is still lacking. Here we study these issues
by atomistically simulating the vibrational, configurational, as well as total entropy of a model
glass former over their crystalline counterparts for the entire temperature range spanning from
glass to liquid. Besides confirming the Adam—Gibbs entropy scenario, the concept of Shannon
information entropy is introduced to characterize the diversity of atomic-level structures, which
undergoes a striking variation across the glass transition, and explains the change found in the
excess configurational entropy. Hence, the hidden structural mechanism underlying the entropic
kink at the transition is revealed in terms of proliferation of certain atomic structures with a higher
degree of centrosymmetry, which are more rigid and possess less nonaffine softening modes. In turn,
the proliferation of these centrosymmetric (rigid) structures leads to the freezing-in of the dynamics
beyond which further structural rearrangements become highly unfavourable, thus explaining the
kink in the configurational entropy at the transition.

I. INTRODUCTION separating the vibrational and configurational entropy
across the glass transition. Recently, Smith et al. have
successfully obtained the phonon density of states (DOS)
thanks to the advances in neutron flux and instrument
efficiency for inelastic neutron scattering (INS), which en-

ables capturing of vibrational states in a very short time

The glass transition is generally regarded as the phe-
nomenon in which a viscous liquid circumvents crystal-
lization and evolves continuously into a disordered solid

state directly during fast cooling! ™. It is a typical ex-

. . 20 .
ample of the falling-out-of-equilibrium phenomenon that WmeW fea?, ible above Tg. . These e'xperlments suggest
occurs for almost any system the relaxation time of which thatﬁ Vlb.r ational entrgpy is indeed trivial, or featureless,
surpasses laboratory time scales®. Gibbs and DiMarzio” against its configurational counterpart.

suggested that the excess entropy of glass and liquid over
crystal originates entirely from the configurational en-
tropy which governs the relaxation timescale. This for-
mulation lays a robust foundation for the Adam-Gibbs
relationship, which provides a connection between dy-
namics and thermodynamics of glass transition, i.e., time
and entropy® 1.

Also in the Potential Energy Landscape (PEL) pic-
ture?1213 it is assumed that the vibrational entropy is
in a relation of linear response with temperature!* and
plays a minor role compared to configurational entropy.
A recent simulation also revealed that the ideal glass
state is not only vibrational'®. To validate the entropic
scenario, configurational and vibrational contributions to
the excess entropy have been evaluated for molecular and
network glasses'%17, as well as computer Lennard-Jones
liquids'®19; however, there are only very few reports on
metallic glass-forming systems available in the literature.

It is the lack of thermodynamic stability of supercooled
liquids against crystallization in experiments that hinders

Nevertheless, an entropic picture including atomistic
information in the entire temperature space is miss-
ing. As a result, a question naturally arises about
which atomic-level structures change the most across the
transition®2!22,  While there exist some hints which
may be recognized as structural signatures of glass
transition®32%, an explicit link between structural mech-
anism and configurational entropy for the dynamical ar-
rest is missing®21:2%:27,

Here we fill this gap by disentangling the specific
contributions of vibrational and configurational entropy
across the glass transition and by relating the configura-
tional entropy to the distribution of atomic-level struc-
tures. Upon introducing a Shannon information entropy
measure of local structural diversity, we rationalize the
structural mechanism for the glass transition which is
responsible for the variation in configurational entropy.
The resulting scenario also offers the unprecedented per-
spective of linking entropy, structure and mechanical
properties into a single unifying framework.
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II. SIMULATION DETAILS

