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We propose the extension of the test-area methodology, originally proposed to evaluate the surface
tension of planar fluid-fluid interfaces along a computer simulation in the canonical ensemble, to deal
with the solid-fluid interfacial tension of systems adsorbed on slitlike pores using the grand canonical
ensemble. In order to check the adequacy of the proposed extension, we apply the method for de-
termining the density profiles and interfacial tension of spherical molecules adsorbed in slitlike pore
with different pore sizes and solid-fluid dispersive energy parameters along the same simulation. We
also calculate the solid-fluid interfacial tension using the original test-area method in the canonical
ensemble. Agreement between the results obtained from both methods indicate that both methods are
fully equivalent. The advantage of the new methodology is that allows to calculate simultaneously
the density profiles and the amount of molecules adsorbed onto a slitlike pore, as well as the solid-
fluid interfacial tension. This ensures that the chemical potential at which all properties are evaluated
during the simulation is exactly the same since simulations can be performed in the grand canonical
ensemble, mimicking the conditions at which the adsorption experiments are most usually carried
out in the laboratory. © 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.3694533]

I. INTRODUCTION

During the last two decades there has been an enormous
advance in the fundamental knowledge of interfacial proper-
ties of inhomogeneous complex fluids, not only in the cases
of vapour-liquid and liquid-liquid free interfaces, but also in
other inhomogeneous situations, such as molecules near pla-
nar walls, inside slitlike pores, and in general, in all situations
concerning fluids adsorbed on structured materials as zeolites,
nanotubes, and amorphous adsorbents. Molecular chains, sub-
stances with specific interactions as hydrogen bonding, and
systems interacting through long-range intermolecular forces
including Coulombic-type interactions are only a few exam-
ples of systems for which new methods of statistical mechan-
ics and computer simulation techniques are now available to
describe their thermodynamic and structural behaviour.

One of the main reasons of this advance is undeniably
the constant development of molecular-based theories of sta-
tistical mechanics. Density gradient theory,1–7 and more sig-
nificantly, density functional theory (DFT),8, 9 have allowed
to determine thermodynamic and structural properties of
spherical and molecular inhomogeneous systems. Particularly
relevant to this discussion are the great amount of works pub-
lished for predicting and understanding the behaviour of flu-
ids at free interfaces and adsorbed on different materials. The
new generation of functional theories, such as those based on
fundamental measure theory10–12 and their different versions,
have provided an important insight into the field. We recom-
mend the work of Llovell et al.13 for a recent review of the
literature.
a)Electronic mail: felipe@uhu.es.

As in the case of molecular-based theories, computer
simulation methods have also experienced a great develop-
ment in the field of interfacial properties, particularly in new
techniques for the calculation of fluid-fluid interfacial ten-
sion. The traditional method used for determining this key
property has been (and still is) the mechanical route, through
the evaluation of the microscopic components of the pressure
tensor from the virial. However, during the last decade there
has been an intense and fruitful development of new method-
ologies based on the thermodynamic definition of surface
tension. The use of new theoretical approaches, such as the
expanded ensemble,14 wandering interface method,15 or per-
turbative methods as the test-area (TA)16 technique, or the de-
termination of the macroscopic components of the pressure
tensor (using for instance virtual volume changes, as proposed
by de Miguel and Jackson17 or Brumby et al.18) are only a
few examples of the new methods available in the literature
from a computer simulation perspective. These methods are
becoming very popular, and as an example the TA method
has been so far used by several authors to determine vapour-
liquid interfacial properties of Lennard-Jones (LJ) chains,19

several water models,20, 21 the Mie potential,5, 22 or binary
fluid mixtures.7, 23

The traditional method, and also most of the recent
ones, has been applied for determining the fluid-fluid (mainly
vapour-liquid) surface tension of simple and complex systems
using molecular simulations carried out in the canonical en-
semble, i.e., simulations in which the number of particles,
volume, and temperature are kept constant. Obviously, this
is the “natural” ensemble for calculating the fluid-fluid inter-
facial properties at direct coexistence using computer simu-
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lation. However, this is not the case if we are dealing with
confined inhomogenous systems. There are only a few stud-
ies in which the solid-fluid interfacial tension of a confined
fluid is calculated from computer simulation (see for instance
Hamada et al.,24 Singh and Kwak,25 Das and Binder26), while
most authors concentrate on phase behaviour (Gelb et al.27),
adsorption (del Pino et al.28), or fluid structure (Evans29). The
reason for this is that confined fluid interfacial tension is not
experimentally accessible. However, its determination is im-
portant from a formal point of view because this quantity is
easily calculated theoretically from DFT. A comparison be-
tween theoretical and molecular simulation predictions con-
stitutes a strong test to check the ability of a theory in predict-
ing the behaviour of adsorbed molecules in a pore.

