Continuous Photocatalytic Antibacterial Activity of AgNPs doped

TiO₂ Digital Printed on Commercial Porcelain-grès Tiles

C.L. Bianchi^{1*}, B. Bresolin^{1,2}, R. Djellabi³, G. Cerrato⁴, S. Rtimi⁵, V. Capucci⁶ ¹Dept. of Chemistry, Università di Milano, Italy ²Laboratory of Green Chemistry, School of Engineering Science, Finland. ³Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, PR China ⁴Dept. of Chemistry, Università di Torino, Italy ⁵Institute of Materials, Swiss Federal Institute of Technology Lausanne (EPFL), Switzerland ⁶IrisCeramica Group, Italy

*Corresponding author: <u>claudia.bianchi@unimi.it</u>

Photocatalytic finishing materials, such as tiles or paints, are a productive as well as scientific reality. One of the most interesting photocatalytic material currently on the market is the porcelain stoneware which combines the beauty of a design product with hardness and absence of porosity and thus used for both floors and walls. The Agmicrometric TiO₂ allowed active ceramic slabs to be active under LED lights, bypassing the problem of the UVA radiation. SEM/TEM images in Fig. 1 indicate the full coverage of the porcelain surface (left image), besides a nanometric though heterogenous spreading of the AgNPs on top of the TiO₂ matrix (right image).

Figure 1. HR-SEM of the Active ceramic surface (left), TEM image of 8% AgNPs-TiO₂(center); possible photocatalytic mechanistic pathways in Ag doped TiO₂ system (right)

An important question concerns the antibacterial action: in fact, today the role of silver is unknown when the metal is physically blocked on a surface and cannot penetrate and therefore interfere at the DNA level in the cellular barrier. The prepared porcelain Ag-TiO₂ printed surfaces were tested against *E. coli* under solar and visible illumination and in the dark. To differenciate the semicondutor behavior and the ions mediated bacterial inactivation mechanism, porinless *E. coli* were used under band-gap irradiation. Stereomicroscopy analysis showed dead bacteria within 180 and 240 min respectively for normal *E. coli* and porinless *E. coli*. Using appropriate quenchers, the bacterial inactivation mechanisms under solar and visible light are proposed.

Keywords: photocatalytic material, antibacterial, silver, bacterial inactivation, LED, visible light