The molecular dynamics (MD) simulations are per-
formed by LAMMPS?® on a prototypical CusgZrso glass-
forming liquid which has been widely studied in simula-
tions. The force field is described by a Finnis-Sinclair
type embedded-atom method (EAM) potential®?. A
model simulation box containing 10,976 atoms with di-
mensions 60 A x 60 A x 60 A is used for estimating
the phonon density of states. A bigger simulation box
with 31,250 atoms is adopted for studying the structural
motifs and their statistical occurrence. The glass sam-
ple is prepared by quenching an equilibrium liquid at
2000 K to 0 K with a cooling rate of 10'% K/s. A con-
stant temperature, pressure and atom number ensem-
ble is used for both cooling and heating. The phonon
is obtained by diagonalization of the Hessian matrix.
Through Intel Math Kernel Library and LAPACK, we
diagonalize the Hessian matrix based on the EAM for-
mulation to obtain the vibrational normal modes®? 32,
Then the phonon DOS is obtained in a standard way as
D(w) = 57— ?5173 § (w —wy), with N being the num-
ber of atoms, | the number of vibrational modes, and w
the eigenfrequency. Finally, the local structure motifs of
inherent structures are categorized by the Voronoi tessel-
lation. A standard four digit descriptor (ng, ng, ns, ng) is
used to label a Voronoi polyhedron, where n; is the num-
ber of facets with i edges around a central atom?33-34.

III. RESULTS AND DISCUSSION

To quantitatively decouple the specific roles of vibra-
tional entropy Syi, and of configurational entropy Seconf
across the glass transition, we treat the total entropy as
Stot = Svib + Scont, Which can be obtained by thermody-
namic integration after heating a glass to liquid, i.e.,
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Here T is temperature, @@ is the absorption heat, U is
internal energy, and P is pressure.

Figure 1 shows the variation of thermodynamic quan-
tities as temperature involves. In Fig. 1(a), the glass
transition is clearly signaled at T, = 695 K by a kink
of the volume-temperature curve. The total entropy of
glass and crystal over their 0 K reference is displayed
in Fig. 1(b) from 0 K to 1200 K. One may notice that
the total entropy diverges around glass transition. To
further quantify this feature, we plot the excess total en-
tropy, AS;ot, of glass and liquid over crystal in Fig. 1(c).
ASot is defined as

_ oglass xtal
AStot_ tot — “tot (2)

Here, the multiple crystalline phases are considered
as references for the noncrystalline counterparts, i.e.,
the weighted mean of orthorhombic CujgZr; and Laves
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FIG. 1. Glass transition and excess total entropy. (a) Tem-
perature dependence of the volume of a glass-forming liquid
during cooling, the discontinuity in slope indicates the glass
transition temperature, Ty = 695 K. (b) Temperature depen-
dence of total entropy in disordered phase and crystal. (c)
Temperature dependence of excess total entropy ASiot-

CuZrs phases at 0 K-988.15 K, and a B2 CusgZrsg phase
at 988.15 K-1208.15 K according to Cu-Zr binary phase
diagram®®. In the following, the symbol A denotes the
difference between glass (liquid) and crystal in a specific
physical quantity. It is noted in Fig. 1(c) that the excess
total entropy exhibits two kinks in the whole temperature
range. The first one at low temperature is due to a change
in vibrational entropy, which will be explained later in
detail. With respect to the second kink at higher T, it
coincides with the glass transition temperature where the
excess entropy experiences a significant increase, consis-

tent with the Adam-Gibbs entropic scenario®.

As for the vibrational entropy, we calculate the phonon
DOS of both glass (liquid) and crystals as shown in Fig.
2. The phonon DOSs are calculated over a wide tem-
perature range spanning from far below to far above the
glass transition. The data are displayed in Fig. 2(a) for
selected temperatures from 10 K to 1200 K. To calibrate
the simulations, we also compare the numerical data with
INS experimental measurement of phonon at 600 K, as
shown in Fig. 2(b). Although MD overestimates the soft
modes and underestimates the high-frequency vibration,
the simulations are overall comparable to the experiment.
The extra soft modes in simulations are from the model
preparation with an extremely high cooling rate due to
the notoriously limited timescale in MD. For crystals,
the vibrational DOSs of CusgZrsg, CuigZry and CuZrs
are all shown in Fig. 2(c), accounting for the different
thermodynamically stable crystalline phases at different
temperatures.