How is it possible to determine the interfacial tension of
a fluid confined into a pore from computer simulation? There
are different possibilities for calculating the interfacial tension
of a confined system using methodologies based on its ther-
modynamic definition, and particularly, using the TA16 tech-
nique. However, if we are interested in determining all the in-
volved interfacial properties, including the interfacial tension,
at the same thermodynamic conditions at which the fluid ad-
sorbed inside a pore is in equilibrium with its reservoir, the
practical possibilities are limited. This situation depicted is
the one occurring in most laboratory adsorption experiments,
so the possibility to reproduce the same conditions determines
the potential quantitative evaluation of the molecular simula-
tion estimations. The goal in adsorption experiments is to de-
termine the amount of molecules adsorbed as a function of
the temperature and pressure of the reservoir with which the
system is in contact. Since in the experimental setup the ad-
sorbed gas is in equilibrium with the gas in the reservoir, the
equilibrium conditions are that the temperature and chemical
potential of the gas inside and outside the adsorbent must be
identical. These conditions are exactly mimicked in the grand
canonical ensemble, and hence, in a grand canonical Monte
Carlo (GCMC) computer simulation.

From a computer simulation perspective, the calculation
of the amount of molecules adsorbed in a pore, at a given pres-
sure and temperature, involves a two-step procedure. In the
first step, a bulk simulation is performed in the isothermal-
isobaric or NPT ensemble at a given P and T. In order to
evaluate the chemical potential of the system at the thermo-
dynamic conditions, the particle insertion method proposed
by Widom30 is used during the production stage of the simu-
lation. Since the density of the reservoir is usually low since
the bulk phase is a gas, the Widom methodology is usually
appropriate. It is important to recall here that this chemical
potential µ is the corresponding value for the reservoir at the
selected pressure and temperature. The second step involves
a grand canonical ensemble simulation, at the same temper-
ature and chemical potential, that allows to determine all the
thermodynamic and structural properties of the adsorbed gas,
including the average amount adsorbed, the density profiles,
or even the isostheric heat of adsorption. However, since the
TA methodology is only applicable for simulations carried out
in the canonical or NVT ensemble, there is no possibility of
determining the interfacial tension during the same simulation
run. The standard procedure involves a third independent sim-

ulation, in the NVT ensemble, of the confined fluid at a den-
sity equal to the average amount of adsorbed molecules ob-
tained in the GCMC simulation. During the production stage
it is then possible to calculate the solid-fluid interfacial ten-
sion of the adsorbed system in the pore by performing virtual
displacements in the interfacial areas, as proposed by Gloor
et al.16 in the TA procedure. Note that it is also possible to cal-
culate the interfacial tension from the thermodynamic route
through the relationship that connects the interfacial tension
and the normal and tangential components of the pressure
tensor. Consider a system confined inside a pore with a well-
defined geometry, such as a slitlike pore in which the system is
confined between two parallel walls that interact with the fluid
through a known solid-fluid intermolecular potential. The z
axis is chosen perpendicular to the walls of the pore and the x
and y axis are parallel to the walls. It is important to recall here
that in a inhomogeneous system the pressure is not a scalar but
a tensorial quantity. In the particular case of pores with planar
geometry in which the inhomogeneity of the system is along
the direction perpendicular to the walls, i.e., the z axis, the mi-
croscopic perpendicular or normal (along the z axis direction)
component of the pressure tensor, Pzz ≡ PN, is constant and
equal to the “true” thermodynamic pressure inside the pore.
The microscopic tangential components of the pressure ten-
sor, parallel to the walls, Pxx(z) = Pyy(z) ≡ PT(z), are func-
tions of the z coordinate, or distance to the walls, and it is
different to PN, i.e., PT(z) ̸= PN.

An alternative, more efficient, and faster procedure, with-
out the need of performing the third computer simulation
(the NVT run) would be feasible if the solid-fluid interfa-
cial tension were calculated at the same time than the rest of
thermodynamic and structural properties during the GCMC
simulation. This would be possible by extending the TA
methodology to be applicable in the grand canonical ensem-
ble. The goal of this work is to extend the method proposed by
Gloor et al.16 to the grand canonical ensemble. We have then
performed some Monte Carlo simulations in both ensembles
to check the equivalence of the predictions obtained using the
two methodologies. We have also determined interfacial ten-
sion using Monte Carlo simulations in the µVT ensemble by
the more traditional method of Irving and Kirkwood31 that en-
tails the calculation of the components of the pressure tensor
using the virial route.

