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	3	

The	formation	and	alteration	of	the	oceanic	lithosphere	represent	one	of	the	main	processes	for	4	

energy	and	chemical	exchanges	between	the	deep	Earth	and	its	outer	envelopes.	However,	the	steep	5	

thermal	gradients	characterizing	these	environments,	especially	at	the	main	thermal	and	lithological	6	

interfaces	 along	 mid-ocean	 accretion	 zones	 (Figure	 1),	 mean	 that	 the	 physical	 and	 chemical	7	

mechanisms	 controlling	 these	 exchanges	 remain	 poorly	 understood.	 Yet,	 these	 interfaces	 are	 the	8	

main	 transitions	 for	 the	 physical	 and	 rheological	 properties	 of	 rocks,	 such	 as	 permeability	 and	9	

viscosity,	that	control	melt	focussing	and	transport	from	the	partially	molten	mantle	to	the	surface,	10	

as	well	as	deformation	mechanisms	and	the	influx	of	seawater	into	the	cooling	oceanic	lithosphere.	11	

These	 processes	 also	 give	 rise	 to	 hydrothermal	 systems	 that	 produce	 economically	 valuable	 ore-12	

deposits	and	play	a	major	role	in	the	global	chemical	budget.	Some	hydrothermal	reactions	produce	13	

hydrogen	 and	 abiotic	 hydrocarbon,	 hence	 these	 extreme	 environments	 sustain	 life	 and	 they	 are	14	

potentially	 implicated	 in	 its	 origin.	 Finally,	 these	 processes	 determine	 the	 architecture	 and	15	

composition	of	the	lithosphere	plunging	into	the	deep	Earth	along	subduction	zones,	and	contribute	16	

to	 a	 broad	 range	 of	 mechanisms	 driving	 arc	 magmatism	 and	 localization	 of	 earthquakes	 in	 these	17	

regions.			18	

Traditionally	 the	 formation	of	oceanic	 lithosphere	has	been	envisioned	as	a	suite	of	mantle	and	19	

crustal	magmatic	processes,	followed	by	high-	to	low-temperature	hydrothermal	processes,	which	in	20	

turn	supported	the	development	of	diverse	ecosystems;	in	this	scheme,	each	step	was	considered	as	21	

occurring	independently	and	in	different	domains,	whilst	the	interactions	and	feedbacks	controlling	22	

mass	 and	 energy	 transfers	 at	 their	 boundaries	 had	 been	 mostly	 overlooked.	 However,	 over	 the	23	

recent	 years,	 the	 role	 of	 the	 physical	 and	 (bio-)chemical	 processes	 occurring	 at	 the	 interfaces	24	

bounding	 the	 Earth’s	 envelopes	 has	 been	 progressively	 recognized.	 These	 boundary	 layers	25	

characterize	 the	 architecture	 of	 Earth’s	 oceanic	 lithosphere	 and	 they	 are	 determined	 by	 two	26	

competitive	processes	at	mid-ocean	ridges:	conduction	and	advection	of	heat	 from	depth,	which	 is	27	

dominantly	controlled	by	mantle	upwelling	 (spreading	rate)	and	melt	 transport	 from	the	mantle	to	28	

the	 surface,	 and	 cooling	 by	 conduction	 and	 hydrothermal	 circulation.	 These	 boundary	 layers	29	

correspond	to	isotherms	marking	transitions	in	rocks	properties	and	therefore,	in	turn,	they	depend	30	

on	the	composition	of	the	lithosphere	and	are	expected	to	vary	greatly	from	fast-spreading	layered	31	

oceanic	 lithosphere	 (Penrose	Model)	 to	 slow-spreading	 heterogeneous	 oceanic	 lithosphere	 (Figure	32	

1).	Understanding	such	complex	highly	reactive	geological	systems	requires	a	shift	of	approach	and	33	

the	 development	 of	 new	 scientific	 tools	 to	 comprehend	 and	 integrate	 the	 role	 of	 transport	 of	34	

magmatic	melts	and	hydrothermal	fluids	through	the	oceanic	lithosphere,	and	their	feed-back	on	its	35	



physical	 and	 (bio-)chemical	 properties.	 This	 volume	 brings	 together	 a	 series	 of	 articles	 addressing	36	

these	challenges	with	natural	observations	and	laboratory	experiments.		37	

	38	

From	mantle	lithosphere	to	magmatic	crust	39	

Basch	et	al.	(2018),	Ferrando	et	al.	(2018)	and	Borghini	et	al.	(2018)	investigate	the	nature	of	the	40	