Considering the bosonic nature of phonon, the vibra-
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FIG. 2. Phonon of glass-forming liquid and crystal. (a)

Phonon DOS of glass and liquid over wide temperature
range. (b) Comparison of phonon DOS between simulation
and experiment at 600 K. (¢) Phonon DOS of three crystal
phases including orthorhombic Cui¢Zr7, Laves CuZrs, and B2
CU5QZI'5().
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FIG. 3. Vibrational entropy of (a) glass-forming liquid, and
(b) crystal as a function of temperature. The simulations are
calibrated to the experiments. (c) Temperature dependence
of excess vibrational entropy of glass and liquid over crystal.
The error bars in (c) stand for the standard deviation of the
entropy in five statistically independent configurations.

tional entropy can be calculated from DOS via20:36

Sy (T) =3k / () {1+ 0 (7)) In[1 4+ n (7))
)} dE.

3)
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Here n(T) = {exp[E/(kgT)] — 1}~! is the Bose-Einstein
occupation number with kg the Boltzmann constant.
g(E) is the normalized phonon DOS and E = fw; is
the phonon energy. The calculated vibrational entropy
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FIG. 4. Panorama of excess total and vibrational entropy
over entire temperature range. The excess total entropy ex-
periences abrupt increase upon glass transition with domi-
nating contribution from its configurational component. The
simulations are calibrated by experiments.

versus temperature is shown in Fig. 3(a-b) for both glass
and crystals. It is seen that our calculations agree quan-
titatively with experiments. The vibrational entropies
evolve continuously from glass to liquid without any no-
ticeable discontinuity. The excess vibrational entropy of
glass (liquid) over crystal ASp, = Sfilgss Sxtal is further
plotted in Fig. 3(c), which exhibits two kmks in analogy
with the excess total entropy; see Fig. 1(c).

Once one has the excess total entropy ASio; and the
excess vibrational entropy ASyib, the exact role of con-
figurational entropy

ASconf = AStot - ASvib (4)
played in glass transition can be examined by subtract-
ing the vibrational part from the total entropy. The ex-
cess entropy of glass (liquid) over crystal is summarized
in Fig. 4 over the entire temperature range, which in-
cludes the temperature observation window of the exper-
iments. The excess vibrational entropy is trivial in most
of the temperature range compared with configurational
entropy. The striking variation in excess entropy near
the glass transition is mainly from the change in config-
urational entropy, whereas the vibrational entropy varies
moderately at the transition. The bare configurational
entropy is further shown in Fig. 5(d) to clearly confirm
its critical role in the glass transition. Such data unam-
biguously support the Adam—Gibbs entropy scenario and
are consistent with experimental observations°.
However, as a special case, the relative contribution
of configurational entropy and vibrational entropy to the
excess total entropy may be comparable, if only at ex-
tremely low temperature near 0 K. In this condition, the
vibrational entropy is more sensitive to temperature and
should increase markedly from zero to a finite value at



the very beginning of heating from 0 K; see Fig. 3(c).
Physically, the entropy from dynamical sources increases
as temperature goes up because the system explores a
larger volume in the phase space with stronger excita-
tions of dynamical degrees of freedom?S. Finally, we note
that T, in simulations is a bit higher than that found
in experiments. The slight difference is understandable
since the MD model is being quenched much faster, which
makes the inherent structure remain on higher positions
in the PEL.

Now that we have tested the validity of the Adam-—
Gibbs scenario, the remaining unsolved issue is whether
there is any unambiguous structural variation that is
linked with the evolution of the configurational entropy.
This link is crucial to explain the variation in linear re-
sponse to external fields such as shear, which is deeply
rooted in the microstructure®”. However, if one cares
only about the structure at the level of two-body corre-
lation, or the fraction of a specific local structure, usually
there is no dramatic change accounting for the dynamical
arrest. To figure out the hidden variables, the Voronoi
tessellation scheme is adopted to analyze the inherent
structures®334,

The distributions of the 30 most frequent Voronoi poly-
hedra are displayed in Fig. 5(a) for both glass and liquid.
Although the geometries of the clusters do not change
much from liquid to glass, their distribution does change
as evidenced by the difference, A P;, of fractions at 1200 K
and 10 K, respectively. The geometric structures that are
most frequent in the deep glass state become less popu-
lated in the liquid state upon crossing the glass transition.
Consequently, the local structures in the liquid are more
evenly distributed, which in turn increases the diversity
of structures and the corresponding configurational en-
tropy. In order to compare with disordered states, we also
list the local structures of the three crystalline phases in
Fig. 5(b). Only very few local structures are present in
crystals, indicating very low configurational entropy.