The rest of the paper is structured as follows. In Sec. II,
we derivate the extension of the formalism in the grand canon-
ical ensemble. Molecular simulation details are provided in
Sec. III. Section IV presents the comparison between the in-
terfacial tension calculations using µVT and NVT ensembles
for a benchmark system. Finally, we present the main conclu-
sions of this work.

II. TEST-AREA METHODOLOGY
IN THE GCMC ENSEMBLE

Consider an open system of particles at a given tempera-
ture T, occupying a volume V, and at chemical potential µ. In
the grand canonical or µVT ensemble, the key free energy is
the grand canonical potential energy ! = !(µ, V, T) ≡ !µVT.
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The change in grand canonical free energy when the tempera-
ture, volume, and chemical potential are changed with their
corresponding infinitesimal amounts is given by the well-
known change of free energy in the grand canonical ensem-
ble. However, density variations produce an extra contribu-
tion to the thermodynamic state functions, in general, and to
the grand canonical free energy in particular. In the presence
of an interface the free energies and particularly ! need to be
modified to include the work that has to be imposed by exter-
nal forces in order to change the interfacial area A by dA,

d!(A) = −SdT − PdV − Ndµ + γ dA. (1)

The contribution γ dA is the work needed and the
coefficient γ is the interfacial tension of the system. Note
that ! = !(µ,V, T ,A) ≡ !µV T (A) is also a function of the
interfacial area A. Its thermodynamic definition follows from
the expression:

γ =
(

∂!

∂A

)

µV T

, (2)

where the partial derivative must be evaluated at constant
chemical potential µ, volume V, and temperature T. Note
that in the case of a two-phase vapour-liquid or liquid-liquid
interface, the usual definition of the surface tension invokes a
similar derivative but in the the canonical or NVT ensemble.
This is the “natural” ensemble for studying a two-phase
fluid-fluid interface since the number of particles N, volume
V, and temperature T are constant.

Similarly the case of the canonical ensemble, the inter-
facial tension can be computed efficiently from the previous
expression by using fictitious increasing and decreasing sur-
face area. The grand canonical free energy is related with
the grand canonical partition function $µVT through the well-
known statistical mechanics relationship

! ≡ !µV T (A) = −kBT ln $µV T , (3)

where kB is Boltzmann’s constant, and the grand canonical
partition function $µVT is expressed as

$µV T ≡ $µ,V,T (A) =
+∞∑

N=0

exp [ βµN ] QNV T , (4)

where QNVT is the canonical partition function of a system
formed by N particles (at temperature T and volume V) and

β = (kBT)−1. The partition function of a system of spherical
molecules without internal degrees of freedom can be written
as

QNV T = 1
&3NN !

∫
drNexp[ −βUN (rN )] = 1

&3NN !
ZNV T ,

(5)

where & is the de Broglie wavelength associated with
the translational degrees of freedom of the system, UN

≡ UN (rN ), the intermolecular potential energy of a system
formed by N particles that depends on all the positions rN

≡ {r1, . . . , rN }, and ZNVT is the configurational partition func-
tion of the system

ZNV T =
∫

drN exp [−βUN (rN ) ]. (6)

Although we have used explicitly the relationship given by
Eq. (5) valid for systems that interact through spherical inter-
molecular potentials, with no internal degrees of freedom, the
methodology is equally applicable to molecular systems, as it
will be explained.

Perturbative methods in computer simulation allow to
calculate a number of thermodynamic properties from esti-
mation of the change in the appropriate free energy under
fictitious perturbation. The works of Eppenga and Frenkel,32

Harismiadis et al.,33 and de Miguel and Jackson,17 in the case
of pressure or components of the pressure tensor, and that of
Gloor et al. in the case of surface tension are clear examples
of this methodology. Following the work of Gloor et al., the
interfacial tension can be easily evaluated in the grand canon-
ical ensemble using the appropriate thermodynamics defini-
tion. Using Eq. (2), the interfacial tension can be expressed
as the difference in grand potential free energy between two
states with different surface areas

γ =
(

∂!