transition	 from	 mantle	 to	 gabbroic	 lower	 crust	 with	 the	 aim	 to	 characterize	 and	 identify	 the	41	

magmatic	processes	controlling	this	transition.	Basch	et	al.	(2018)	document	a	transition	from	mantle	42	

peridotites	 to	 olivine-rich	 troctolites,	 the	most	 primitive	 end-member	 of	 the	 lower	 gabbroic	 crust,	43	

preserved	in	the	Mt.	Maggiore	Ophiolite	(Corsica,	France).	Ferrando	et	al.	(2018)	focus	on	the	study	44	

of	 olivine-rich	 troctolites	 interlayered	 within	 a	 drilled	 gabbroic	 section	 of	 heterogeneous	 oceanic	45	

lithosphere	 (Integrated	 Ocean	 Drilling	 Program	 (IODP)	 Expeditions	 304/305	 Site	 U1309	 Atlantis	46	

Massif	 30°N,	 Mid-Atlantic	 Ridge).	 Basch	 et	 al.	 (2018)	 and	 Ferrando	 et	 al.	 (2018)	 combine	 petro-47	

structural	and	geochemical	analyses	and	numerical	modelling	of	major	and	trace	element	variations	48	

to	determine	 the	 respective	 roles	of	 fractional	 crystallization	and	 reactive	porous	melt	 flow	during	49	

the	 incipient	 stages	 of	 the	 formation	 of	 gabbroic	 oceanic	 crust.	 This	 approach	 provides	 criteria	 to	50	

identify	 and	 quantify	melt/rock	 reactions	 and	 to	 estimate	 the	 contribution	 of	mantle	 rocks	 to	 the	51	

formation	of	the	 lower	crust.	These	studies	give	evidences	for	a	 likely	progressive	formation	of	the	52	

lower	oceanic	 crust	at	 the	expense	of	 the	 shallow	mantle,	 and	 shed	 light	on	 the	 control	 that	 such	53	

processes	 can	 exert	 on	melt	 evolution	 in	 the	 oceanic	 crust.	 To	 better	 constrain	 the	 chemical	 and	54	

physical	parameters	driving	 these	processes,	Borghini	et	al.	 (2018)	 investigate	 the	origin	of	olivine-55	

rich	 troctolites	 and	 studied	 melt-olivine	 reaction	 using	 specifically	 designed	 experiments.	 They	56	

observe	textural	development	comparable	with	disequilibrium	features	observed	 in	natural	olivine-57	

rich	 troctolites	 (e.g.,	 Basch	 et	 al.	 (2018),	 Ferrando	 et	 al.	 (2018))	 and	 demonstrate	 the	 control	 of	58	

starting	 melt	 composition	 and	 melt-olivine	 ratio	 on	 modal	 composition	 and	 mineral	 chemistry	 of	59	

olivine-rich	troctolites.		60	

	61	

High	 temperature	 hydrothermalism	 and	 cooling:	 Impact	 on	 architecture	 and	 composition	 of	 newly	62	

formed	crust		63	

Koepke	et	al.	(2018),	Grant	and	Harlov	(2018),	Currin	et	al.	(2018a,	b)	and	Zihlmann	et	al.	(2018)	64	

investigate	the	role	of	 fluids	and	of	hydrothermalism	on	differentiation	processes	during	cooling	of	65	

the	gabbroic	mafic	 lower	crust	 	and	their	 impact	on	the	architecture	and	composition	of	the	newly	66	

formed	crust.	Koepke	et	al.	(2018)	present	the	first	phase-equilibria	study	of	the	late	stages	of	MORB	67	

differentiation	and	explore	the	role	of	water	activity	in	these	systems.	On	this	basis,	they	propose	a	68	

two-step	differentiation	model	for	the	formation	of	oxide	gabbros	in	slow	spread	magmatic	crust	and	69	

at	 the	 transition	 from	 lower	 to	 upper	 layered	 crust	 as	well	 as	 for	 the	 formation	 of	 highly	 evolved	70	



lavas	at	fast-	and	intermediate	spreading	mid-ocean	ridges.	This	model	emphasizes	the	prevalence	of	71	

oxygen	 fugacity	on	oxide	differentiation	 suites	 including	 late	 formation	of	minerals	 such	as	apatite	72	

and	 amphibole	 during	 cooling	 down	 to	 temperatures	 of	 800-900°C.	 Grant	 and	 Harlov	 (2018)	 and	73	