In order to further quantify the diversity of structures
and the configurational entropy, we introduce the concept
of Shannon information entropy®® 4° associated with the
incidence of local Voronoi structures (polyhedra) in dis-
ordered liquid and glass states*!, which reads

n

SShannon = — Z P; (z;) In P; (z;), (5)

i=1

here P(z;) is the normalized probability density of a
Voronoi polyhedron z;. The Shannon entropy provides a
“solid and quantitative basis for the interpretation of the
thermodynamic entropy”*2, and here we use it as a qual-
itative measure for the evolution of the configurational
entropy in the physical system.

The computed the Shannon entropy of glass-forming
systems is shown in Fig. 5(c). It is seen that the Shan-
non entropy rises abruptly at the glass transition temper-
ature, which is signaled by a kink. As Fig. 5(d) demon-
strates, the variation of excess configurational entropy

4

AScont (Eq. (4)) is in very good qualitative agreement
with the change in Shannon entropy ASShannon- This is
not a coincidence but a strong evidence that the change
of diversity in local atomic structures yields an abrupt
rise of configurational entropy as suggested in the Adam—
Gibbs entropic scenario. It is clear that Shannon entropy
is a universal composition-independent metric to capture
the glass transition, as shown in Fig. 6.

However, if one examines the temperature dependence
of specific local structures, such as (0, 3,6,4), (0,0, 12,0)
and (0,2,8,2), as shown in Fig. 5(c), only (0,0,12,0)
changes pronouncedly across glass transition tempera-
ture. Note that none of the Voronoi structures has a
fraction larger than 5%, which means there is no domi-
nating structures in the glass former; thus the change in
any specific structure may not be able to reflect complete
structural information about configurational variation®3.
Therefore, Shannon entropy presents more relevant sta-
tistical information about the whole scenario of struc-
tural evolution across the glass transition. Thus, we do
find a hidden structural change across the glass transition
from a statistical perspective, which has been puzzling for
decades. For a first approximation, we deduce the Kauz-
mann temperature as Tx = 590 K by extrapolating the
excess configurational entropy to zero, which is supported
by the experimental data, such as Tk = 571 K in Ref.**,
and Tk = 627 K in Ref.??. Finally, we note that a larger
model with 31,250 atoms is applied for the Voronoi struc-
ture analysis. As seen in Fig. 7, such model size yields
nearly converged diversity of local Voronoi structures.

We further propose to use a centrosymmetry param-
eter to characterize the feature of local atomic environ-
ment in glass and liquid, since the parameter can be an
effective measure of the degree of local disorder around
an atom. It is usually used to recognize versatile struc-
tural defect in crystals. For each atom, it is defined as
follows:

P= Y[Rt R (6)

1=1,n

where ﬁi and E,;.HL are the vectors or bonds representing
the n pairs of opposite nearest neighbors of the atom.
By adding each pair of vectors together, the sum of the
squares of the n resulting vectors, i.e., the centrosymme-
try parameter is derived. It is a scalar. The magnitude of
the centrosymmetry parameter provides a metric of the
departure from centrosymmetry in the immediate vicin-
ity of any atom considered. The higher the centrosym-
metry parameter is, the stronger the structural disorder
and the more non-centrosymmetric the local atomic en-
vironment.