∂A

)

µV T

= lim
'A→0

!µV T (A + 'A) − !µV T (A)
'A

≈ '!µV T

'A
. (7)

The difference in free energy can be written in terms of the
grand canonical partition functions of the system having sur-
face areas A′ = A + 'A and A, with 'A > 0,

'!µV T = !µV T (A′) − !µV T (A) = −kBT ln

⎡

⎢⎢⎢⎢⎢⎣

+∞∑

N=0

eβµN

&3NN !

∫
drN exp [−βU (A′) ]

+∞∑

N=0

eβµN

&3NN !

∫
drN exp [−βU (A)]

⎤

⎥⎥⎥⎥⎥⎦
, (8)

where U (A) ≡ UN (rN ;A) and U (A′) ≡ UN (rN ;A′) denote the intermolecular potential energy of the system with surface area
A and A′, respectively. It is straightforward to write the previous equation in a more convenient way as

'!µV T = −kBT ln

⎡

⎢⎢⎢⎢⎢⎣

+∞∑

N=0

eβµN

&3NN !

∫
drNexp(−β'U+)exp [−βU (A) ]

+∞∑

N=0

eβµN

&3NN !

∫
drN exp [−βU (A) ]

⎤

⎥⎥⎥⎥⎥⎦
, (9)
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where 'U+ = U (A + 'A) − U (A) is the change in po-
tential energy when the interfacial area changes from A to
A + 'A. According to Eq. (9), the difference in grand poten-
tial free energy is proportional to the logarithm of the average
of the Boltzmann factor associated with the surface area per-
turbation over the unperturbed system of surface area A. This
configurational average can be written as

'!µV T = −kBT ln ⟨exp [−β'U+]⟩µV T . (10)

The interfacial tension can be then calculated in the grand
canonical ensemble through the following expression:

γ + = −kBT

'A
ln ⟨exp [−β'U+]⟩µV T . (11)

In principle, one could also have selected a backward, finite
difference scheme to approximate the first derivative of the
free energy. In this case, one can write

γ =
(

∂!

∂A

)

µV T

= lim
'A→0

!µV T (A) − !µV T (A − |'A|)
|'A|

,

(12)
which results in an expression for the interfacial tension of the
form

γ − = − kBT

|'A|
ln ⟨exp[−β'U−]⟩µV T , (13)

where 'U− = U (A) − U (A − |'A|) is the change in po-
tential energy when the interfacial area changes from A to
A − |'A|.

For systems of particles interacting through continuous
potentials, γ + and γ − are expected to be equal to the value of
the interfacial tension as long as 'A → 0. In practical imple-
mentations, small but finite values of 'A must be used, and
the forward and backward approaches will not yield exactly
the same value. As in previous works,14, 16, 17, 19–21, 34–36 the
central finite-difference approximation should provide a more
reliable estimate of the derivative given by Eqs. (7) and (12).
In this case, the interfacial tension can be expressed as

γ = γ + + γ −

2
, (14)

where γ + and γ − are given by Eqs. (11) and (13), respec-
tively. Special care must be taken when using Eq. (14) for
determining the interfacial tension of systems that interact
through non-continuous intermolecular interactions. The use
of Eq. (14) assumes implicitly that both expansion and com-
pression perturbations are appropriate to gauge the value of
interfacial tension. This is not expected for systems with dis-
continuous intermolecular potentials, as was first noted by
Eppenga and Frenkel32 some years ago, and more recently by
de Miguel and co-workers.17, 18 However, as we deal with con-
tinuous intermolecular potentials, the use of Eqs. (11), (13),
and (14) is fully justified from a theoretical point of view.

III. SIMULATION DETAILS

We have applied the methodology proposed in the previ-
ous section to study the interfacial properties of a simple fluid
confined inside a pore. In particular, the geometry selected

for this evaluation is a planar slit pore, composed by two non-
structured flat parallel walls separated by a fixed distance, the
pore width H. The molecules confined inside this pore will
be described using a simplified albeit widely used molecu-
lar model, consisting of symmetrically spherical molecules
whose intermolecular interaction energy is described through
the classical LJ potential

uff (rij ) = 4εff

[(
σff

rij

)12

−
(

σff

rij

)6
]

, (15)

where uff(rij) is the intermolecular potential energy between
particles i and j that depends only on the distance between
the centres of molecules rij ≡ |ri − rj |. The interactions are
spherically truncated but not shifted at a given distance rc. No
long-range corrections are applied and all the calculations are
carried out considering a cutoff distance of rc = 4σ ff. As it
is well known, σ ff stands for the diameter of the molecular
spherical core, and εff is the depth of the pairwise interaction
potential. The subscript ff stands for fluid-fluid molecular in-
teractions. The confinement of LJ spheres inside a planar pore
has been studied using Monte Carlo molecular simulations by
several authors.24, 37, 38