Currin	 et	 al.	 (2018a)	 use	 experimental	 approaches	 to	 study	 the	 behaviour	 of	 these	 systems	 in	 the	74	

presence	 of	 NaCl-brines	 in	 order	 to	 understand	 fluid-rock	 interactions	 associated	 with	 high	75	

temperature	 hydrothermalism	 (900°	 to	 500°C)	 not	 only	 in	 oceanic	 gabbros	 but	 also	 in	 the	 deep	76	

continental	mafic	crust.	Grant	and	Harlov	(2018)	show	a	correlation	between	the	reactivity	of	olivine-77	

plagioclase	assemblages,	water	activity	and	fluid	NaCl	concentrations.	They	identify	the	chemical	and	78	

temperature	 conditions	 the	 most	 favourable	 for	 the	 formation	 of	 Cl-rich	 amphiboles	 in	 these	79	

systems.	 Currin	 et	 al.	 (2018a)	 further	 investigate	 the	 processes	 leading	 to	 the	 formation	 of	80	

amphiboles,	 and	 in	 particular	 of	 Cl-rich	 amphiboles,	 at	 the	 pressure	 and	 temperature	 conditions	81	

expected	during	hydrothermal	reactions	between	seawater-derived	fluids	and	the	gabbroic	oceanic	82	

lower	crust.	They	show	that	the	composition	of	amphibole	is	highly	variable	in	hydrothermal	systems	83	

and	that	their	Cl	content	is	affected	not	only	by	the	composition	of	hydrothermal	fluids	but	also	by	84	

the	 extent	 of	 fluid/rock	 interactions.	 Zihlmann	 et	 al.	 (2018)	 and	 Currin	 et	 al.	 (2018b)	 provide	 new	85	

constraints	on	the	role	of	deep	hydrothermal	systems	at	mid-oceanic	ridges	through	detailed	field,	86	

petrologic	and	geochemical	studies	of	lower	gabbroic	sections	of	layered	oceanic	crust	preserved	by	87	

the	 Oman	 Ophiolite.	 Zihlmann	 et	 al.	 (2018)	 identify	 fault	 zones	 as	 the	 main	 flow	 paths	 for	 high	88	

temperature	 hydrothermalism	 at	 mid-ocean	 ridges.	 They	 establish	 that	 such	 focussed	 flow	 zones	89	

contribute	 to	 the	 fast	 cooling	 of	 the	 gabbroic	 lower	 oceanic	 crust	 and	 to	 the	 global	 hydrothermal	90	

geochemical	fluxes.	Currin	et	al.	(2018b)	focus	on	the	formation	of	Cl-rich	amphiboles	and	show	that	91	

fluid-rock	interactions	leading	to	their	formation	occur	in	rock-dominated	environment.		92	

	93	

Serpentinization,	sulphides,	carbon	and	geo-resources	94	

The	 linkages	 between	magmatic,	 hydrothermal	 and	 (bio-)geochemical	 processes	 becomes	 even	95	

more	 prominent	when	 investigating	 the	mechanisms	 building	 the	 shallow	oceanic	 lithosphere	 and	96	

their	impact	on	global	geochemical	cycles,	deep	sea	natural	resources	and	the	development	of	life	as	97	

illustrated	by	Früh-Green	et	al.	(2018).	These	authors	present	an	overview	of	the	results	of	the	first	98	

oceanic	 drilling	 expedition	 dedicated	 to	 investigate	 the	 interplay	 between	 magmatism,	99	

serpentinization	 processes	 and	 microbial	 activity	 in	 the	 shallow	 subsurface	 (IODP	 Expedition	 357,	100	

Atlantis	Massif).	 This	 expedition	 provided	 a	 unique	 sampling	 of	 the	 suite	 of	 altered	 and	deformed	101	

ultramafic	and	mafic	rocks	 forming	one	of	 the	major	detachment	 fault	zone	along	the	Mid-Atlantic	102	

Ridge	as	well	as	 first	biogeochemical	and	microbiological	characterization	of	 the	shallow	ultramafic	103	

subseafloor.		104	



Rouméjon	 et	 al.	 (2018),	 Escario	 et	 al.	 (2018)	 and	 Pastore	 et	 al.	 (2018)	 investigate	 the	105	

thermodynamic	and	hydrodynamic	conditions	and	the	localization	of	serpentinization	reactions,	the	106	

dominant	hydration	process	in	the	shallow	mantle	lithosphere.	Rouméjon	et	al.	(2018)	document	the	107	

development	of	serpentine	minerals	along	detachment	faults	at	slow-	and	ultraslow-spreading	ridges	108	

using	 samples	drilled	 at	Atlantis	Massif	 (IODP	Expedition	357)	 and	dredged	 along	 the	 easternmost	109	