It is evident that the increase of the fraction of cer-
tain geometrically favoured local structures upon lower-
ing the temperature is linked to the reduced degree of
local centrosymmetry*®, as demonstrated by the evolu-
tion of the average non-centro-symmetry parameter, as
shown in Fig. 8. This fact reflects the fact that certain
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FIG. 5. Shannon entropy of local structures across the glass transition as a microscopic measure of configurational entropy.
(a) Distribution and variation of 30 most frequent Voronoi polyhedra at 10 K and 1200 K, respectively. (b) Distribution of
Voronoi polyhedra in crystals. (¢) Temperature dependence of Shannon entropy which is extracted from the distribution of
local structures. The fractions of specific Voronoi polyhedra (0, 3,6,4), (0,0,12,0) and (0, 2, 8, 2) are also shown for comparison.
Each data point is an average of five independent inherent structures, with error bars in (c¢) denoting the standard deviation
of entropy in five statistically independent configurations. (d) Temperature dependence of excess configurational entropy of
glass-forming liquid, which is extracted from the difference between total entropy and the vibrational entropy as plotted in Fig.
4. The error bars in (d) stand for the standard deviation of entropy in five statistically independent configurations.

structures (Voronoi polyhedral) which are centrosymmet-
ric (e.g. dodecahedra with (0,0,12,0)) become more fre-
quent as temperature decreases. This brings along an in-
crease of rigidity, because centrosymmetric structures do
not possess nonaffine softening modes, as demonstrated
in%®. The proliferation of these centrosymmetric struc-
tures is fast with decreasing T in the liquid phase, until
a situation is reached where rigidity is such that further
structural adjustments become energetically unfavorable
and the system gets frozen-in at the glass transition.
Upon further decreasing T in the solid glass the configu-
ration entropy thus flattens out due to high penalty for

structural rearrangements caused by rigidity. This mech-
anism provides an explanation for the kink which signals
the glass transition in the configurational entropy. Hence
the configurationally favored structures give higher rigid-
ity and lower boson peak (lower soft modes)**46. In
terms of both Voronoi polyhedra and entropies, a nat-
ural link between entropy and rigidity/elasticity of glass-
forming systems can thus be established. Therefore, the
present results may lead to a unification of apparently
different concepts of glass transition, i.e., entropy in the
Adam-Gibbs sense®, the shear modulus in the shoving-
model®%1%47 and Frenkel’s viscoelastic crossover®°.
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tropy about Voronoi structures. The data of four different
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IV. CONCLUSION

Our results provide microscopic insights into the
Adam-Gibbs entropic scenario of the glass transition
in a model atomic glass former via quantification of
temperature-dependent total, vibrational, and configura-
tional entropies. The change of entropy that dominates
the glass transition is confirmed to be originated mostly
from configurational entropy, while the vibrational en-
tropy is featureless at the transition. The findings are
in agreement with recent INS experiments?’, and inde-
pendent simulations®® and provide additional atomistic
details. The hidden emergence of atomic-level structures
leading to dynamical arrest is unambiguously revealed
by studying the distributions of local Voronoi polyhedra
in terms of Shannon information entropy. In particular,
upon decreasing T in the liquid it is seen that a lim-
ited number of Voronoi polyhedra become more frequent
with respect to all the others, which makes the distribu-
tion of Voronoi polyhedra more uneven and thus reduces
the configurational and Shannon entropies. Since the
favoured polyhedra are associated with a higher degree
of local centrosymmetry, hence with mechanical rigidity
(they have less nonaffine softening modes*®), this even-
tually leads to a rigidification process at the glass tran-
sition, after which further structural rearrangements be-
come energetically unfavourable due to the rigid envi-
ronment, and the configurational entropy then decreases
much less with further decreasing T in the solid glass.

The emerging scenario may pave the way for construct-
ing a complete framework eventually connecting struc-
ture, entropy and viscoelasticity at the glass transition
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of Shannon entropy convergence to a fixed value if the sys-
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present model with 31,250 atoms is believed to yield reliable
statistics on Voronoi polyhedra.

10.0

—=#— large system
—#— medium system
—#— small system

9.51

Centro-symmetry parameter (A?)

[}
[}
9.0 |
[}
[}
1

T,
0 400 800 1200
Temperature (K)

FIG. 8. Ensemble average of the centrosymmetry parameter
for systems with different number of atoms. As the size be-
comes larger, the centro-symmetry parameter changes slightly
(the kink becomes more pronounced) with the increase of
structural diversity. There is no clear size effect on this pa-
rameter, compared with Shannon entropy as shown in Fig.
7.

of liquids.
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