The molecules are supposed to interact with both confin-
ing walls. Among the extensive collection of models proposed
in the literature to account for solid-fluid molecular interac-
tions, the so-called Steele39 10–4–3 potential is very popular
as it has been used to reproduce the interaction with realis-
tic planar solid substrates as for instance graphite. This model
considers that the atoms constituting the solid substrate are
placed in layers equispaced by a distance ' and placed in
parallel to the solid-fluid dividing surface. Each of the solid
substrate atoms is supposed to interact with every individ-
ual fluid molecule through a LJ potential. With this setting,
and considering that the atom density in each solid substrate
layer is constant, the total interacting energy between a given
molecule and one confining wall may be integrated, yielding
the following expression:

usf (r) = 2πεsf σ 2
sf ρS'

[
2
5

(σsf

r

)10
−

(σsf

r

)4

−
(

σ 4
sf

3(r + 0.61')3

)]

, (16)

where r is the distance from the centre of the molecule to
one of the walls. The subscript sf denotes in this case wall-
fluid interactions. These characteristic interacting parame-
ters are defined using the usual Lorentz-Berthelot rules, i.e.,
σsf = 1

2 (σss + σff ), and εsf = (εss εff)1/2, where σ ss and εss are
the diameter and dispersive energy parameters corresponding
to the LJ wall atoms, respectively. Typical graphite values of
ρS = 0.114 and ' = 3.35 were selected, representing the solid
substrate atom density within each layer, and interlayer spac-
ing, respectively. Since the walls are oriented perpendicular to
the z axis and each molecule interacts with two walls, one lo-
cated at z = 0 and the other one at z = H, the total solid-fluid
interaction energy felt by a molecule placed at a distance z
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from one of the walls is given by

UTOT
sf (z) = usf (z) + usf (H − z). (17)

In the calculations presented here, the range of both attrac-
tions has been considered to be the same, hence σ ss = σ ff,
and the ratio εsf/εff has been tuned considering different val-
ues in order to explore the effect of the relative strength of
both interactions on the confined fluid interfacial properties.

We have performed computer simulations in the grand
canonical or µVT ensemble, as well as in the canonical or
NVT ensemble, in order to check the methodology proposed
in Sec. II. The simulation box selected was a parallelepipedic
box of dimensions Lx, Ly, and Lz. The flat parallel walls were
placed at z = 0 and z = Lz = H, which means that periodic
boundary conditions no longer apply along the z axis. The
pore width, which plays an important role in any study con-
cerning slab geometries as it determines the capillarity effects
induced by the confinement, remained constant in every case,
i.e., Lz ≡ H is fixed during Monte Carlo simulations, whatever
the thermodynamic ensemble is used.

All simulation runs were organized in cycles. For GCMC
simulations, each cycle consisted in N displacement move-
ments and a molecule deletion or insertion trial. The type of
movement was in every case selected at random according
to their fixed probabilities, and the maximum displacements

were tuned along the simulation to approach a 30% accep-
tance ratio. Initially, N = 512 Lennard-Jones molecules were
placed inside the simulation box using a fcc grid. A typical
run consisted of 5 × 105 equilibration cycles followed by a
production stage of at least 2 × 106 cycles. During this last
stage averages of the desired interfacial properties were com-
puted (density profiles, interfacial tension, normal and tangen-
tial components of the pressure tensor). Simulation box pro-
files along the z axis were determined by dividing the box in
100 equal width slabs parallel to the confining surfaces. The
uncertainties for the calculated interfacial tension values pre-
sented were in all case determined using the block averaging
technique, described in Ref. 40. The NVT runs were identical,
except of course for the fact that only translation moves were
considered.

Interfacial tension of the system was calculated using the
TA methodology explained in Sec. II in the NVT and µVT en-
semble. In addition, the Irving and Kirkwood31 method was
independently applied to determine interfacial tension during
GCMC simulations. This last method allows to determine the
normal and tangential components of the pressure tensor for
the case of planar confinement studied. The pressure is ob-
tained in this case as the contributions from the fluid inter-
molecular interactions to the normal and tangential compo-
nents, as follows:

P IK
N (z) = ρ(z)kBT − 1

2A

〈
N−1∑

i=1

N∑

j=i+1

|zij |
rij

du(rij )
dr

,

(
z − zi

zij

)
,

(
zj − z

zij

)〉

, (18)