Southwest	 Indian	 Ridge	 (SWIR,	 62–65°E).	 The	 studied	 serpentine	minerals	 have	 similar	 textures	 in	110	

these	environments,	yet	they	have	variable	compositions	when	associated	to	gabbros,	which	suggest	111	

cross-contamination	 by	 hydrothermal	 fluids.	 They	 are	 also	 isotopically	 heterogeneous	 for	 oxygen	112	

isotopes	down	to	scales	of	~100 μm,	and	these	variations	depend	on	water/rock	ratio.	Pastore	et	al.	113	

(2018)	developed	an	 innovative	 scanning	magnetic	microscopy	 technique	allowing	mapping,	at	 the	114	

millimeter	to	micrometer	scale	in	serpentinized	peridotites,	the	distribution	of	magnetite,	one	of	the	115	

mineral	 products	 of	 serpentinization	 reactions.	 This	 technique	 sheds	 new	 light	 on	 the	 strong	116	

heterogeneity	 and	 variability	 in	 the	 direction	 of	 the	 magnetization	 with	 respect	 to	 the	 pristine	117	

sample	 in	serpentinized	samples.	Escario	et	al.	 (2018)	 investigate	the	effects	of	solute	transport	on	118	

reaction	 paths	 during	 incipient	 serpentinization	 of	 olivine	 cores	 using	 a	 reactive-percolation	119	

experimental	 approach.	 They	 show	 that,	 for	 the	 same	 initial	 fluid	 and	 mineral	 compositions,	120	

serpentinization	reaction	paths	vary	depending	on	local	flow	distribution	(at	the	microscale)	and	that	121	

kinetics-	and	transport-controlled	reaction	paths	can	coexist	at	the	sample	scale.	These	mechanisms	122	

favour	the	development	of	mineralogical	and	compositional	heterogeneities.	These	results	suggest	a	123	

contribution	 of	 flow	 rate	 on	 the	 development	 of	 the	 different	 serpentinization	 reactions	 paths	124	

observed	in	the	basement	and	in	fault	zones	in	serpentinized	oceanic	mantle	lithosphere,	where	they	125	

are	 commonly	 ascribed	 to	 changes	 in	 the	 composition	 of	 hydrothermal	 fluids	 resulting	 from	126	

interactions	with	different	lithologies	along	flow	paths	(e.g.,	Rouméjon	et	al,	this	volume).		127	

Los	et	al.	(2018)	studied	experimentally	the	formation	of	sulphides	in	relation	to	low	temperature	128	

hydrothermalism	at	mid-ocean	ridges	and	more	particularly	the	role	of	the	composition	of	basement	129	

rocks	on	sulfidization	efficiency.	Basalt,	troctolite,	dunite	and	serpentinite	were	reacted	with	H2S-rich	130	

hydrothermal	 fluids.	 Sulphides	 could	 be	 observed	 only	 in	 the	 basalt	 experiment	 indicating	 that	131	

olivine-rich	seafloor	lithologies	are	not	favourable	to	sulphidation	reactions.	These	results	challenge	132	

the	commonly	proposed	anhydrite	formation	models	and	open	new	research	paths.		133	

Noel	et	al.	(2018)	and	Menzel	et	al.	(2018)	studied	in	natural	samples	the	formation	of	carbonates	134	

at	 the	 expense	 of	 ferromagnesian	 minerals,	 a	 process	 commonly	 associated	 to	 the	 alteration	 of	135	

mantle	peridotite.	They	carried	out	a	detailed	petro-structural,	geochemical	and	carbon	and	oxygen	136	

isotope	study	of	variously	altered	peridotites	from	the	Oman	and	the	Newfoundland	ophiolites.	Noel	137	

et	al.	(2018)	document	successive	episodes	of	carbonate-forming	reactions	from	the	Oman	Ophiolite,	138	

first	 associated	 to	 serpentinization	 close	 to	 a	mid-ocean	 ridge,	 then	 to	 the	 different	 stages	 of	 the	139	



emplacement	 of	 the	 ophiolite.	 They	 demonstrate	 structural	 and	 chemical	 linkages	 between	140	

serpentinization	 and	 carbonate-forming	 reactions	 during	 the	 cooling	 of	 the	 oceanic	 mantle	141	

lithosphere	in	the	presence	of	CO2-bearing	fluids,	and	evidence	the	control	of	inherited	mantle	fabric	142	

on	 the	 field	 scale	 orientation	 of	 late	 carbonate	 veins.	Menzel	 et	 al.	 (2018)	 document	 a	 complete	143	

sequence	 of	 carbonate-forming	 and	 redox	 reactions	 preserved	 at	 the	 interface	 in	 the	 Advocate	144	