P IK
T (z) = ρ(z)kBT − 1

4A

〈
N−1∑

i=1

N∑

j=i+1

(
x2

ij + y2
ij

)

rij · |zij |
du(rij )

dr
,

(
z − zi

zij

)
,

(
zj − z

zij

)〉

, (19)

where , is the Heaviside function and the subscript rij refers
to the distance between molecules i and j. The contribution of
the interacting walls produces an additional term to the nor-
mal pressure component, which may be described, taking into
account that the walls are placed in the geometry selected at z
= 0 and z = Lz, according to

P walls,IK
N (z) = 1

A

[〈
N∑

i=1

Fw(zi),(zi − z) · ,(z)

〉

−
〈

N∑

i=1

Fw(Lz −zi),(Lz −z) · ,(z − zi)

〉]

,

(20)

where N is the number of confined fluid molecules, and Fw(z)
is given by

Fw(z) = duw(z)
dz

. (21)

The calculation of the interfacial tension from the com-
puted normal and tangential components of pressure tensor
is then straightforward, using the classical mechanical route
definition

γIK =
∫ Lz

0

(
P IK

N (z) + P walls,IK
N (z) − P IK

T (z)
)
dz. (22)

IV. RESULTS

Once the technical and theoretical justification for the ap-
plication of the TA method in the grand canonical ensemble
has been established, a test will be performed on a benchmark
system, with the aim to provide a first insight into the quan-
titative equivalence of the application of TA method in the
canonical and grand canonical ensembles. In particular, we
compare the quantitative performance of the TA approach in
the calculation of interfacial tension for a slab confined fluid
in the NVT and µVT ensembles. Keeping this in mind, it is
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very important to set the thermodynamic conditions for both
runs to be as equivalent as possible, and with this aim the cal-
culation routes exposed in Sec. II, comprising, respectively,
two or three simulation runs were followed.

In the following discussion, the fluid-fluid dispersive
energy parameter εff and the diameter σ ff are chosen as
the units of energy and length, respectively. According to
this, we define the following reduced quantities: temperature,
T* = kBT/εff; pressure, P ∗ = Pσ 3

ff /εff ; density profile, ρ∗

= ρσ 3
ff ; chemical potential, µ* = µ/εff; surface tension, γ ∗

= γ σ 2
ff /εff ; pore size, H* = H/σ ff; and distance from one of

the walls, z* = z/σ ff.
The procedure has been then the following. Initial values

of T* = 2.001 and P* = 0.136 have been selected as reference
working conditions. The reason for this choice is that, if the
molecule of methane is modeled as a single LJ sphere, these
reduced coordinates correspond to the usual conditions found
in real tight gas reservoirs,41 a case study that is very relevant
from a practical perspective, and where the fluid interfacial
properties play a crucial role. As mentioned in Sec. II, the cal-
culation of the solid-fluid interfacial tension of a confined sys-
tem involves, if the TA methodology could be applied during
a GCMC simulation, a two-step procedure. In the first step,
a simulation of the described bulk LJ fluid was performed in
the isothermal-isobaric or NPT ensemble at the selected P*
and T* conditions, in order to determine the chemical poten-
tial value. The chemical potential was determined using the
classical Widom particle insertion method.30 This preliminar
simulation yielded a value of µ* = −10.86 (3).

In a second step, the information obtained in the prelim-
inar simulation is then used to perform a simulation of the
confined fluid in the grand canonical ensemble at the chemical
potential obtained during the (bulk) NPT simulation. It is im-
portant to recall here that this is the standard procedure if one
intends to mimick the setup used in experimental adsorption
studies, i.e., a gas reservoir in equilibrium with the confined
system at the same temperature and chemical potential. Dur-
ing this second simulation, the average density of molecules
inside the pore (adsorbed molecules) is calculated. In partic-
ular, the average density value inside the pore, in equilibrium
with the bulk phase at T* = 2.001 and P* = 0.136, was ρ*
= 0.0739(6). In addition to that, we apply the extension of the
TA procedure proposed in Sec. II and calculate the solid-fluid
interfacial tension of LJ molecules confined in the pore. We
also apply the Irving-Kirkwood method for determining in-
dependently along the grand canonical simulation the normal
and tangential components of the pressure tensor, and hence,
the interfacial tension.

Although this procedure is enough to have reliable values
of the solid-fluid interfacial tension, we have performed an
additional and independent simulation of the confined system
in the canonical ensemble at the same (constant) density as
that obtained in the second simulation previously mentioned
(ρ* = 0.0739) and calculate the solid-fuid interfacial tension
of the confined system using the TA method in the canonical
or NVT ensemble as originally described by Gloor et al.16

We have applied the procedure explained in the previous
paragraphs to calculate the solid-fluid interfacial tension of
spherical molecules inside a slitlike pore for different con-

0 2 4 6 8
z*

0

3

6

9

12

ρ* (z
* )

0 2 4 6 8 10
z*

0 1 2 3 40

3

6

9

12

ρ* (z
* )

0 1 2 3 4 5

H
*
=4 H

*
=5

H
*
=8 H

*
=10

FIG. 1. Density profiles of LJ molecules adsorbed on slitlike pores with
different pore widths H*. Blue solid lines represent GCMC results at µ*
= −10.86 and T* = 2.001, and red circles represent NVT results at the same
temperature and ρ* = 0.0739.

fining conditions of pore widths H and solid-fluid relative
strength εsf/εff. We first consider the influence of the pore
width for a fixed ratio εsf/εff = 2.0. Figure 1 shows the density
profiles inside the pore at T* = 2.001 and P* = 0.136 for dif-
ferent values of the pore width. As can be seen, simulations
in the grand canonical (µVT) and canonical (NVT) ensembles
give identical profiles, as expected since the same system is
simulated using different ensembles but at equivalent thermo-
dynamic conditions. Results indicate that the system devel-
ops the expected structure and layering effects inside the pore,
and more importantly, the correct behaviour as the pore size
is varied. In particular, the system exhibits three layers, two
of them located at one sigma of distance from the each wall
(located approximately at positions at which the solid-fluid
intermolecular potential exhibits two minima), and the third
located in the centre of the pore. As the pore size is increased,
the confined system exhibits four (H* = 5), and six layers
(H* = 8 and 10) located symmetrically inside the pore. Note
that for the larger pores (H* = 8 and 10), the system devel-
ops a nearly homogenenous adsorption or bulklike behaviour
in the centre of the pore, an expected behaviour since interac-
tions between the walls and molecules located in this region
become smaller in comparison with fluid-fluid interactions as
H* increases.

Results corresponding to the solid-fluid interfacial ten-
sion for the fixed ratio εsf/εff = 2.0 and different pore widths
calculated using three independent methods are presented in
Table I. As it can be seen, the interfacial tension values are
nearly identical in all cases using three alternative methods,
demonstrating the complete equivalence between the use of
the TA methodology in the canonical and grand canonical en-
sembles when using similar thermodynamic conditions. It is
important to recall here that the use of the TA method in the
grand canonical ensemble allows to evaluate the interfacial
tension and all the thermodynamic and structural properties
of the confined system in the same simulation, without the
need of any additional calculation. As can be seen in Fig. 2(a),
the solid-fluid interfacial tension becomes larger (less
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TABLE I. Solid-fluid interfacial tension of LJ molecules adsorbed on slit-
like pores of different pore widths H* and dispersive energy ratio εsf/εff = 2.0.
γ ∗

T A−µV T , γ ∗
T A−NV T , and γ ∗

IK are the interfacial tensions obtained from the
TA method in the grand canonical ensemble, from the TA in the canonical
ensemble, and from the Irving-Kirkwood procedure in the grand canonical
ensemble, respectively.

H* γ ∗
T A−µV T γ ∗

T A−NV T γ ∗
IK

4 − 43.67(7) − 43.64(3) − 43.70(8)
5 − 33.1(5) − 33.7(5) − 33.20(6)
8 − 27.2(5) − 27.7(5) − 27.27(7)

10 − 28.2(5) − 28.8(5) − 28.16(6)

negative) as the pore size increases, and it seems to develop an
asymptotic limiting behaviour as the pore size approaches to
8–10 (in reduced units), approximately. The structure of the
adsorbed layers, at sufficiently large pores, does not change
significantly as the pore size is increased, and it is expected
that the solid-fluid interfacial tension does not vary too much
in these cases.

A similar behaviour in the structure of the adsorbed sys-
tems is obtained when considering a fixed pore size, H* = 8,
and the relative strength εsf/εff is varied. Although we have
not shown the results here, we have observed the expected
behaviour, i.e., increase of the molecules adsorbed inside the
pore and a more structured density profiles as εsf/εff increases
from 0.5 up to 2.0.