Ophiolite	Complex	(Newfoundland,	Canada).	They	show	that	this	reaction	sequence	was	triggered	by	145	

an	 influx	 of	 CO2-rich	 fluids	 and	 that	 the	 devolatilization	 of	 neighbouring	 meta-sediments	 during	146	

subduction	is	the	most	likely	source	of	these	fluids.	They	suggest	that	carbonate-bearing	peridotites	147	

can	act	as	a	carbon	flux	pathway	beyond	sub-arc	depths.		148	

Carbon	 occurs	 also	 as	 abiotic	 organic	 compounds	 as	 well	 as	 organic	 metabolic	 byproducts	 or	149	

remnants	of	microbial	ecosystems	in	the	shallow	mantle	lithosphere.	Ménez	et	al.	(2018)	show	that	150	

organic	carbon	can	influence	secondary	mineral	formation	as	well	as	the	speciation	and	mobility	of	151	

transition	metals	during	low	temperature	serpentinization	reactions	(<	200 °C).	This	mechanism	has	152	

possible	implications	for	understanding	ore	formation	during	late	active	serpentinization	of	ophiolitic	153	

massifs	and/or	for	subsurface	carbon	dioxide	storage	in	ultramafic	rocks.	154	

	155	
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Figure	Caption	167	

	168	

Figure	 1:	 Boundary	 layers	 marking	 the	 transition	 of	 mantle	 asthenosphere	 to	 the	 shallow	 sub-169	

seafloor	at	mid-ocean	ridges	for	heterogeneous	(left-hand	side)	or	layered	(right-hand	side)	oceanic	170	

lithosphere.	They	correspond	mainly	to	isotherms	:	(1)	Asthenosphere-lithosphere	boundary	layer:	(i)	171	

mechanical	boundary	 (LithM):	 transition	between	a	visco-plastic	asthenospheric	mantle	and	a	 rigid	172	

lithosphere	 (ca.	 1000	 °C;	 note	 that	 it	 defends	 also	 on	 the	 deformation	 and	 composition	 of	 the	173	

mantle);	(ii)	chemical/petrological	boundary	(LithT):	marks	the	crystallization	of	clinopyroxene	and	/	174	

or	 plagioclase	 (ca	 1180°C),	 this	 process	 locally	 blocks	 magma	 flow	 and	 induces	 a	 change	 in	175	

permeability	(and	viscosity?)	of	the	partially	molten	mantle;	(2)	Moho:	seismic	interface	interpreted	176	

as	marking	(i)	a	change	in	lithology	in	layered	lithosphere,	from	mantle	peridotite	to	magmatic	crust	177	

(max	 1180°C	 at	 mid-ocean	 ridges),	 and	 (ii)	 the	 transition	 from	 serpentinite	 to	 peridotite	 in	178	

heterogeneous	mantle	lithosphere	(350-500	°C);	(3)	Lithosphere	/	hydrosphere	interface	i.e.	limit	of	179	

penetration	of	hydrothermal	 fluids	 in	 the	 lithosphere	 (Hy):	 (i)	 In	 a	 layered	 lithosphere,	 this	 limit	 is	180	

generally	 assumed	 to	 be	 the	 brittle-ductile	 transition	 in	 the	 oceanic	 crust	 (ca.	 700°C-750	 °C);	181	

however,	 recent	 works	 suggest	 that	 very	 high	 temperature	 (up	 to	 975°C,	HyHT)	 hydrothermalism	182	

could	 develop	 in	 lower	 gabbros;	 (ii)	 the	 dominant	 mechanisms	 driving	 the	 hydration	 of	 the	183	

heterogeneous	 lithosphere	 remain	 debated	 (permeability	 and	 role	 of	 large	 faults	 vs.	 diffuse	184	

penetration);	 assuming	 that	 the	 lithosphere	 /	 hydrosphere	 limit	 corresponds	 to	 the	Moho	 implies	185	

that	hydrothermal	fluids	can	interact	with	the	lithosphere	down	to	several	kilometre	deep.		186	

	 	187	
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