The influence between the relative strength between the
fluid molecules and the fluid-wall interactions was studied by
setting the ratio εsf/εff = 0.5, 1, 1.5, and 2.0, for a fixed pore
width of H* = 8. Agreement between interfacial tensions ob-
tained with the three methods is also excellent within the sta-
tistical uncertainty of the simulations, as can be observed in
Table II. Figure 2(b) shows the solid-fluid interfacial tension,
as a function of εsf/εff, for the pore considered. As can be seen,
the interfacial tension becomes more negative as the energy
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FIG. 2. Solid-fluid interfacial tension of LJ molecules adsorbed on slitlike
pores of (a) different pore widths H* and dispersive energy ratio εsf/εff
= 2.0 and (b) pore width H* = 8 and different dispersive energy ratios εsf/εff
obtained from the TA method in the grand canonical ensemble (blue circles),
from the TA method in the canonical ensemble (red squares), and from the
Irving-Kirkwood procedure in the grand canonical ensemble (green trian-
gles). The blue dashed line is a guide to the eye.

TABLE II. Solid-fluid interfacial tension of LJ molecules adsorbed on slit-
like pores of pore width H* = 8 and different dispersive energy ratios
εsf/εff. γ ∗

T A−µV T , γ ∗
T A−NV T , and γ ∗

IK represent the same as in the caption of
Table I.

εsf/εff γ ∗
T A−µV T γ ∗

T A−NV T γ ∗
IK

0.5 − 2.49(2) − 2.49(2) − 2.49(1)
1 − 10.19(6) − 10.20(6) − 10.18(5)
1.5 − 20.0(2) − 20.2(3) − 19.98(5)
2 − 27.2(5) − 27.8(5) − 27.27(7)

ratio increases since the walls become more attractive, and
hence, interact more cohesively with the fluid adsorbed. The
agreement between interfacial tension values obtained from
different methods to within their statistical uncertainty is re-
markable, underlining the advantage of using the TA proce-
dure along a grand canonical Monte Carlo simulation when
studying adsorbed fluids on pores.

V. CONCLUSIONS

We have extended the TA methodology, originally pro-
posed to evaluate the surface tension of vapour-liquid inter-
faces along a computer simulation in the canonical ensemble,
i.e., at constant number of particles, volume, and temperature,
to calculate solid-fluid interfacial tension of systems adsorbed
on slitlike pores. This has been done by using the generaliza-
tion of the grand potential free energy for systems exhibit-
ing two-phase direct coexistence and expressing the interfa-
cial tension as the derivative of the corresponding free energy
with respect to the interfacial area. Thus, the interfacial ten-
sion can be computed along a simulation in the grand canoni-
cal ensemble, i.e., at constant chemical potential, volume, and
temperature, by performing fictitious increasing and decreas-
ing interfacial area changes and averaging the corresponding
Boltzmann factor associated with the surface area perturba-
tion over the unperturbed system.

The main advantage of this methodology is that it al-
lows to calculate simultaneously the density profiles and the
amount of molecules adsorbed onto a slitlike pore, as well as
the solid-fluid interfacial tension. On the contrary, the evalua-
tion of the solid-fluid interfacial tension using the original TA
methodology requires an additional and independent simula-
tion in the NVT ensemble, at the same average chemical po-
tential and density, which makes the proposed methodology
clearly more advantageous than the original one. In addition
to that, the new method ensures that the chemical potential at
which all properties are evaluated during the simulation is ex-
actly the same since the simulation is performed in the grand
canonical ensemble, mimicking the conditions at which the
adsorption experiments are most usually carried out in the lab-
oratory.

We have applied the new methodology performing grand
canonical Monte Carlo computer simulations to calculate the
density profiles and interfacial tension of spherical molecules,
interacting through the Lennard-Jones intermolecular poten-
tial, adsorbed in slitlike pores with different pore sizes and
solid-fluid dispersive energy parameters. In order to check
that predictions obtained from the new methodology give the



114707-8 Míguez et al. J. Chem. Phys. 136, 114707 (2012)

same results as those using the original technique, we have
also performed computer simulations in the NVT ensemble
with a number of particles equal to the average obtained at
constant chemical potential. Density profiles obtained from
computer simulations in the NVT and µVT ensembles are
nearly identical for all tested pore sizes and solid-fluid disper-
sive energies. An excellent agreement has been also found, to
within the statistical uncertainties, between solid-fluid interfa-
cial tension obtained from simulation in both ensembles, for
all the cases considered. We have also determined the inter-
facial tension from the mechanical expression by determining
the normal and tangent components of the pressure tensor us-
ing the Irving-Kirkwood recipe, finding the same results as
those obtained from the TA technique.
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